Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)
[oota-llvm.git] / lib / Transforms / Utils / SSAUpdater.cpp
1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SSAUpdater class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/SSAUpdater.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/TinyPtrVector.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/IR/CFG.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "ssaupdater"
32
33 typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
34 static AvailableValsTy &getAvailableVals(void *AV) {
35   return *static_cast<AvailableValsTy*>(AV);
36 }
37
38 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
39   : AV(nullptr), ProtoType(nullptr), ProtoName(), InsertedPHIs(NewPHI) {}
40
41 SSAUpdater::~SSAUpdater() {
42   delete static_cast<AvailableValsTy*>(AV);
43 }
44
45 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
46   if (!AV)
47     AV = new AvailableValsTy();
48   else
49     getAvailableVals(AV).clear();
50   ProtoType = Ty;
51   ProtoName = Name;
52 }
53
54 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
55   return getAvailableVals(AV).count(BB);
56 }
57
58 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
59   assert(ProtoType && "Need to initialize SSAUpdater");
60   assert(ProtoType == V->getType() &&
61          "All rewritten values must have the same type");
62   getAvailableVals(AV)[BB] = V;
63 }
64
65 static bool IsEquivalentPHI(PHINode *PHI,
66                           SmallDenseMap<BasicBlock*, Value*, 8> &ValueMapping) {
67   unsigned PHINumValues = PHI->getNumIncomingValues();
68   if (PHINumValues != ValueMapping.size())
69     return false;
70
71   // Scan the phi to see if it matches.
72   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
73     if (ValueMapping[PHI->getIncomingBlock(i)] !=
74         PHI->getIncomingValue(i)) {
75       return false;
76     }
77
78   return true;
79 }
80
81 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
82   Value *Res = GetValueAtEndOfBlockInternal(BB);
83   return Res;
84 }
85
86 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
87   // If there is no definition of the renamed variable in this block, just use
88   // GetValueAtEndOfBlock to do our work.
89   if (!HasValueForBlock(BB))
90     return GetValueAtEndOfBlock(BB);
91
92   // Otherwise, we have the hard case.  Get the live-in values for each
93   // predecessor.
94   SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
95   Value *SingularValue = nullptr;
96
97   // We can get our predecessor info by walking the pred_iterator list, but it
98   // is relatively slow.  If we already have PHI nodes in this block, walk one
99   // of them to get the predecessor list instead.
100   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
101     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
102       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
103       Value *PredVal = GetValueAtEndOfBlock(PredBB);
104       PredValues.push_back(std::make_pair(PredBB, PredVal));
105
106       // Compute SingularValue.
107       if (i == 0)
108         SingularValue = PredVal;
109       else if (PredVal != SingularValue)
110         SingularValue = nullptr;
111     }
112   } else {
113     bool isFirstPred = true;
114     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
115       BasicBlock *PredBB = *PI;
116       Value *PredVal = GetValueAtEndOfBlock(PredBB);
117       PredValues.push_back(std::make_pair(PredBB, PredVal));
118
119       // Compute SingularValue.
120       if (isFirstPred) {
121         SingularValue = PredVal;
122         isFirstPred = false;
123       } else if (PredVal != SingularValue)
124         SingularValue = nullptr;
125     }
126   }
127
128   // If there are no predecessors, just return undef.
129   if (PredValues.empty())
130     return UndefValue::get(ProtoType);
131
132   // Otherwise, if all the merged values are the same, just use it.
133   if (SingularValue)
134     return SingularValue;
135
136   // Otherwise, we do need a PHI: check to see if we already have one available
137   // in this block that produces the right value.
138   if (isa<PHINode>(BB->begin())) {
139     SmallDenseMap<BasicBlock*, Value*, 8> ValueMapping(PredValues.begin(),
140                                                        PredValues.end());
141     PHINode *SomePHI;
142     for (BasicBlock::iterator It = BB->begin();
143          (SomePHI = dyn_cast<PHINode>(It)); ++It) {
144       if (IsEquivalentPHI(SomePHI, ValueMapping))
145         return SomePHI;
146     }
147   }
148
149   // Ok, we have no way out, insert a new one now.
150   PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
151                                          ProtoName, &BB->front());
152
153   // Fill in all the predecessors of the PHI.
154   for (const auto &PredValue : PredValues)
155     InsertedPHI->addIncoming(PredValue.second, PredValue.first);
156
157   // See if the PHI node can be merged to a single value.  This can happen in
158   // loop cases when we get a PHI of itself and one other value.
159   if (Value *V =
160           SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
161     InsertedPHI->eraseFromParent();
162     return V;
163   }
164
165   // Set the DebugLoc of the inserted PHI, if available.
166   DebugLoc DL;
167   if (const Instruction *I = BB->getFirstNonPHI())
168       DL = I->getDebugLoc();
169   InsertedPHI->setDebugLoc(DL);
170
171   // If the client wants to know about all new instructions, tell it.
