[SimplifyCFG] Don't create unnecessary PHIs
[oota-llvm.git] / lib / Transforms / Utils / SimplifyCFG.cpp
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetOperations.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/ValueMapper.h"
48 #include <algorithm>
49 #include <map>
50 #include <set>
51 using namespace llvm;
52 using namespace PatternMatch;
53
54 #define DEBUG_TYPE "simplifycfg"
55
56 // Chosen as 2 so as to be cheap, but still to have enough power to fold
57 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
58 // To catch this, we need to fold a compare and a select, hence '2' being the
59 // minimum reasonable default.
60 static cl::opt<unsigned>
61 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
62    cl::desc("Control the amount of phi node folding to perform (default = 2)"));
63
64 static cl::opt<bool>
65 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
66        cl::desc("Duplicate return instructions into unconditional branches"));
67
68 static cl::opt<bool>
69 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
70        cl::desc("Sink common instructions down to the end block"));
71
72 static cl::opt<bool> HoistCondStores(
73     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
74     cl::desc("Hoist conditional stores if an unconditional store precedes"));
75
76 static cl::opt<bool> MergeCondStores(
77     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
78     cl::desc("Hoist conditional stores even if an unconditional store does not "
79              "precede - hoist multiple conditional stores into a single "
80              "predicated store"));
81
82 static cl::opt<bool> MergeCondStoresAggressively(
83     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
84     cl::desc("When merging conditional stores, do so even if the resultant "
85              "basic blocks are unlikely to be if-converted as a result"));
86
87 static cl::opt<bool> SpeculateOneExpensiveInst(
88     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
89     cl::desc("Allow exactly one expensive instruction to be speculatively "
90              "executed"));
91
92 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
93 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
94 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
95 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
96 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
97 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
98 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
99
100 namespace {
101   // The first field contains the value that the switch produces when a certain
102   // case group is selected, and the second field is a vector containing the
103   // cases composing the case group.
104   typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
105     SwitchCaseResultVectorTy;
106   // The first field contains the phi node that generates a result of the switch
107   // and the second field contains the value generated for a certain case in the
108   // switch for that PHI.
109   typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
110
111   /// ValueEqualityComparisonCase - Represents a case of a switch.
112   struct ValueEqualityComparisonCase {
113     ConstantInt *Value;
114     BasicBlock *Dest;
115
116     ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
117       : Value(Value), Dest(Dest) {}
118
119     bool operator<(ValueEqualityComparisonCase RHS) const {
120       // Comparing pointers is ok as we only rely on the order for uniquing.
121       return Value < RHS.Value;
122     }
123
124     bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
125   };
126
127 class SimplifyCFGOpt {
128   const TargetTransformInfo &TTI;
129   const DataLayout &DL;
130   unsigned BonusInstThreshold;
131   AssumptionCache *AC;
132   Value *isValueEqualityComparison(TerminatorInst *TI);
133   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
134                                std::vector<ValueEqualityComparisonCase> &Cases);
135   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
136                                                      BasicBlock *Pred,
137                                                      IRBuilder<> &Builder);
138   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
139                                            IRBuilder<> &Builder);
140
141   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
142   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
143   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
144   bool SimplifyUnreachable(UnreachableInst *UI);
145   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
146   bool SimplifyIndirectBr(IndirectBrInst *IBI);
147   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
148   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
149
150 public:
151   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
152                  unsigned BonusInstThreshold, AssumptionCache *AC)
153       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
154   bool run(BasicBlock *BB);
155 };
156 }
157
158 /// Return true if it is safe to merge these two
159 /// terminator instructions together.
160 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
161   if (SI1 == SI2) return false;  // Can't merge with self!
162
163   // It is not safe to merge these two switch instructions if they have a common
164   // successor, and if that successor has a PHI node, and if *that* PHI node has
165   // conflicting incoming values from the two switch blocks.
166   BasicBlock *SI1BB = SI1->getParent();
167   BasicBlock *SI2BB = SI2->getParent();
168   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
169
170   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
171     if (SI1Succs.count(*I))
172       for (BasicBlock::iterator BBI = (*I)->begin();
173            isa<PHINode>(BBI); ++BBI) {
174         PHINode *PN = cast<PHINode>(BBI);
175         if (PN->getIncomingValueForBlock(SI1BB) !=
176             PN->getIncomingValueForBlock(SI2BB))
177           return false;
178       }
179
180   return true;
181 }
182
183 /// Return true if it is safe and profitable to merge these two terminator
184 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
185 /// store all PHI nodes in common successors.
186 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
187                                           BranchInst *SI2,
188                                           Instruction *Cond,
189                                           SmallVectorImpl<PHINode*> &PhiNodes) {
190   if (SI1 == SI2) return false;  // Can't merge with self!
191   assert(SI1->isUnconditional() && SI2->isConditional());
192
193   // We fold the unconditional branch if we can easily update all PHI nodes in
194   // common successors:
195   // 1> We have a constant incoming value for the conditional branch;
196   // 2> We have "Cond" as the incoming value for the unconditional branch;
197   // 3> SI2->getCondition() and Cond have same operands.
198   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
199   if (!Ci2) return false;
200   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
201         Cond->getOperand(1) == Ci2->getOperand(1)) &&
202       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
203         Cond->getOperand(1) == Ci2->getOperand(0)))
204     return false;
205
206   BasicBlock *SI1BB = SI1->getParent();
207   BasicBlock *SI2BB = SI2->getParent();
208   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
209   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
210     if (SI1Succs.count(*I))
211       for (BasicBlock::iterator BBI = (*I)->begin();
212            isa<PHINode>(BBI); ++BBI) {
213         PHINode *PN = cast<PHINode>(BBI);
214         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
215             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
216           return false;
217         PhiNodes.push_back(PN);
218       }
219   return true;
220 }
221
222 /// Update PHI nodes in Succ to indicate that there will now be entries in it
223 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
224 /// will be the same as those coming in from ExistPred, an existing predecessor
225 /// of Succ.
226 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
227                                   BasicBlock *ExistPred) {
228   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
229
230   PHINode *PN;
231   for (BasicBlock::iterator I = Succ->begin();
232        (PN = dyn_cast<PHINode>(I)); ++I)
233     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
234 }
235
236 /// Compute an abstract "cost" of speculating the given instruction,
237 /// which is assumed to be safe to speculate. TCC_Free means cheap,
238 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
239 /// expensive.
240 static unsigned ComputeSpeculationCost(const User *I,
241                                        const TargetTransformInfo &TTI) {
242   assert(isSafeToSpeculativelyExecute(I) &&
243          "Instruction is not safe to speculatively execute!");
244   return TTI.getUserCost(I);
245 }
246
247 /// If we have a merge point of an "if condition" as accepted above,
248 /// return true if the specified value dominates the block.  We
249 /// don't handle the true generality of domination here, just a special case
250 /// which works well enough for us.
251 ///
252 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
253 /// see if V (which must be an instruction) and its recursive operands
254 /// that do not dominate BB have a combined cost lower than CostRemaining and
255 /// are non-trapping.  If both are true, the instruction is inserted into the
256 /// set and true is returned.
257 ///
258 /// The cost for most non-trapping instructions is defined as 1 except for
259 /// Select whose cost is 2.
260 ///
261 /// After this function returns, CostRemaining is decreased by the cost of
262 /// V plus its non-dominating operands.  If that cost is greater than
263 /// CostRemaining, false is returned and CostRemaining is undefined.
264 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
265                                 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
266                                 unsigned &CostRemaining,
267                                 const TargetTransformInfo &TTI,
268                                 unsigned Depth = 0) {
269   Instruction *I = dyn_cast<Instruction>(V);
270   if (!I) {
271     // Non-instructions all dominate instructions, but not all constantexprs
272     // can be executed unconditionally.
273     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
274       if (C->canTrap())
275         return false;
276     return true;
277   }
278   BasicBlock *PBB = I->getParent();
279
280   // We don't want to allow weird loops that might have the "if condition" in
281   // the bottom of this block.
282   if (PBB == BB) return false;
283
284   // If this instruction is defined in a block that contains an unconditional
285   // branch to BB, then it must be in the 'conditional' part of the "if
286   // statement".  If not, it definitely dominates the region.
287   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
288   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
289     return true;
290
291   // If we aren't allowing aggressive promotion anymore, then don't consider
292   // instructions in the 'if region'.
293   if (!AggressiveInsts) return false;
294
295   // If we have seen this instruction before, don't count it again.
296   if (AggressiveInsts->count(I)) return true;
297
298   // Okay, it looks like the instruction IS in the "condition".  Check to
299   // see if it's a cheap instruction to unconditionally compute, and if it
300   // only uses stuff defined outside of the condition.  If so, hoist it out.
301   if (!isSafeToSpeculativelyExecute(I))
302     return false;
303
304   unsigned Cost = ComputeSpeculationCost(I, TTI);
305
306   // Allow exactly one instruction to be speculated regardless of its cost
307   // (as long as it is safe to do so).
308   // This is intended to flatten the CFG even if the instruction is a division
309   // or other expensive operation. The speculation of an expensive instruction
310   // is expected to be undone in CodeGenPrepare if the speculation has not
311   // enabled further IR optimizations.
312   if (Cost > CostRemaining &&
313       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
314     return false;
315
316   // Avoid unsigned wrap.
317   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
318
319   // Okay, we can only really hoist these out if their operands do
320   // not take us over the cost threshold.
321   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
322     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
323                              Depth + 1))
324       return false;
325   // Okay, it's safe to do this!  Remember this instruction.
326   AggressiveInsts->insert(I);
327   return true;
328 }
329
330 /// Extract ConstantInt from value, looking through IntToPtr
331 /// and PointerNullValue. Return NULL if value is not a constant int.
332 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
333   // Normal constant int.
334   ConstantInt *CI = dyn_cast<ConstantInt>(V);
335   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
336     return CI;
337
338   // This is some kind of pointer constant. Turn it into a pointer-sized
339   // ConstantInt if possible.
340   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
341
342   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
343   if (isa<ConstantPointerNull>(V))
344     return ConstantInt::get(PtrTy, 0);
345
346   // IntToPtr const int.
347   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
348     if (CE->getOpcode() == Instruction::IntToPtr)
349       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
350         // The constant is very likely to have the right type already.
351         if (CI->getType() == PtrTy)
352           return CI;
353         else
354           return cast<ConstantInt>
355             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
356       }
357   return nullptr;
358 }
359
360 namespace {
361
362 /// Given a chain of or (||) or and (&&) comparison of a value against a
363 /// constant, this will try to recover the information required for a switch
364 /// structure.
365 /// It will depth-first traverse the chain of comparison, seeking for patterns
366 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
367 /// representing the different cases for the switch.
368 /// Note that if the chain is composed of '||' it will build the set of elements
369 /// that matches the comparisons (i.e. any of this value validate the chain)
370 /// while for a chain of '&&' it will build the set elements that make the test
371 /// fail.
372 struct ConstantComparesGatherer {
373   const DataLayout &DL;
374   Value *CompValue; /// Value found for the switch comparison
375   Value *Extra;     /// Extra clause to be checked before the switch
376   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
377   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
378
379   /// Construct and compute the result for the comparison instruction Cond
380   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
381       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
382     gather(Cond);
383   }
384
385   /// Prevent copy
386   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
387   ConstantComparesGatherer &
388   operator=(const ConstantComparesGatherer &) = delete;
389
390 private:
391
392   /// Try to set the current value used for the comparison, it succeeds only if
393   /// it wasn't set before or if the new value is the same as the old one
394   bool setValueOnce(Value *NewVal) {
395     if(CompValue && CompValue != NewVal) return false;
396     CompValue = NewVal;
397     return (CompValue != nullptr);
398   }
399
400   /// Try to match Instruction "I" as a comparison against a constant and
401   /// populates the array Vals with the set of values that match (or do not
402   /// match depending on isEQ).
403   /// Return false on failure. On success, the Value the comparison matched
404   /// against is placed in CompValue.
405   /// If CompValue is already set, the function is expected to fail if a match
406   /// is found but the value compared to is different.
407   bool matchInstruction(Instruction *I, bool isEQ) {
408     // If this is an icmp against a constant, handle this as one of the cases.
409     ICmpInst *ICI;
410     ConstantInt *C;
411     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
412              (C = GetConstantInt(I->getOperand(1), DL)))) {
413       return false;
414     }
415
416     Value *RHSVal;
417     ConstantInt *RHSC;
418
419     // Pattern match a special case
420     // (x & ~2^x) == y --> x == y || x == y|2^x
421     // This undoes a transformation done by instcombine to fuse 2 compares.
422     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
423       if (match(ICI->getOperand(0),
424                 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
425         APInt Not = ~RHSC->getValue();
426         if (Not.isPowerOf2()) {
427           // If we already have a value for the switch, it has to match!
428           if(!setValueOnce(RHSVal))
429             return false;
430
431           Vals.push_back(C);
432           Vals.push_back(ConstantInt::get(C->getContext(),
433                                           C->getValue() | Not));
434           UsedICmps++;
435           return true;
436         }
437       }
438
439       // If we already have a value for the switch, it has to match!
440       if(!setValueOnce(ICI->getOperand(0)))
441         return false;
442
443       UsedICmps++;
444       Vals.push_back(C);
445       return ICI->getOperand(0);
446     }
447
448     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
449     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
450         ICI->getPredicate(), C->getValue());
451
452     // Shift the range if the compare is fed by an add. This is the range
453     // compare idiom as emitted by instcombine.
454     Value *CandidateVal = I->getOperand(0);
455     if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
456       Span = