Remove redundant code.
[oota-llvm.git] / lib / Transforms / Utils / SimplifyCFG.cpp
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/Statistic.h"
31 #include <algorithm>
32 #include <functional>
33 #include <set>
34 #include <map>
35 using namespace llvm;
36
37 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
38
39 /// SafeToMergeTerminators - Return true if it is safe to merge these two
40 /// terminator instructions together.
41 ///
42 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
43   if (SI1 == SI2) return false;  // Can't merge with self!
44   
45   // It is not safe to merge these two switch instructions if they have a common
46   // successor, and if that successor has a PHI node, and if *that* PHI node has
47   // conflicting incoming values from the two switch blocks.
48   BasicBlock *SI1BB = SI1->getParent();
49   BasicBlock *SI2BB = SI2->getParent();
50   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
51   
52   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
53     if (SI1Succs.count(*I))
54       for (BasicBlock::iterator BBI = (*I)->begin();
55            isa<PHINode>(BBI); ++BBI) {
56         PHINode *PN = cast<PHINode>(BBI);
57         if (PN->getIncomingValueForBlock(SI1BB) !=
58             PN->getIncomingValueForBlock(SI2BB))
59           return false;
60       }
61         
62   return true;
63 }
64
65 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
66 /// now be entries in it from the 'NewPred' block.  The values that will be
67 /// flowing into the PHI nodes will be the same as those coming in from
68 /// ExistPred, an existing predecessor of Succ.
69 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
70                                   BasicBlock *ExistPred) {
71   assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
72          succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
73   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
74   
75   PHINode *PN;
76   for (BasicBlock::iterator I = Succ->begin();
77        (PN = dyn_cast<PHINode>(I)); ++I)
78     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
79 }
80
81 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
82 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
83 ///
84 /// Assumption: Succ is the single successor for BB.
85 ///
86 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
87   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
88
89   DEBUG(errs() << "Looking to fold " << BB->getName() << " into " 
90         << Succ->getName() << "\n");
91   // Shortcut, if there is only a single predecessor it must be BB and merging
92   // is always safe
93   if (Succ->getSinglePredecessor()) return true;
94
95   // Make a list of the predecessors of BB
96   typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
97   BlockSet BBPreds(pred_begin(BB), pred_end(BB));
98
99   // Use that list to make another list of common predecessors of BB and Succ
100   BlockSet CommonPreds;
101   for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
102         PI != PE; ++PI)
103     if (BBPreds.count(*PI))
104       CommonPreds.insert(*PI);
105
106   // Shortcut, if there are no common predecessors, merging is always safe
107   if (CommonPreds.empty())
108     return true;
109   
110   // Look at all the phi nodes in Succ, to see if they present a conflict when
111   // merging these blocks
112   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
113     PHINode *PN = cast<PHINode>(I);
114
115     // If the incoming value from BB is again a PHINode in
116     // BB which has the same incoming value for *PI as PN does, we can
117     // merge the phi nodes and then the blocks can still be merged
118     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
119     if (BBPN && BBPN->getParent() == BB) {
120       for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
121             PI != PE; PI++) {
122         if (BBPN->getIncomingValueForBlock(*PI) 
123               != PN->getIncomingValueForBlock(*PI)) {
124           DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in " 
125                 << Succ->getName() << " is conflicting with " 
126                 << BBPN->getName() << " with regard to common predecessor "
127                 << (*PI)->getName() << "\n");
128           return false;
129         }
130       }
131     } else {
132       Value* Val = PN->getIncomingValueForBlock(BB);
133       for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
134             PI != PE; PI++) {
135         // See if the incoming value for the common predecessor is equal to the
136         // one for BB, in which case this phi node will not prevent the merging
137         // of the block.
138         if (Val != PN->getIncomingValueForBlock(*PI)) {
139           DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in " 
140                 << Succ->getName() << " is conflicting with regard to common "
141                 << "predecessor " << (*PI)->getName() << "\n");
142           return false;
143         }
144       }
145     }
146   }
147
148   return true;
149 }
150
151 /// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
152 /// branch to Succ, and contains no instructions other than PHI nodes and the
153 /// branch.  If possible, eliminate BB.
154 static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
155                                                     BasicBlock *Succ) {
156   // Check to see if merging these blocks would cause conflicts for any of the
157   // phi nodes in BB or Succ. If not, we can safely merge.
158   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
159
160   // Check for cases where Succ has multiple predecessors and a PHI node in BB
161   // has uses which will not disappear when the PHI nodes are merged.  It is
162   // possible to handle such cases, but difficult: it requires checking whether
163   // BB dominates Succ, which is non-trivial to calculate in the case where
164   // Succ has multiple predecessors.  Also, it requires checking whether
165   // constructing the necessary self-referential PHI node doesn't intoduce any
166   // conflicts; this isn't too difficult, but the previous code for doing this
167   // was incorrect.
168   //
169   // Note that if this check finds a live use, BB dominates Succ, so BB is
170   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
171   // folding the branch isn't profitable in that case anyway.
172   if (!Succ->getSinglePredecessor()) {
173     BasicBlock::iterator BBI = BB->begin();
174     while (isa<PHINode>(*BBI)) {
175       for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
176            UI != E; ++UI) {
177         if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
178           if (PN->getIncomingBlock(UI) != BB)
179             return false;
180         } else {
181           return false;
182         }
183       }
184       ++BBI;
185     }
186   }
187
188   DEBUG(errs() << "Killing Trivial BB: \n" << *BB);
189   
190   if (isa<PHINode>(Succ->begin())) {
191     // If there is more than one pred of succ, and there are PHI nodes in
192     // the successor, then we need to add incoming edges for the PHI nodes
193     //
194     const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
195     
196     // Loop over all of the PHI nodes in the successor of BB.
197     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
198       PHINode *PN = cast<PHINode>(I);
199       Value *OldVal = PN->removeIncomingValue(BB, false);
200       assert(OldVal && "No entry in PHI for Pred BB!");
201       
202       // If this incoming value is one of the PHI nodes in BB, the new entries
203       // in the PHI node are the entries from the old PHI.
204       if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
205         PHINode *OldValPN = cast<PHINode>(OldVal);
206         for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
207           // Note that, since we are merging phi nodes and BB and Succ might
208           // have common predecessors, we could end up with a phi node with
209           // identical incoming branches. This will be cleaned up later (and
210           // will trigger asserts if we try to clean it up now, without also
211           // simplifying the corresponding conditional branch).
212           PN->addIncoming(OldValPN->getIncomingValue(i),
213                           OldValPN->getIncomingBlock(i));
214       } else {
215         // Add an incoming value for each of the new incoming values.
216         for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
217           PN->addIncoming(OldVal, BBPreds[i]);
218       }
219     }
220   }
221   
222   while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
223     if (Succ->getSinglePredecessor()) {
224       // BB is the only predecessor of Succ, so Succ will end up with exactly
225       // the same predecessors BB had.
226       Succ->getInstList().splice(Succ->begin(),
227                                  BB->getInstList(), BB->begin());
228     } else {
229       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
230       assert(PN->use_empty() && "There shouldn't be any uses here!");
231       PN->eraseFromParent();
232     }
233   }
234     
235   // Everything that jumped to BB now goes to Succ.
236   BB->replaceAllUsesWith(Succ);
237   if (!Succ->hasName()) Succ->takeName(BB);
238   BB->eraseFromParent();              // Delete the old basic block.
239   return true;
240 }
241
242 /// GetIfCondition - Given a basic block (BB) with two predecessors (and
243 /// presumably PHI nodes in it), check to see if the merge at this block is due
244 /// to an "if condition".  If so, return the boolean condition that determines
245 /// which entry into BB will be taken.  Also, return by references the block
246 /// that will be entered from if the condition is true, and the block that will
247 /// be entered if the condition is false.
248 ///
249 ///
250 static Value *GetIfCondition(BasicBlock *BB,
251                              BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
252   assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
253          "Function can only handle blocks with 2 predecessors!");
254   BasicBlock *Pred1 = *pred_begin(BB);
255   BasicBlock *Pred2 = *++pred_begin(BB);
256
257   // We can only handle branches.  Other control flow will be lowered to
258   // branches if possible anyway.
259   if (!isa<BranchInst>(Pred1->getTerminator()) ||
260       !isa<BranchInst>(Pred2->getTerminator()))
261     return 0;
262   BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
263   BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
264
265   // Eliminate code duplication by ensuring that Pred1Br is conditional if
266   // either are.
267   if (Pred2Br->isConditional()) {
268     // If both branches are conditional, we don't have an "if statement".  In
269     // reality, we could transform this case, but since the condition will be
270     // required anyway, we stand no chance of eliminating it, so the xform is
271     // probably not profitable.
272     if (Pred1Br->isConditional())
273       return 0;
274
275     std::swap(Pred1, Pred2);
276     std::swap(Pred1Br, Pred2Br);
277   }
278
279   if (Pred1Br->isConditional()) {
280     // If we found a conditional branch predecessor, make sure that it branches
281     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
282     if (Pred1Br->getSuccessor(0) == BB &&
283         Pred1Br->getSuccessor(1) == Pred2) {
284       IfTrue = Pred1;
285       IfFalse = Pred2;
286     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
287                Pred1Br->getSuccessor(1) == BB) {
288       IfTrue = Pred2;
289       IfFalse = Pred1;
290     } else {
291       // We know that one arm of the conditional goes to BB, so the other must
292       // go somewhere unrelated, and this must not be an "if statement".
293       return 0;
294     }
295
296     // The only thing we have to watch out for here is to make sure that Pred2
297     // doesn't have incoming edges from other blocks.  If it does, the condition
298     // doesn't dominate BB.
299     if (++pred_begin(Pred2) != pred_end(Pred2))
300       return 0;
301
302     return Pred1Br->getCondition();
303   }
304
305   // Ok, if we got here, both predecessors end with an unconditional branch to
306   // BB.  Don't panic!  If both blocks only have a single (identical)
307   // predecessor, and THAT is a conditional branch, then we're all ok!
308   if (pred_begin(Pred1) == pred_end(Pred1) ||
309       ++pred_begin(Pred1) != pred_end(Pred1) ||
310       pred_begin(Pred2) == pred_end(Pred2) ||
311       ++pred_begin(Pred2) != pred_end(Pred2) ||
312       *pred_begin(Pred1) != *pred_begin(Pred2))
313     return 0;
314
315   // Otherwise, if this is a conditional branch, then we can use it!
316   BasicBlock *CommonPred = *pred_begin(Pred1);
317   if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
318     assert(BI->isConditional() && "Two successors but not conditional?");
319     if (BI->getSuccessor(0) == Pred1) {
320       IfTrue = Pred1;
321       IfFalse = Pred2;
322     } else {
323       IfTrue = Pred2;
324       IfFalse = Pred1;
325     }
326     return BI->getCondition();
327   }
328   return 0;
329 }
330
331 /// DominatesMergePoint - If we have a merge point of an "if condition" as
332 /// accepted above, return true if the specified value dominates the block.  We
333 /// don't handle the true generality of domination here, just a special case
334 /// which works well enough for us.
335 ///
336 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
337 /// see if V (which must be an instruction) is cheap to compute and is
338 /// non-trapping.  If both are true, the instruction is inserted into the set
339 /// and true is returned.
340 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
341                                 std::set<Instruction*> *AggressiveInsts) {
342   Instruction *I = dyn_cast<Instruction>(V);
343   if (!I) {
344     // Non-instructions all dominate instructions, but not all constantexprs
345     // can be executed unconditionally.
346     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
347       if (C->canTrap())
348         return false;
349     return true;
350   }
351   BasicBlock *PBB = I->getParent();
352
353   // We don't want to allow weird loops that might have the "if condition" in
354   // the bottom of this block.
355   if (PBB == BB) return false;
356
357   // If this instruction is defined in a block that contains an unconditional
358   // branch to BB, then it must be in the 'conditional' part of the "if
359   // statement".
360   if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
361     if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
362       if (!AggressiveInsts) return false;
363       // Okay, it looks like the instruction IS in the "condition".  Check to
364       // see if its a cheap instruction to unconditionally compute, and if it
365       // only uses stuff defined outside of the condition.  If so, hoist it out.
366       if (!I->isSafeToSpeculativelyExecute())
367         return false;
368
369       switch (I->getOpcode()) {
370       default: return false;  // Cannot hoist this out safely.
371       case Instruction::Load: {
372         // We have to check to make sure there are no instructions before the
373         // load in its basic block, as we are going to hoist the loop out to
374         // its predecessor.
375         BasicBlock::iterator IP = PBB->begin();
376         while (isa<DbgInfoIntrinsic>(IP))
377           IP++;
378         if (IP != BasicBlock::iterator(I))
379           return false;
380         break;
381       }
382       case Instruction::Add:
383       case Instruction::Sub:
384       case Instruction::And:
385       case Instruction::Or:
386       case Instruction::Xor:
387       case Instruction::Shl:
388       case Instruction::LShr:
389       case Instruction::AShr:
390       case Instruction::ICmp:
391         break;   // These are all cheap and non-trapping instructions.
392       }
393
394       // Okay, we can only really hoist these out if their operands are not
395       // defined in the conditional region.
396       for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
397         if (!DominatesMergePoint(*i, BB, 0))
398           return false;
399       // Okay, it's safe to do this!  Remember this instruction.
400       AggressiveInsts->insert(I);
401     }
402
403   return true;
404 }
405
406 /// GatherConstantSetEQs - Given a potentially 'or'd together collection of
407 /// icmp_eq instructions that compare a value against a constant, return the
408 /// value being compared, and stick the constant into the Values vector.
409 static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
410   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
411     if (Inst->getOpcode() == Instruction::ICmp &&
412         cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
413       if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
414         Values.push_back(C);
415         return Inst->getOperand(0);
416       } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
417         Values.push_back(C);
418         return Inst->getOperand(1);
419       }
420     } else if (Inst->getOpcode() == Instruction::Or) {
421       if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
422         if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
423           if (LHS == RHS)
424             return LHS;
425     }
426   }
427   return 0;
428 }
429
430 /// GatherConstantSetNEs - Given a potentially 'and'd together collection of
431 /// setne instructions that compare a value against a constant, return the value
432 /// being compared, and stick the constant into the Values vector.
433 static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
434   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
435     if (Inst->getOpcode() == Instruction::ICmp &&
436                cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
437       if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
438         Values.push_back(C);
439         return Inst->getOperand(0);
440       } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
441         Values.push_back(C);
442         return Inst->getOperand(1);
443       }
444     } else if (Inst->getOpcode() == Instruction::And) {
445       if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
446         if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
447           if (LHS == RHS)
448             return LHS;
449     }
450   }
451   return 0;
452 }
453
454 /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
455 /// bunch of comparisons of one value against constants, return the value and
456 /// the constants being compared.
457 static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
458                                    std::vector<ConstantInt*> &Values) {
459   if (Cond->getOpcode() == Instruction::Or) {
460     CompVal = GatherConstantSetEQs(Cond, Values);
461
462     // Return true to indicate that the condition is true if the CompVal is
463     // equal to one of the constants.
464     return true;
465   } else if (Cond->getOpcode() == Instruction::And) {
466     CompVal = GatherConstantSetNEs(Cond, Values);
467
468     // Return false to indicate that the condition is false if the CompVal is
469     // equal to one of the constants.
470     return false;
471   }
472   return false;
473 }
474
475 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
476   Instruction* Cond = 0;
477   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
478     Cond = dyn_cast<Instruction>(SI->getCondition());
479   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
480     if (BI->isConditional())
481       Cond = dyn_cast<Instruction>(BI->getCondition());
482   }
483
484   TI->eraseFromParent();
485   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
486 }
487
488 /// isValueEqualityComparison - Return true if the specified terminator checks
489 /// to see if a value is equal to constant integer value.
490 static Value *isValueEqualityComparison(TerminatorInst *TI) {
491   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
492     // Do not permit merging of large switch instructions into their
493     // predecessors unless there is only one predecessor.
494     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
495                                                pred_end(SI->getParent())) > 128)
496       return 0;
497
498     return SI->getCondition();
499   }
500   if (BranchInst *BI = dyn_cast<BranchInst>(TI))
501     if (BI->isConditional() && BI->getCondition()->hasOneUse())
502       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
503         if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
504              ICI->getPredicate() == ICmpInst::ICMP_NE) &&
505             isa<ConstantInt>(ICI->getOperand(1)))
506           return ICI->getOperand(0);
507   return 0;
508 }
509
510 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
511 /// decode all of the 'cases' that it represents and return the 'default' block.
512 static BasicBlock *
513 GetValueEqualityComparisonCases(TerminatorInst *TI,
514                                 std::vector<std::pair<ConstantInt*,
515                                                       BasicBlock*> > &Cases) {
516   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
517     Cases.reserve(SI->getNumCases());
518     for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
519       Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
520     return SI->getDefaultDest();
521   }
522
523   BranchInst *BI = cast<BranchInst>(TI);
524   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
525   Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
526                                  BI->getSuccessor(ICI->getPredicate() ==
527                                                   ICmpInst::ICMP_NE)));
528   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
529 }
530
531
532 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
533 /// in the list that match the specified block.
534 static void EliminateBlockCases(BasicBlock *BB,
535                std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
536   for (unsigned i = 0, e = Cases.size(); i != e; ++i)
537     if (Cases[i].second == BB) {
538       Cases.erase(Cases.begin()+i);
539       --i; --e;
540     }
541 }
542
543 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
544 /// well.
545 static bool
546 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
547               std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
548   std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
549
550   // Make V1 be smaller than V2.
551   if (V1->size() > V2->size())
552     std::swap(V1, V2);
553
554   if (V1->size() == 0) return false;
555   if (V1->size() == 1) {
556     // Just scan V2.
557     ConstantInt *TheVal = (*V1)[0].first;
558     for (unsigned i = 0, e = V2->size(); i != e; ++i)
559       if (TheVal == (*V2)[i].first)
560         return true;
561   }
562
563   // Otherwise, just sort both lists and compare element by element.
564   std::sort(V1->begin(), V1->end());
565   std::sort(V2->begin(), V2->end());
566   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
567   while (i1 != e1 && i2 != e2) {
568     if ((*V1)[i1].first == (*V2)[i2].first)
569       return true;
570     if ((*V1)[i1].first < (*V2)[i2].first)
571       ++i1;
572     else
573       ++i2;
574   }
575   return false;
576 }
577
578 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
579 /// terminator instruction and its block is known to only have a single
580 /// predecessor block, check to see if that predecessor is also a value
581 /// comparison with the same value, and if that comparison determines the
582 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
583 /// form of jump threading.
584 static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
585                                                           BasicBlock *Pred) {
586   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
587   if (!PredVal) return false;  // Not a value comparison in predecessor.
588
589   Value *ThisVal = isValueEqualityComparison(TI);
590   assert(ThisVal && "This isn't a value comparison!!");
591   if (ThisVal != PredVal) return false;  // Different predicates.
592
593   // Find out information about when control will move from Pred to TI's block.
594   std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
595   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
596                                                         PredCases);
597   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
598
599   // Find information about how control leaves this block.
600   std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
601   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
602   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
603
604   // If TI's block is the default block from Pred's comparison, potentially
605   // simplify TI based on this knowledge.
606   if (PredDef == TI->getParent()) {
607     // If we are here, we know that the value is none of those cases listed in
608     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
609     // can simplify TI.
610     if (ValuesOverlap(PredCases, ThisCases)) {
611       if (isa<BranchInst>(TI)) {
612         // Okay, one of the successors of this condbr is dead.  Convert it to a
613         // uncond br.
614         assert(ThisCases.size() == 1 && "Branch can only have one case!");
615         // Insert the new branch.
616         Instruction *NI = BranchInst::Create(ThisDef, TI);
617         (void) NI;
618
619         // Remove PHI node entries for the dead edge.
620         ThisCases[0].second->removePredecessor(TI->getParent());
621
622         DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
623              << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
624
625         EraseTerminatorInstAndDCECond(TI);
626         return true;
627
628       } else {
629         SwitchInst *SI = cast<SwitchInst>(TI);
630         // Okay, TI has cases that are statically dead, prune them away.
631         SmallPtrSet<Constant*, 16> DeadCases;
632         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
633           DeadCases.insert(PredCases[i].first);
634
635         DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
636                      << "Through successor TI: " << *TI);
637
638         for (unsigned i = SI->getNumCases()-1; i != 0; --i)
639           if (DeadCases.count(SI->getCaseValue(i))) {
640             SI->getSuccessor(i)->removePredecessor(TI->getParent());
641             SI->removeCase(i);
642           }
643
644         DEBUG(errs() << "Leaving: " << *TI << "\n");
645         return true;
646       }
647     }
648
649   } else {
650     // Otherwise, TI's block must correspond to some matched value.  Find out
651     // which value (or set of values) this is.
652     ConstantInt *TIV = 0;
653     BasicBlock *TIBB = TI->getParent();
654     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
655       if (PredCases[i].second == TIBB) {
656         if (TIV == 0)
657           TIV = PredCases[i].first;
658         else
659           return false;  // Cannot handle multiple values coming to this block.
660       }
661     assert(TIV && "No edge from pred to succ?");
662
663     // Okay, we found the one constant that our value can be if we get into TI's
664     // BB.  Find out which successor will unconditionally be branched to.
665     BasicBlock *TheRealDest = 0;
666     for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
667       if (ThisCases[i].first == TIV) {
668         TheRealDest = ThisCases[i].second;
669         break;
670       }
671
672     // If not handled by any explicit cases, it is handled by the default case.
673     if (TheRealDest == 0) TheRealDest = ThisDef;
674
675     // Remove PHI node entries for dead edges.
676     BasicBlock *CheckEdge = TheRealDest;
677     for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
678       if (*SI != CheckEdge)
679         (*SI)->removePredecessor(TIBB);
680       else
681         CheckEdge = 0;
682
683     // Insert the new branch.
684     Instruction *NI = BranchInst::Create(TheRealDest, TI);
685     (void) NI;
686
687     DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
688               << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
689
690     EraseTerminatorInstAndDCECond(TI);
691     return true;
692   }
693   return false;
694 }
695
696 namespace {
697   /// ConstantIntOrdering - This class implements a stable ordering of constant
698   /// integers that does not depend on their address.  This is important for
699   /// applications that sort ConstantInt's to ensure uniqueness.
700   struct ConstantIntOrdering {
701     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
702       return LHS->getValue().ult(RHS->getValue());
703     }
704   };
705 }
706
707 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
708 /// equality comparison instruction (either a switch or a branch on "X == c").
709 /// See if any of the predecessors of the terminator block are value comparisons
710 /// on the same value.  If so, and if safe to do so, fold them together.
711 static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
712   BasicBlock *BB = TI->getParent();
713   Value *CV = isValueEqualityComparison(TI);  // CondVal
714   assert(CV && "Not a comparison?");
715   bool Changed = false;
716
717   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
718   while (!Preds.empty()) {
719     BasicBlock *Pred = Preds.pop_back_val();
720
721     // See if the predecessor is a comparison with the same value.
722     TerminatorInst *PTI = Pred->getTerminator();
723     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
724
725     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
726       // Figure out which 'cases' to copy from SI to PSI.
727       std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
728       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
729
730       std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
731       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
732
733       // Based on whether the default edge from PTI goes to BB or not, fill in
734       // PredCases and PredDefault with the new switch cases we would like to
735       // build.
736       SmallVector<BasicBlock*, 8> NewSuccessors;
737
738       if (PredDefault == BB) {
739         // If this is the default destination from PTI, only the edges in TI
740         // that don't occur in PTI, or that branch to BB will be activated.
741         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
742         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
743           if (PredCases[i].second != BB)
744             PTIHandled.insert(PredCases[i].first);
745           else {
746             // The default destination is BB, we don't need explicit targets.
747             std::swap(PredCases[i], PredCases.back());
748             PredCases.pop_back();
749             --i; --e;
750           }
751
752         // Reconstruct the new switch statement we will be building.
753         if (PredDefault != BBDefault) {
754           PredDefault->removePredecessor(Pred);
755           PredDefault = BBDefault;
756           NewSuccessors.push_back(BBDefault);
757         }
758         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
759           if (!PTIHandled.count(BBCases[i].first) &&
760               BBCases[i].second != BBDefault) {
761             PredCases.push_back(BBCases[i]);
762             NewSuccessors.push_back(BBCases[i].second);
763           }
764
765       } else {
766         // If this is not the default destination from PSI, only the edges
767         // in SI that occur in PSI with a destination of BB will be
768         // activated.
769         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
770         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
771           if (PredCases[i].second == BB) {
772             PTIHandled.insert(PredCases[i].first);
773             std::swap(PredCases[i], PredCases.back());
774             PredCases.pop_back();
775             --i; --e;
776           }
777
778         // Okay, now we know which constants were sent to BB from the
779         // predecessor.  Figure out where they will all go now.
780         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
781           if (PTIHandled.count(BBCases[i].first)) {
782             // If this is one we are capable of getting...
783             PredCases.push_back(BBCases[i]);
784             NewSuccessors.push_back(BBCases[i].second);
785             PTIHandled.erase(BBCases[i].first);// This constant is taken care of
786           }
787
788         // If there are any constants vectored to BB that TI doesn't handle,
789         // they must go to the default destination of TI.
790         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 
791                                     PTIHandled.begin(),
792                E = PTIHandled.end(); I != E; ++I) {
793           PredCases.push_back(std::make_pair(*I, BBDefault));
794           NewSuccessors.push_back(BBDefault);
795         }
796       }
797
798       // Okay, at this point, we know which new successor Pred will get.  Make
799       // sure we update the number of entries in the PHI nodes for these
800       // successors.
801       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
802         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
803
804       // Now that the successors are updated, create the new Switch instruction.
805       SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
806                                              PredCases.size(), PTI);
807       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
808         NewSI->addCase(PredCases[i].first, PredCases[i].second);
809
810       EraseTerminatorInstAndDCECond(PTI);
811
812       // Okay, last check.  If BB is still a successor of PSI, then we must
813       // have an infinite loop case.  If so, add an infinitely looping block
814       // to handle the case to preserve the behavior of the code.
815       BasicBlock *InfLoopBlock = 0;
816       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
817         if (NewSI->getSuccessor(i) == BB) {
818           if (InfLoopBlock == 0) {
819             // Insert it at the end of the function, because it's either code,
820             // or it won't matter if it's hot. :)
821             InfLoopBlock = BasicBlock::Create(BB->getContext(),
822                                               "infloop", BB->getParent());
823             BranchInst::Create(InfLoopBlock, InfLoopBlock);
824           }
825           NewSI->setSuccessor(i, InfLoopBlock);
826         }
827
828       Changed = true;
829     }
830   }
831   return Changed;
832 }
833
834 // isSafeToHoistInvoke - If we would need to insert a select that uses the
835 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
836 // would need to do this), we can't hoist the invoke, as there is nowhere
837 // to put the select in this case.
838 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
839                                 Instruction *I1, Instruction *I2) {
840   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
841     PHINode *PN;
842     for (BasicBlock::iterator BBI = SI->begin();
843          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
844       Value *BB1V = PN->getIncomingValueForBlock(BB1);
845       Value *BB2V = PN->getIncomingValueForBlock(BB2);
846       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
847         return false;
848       }
849     }
850   }
851   return true;
852 }
853
854 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
855 /// BB2, hoist any common code in the two blocks up into the branch block.  The
856 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
857 static bool HoistThenElseCodeToIf(BranchInst *BI) {
858   // This does very trivial matching, with limited scanning, to find identical
859   // instructions in the two blocks.  In particular, we don't want to get into
860   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
861   // such, we currently just scan for obviously identical instructions in an
862   // identical order.
863   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
864   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
865
866   BasicBlock::iterator BB1_Itr = BB1->begin();
867   BasicBlock::iterator BB2_Itr = BB2->begin();
868
869   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
870   while (isa<DbgInfoIntrinsic>(I1))
871     I1 = BB1_Itr++;
872   while (isa<DbgInfoIntrinsic>(I2))
873     I2 = BB2_Itr++;
874   if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
875       !I1->isIdenticalToWhenDefined(I2) ||
876       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
877     return false;
878
879   // If we get here, we can hoist at least one instruction.
880   BasicBlock *BIParent = BI->getParent();
881
882   do {
883     // If we are hoisting the terminator instruction, don't move one (making a
884     // broken BB), instead clone it, and remove BI.
885     if (isa<TerminatorInst>(I1))
886       goto HoistTerminator;
887
888     // For a normal instruction, we just move one to right before the branch,
889     // then replace all uses of the other with the first.  Finally, we remove
890     // the now redundant second instruction.
891     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
892     if (!I2->use_empty())
893       I2->replaceAllUsesWith(I1);
894     I1->intersectOptionalDataWith(I2);
895     BB2->getInstList().erase(I2);
896
897     I1 = BB1_Itr++;
898     while (isa<DbgInfoIntrinsic>(I1))
899       I1 = BB1_Itr++;
900     I2 = BB2_Itr++;
901     while (isa<DbgInfoIntrinsic>(I2))
902       I2 = BB2_Itr++;
903   } while (I1->getOpcode() == I2->getOpcode() &&
904            I1->isIdenticalToWhenDefined(I2));
905
906   return true;
907
908 HoistTerminator:
909   // It may not be possible to hoist an invoke.
910   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
911     return true;
912
913   // Okay, it is safe to hoist the terminator.
914   Instruction *NT = I1->clone();
915   BIParent->getInstList().insert(BI, NT);
916   if (NT->getType() != Type::getVoidTy(BB1->getContext())) {
917     I1->replaceAllUsesWith(NT);
918     I2->replaceAllUsesWith(NT);
919     NT->takeName(I1);
920   }
921
922   // Hoisting one of the terminators from our successor is a great thing.
923   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
924   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
925   // nodes, so we insert select instruction to compute the final result.
926   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
927   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
928     PHINode *PN;
929     for (BasicBlock::iterator BBI = SI->begin();
930          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
931       Value *BB1V = PN->getIncomingValueForBlock(BB1);
932       Value *BB2V = PN->getIncomingValueForBlock(BB2);
933       if (BB1V != BB2V) {
934         // These values do not agree.  Insert a select instruction before NT
935         // that determines the right value.
936         SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
937         if (SI == 0)
938           SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
939                                   BB1V->getName()+"."+BB2V->getName(), NT);
940         // Make the PHI node use the select for all incoming values for BB1/BB2
941         for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
942           if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
943             PN->setIncomingValue(i, SI);
944       }
945     }
946   }
947
948   // Update any PHI nodes in our new successors.
949   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
950     AddPredecessorToBlock(*SI, BIParent, BB1);
951
952   EraseTerminatorInstAndDCECond(BI);
953   return true;
954 }
955
956 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
957 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
958 /// (for now, restricted to a single instruction that's side effect free) from
959 /// the BB1 into the branch block to speculatively execute it.
960 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
961   // Only speculatively execution a single instruction (not counting the
962   // terminator) for now.
963   Instruction *HInst = NULL;
964   Instruction *Term = BB1->getTerminator();
965   for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
966        BBI != BBE; ++BBI) {
967     Instruction *I = BBI;
968     // Skip debug info.
969     if (isa<DbgInfoIntrinsic>(I))   continue;
970     if (I == Term)  break;
971
972     if (!HInst)
973       HInst = I;
974     else
975       return false;
976   }
977   if (!HInst)
978     return false;
979
980   // Be conservative for now. FP select instruction can often be expensive.
981   Value *BrCond = BI->getCondition();
982   if (isa<Instruction>(BrCond) &&
983       cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
984     return false;
985
986   // If BB1 is actually on the false edge of the conditional branch, remember
987   // to swap the select operands later.
988   bool Invert = false;
989   if (BB1 != BI->getSuccessor(0)) {
990     assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
991     Invert = true;
992   }
993
994   // Turn
995   // BB:
996   //     %t1 = icmp
997   //     br i1 %t1, label %BB1, label %BB2
998   // BB1:
999   //     %t3 = add %t2, c
1000   //     br label BB2
1001   // BB2:
1002   // =>
1003   // BB:
1004   //     %t1 = icmp
1005   //     %t4 = add %t2, c
1006   //     %t3 = select i1 %t1, %t2, %t3
1007   switch (HInst->getOpcode()) {
1008   default: return false;  // Not safe / profitable to hoist.
1009   case Instruction::Add:
1010   case Instruction::Sub:
1011     // Not worth doing for vector ops.
1012     if (isa<VectorType>(HInst->getType()))
1013       return false;
1014     break;
1015   case Instruction::And:
1016   case Instruction::Or:
1017   case Instruction::Xor:
1018   case Instruction::Shl:
1019   case Instruction::LShr:
1020   case Instruction::AShr:
1021     // Don't mess with vector operations.
1022     if (isa<VectorType>(HInst->getType()))
1023       return false;
1024     break;   // These are all cheap and non-trapping instructions.
1025   }
1026   
1027   // If the instruction is obviously dead, don't try to predicate it.
1028   if (HInst->use_empty()) {
1029     HInst->eraseFromParent();
1030     return true;
1031   }
1032
1033   // Can we speculatively execute the instruction? And what is the value 
1034   // if the condition is false? Consider the phi uses, if the incoming value
1035   // from the "if" block are all the same V, then V is the value of the
1036   // select if the condition is false.
1037   BasicBlock *BIParent = BI->getParent();
1038   SmallVector<PHINode*, 4> PHIUses;
1039   Value *FalseV = NULL;
1040   
1041   BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1042   for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
1043        UI != E; ++UI) {
1044     // Ignore any user that is not a PHI node in BB2.  These can only occur in
1045     // unreachable blocks, because they would not be dominated by the instr.
1046     PHINode *PN = dyn_cast<PHINode>(UI);
1047     if (!PN || PN->getParent() != BB2)
1048       return false;
1049     PHIUses.push_back(PN);
1050     
1051     Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1052     if (!FalseV)
1053       FalseV = PHIV;
1054     else if (FalseV != PHIV)
1055       return false;  // Inconsistent value when condition is false.
1056   }
1057   
1058   assert(FalseV && "Must have at least one user, and it must be a PHI");
1059
1060   // Do not hoist the instruction if any of its operands are defined but not
1061   // used in this BB. The transformation will prevent the operand from
1062   // being sunk into the use block.
1063   for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); 
1064        i != e; ++i) {
1065     Instruction *OpI = dyn_cast<Instruction>(*i);
1066     if (OpI && OpI->getParent() == BIParent &&
1067         !OpI->isUsedInBasicBlock(BIParent))
1068       return false;
1069   }
1070
1071   // If we get here, we can hoist the instruction. Try to place it
1072   // before the icmp instruction preceding the conditional branch.
1073   BasicBlock::iterator InsertPos = BI;
1074   if (InsertPos != BIParent->begin())
1075     --InsertPos;
1076   // Skip debug info between condition and branch.
1077   while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1078     --InsertPos;
1079   if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1080     SmallPtrSet<Instruction *, 4> BB1Insns;
1081     for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end(); 
1082         BB1I != BB1E; ++BB1I) 
1083       BB1Insns.insert(BB1I);
1084     for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1085         UI != UE; ++UI) {
1086       Instruction *Use = cast<Instruction>(*UI);
1087       if (BB1Insns.count(Use)) {
1088         // If BrCond uses the instruction that place it just before
1089         // branch instruction.
1090         InsertPos = BI;
1091         break;
1092       }
1093     }
1094   } else
1095     InsertPos = BI;
1096   BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1097
1098   // Create a select whose true value is the speculatively executed value and
1099   // false value is the previously determined FalseV.
1100   SelectInst *SI;
1101   if (Invert)
1102     SI = SelectInst::Create(BrCond, FalseV, HInst,
1103                             FalseV->getName() + "." + HInst->getName(), BI);
1104   else
1105     SI = SelectInst::Create(BrCond, HInst, FalseV,
1106                             HInst->getName() + "." + FalseV->getName(), BI);
1107
1108   // Make the PHI node use the select for all incoming values for "then" and
1109   // "if" blocks.
1110   for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1111     PHINode *PN = PHIUses[i];
1112     for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1113       if (PN->getIncomingBlock(j) == BB1 ||
1114           PN->getIncomingBlock(j) == BIParent)
1115         PN->setIncomingValue(j, SI);
1116   }
1117
1118   ++NumSpeculations;
1119   return true;
1120 }
1121
1122 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1123 /// across this block.
1124 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1125   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1126   unsigned Size = 0;
1127   
1128   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1129     if (isa<DbgInfoIntrinsic>(BBI))
1130       continue;
1131     if (Size > 10) return false;  // Don't clone large BB's.
1132     ++Size;
1133     
1134     // We can only support instructions that do not define values that are
1135     // live outside of the current basic block.
1136     for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1137          UI != E; ++UI) {
1138       Instruction *U = cast<Instruction>(*UI);
1139       if (U->getParent() != BB || isa<PHINode>(U)) return false;
1140     }
1141     
1142     // Looks ok, continue checking.
1143   }
1144
1145   return true;
1146 }
1147
1148 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1149 /// that is defined in the same block as the branch and if any PHI entries are
1150 /// constants, thread edges corresponding to that entry to be branches to their
1151 /// ultimate destination.
1152 static bool FoldCondBranchOnPHI(BranchInst *BI) {
1153   BasicBlock *BB = BI->getParent();
1154   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1155   // NOTE: we currently cannot transform this case if the PHI node is used
1156   // outside of the block.
1157   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1158     return false;
1159   
1160   // Degenerate case of a single entry PHI.
1161   if (PN->getNumIncomingValues() == 1) {
1162     FoldSingleEntryPHINodes(PN->getParent());
1163     return true;    
1164   }
1165
1166   // Now we know that this block has multiple preds and two succs.
1167   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1168   
1169   // Okay, this is a simple enough basic block.  See if any phi values are
1170   // constants.
1171   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1172     ConstantInt *CB;
1173     if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
1174         CB->getType() == Type::getInt1Ty(BB->getContext())) {
1175       // Okay, we now know that all edges from PredBB should be revectored to
1176       // branch to RealDest.
1177       BasicBlock *PredBB = PN->getIncomingBlock(i);
1178       BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1179       
1180       if (RealDest == BB) continue;  // Skip self loops.
1181       
1182       // The dest block might have PHI nodes, other predecessors and other
1183       // difficult cases.  Instead of being smart about this, just insert a new
1184       // block that jumps to the destination block, effectively splitting
1185       // the edge we are about to create.
1186       BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1187                                               RealDest->getName()+".critedge",
1188                                               RealDest->getParent(), RealDest);
1189       BranchInst::Create(RealDest, EdgeBB);
1190       PHINode *PN;
1191       for (BasicBlock::iterator BBI = RealDest->begin();
1192            (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1193         Value *V = PN->getIncomingValueForBlock(BB);
1194         PN->addIncoming(V, EdgeBB);
1195       }
1196
1197       // BB may have instructions that are being threaded over.  Clone these
1198       // instructions into EdgeBB.  We know that there will be no uses of the
1199       // cloned instructions outside of EdgeBB.
1200       BasicBlock::iterator InsertPt = EdgeBB->begin();
1201       std::map<Value*, Value*> TranslateMap;  // Track translated values.
1202       for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1203         if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1204           TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1205         } else {
1206           // Clone the instruction.
1207           Instruction *N = BBI->clone();
1208           if (BBI->hasName()) N->setName(BBI->getName()+".c");
1209           
1210           // Update operands due to translation.
1211           for (User::op_iterator i = N->op_begin(), e = N->op_end();
1212                i != e; ++i) {
1213             std::map<Value*, Value*>::iterator PI =
1214               TranslateMap.find(*i);
1215             if (PI != TranslateMap.end())
1216               *i = PI->second;
1217           }
1218           
1219           // Check for trivial simplification.
1220           if (Constant *C = ConstantFoldInstruction(N, BB->getContext())) {
1221             TranslateMap[BBI] = C;
1222             delete N;   // Constant folded away, don't need actual inst
1223           } else {
1224             // Insert the new instruction into its new home.
1225             EdgeBB->getInstList().insert(InsertPt, N);
1226             if (!BBI->use_empty())
1227               TranslateMap[BBI] = N;
1228           }
1229         }
1230       }
1231
1232       // Loop over all of the edges from PredBB to BB, changing them to branch
1233       // to EdgeBB instead.
1234       TerminatorInst *PredBBTI = PredBB->getTerminator();
1235       for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1236         if (PredBBTI->getSuccessor(i) == BB) {
1237           BB->removePredecessor(PredBB);
1238           PredBBTI->setSuccessor(i, EdgeBB);
1239         }
1240       
1241       // Recurse, simplifying any other constants.
1242       return FoldCondBranchOnPHI(BI) | true;
1243     }
1244   }
1245
1246   return false;
1247 }
1248
1249 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1250 /// PHI node, see if we can eliminate it.
1251 static bool FoldTwoEntryPHINode(PHINode *PN) {
1252   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1253   // statement", which has a very simple dominance structure.  Basically, we
1254   // are trying to find the condition that is being branched on, which
1255   // subsequently causes this merge to happen.  We really want control
1256   // dependence information for this check, but simplifycfg can't keep it up
1257   // to date, and this catches most of the cases we care about anyway.
1258   //
1259   BasicBlock *BB = PN->getParent();
1260   BasicBlock *IfTrue, *IfFalse;
1261   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1262   if (!IfCond) return false;
1263   
1264   // Okay, we found that we can merge this two-entry phi node into a select.
1265   // Doing so would require us to fold *all* two entry phi nodes in this block.
1266   // At some point this becomes non-profitable (particularly if the target
1267   // doesn't support cmov's).  Only do this transformation if there are two or
1268   // fewer PHI nodes in this block.
1269   unsigned NumPhis = 0;
1270   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1271     if (NumPhis > 2)
1272       return false;
1273   
1274   DEBUG(errs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1275         << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1276   
1277   // Loop over the PHI's seeing if we can promote them all to select
1278   // instructions.  While we are at it, keep track of the instructions
1279   // that need to be moved to the dominating block.
1280   std::set<Instruction*> AggressiveInsts;
1281   
1282   BasicBlock::iterator AfterPHIIt = BB->begin();
1283   while (isa<PHINode>(AfterPHIIt)) {
1284     PHINode *PN = cast<PHINode>(AfterPHIIt++);
1285     if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1286       if (PN->getIncomingValue(0) != PN)
1287         PN->replaceAllUsesWith(PN->getIncomingValue(0));
1288       else
1289         PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1290     } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1291                                     &AggressiveInsts) ||
1292                !DominatesMergePoint(PN->getIncomingValue(1), BB,
1293                                     &AggressiveInsts)) {
1294       return false;
1295     }
1296   }
1297   
1298   // If we all PHI nodes are promotable, check to make sure that all
1299   // instructions in the predecessor blocks can be promoted as well.  If
1300   // not, we won't be able to get rid of the control flow, so it's not
1301   // worth promoting to select instructions.
1302   BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1303   PN = cast<PHINode>(BB->begin());
1304   BasicBlock *Pred = PN->getIncomingBlock(0);
1305   if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1306     IfBlock1 = Pred;
1307     DomBlock = *pred_begin(Pred);
1308     for (BasicBlock::iterator I = Pred->begin();
1309          !isa<TerminatorInst>(I); ++I)
1310       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1311         // This is not an aggressive instruction that we can promote.
1312         // Because of this, we won't be able to get rid of the control
1313         // flow, so the xform is not worth it.
1314         return false;
1315       }
1316   }
1317     
1318   Pred = PN->getIncomingBlock(1);
1319   if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1320     IfBlock2 = Pred;
1321     DomBlock = *pred_begin(Pred);
1322     for (BasicBlock::iterator I = Pred->begin();
1323          !isa<TerminatorInst>(I); ++I)
1324       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1325         // This is not an aggressive instruction that we can promote.
1326         // Because of this, we won't be able to get rid of the control
1327         // flow, so the xform is not worth it.
1328         return false;
1329       }
1330   }
1331       
1332   // If we can still promote the PHI nodes after this gauntlet of tests,
1333   // do all of the PHI's now.
1334
1335   // Move all 'aggressive' instructions, which are defined in the
1336   // conditional parts of the if's up to the dominating block.
1337   if (IfBlock1) {
1338     DomBlock->getInstList().splice(DomBlock->getTerminator(),
1339                                    IfBlock1->getInstList(),
1340                                    IfBlock1->begin(),
1341                                    IfBlock1->getTerminator());
1342   }
1343   if (IfBlock2) {
1344     DomBlock->getInstList().splice(DomBlock->getTerminator(),
1345                                    IfBlock2->getInstList(),
1346                                    IfBlock2->begin(),
1347                                    IfBlock2->getTerminator());
1348   }
1349   
1350   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1351     // Change the PHI node into a select instruction.
1352     Value *TrueVal =
1353       PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1354     Value *FalseVal =
1355       PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1356     
1357     Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
1358     PN->replaceAllUsesWith(NV);
1359     NV->takeName(PN);
1360     
1361     BB->getInstList().erase(PN);
1362   }
1363   return true;
1364 }
1365
1366 /// isTerminatorFirstRelevantInsn - Return true if Term is very first 
1367 /// instruction ignoring Phi nodes and dbg intrinsics.
1368 static bool isTerminatorFirstRelevantInsn(BasicBlock *BB, Instruction *Term) {
1369   BasicBlock::iterator BBI = Term;
1370   while (BBI != BB->begin()) {
1371     --BBI;
1372     if (!isa<DbgInfoIntrinsic>(BBI))
1373       break;
1374   }
1375
1376   if (isa<PHINode>(BBI) || &*BBI == Term || isa<DbgInfoIntrinsic>(BBI))
1377     return true;
1378   return false;
1379 }
1380
1381 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1382 /// to two returning blocks, try to merge them together into one return,
1383 /// introducing a select if the return values disagree.
1384 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1385   assert(BI->isConditional() && "Must be a conditional branch");
1386   BasicBlock *TrueSucc = BI->getSuccessor(0);
1387   BasicBlock *FalseSucc = BI->getSuccessor(1);
1388   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1389   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1390   
1391   // Check to ensure both blocks are empty (just a return) or optionally empty
1392   // with PHI nodes.  If there are other instructions, merging would cause extra
1393   // computation on one path or the other.
1394   if (!isTerminatorFirstRelevantInsn(TrueSucc, TrueRet))
1395     return false;
1396   if (!isTerminatorFirstRelevantInsn(FalseSucc, FalseRet))
1397     return false;
1398
1399   // Okay, we found a branch that is going to two return nodes.  If
1400   // there is no return value for this function, just change the
1401   // branch into a return.
1402   if (FalseRet->getNumOperands() == 0) {
1403     TrueSucc->removePredecessor(BI->getParent());
1404     FalseSucc->removePredecessor(BI->getParent());
1405     ReturnInst::Create(BI->getContext(), 0, BI);
1406     EraseTerminatorInstAndDCECond(BI);
1407     return true;
1408   }
1409     
1410   // Otherwise, figure out what the true and false return values are
1411   // so we can insert a new select instruction.
1412   Value *TrueValue = TrueRet->getReturnValue();
1413   Value *FalseValue = FalseRet->getReturnValue();
1414   
1415   // Unwrap any PHI nodes in the return blocks.
1416   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1417     if (TVPN->getParent() == TrueSucc)
1418       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1419   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1420     if (FVPN->getParent() == FalseSucc)
1421       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1422   
1423   // In order for this transformation to be safe, we must be able to
1424   // unconditionally execute both operands to the return.  This is
1425   // normally the case, but we could have a potentially-trapping
1426   // constant expression that prevents this transformation from being
1427   // safe.
1428   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1429     if (TCV->canTrap())
1430       return false;
1431   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1432     if (FCV->canTrap())
1433       return false;
1434   
1435   // Okay, we collected all the mapped values and checked them for sanity, and
1436   // defined to really do this transformation.  First, update the CFG.
1437   TrueSucc->removePredecessor(BI->getParent());
1438   FalseSucc->removePredecessor(BI->getParent());
1439   
1440   // Insert select instructions where needed.
1441   Value *BrCond = BI->getCondition();
1442   if (TrueValue) {
1443     // Insert a select if the results differ.
1444     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1445     } else if (isa<UndefValue>(TrueValue)) {
1446       TrueValue = FalseValue;
1447     } else {
1448       TrueValue = SelectInst::Create(BrCond, TrueValue,
1449                                      FalseValue, "retval", BI);
1450     }
1451   }
1452
1453   Value *RI = !TrueValue ?
1454               ReturnInst::Create(BI->getContext(), BI) :
1455               ReturnInst::Create(BI->getContext(), TrueValue, BI);
1456   (void) RI;
1457       
1458   DEBUG(errs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1459                << "\n  " << *BI << "NewRet = " << *RI
1460                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1461       
1462   EraseTerminatorInstAndDCECond(BI);
1463
1464   return true;
1465 }
1466
1467 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1468 /// and if a predecessor branches to us and one of our successors, fold the
1469 /// setcc into the predecessor and use logical operations to pick the right
1470 /// destination.
1471 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1472   BasicBlock *BB = BI->getParent();
1473   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1474   if (Cond == 0) return false;
1475
1476   
1477   // Only allow this if the condition is a simple instruction that can be
1478   // executed unconditionally.  It must be in the same block as the branch, and
1479   // must be at the front of the block.
1480   BasicBlock::iterator FrontIt = BB->front();
1481   // Ignore dbg intrinsics.
1482   while(isa<DbgInfoIntrinsic>(FrontIt))
1483     ++FrontIt;
1484   if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1485       Cond->getParent() != BB || &*FrontIt != Cond || !Cond->hasOneUse()) {
1486     return false;
1487   }
1488   
1489   // Make sure the instruction after the condition is the cond branch.
1490   BasicBlock::iterator CondIt = Cond; ++CondIt;
1491   // Ingore dbg intrinsics.
1492   while(isa<DbgInfoIntrinsic>(CondIt))
1493     ++CondIt;
1494   if (&*CondIt != BI) {
1495     assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!");
1496     return false;
1497   }
1498
1499   // Cond is known to be a compare or binary operator.  Check to make sure that
1500   // neither operand is a potentially-trapping constant expression.
1501   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1502     if (CE->canTrap())
1503       return false;
1504   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1505     if (CE->canTrap())
1506       return false;
1507   
1508   
1509   // Finally, don't infinitely unroll conditional loops.
1510   BasicBlock *TrueDest  = BI->getSuccessor(0);
1511   BasicBlock *FalseDest = BI->getSuccessor(1);
1512   if (TrueDest == BB || FalseDest == BB)
1513     return false;
1514   
1515   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1516     BasicBlock *PredBlock = *PI;
1517     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1518     
1519     // Check that we have two conditional branches.  If there is a PHI node in
1520     // the common successor, verify that the same value flows in from both
1521     // blocks.
1522     if (PBI == 0 || PBI->isUnconditional() ||
1523         !SafeToMergeTerminators(BI, PBI))
1524       continue;
1525     
1526     Instruction::BinaryOps Opc;
1527     bool InvertPredCond = false;
1528
1529     if (PBI->getSuccessor(0) == TrueDest)
1530       Opc = Instruction::Or;
1531     else if (PBI->getSuccessor(1) == FalseDest)
1532       Opc = Instruction::And;
1533     else if (PBI->getSuccessor(0) == FalseDest)
1534       Opc = Instruction::And, InvertPredCond = true;
1535     else if (PBI->getSuccessor(1) == TrueDest)
1536       Opc = Instruction::Or, InvertPredCond = true;
1537     else
1538       continue;
1539
1540     DEBUG(errs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1541     
1542     // If we need to invert the condition in the pred block to match, do so now.
1543     if (InvertPredCond) {
1544       Value *NewCond =
1545         BinaryOperator::CreateNot(PBI->getCondition(),
1546                                   PBI->getCondition()->getName()+".not", PBI);
1547       PBI->setCondition(NewCond);
1548       BasicBlock *OldTrue = PBI->getSuccessor(0);
1549       BasicBlock *OldFalse = PBI->getSuccessor(1);
1550       PBI->setSuccessor(0, OldFalse);
1551       PBI->setSuccessor(1, OldTrue);
1552     }
1553     
1554     // Clone Cond into the predecessor basic block, and or/and the
1555     // two conditions together.
1556     Instruction *New = Cond->clone();
1557     PredBlock->getInstList().insert(PBI, New);
1558     New->takeName(Cond);
1559     Cond->setName(New->getName()+".old");
1560     
1561     Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1562                                             New, "or.cond", PBI);
1563     PBI->setCondition(NewCond);
1564     if (PBI->getSuccessor(0) == BB) {
1565       AddPredecessorToBlock(TrueDest, PredBlock, BB);
1566       PBI->setSuccessor(0, TrueDest);
1567     }
1568     if (PBI->getSuccessor(1) == BB) {
1569       AddPredecessorToBlock(FalseDest, PredBlock, BB);
1570       PBI->setSuccessor(1, FalseDest);
1571     }
1572     return true;
1573   }
1574   return false;
1575 }
1576
1577 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1578 /// predecessor of another block, this function tries to simplify it.  We know
1579 /// that PBI and BI are both conditional branches, and BI is in one of the
1580 /// successor blocks of PBI - PBI branches to BI.
1581 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1582   assert(PBI->isConditional() && BI->isConditional());
1583   BasicBlock *BB = BI->getParent();
1584
1585   // If this block ends with a branch instruction, and if there is a
1586   // predecessor that ends on a branch of the same condition, make 
1587   // this conditional branch redundant.
1588   if (PBI->getCondition() == BI->getCondition() &&
1589       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1590     // Okay, the outcome of this conditional branch is statically
1591     // knowable.  If this block had a single pred, handle specially.
1592     if (BB->getSinglePredecessor()) {
1593       // Turn this into a branch on constant.
1594       bool CondIsTrue = PBI->getSuccessor(0) == BB;
1595       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 
1596                                         CondIsTrue));
1597       return true;  // Nuke the branch on constant.
1598     }
1599     
1600     // Otherwise, if there are multiple predecessors, insert a PHI that merges
1601     // in the constant and simplify the block result.  Subsequent passes of
1602     // simplifycfg will thread the block.
1603     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1604       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1605                                        BI->getCondition()->getName() + ".pr",
1606                                        BB->begin());
1607       // Okay, we're going to insert the PHI node.  Since PBI is not the only
1608       // predecessor, compute the PHI'd conditional value for all of the preds.
1609       // Any predecessor where the condition is not computable we keep symbolic.
1610       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1611         if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1612             PBI != BI && PBI->isConditional() &&
1613             PBI->getCondition() == BI->getCondition() &&
1614             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1615           bool CondIsTrue = PBI->getSuccessor(0) == BB;
1616           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 
1617                                               CondIsTrue), *PI);
1618         } else {
1619           NewPN->addIncoming(BI->getCondition(), *PI);
1620         }
1621       
1622       BI->setCondition(NewPN);
1623       return true;
1624     }
1625   }
1626   
1627   // If this is a conditional branch in an empty block, and if any
1628   // predecessors is a conditional branch to one of our destinations,
1629   // fold the conditions into logical ops and one cond br.
1630   BasicBlock::iterator BBI = BB->begin();
1631   // Ignore dbg intrinsics.
1632   while (isa<DbgInfoIntrinsic>(BBI))
1633     ++BBI;
1634   if (&*BBI != BI)
1635     return false;
1636
1637   
1638   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1639     if (CE->canTrap())
1640       return false;
1641   
1642   int PBIOp, BIOp;
1643   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1644     PBIOp = BIOp = 0;
1645   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1646     PBIOp = 0, BIOp = 1;
1647   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1648     PBIOp = 1, BIOp = 0;
1649   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1650     PBIOp = BIOp = 1;
1651   else
1652     return false;
1653     
1654   // Check to make sure that the other destination of this branch
1655   // isn't BB itself.  If so, this is an infinite loop that will
1656   // keep getting unwound.
1657   if (PBI->getSuccessor(PBIOp) == BB)
1658     return false;
1659     
1660   // Do not perform this transformation if it would require 
1661   // insertion of a large number of select instructions. For targets
1662   // without predication/cmovs, this is a big pessimization.
1663   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1664       
1665   unsigned NumPhis = 0;
1666   for (BasicBlock::iterator II = CommonDest->begin();
1667        isa<PHINode>(II); ++II, ++NumPhis)
1668     if (NumPhis > 2) // Disable this xform.
1669       return false;
1670     
1671   // Finally, if everything is ok, fold the branches to logical ops.
1672   BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1673   
1674   DEBUG(errs() << "FOLDING BRs:" << *PBI->getParent()
1675                << "AND: " << *BI->getParent());
1676   
1677   
1678   // If OtherDest *is* BB, then BB is a basic block with a single conditional
1679   // branch in it, where one edge (OtherDest) goes back to itself but the other
1680   // exits.  We don't *know* that the program avoids the infinite loop
1681   // (even though that seems likely).  If we do this xform naively, we'll end up
1682   // recursively unpeeling the loop.  Since we know that (after the xform is
1683   // done) that the block *is* infinite if reached, we just make it an obviously
1684   // infinite loop with no cond branch.
1685   if (OtherDest == BB) {
1686     // Insert it at the end of the function, because it's either code,
1687     // or it won't matter if it's hot. :)
1688     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1689                                                   "infloop", BB->getParent());
1690     BranchInst::Create(InfLoopBlock, InfLoopBlock);
1691     OtherDest = InfLoopBlock;
1692   }  
1693   
1694   DEBUG(errs() << *PBI->getParent()->getParent());
1695   
1696   // BI may have other predecessors.  Because of this, we leave
1697   // it alone, but modify PBI.
1698   
1699   // Make sure we get to CommonDest on True&True directions.
1700   Value *PBICond = PBI->getCondition();
1701   if (PBIOp)
1702     PBICond = BinaryOperator::CreateNot(PBICond,
1703                                         PBICond->getName()+".not",
1704                                         PBI);
1705   Value *BICond = BI->getCondition();
1706   if (BIOp)
1707     BICond = BinaryOperator::CreateNot(BICond,
1708                                        BICond->getName()+".not",
1709                                        PBI);
1710   // Merge the conditions.
1711   Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1712   
1713   // Modify PBI to branch on the new condition to the new dests.
1714   PBI->setCondition(Cond);
1715   PBI->setSuccessor(0, CommonDest);
1716   PBI->setSuccessor(1, OtherDest);
1717   
1718   // OtherDest may have phi nodes.  If so, add an entry from PBI's
1719   // block that are identical to the entries for BI's block.
1720   PHINode *PN;
1721   for (BasicBlock::iterator II = OtherDest->begin();
1722        (PN = dyn_cast<PHINode>(II)); ++II) {
1723     Value *V = PN->getIncomingValueForBlock(BB);
1724     PN->addIncoming(V, PBI->getParent());
1725   }
1726   
1727   // We know that the CommonDest already had an edge from PBI to
1728   // it.  If it has PHIs though, the PHIs may have different
1729   // entries for BB and PBI's BB.  If so, insert a select to make
1730   // them agree.
1731   for (BasicBlock::iterator II = CommonDest->begin();
1732        (PN = dyn_cast<PHINode>(II)); ++II) {
1733     Value *BIV = PN->getIncomingValueForBlock(BB);
1734     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1735     Value *PBIV = PN->getIncomingValue(PBBIdx);
1736     if (BIV != PBIV) {
1737       // Insert a select in PBI to pick the right value.
1738       Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1739                                      PBIV->getName()+".mux", PBI);
1740       PN->setIncomingValue(PBBIdx, NV);
1741     }
1742   }
1743   
1744   DEBUG(errs() << "INTO: " << *PBI->getParent());
1745   DEBUG(errs() << *PBI->getParent()->getParent());
1746   
1747   // This basic block is probably dead.  We know it has at least
1748   // one fewer predecessor.
1749   return true;
1750 }
1751
1752 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1753 /// nodes in this block. This doesn't try to be clever about PHI nodes
1754 /// which differ only in the order of the incoming values, but instcombine
1755 /// orders them so it usually won't matter.
1756 ///
1757 static bool EliminateDuplicatePHINodes(BasicBlock *BB) {
1758   bool Changed = false;
1759   
1760   // This implementation doesn't currently consider undef operands
1761   // specially. Theroetically, two phis which are identical except for
1762   // one having an undef where the other doesn't could be collapsed.
1763
1764   // Map from PHI hash values to PHI nodes. If multiple PHIs have
1765   // the same hash value, the element is the first PHI in the
1766   // linked list in CollisionMap.
1767   DenseMap<uintptr_t, PHINode *> HashMap;
1768
1769   // Maintain linked lists of PHI nodes with common hash values.
1770   DenseMap<PHINode *, PHINode *> CollisionMap;
1771
1772   // Examine each PHI.
1773   for (BasicBlock::iterator I = BB->begin();
1774        PHINode *PN = dyn_cast<PHINode>(I++); ) {
1775     // Compute a hash value on the operands. Instcombine will likely have sorted
1776     // them, which helps expose duplicates, but we have to check all the
1777     // operands to be safe in case instcombine hasn't run.
1778     uintptr_t Hash = 0;
1779     for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
1780       // This hash algorithm is quite weak as hash functions go, but it seems
1781       // to do a good enough job for this particular purpose, and is very quick.
1782       Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
1783       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
1784     }
1785     // If we've never seen this hash value before, it's a unique PHI.
1786     std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
1787       HashMap.insert(std::make_pair(Hash, PN));
1788     if (Pair.second) continue;
1789     // Otherwise it's either a duplicate or a hash collision.
1790     for (PHINode *OtherPN = Pair.first->second; ; ) {
1791       if (OtherPN->isIdenticalTo(PN)) {
1792         // A duplicate. Replace this PHI with its duplicate.
1793         PN->replaceAllUsesWith(OtherPN);
1794         PN->eraseFromParent();
1795         Changed = true;
1796         break;
1797       }
1798       // A non-duplicate hash collision.
1799       DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
1800       if (I == CollisionMap.end()) {
1801         // Set this PHI to be the head of the linked list of colliding PHIs.
1802         PHINode *Old = Pair.first->second;
1803         Pair.first->second = PN;
1804         CollisionMap[PN] = Old;
1805         break;
1806       }
1807       // Procede to the next PHI in the list.
1808       OtherPN = I->second;
1809     }
1810   }
1811
1812   return Changed;
1813 }
1814
1815 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
1816 /// example, it adjusts branches to branches to eliminate the extra hop, it
1817 /// eliminates unreachable basic blocks, and does other "peephole" optimization
1818 /// of the CFG.  It returns true if a modification was made.
1819 ///
1820 /// WARNING:  The entry node of a function may not be simplified.
1821 ///
1822 bool llvm::SimplifyCFG(BasicBlock *BB) {
1823   bool Changed = false;
1824   Function *M = BB->getParent();
1825
1826   assert(BB && BB->getParent() && "Block not embedded in function!");
1827   assert(BB->getTerminator() && "Degenerate basic block encountered!");
1828   assert(&BB->getParent()->getEntryBlock() != BB &&
1829          "Can't Simplify entry block!");
1830
1831   // Remove basic blocks that have no predecessors... or that just have themself
1832   // as a predecessor.  These are unreachable.
1833   if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) {
1834     DEBUG(errs() << "Removing BB: \n" << *BB);
1835     DeleteDeadBlock(BB);
1836     return true;
1837   }
1838
1839   // Check to see if we can constant propagate this terminator instruction
1840   // away...
1841   Changed |= ConstantFoldTerminator(BB);
1842
1843   // Check for and eliminate duplicate PHI nodes in this block.
1844   Changed |= EliminateDuplicatePHINodes(BB);
1845
1846   // If there is a trivial two-entry PHI node in this basic block, and we can
1847   // eliminate it, do so now.
1848   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1849     if (PN->getNumIncomingValues() == 2)
1850       Changed |= FoldTwoEntryPHINode(PN); 
1851
1852   // If this is a returning block with only PHI nodes in it, fold the return
1853   // instruction into any unconditional branch predecessors.
1854   //
1855   // If any predecessor is a conditional branch that just selects among
1856   // different return values, fold the replace the branch/return with a select
1857   // and return.
1858   if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1859     if (isTerminatorFirstRelevantInsn(BB, BB->getTerminator())) {
1860       // Find predecessors that end with branches.
1861       SmallVector<BasicBlock*, 8> UncondBranchPreds;
1862       SmallVector<BranchInst*, 8> CondBranchPreds;
1863       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1864         TerminatorInst *PTI = (*PI)->getTerminator();
1865         if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
1866           if (BI->isUnconditional())
1867             UncondBranchPreds.push_back(*PI);
1868           else
1869             CondBranchPreds.push_back(BI);
1870         }
1871       }
1872
1873       // If we found some, do the transformation!
1874       if (!UncondBranchPreds.empty()) {
1875         while (!UncondBranchPreds.empty()) {
1876           BasicBlock *Pred = UncondBranchPreds.pop_back_val();
1877           DEBUG(errs() << "FOLDING: " << *BB
1878                        << "INTO UNCOND BRANCH PRED: " << *Pred);
1879           Instruction *UncondBranch = Pred->getTerminator();
1880           // Clone the return and add it to the end of the predecessor.
1881           Instruction *NewRet = RI->clone();
1882           Pred->getInstList().push_back(NewRet);
1883
1884           BasicBlock::iterator BBI = RI;
1885           if (BBI != BB->begin()) {
1886             // Move region end info into the predecessor.
1887             if (DbgRegionEndInst *DREI = dyn_cast<DbgRegionEndInst>(--BBI))
1888               DREI->moveBefore(NewRet);
1889           }
1890
1891           // If the return instruction returns a value, and if the value was a
1892           // PHI node in "BB", propagate the right value into the return.
1893           for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
1894                i != e; ++i)
1895             if (PHINode *PN = dyn_cast<PHINode>(*i))
1896               if (PN->getParent() == BB)
1897                 *i = PN->getIncomingValueForBlock(Pred);
1898           
1899           // Update any PHI nodes in the returning block to realize that we no
1900           // longer branch to them.
1901           BB->removePredecessor(Pred);
1902           Pred->getInstList().erase(UncondBranch);
1903         }
1904
1905         // If we eliminated all predecessors of the block, delete the block now.
1906         if (pred_begin(BB) == pred_end(BB))
1907           // We know there are no successors, so just nuke the block.
1908           M->getBasicBlockList().erase(BB);
1909
1910         return true;
1911       }
1912
1913       // Check out all of the conditional branches going to this return
1914       // instruction.  If any of them just select between returns, change the
1915       // branch itself into a select/return pair.
1916       while (!CondBranchPreds.empty()) {
1917         BranchInst *BI = CondBranchPreds.pop_back_val();
1918
1919         // Check to see if the non-BB successor is also a return block.
1920         if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
1921             isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
1922             SimplifyCondBranchToTwoReturns(BI))
1923           return true;
1924       }
1925     }
1926   } else if (isa<UnwindInst>(BB->begin())) {
1927     // Check to see if the first instruction in this block is just an unwind.
1928     // If so, replace any invoke instructions which use this as an exception
1929     // destination with call instructions.
1930     //
1931     SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1932     while (!Preds.empty()) {
1933       BasicBlock *Pred = Preds.back();
1934       if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1935         if (II->getUnwindDest() == BB) {
1936           // Insert a new branch instruction before the invoke, because this
1937           // is now a fall through.
1938           BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
1939           Pred->getInstList().remove(II);   // Take out of symbol table
1940
1941           // Insert the call now.
1942           SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
1943           CallInst *CI = CallInst::Create(II->getCalledValue(),
1944                                           Args.begin(), Args.end(),
1945                                           II->getName(), BI);
1946           CI->setCallingConv(II->getCallingConv());
1947           CI->setAttributes(II->getAttributes());
1948           // If the invoke produced a value, the Call now does instead.
1949           II->replaceAllUsesWith(CI);
1950           delete II;
1951           Changed = true;
1952         }
1953
1954       Preds.pop_back();
1955     }
1956
1957     // If this block is now dead, remove it.
1958     if (pred_begin(BB) == pred_end(BB)) {
1959       // We know there are no successors, so just nuke the block.
1960       M->getBasicBlockList().erase(BB);
1961       return true;
1962     }
1963
1964   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1965     if (isValueEqualityComparison(SI)) {
1966       // If we only have one predecessor, and if it is a branch on this value,
1967       // see if that predecessor totally determines the outcome of this switch.
1968       if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1969         if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1970           return SimplifyCFG(BB) || 1;
1971
1972       // If the block only contains the switch, see if we can fold the block
1973       // away into any preds.
1974       BasicBlock::iterator BBI = BB->begin();
1975       // Ignore dbg intrinsics.
1976       while (isa<DbgInfoIntrinsic>(BBI))
1977         ++BBI;
1978       if (SI == &*BBI)
1979         if (FoldValueComparisonIntoPredecessors(SI))
1980           return SimplifyCFG(BB) || 1;
1981     }
1982   } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1983     if (BI->isUnconditional()) {
1984       BasicBlock::iterator BBI = BB->getFirstNonPHI();
1985
1986       BasicBlock *Succ = BI->getSuccessor(0);
1987       // Ignore dbg intrinsics.
1988       while (isa<DbgInfoIntrinsic>(BBI))
1989         ++BBI;
1990       if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
1991           Succ != BB)             // Don't hurt infinite loops!
1992         if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1993           return true;
1994       
1995     } else {  // Conditional branch
1996       if (isValueEqualityComparison(BI)) {
1997         // If we only have one predecessor, and if it is a branch on this value,
1998         // see if that predecessor totally determines the outcome of this
1999         // switch.
2000         if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2001           if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
2002             return SimplifyCFG(BB) || 1;
2003
2004         // This block must be empty, except for the setcond inst, if it exists.
2005         // Ignore dbg intrinsics.
2006         BasicBlock::iterator I = BB->begin();
2007         // Ignore dbg intrinsics.
2008         while (isa<DbgInfoIntrinsic>(I))
2009           ++I;
2010         if (&*I == BI) {
2011           if (FoldValueComparisonIntoPredecessors(BI))
2012             return SimplifyCFG(BB) | true;
2013         } else if (&*I == cast<Instruction>(BI->getCondition())){
2014           ++I;
2015           // Ignore dbg intrinsics.
2016           while (isa<DbgInfoIntrinsic>(I))
2017             ++I;
2018           if(&*I == BI) {
2019             if (FoldValueComparisonIntoPredecessors(BI))
2020               return SimplifyCFG(BB) | true;
2021           }
2022         }
2023       }
2024
2025       // If this is a branch on a phi node in the current block, thread control
2026       // through this block if any PHI node entries are constants.
2027       if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2028         if (PN->getParent() == BI->getParent())
2029           if (FoldCondBranchOnPHI(BI))
2030             return SimplifyCFG(BB) | true;
2031
2032       // If this basic block is ONLY a setcc and a branch, and if a predecessor
2033       // branches to us and one of our successors, fold the setcc into the
2034       // predecessor and use logical operations to pick the right destination.
2035       if (FoldBranchToCommonDest(BI))
2036         return SimplifyCFG(BB) | 1;
2037
2038
2039       // Scan predecessor blocks for conditional branches.
2040       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2041         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2042           if (PBI != BI && PBI->isConditional())
2043             if (SimplifyCondBranchToCondBranch(PBI, BI))
2044               return SimplifyCFG(BB) | true;
2045     }
2046   } else if (isa<UnreachableInst>(BB->getTerminator())) {
2047     // If there are any instructions immediately before the unreachable that can
2048     // be removed, do so.
2049     Instruction *Unreachable = BB->getTerminator();
2050     while (Unreachable != BB->begin()) {
2051       BasicBlock::iterator BBI = Unreachable;
2052       --BBI;
2053       // Do not delete instructions that can have side effects, like calls
2054       // (which may never return) and volatile loads and stores.
2055       if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2056
2057       if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
2058         if (SI->isVolatile())
2059           break;
2060
2061       if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
2062         if (LI->isVolatile())
2063           break;
2064
2065       // Delete this instruction
2066       BB->getInstList().erase(BBI);
2067       Changed = true;
2068     }
2069
2070     // If the unreachable instruction is the first in the block, take a gander
2071     // at all of the predecessors of this instruction, and simplify them.
2072     if (&BB->front() == Unreachable) {
2073       SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2074       for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2075         TerminatorInst *TI = Preds[i]->getTerminator();
2076
2077         if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2078           if (BI->isUnconditional()) {
2079             if (BI->getSuccessor(0) == BB) {
2080               new UnreachableInst(TI->getContext(), TI);
2081               TI->eraseFromParent();
2082               Changed = true;
2083             }
2084           } else {
2085             if (BI->getSuccessor(0) == BB) {
2086               BranchInst::Create(BI->getSuccessor(1), BI);
2087               EraseTerminatorInstAndDCECond(BI);
2088             } else if (BI->getSuccessor(1) == BB) {
2089               BranchInst::Create(BI->getSuccessor(0), BI);
2090               EraseTerminatorInstAndDCECond(BI);
2091               Changed = true;
2092             }
2093           }
2094         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2095           for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2096             if (SI->getSuccessor(i) == BB) {
2097               BB->removePredecessor(SI->getParent());
2098               SI->removeCase(i);
2099               --i; --e;
2100               Changed = true;
2101             }
2102           // If the default value is unreachable, figure out the most popular
2103           // destination and make it the default.
2104           if (SI->getSuccessor(0) == BB) {
2105             std::map<BasicBlock*, unsigned> Popularity;
2106             for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2107               Popularity[SI->getSuccessor(i)]++;
2108
2109             // Find the most popular block.
2110             unsigned MaxPop = 0;
2111             BasicBlock *MaxBlock = 0;
2112             for (std::map<BasicBlock*, unsigned>::iterator
2113                    I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2114               if (I->second > MaxPop) {
2115                 MaxPop = I->second;
2116                 MaxBlock = I->first;
2117               }
2118             }
2119             if (MaxBlock) {
2120               // Make this the new default, allowing us to delete any explicit
2121               // edges to it.
2122               SI->setSuccessor(0, MaxBlock);
2123               Changed = true;
2124
2125               // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2126               // it.
2127               if (isa<PHINode>(MaxBlock->begin()))
2128                 for (unsigned i = 0; i != MaxPop-1; ++i)
2129                   MaxBlock->removePredecessor(SI->getParent());
2130
2131               for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2132                 if (SI->getSuccessor(i) == MaxBlock) {
2133                   SI->removeCase(i);
2134                   --i; --e;
2135                 }
2136             }
2137           }
2138         } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2139           if (II->getUnwindDest() == BB) {
2140             // Convert the invoke to a call instruction.  This would be a good
2141             // place to note that the call does not throw though.
2142             BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2143             II->removeFromParent();   // Take out of symbol table
2144
2145             // Insert the call now...
2146             SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
2147             CallInst *CI = CallInst::Create(II->getCalledValue(),
2148                                             Args.begin(), Args.end(),
2149                                             II->getName(), BI);
2150             CI->setCallingConv(II->getCallingConv());
2151             CI->setAttributes(II->getAttributes());
2152             // If the invoke produced a value, the Call does now instead.
2153             II->replaceAllUsesWith(CI);
2154             delete II;
2155             Changed = true;
2156           }
2157         }
2158       }
2159
2160       // If this block is now dead, remove it.
2161       if (pred_begin(BB) == pred_end(BB)) {
2162         // We know there are no successors, so just nuke the block.
2163         M->getBasicBlockList().erase(BB);
2164         return true;
2165       }
2166     }
2167   }
2168
2169   // Merge basic blocks into their predecessor if there is only one distinct
2170   // pred, and if there is only one distinct successor of the predecessor, and
2171   // if there are no PHI nodes.
2172   //
2173   if (MergeBlockIntoPredecessor(BB))
2174     return true;
2175
2176   // Otherwise, if this block only has a single predecessor, and if that block
2177   // is a conditional branch, see if we can hoist any code from this block up
2178   // into our predecessor.
2179   pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
2180   BasicBlock *OnlyPred = *PI++;
2181   for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
2182     if (*PI != OnlyPred) {
2183       OnlyPred = 0;       // There are multiple different predecessors...
2184       break;
2185     }
2186   
2187   if (OnlyPred)
2188     if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
2189       if (BI->isConditional()) {
2190         // Get the other block.
2191         BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
2192         PI = pred_begin(OtherBB);
2193         ++PI;
2194         
2195         if (PI == pred_end(OtherBB)) {
2196           // We have a conditional branch to two blocks that are only reachable
2197           // from the condbr.  We know that the condbr dominates the two blocks,
2198           // so see if there is any identical code in the "then" and "else"
2199           // blocks.  If so, we can hoist it up to the branching block.
2200           Changed |= HoistThenElseCodeToIf(BI);
2201         } else {
2202           BasicBlock* OnlySucc = NULL;
2203           for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
2204                SI != SE; ++SI) {
2205             if (!OnlySucc)
2206               OnlySucc = *SI;
2207             else if (*SI != OnlySucc) {
2208               OnlySucc = 0;     // There are multiple distinct successors!
2209               break;
2210             }
2211           }
2212
2213           if (OnlySucc == OtherBB) {
2214             // If BB's only successor is the other successor of the predecessor,
2215             // i.e. a triangle, see if we can hoist any code from this block up
2216             // to the "if" block.
2217             Changed |= SpeculativelyExecuteBB(BI, BB);
2218           }
2219         }
2220       }
2221
2222   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2223     if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2224       // Change br (X == 0 | X == 1), T, F into a switch instruction.
2225       if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
2226         Instruction *Cond = cast<Instruction>(BI->getCondition());
2227         // If this is a bunch of seteq's or'd together, or if it's a bunch of
2228         // 'setne's and'ed together, collect them.
2229         Value *CompVal = 0;
2230         std::vector<ConstantInt*> Values;
2231         bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
2232         if (CompVal && CompVal->getType()->isInteger()) {
2233           // There might be duplicate constants in the list, which the switch
2234           // instruction can't handle, remove them now.
2235           std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
2236           Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2237
2238           // Figure out which block is which destination.
2239           BasicBlock *DefaultBB = BI->getSuccessor(1);
2240           BasicBlock *EdgeBB    = BI->getSuccessor(0);
2241           if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2242
2243           // Create the new switch instruction now.
2244           SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
2245                                                Values.size(), BI);
2246
2247           // Add all of the 'cases' to the switch instruction.
2248           for (unsigned i = 0, e = Values.size(); i != e; ++i)
2249             New->addCase(Values[i], EdgeBB);
2250
2251           // We added edges from PI to the EdgeBB.  As such, if there were any
2252           // PHI nodes in EdgeBB, they need entries to be added corresponding to
2253           // the number of edges added.
2254           for (BasicBlock::iterator BBI = EdgeBB->begin();
2255                isa<PHINode>(BBI); ++BBI) {
2256             PHINode *PN = cast<PHINode>(BBI);
2257             Value *InVal = PN->getIncomingValueForBlock(*PI);
2258             for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2259               PN->addIncoming(InVal, *PI);
2260           }
2261
2262           // Erase the old branch instruction.
2263           EraseTerminatorInstAndDCECond(BI);
2264           return true;
2265         }
2266       }
2267
2268   return Changed;
2269 }