172   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
173
174   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
175   return InsertedPHI;
176 }
177
178 void SSAUpdater::RewriteUse(Use &U) {
179   Instruction *User = cast<Instruction>(U.getUser());
180
181   Value *V;
182   if (PHINode *UserPN = dyn_cast<PHINode>(User))
183     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
184   else
185     V = GetValueInMiddleOfBlock(User->getParent());
186
187   // Notify that users of the existing value that it is being replaced.
188   Value *OldVal = U.get();
189   if (OldVal != V && OldVal->hasValueHandle())
190     ValueHandleBase::ValueIsRAUWd(OldVal, V);
191
192   U.set(V);
193 }
194
195 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
196   Instruction *User = cast<Instruction>(U.getUser());
197   
198   Value *V;
199   if (PHINode *UserPN = dyn_cast<PHINode>(User))
200     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
201   else
202     V = GetValueAtEndOfBlock(User->getParent());
203   
204   U.set(V);
205 }
206
207 namespace llvm {
208 template<>
209 class SSAUpdaterTraits<SSAUpdater> {
210 public:
211   typedef BasicBlock BlkT;
212   typedef Value *ValT;
213   typedef PHINode PhiT;
214
215   typedef succ_iterator BlkSucc_iterator;
216   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
217   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
218
219   class PHI_iterator {
220   private:
221     PHINode *PHI;
222     unsigned idx;
223
224   public:
225     explicit PHI_iterator(PHINode *P) // begin iterator
226       : PHI(P), idx(0) {}
227     PHI_iterator(PHINode *P, bool) // end iterator
228       : PHI(P), idx(PHI->getNumIncomingValues()) {}
229
230     PHI_iterator &operator++() { ++idx; return *this; } 
231     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
232     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
233     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
234     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
235   };
236
237   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
238   static PHI_iterator PHI_end(PhiT *PHI) {
239     return PHI_iterator(PHI, true);
240   }
241
242   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
243   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
244   static void FindPredecessorBlocks(BasicBlock *BB,
245                                     SmallVectorImpl<BasicBlock*> *Preds) {
246     // We can get our predecessor info by walking the pred_iterator list,
247     // but it is relatively slow.  If we already have PHI nodes in this
248     // block, walk one of them to get the predecessor list instead.
249     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
250       Preds->append(SomePhi->block_begin(), SomePhi->block_end());
251     } else {
252       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
253         Preds->push_back(*PI);
254     }
255   }
256
257   /// GetUndefVal - Get an undefined value of the same type as the value
258   /// being handled.
259   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
260     return UndefValue::get(Updater->ProtoType);
261   }
262
263   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
264   /// Reserve space for the operands but do not fill them in yet.
265   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
266                                SSAUpdater *Updater) {
267     PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
268                                    Updater->ProtoName, &BB->front());
269     return PHI;
270   }
271
272   /// AddPHIOperand - Add the specified value as an operand of the PHI for
273   /// the specified predecessor block.
274   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
275     PHI->addIncoming(Val, Pred);
276   }
277
278   /// InstrIsPHI - Check if an instruction is a PHI.
279   ///
280   static PHINode *InstrIsPHI(Instruction *I) {
281     return dyn_cast<PHINode>(I);
282   }
283
284   /// ValueIsPHI - Check if a value is a PHI.
285   ///
286   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
287     return dyn_cast<PHINode>(Val);
288   }
289
290   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
291   /// operands, i.e., it was just added.
292   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
293     PHINode *PHI = ValueIsPHI(Val, Updater);
294     if (PHI && PHI->getNumIncomingValues() == 0)
295       return PHI;
296     return nullptr;
297   }
298
299   /// GetPHIValue - For the specified PHI instruction, return the value
300   /// that it defines.
301   static Value *GetPHIValue(PHINode *PHI) {
302     return PHI;
303   }
304 };
305
306 } // End llvm namespace
307
308 /// Check to see if AvailableVals has an entry for the specified BB and if so,
309 /// return it.  If not, construct SSA form by first calculating the required
310 /// placement of PHIs and then inserting new PHIs where needed.
311 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
312   AvailableValsTy &AvailableVals = getAvailableVals(AV);
313   if (Value *V = AvailableVals[BB])
314     return V;
315
316   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
317   return Impl.GetValue(BB);
318 }
319
320 //===----------------------------------------------------------------------===//
321 // LoadAndStorePromoter Implementation
322 //===----------------------------------------------------------------------===//
323
324 LoadAndStorePromoter::
325 LoadAndStorePromoter(ArrayRef<const Instruction*> Insts,
326                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
327   if (Insts.empty()) return;
328   
329   const Value *SomeVal;
330   if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
331     SomeVal = LI;
332   else
333     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
334
335   if (BaseName.empty())
336     BaseName = SomeVal->getName();
337   SSA.Initialize(SomeVal->getType(), BaseName);
338 }
339
340
341 void LoadAndStorePromoter::
342 run(const SmallVectorImpl<Instruction*> &Insts) const {
343   
344   // First step: bucket up uses of the alloca by the block they occur in.
345   // This is important because we have to handle multiple defs/uses in a block
346   // ourselves: SSAUpdater is purely for cross-block references.
347   DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
348
349   for (Instruction *User : Insts)
350     UsesByBlock[User->getParent()].push_back(User);
351   
352   // Okay, now we can iterate over all the blocks in the function with uses,
353   // processing them.  Keep track of which loads are loading a live-in value.
354   // Walk the uses in the use-list order to be determinstic.
355   SmallVector<LoadInst*, 32> LiveInLoads;
356   DenseMap<Value*, Value*> ReplacedLoads;
357
358   for (Instruction *User : Insts) {
359     BasicBlock *BB = User->getParent();
360     TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
361     
362     // If this block has already been processed, ignore this repeat use.
363     if (BlockUses.empty()) continue;
364     
365     // Okay, this is the first use in the block.  If this block just has a
366     // single user in it, we can rewrite it trivially.
367     if (BlockUses.size() == 1) {
368       // If it is a store, it is a trivial def of the value in the block.
369       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
370         updateDebugInfo(SI);
371         SSA.AddAvailableValue(BB, SI->getOperand(0));
372       } else 
373         // Otherwise it is a load, queue it to rewrite as a live-in load.
374         LiveInLoads.push_back(cast<LoadInst>(User));
375       BlockUses.clear();
376       continue;
377     }
378     
379     // Otherwise, check to see if this block is all loads.
380     bool HasStore = false;
381     for (Instruction *I : BlockUses) {
382       if (isa<StoreInst>(I)) {
383         HasStore = true;
384         break;
385       }
386     }
387     
388     // If so, we can queue them all as live in loads.  We don't have an
389     // efficient way to tell which on is first in the block and don't want to
390     // scan large blocks, so just add all loads as live ins.
391     if (!HasStore) {
392       for (Instruction *I : BlockUses)
393         LiveInLoads.push_back(cast<LoadInst>(I));
394       BlockUses.clear();
395       continue;
396     }
397     
398     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
399     // Since SSAUpdater is purely for cross-block values, we need to determine
400     // the order of these instructions in the block.  If the first use in the
401     // block is a load, then it uses the live in value.  The last store defines
402     // the live out value.  We handle this by doing a linear scan of the block.
403     Value *StoredValue = nullptr;
404     for (Instruction &I : *BB) {
405       if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
406         // If this is a load from an unrelated pointer, ignore it.
407         if (!isInstInList(L, Insts)) continue;
408         
409         // If we haven't seen a store yet, this is a live in use, otherwise
410         // use the stored value.
411         if (StoredValue) {
412           replaceLoadWithValue(L, StoredValue);
413           L->replaceAllUsesWith(StoredValue);
414           ReplacedLoads[L] = StoredValue;
415         } else {
416           LiveInLoads.push_back(L);
417         }
418         continue;
419       }
420
421       if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
422         // If this is a store to an unrelated pointer, ignore it.
423         if (!isInstInList(SI, Insts)) continue;
424         updateDebugInfo(SI);
425
426         // Remember that this is the active value in the block.
427         StoredValue = SI->getOperand(0);
428       }
429     }
430     
431     // The last stored value that happened is the live-out for the block.
432     assert(StoredValue && "Already checked that there is a store in block");
433     SSA.AddAvailableValue(BB, StoredValue);
434     BlockUses.clear();
435   }
436   
437   // Okay, now we rewrite all loads that use live-in values in the loop,
438   // inserting PHI nodes as necessary.
439   for (LoadInst *ALoad : LiveInLoads) {
440     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
441     replaceLoadWithValue(ALoad, NewVal);
442
443     // Avoid assertions in unreachable code.
444     if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
445     ALoad->replaceAllUsesWith(NewVal);
446     ReplacedLoads[ALoad] = NewVal;
447   }
448   
449   // Allow the client to do stuff before we start nuking things.
450   doExtraRewritesBeforeFinalDeletion();
451   
452   // Now that everything is rewritten, delete the old instructions from the
453   // function.  They should all be dead now.
454   for (Instruction *User : Insts) {
455     // If this is a load that still has uses, then the load must have been added
456     // as a live value in the SSAUpdate data structure for a block (e.g. because
457     // the loaded value was stored later).  In this case, we need to recursively
458     // propagate the updates until we get to the real value.
459     if (!User->use_empty()) {
460       Value *NewVal = ReplacedLoads[User];
461       assert(NewVal && "not a replaced load?");
462       
463       // Propagate down to the ultimate replacee.  The intermediately loads
464       // could theoretically already have been deleted, so we don't want to
465       // dereference the Value*'s.
466       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
467       while (RLI != ReplacedLoads.end()) {
468         NewVal = RLI->second;
469         RLI = ReplacedLoads.find(NewVal);
470       }
471       
472       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
473       User->replaceAllUsesWith(NewVal);
474     }
475     
476     instructionDeleted(User);
477     User->eraseFromParent();
478   }
479 }
480
481 bool
482 LoadAndStorePromoter::isInstInList(Instruction *I,
483                                    const SmallVectorImpl<Instruction*> &Insts)
484                                    const {
485   return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
486 }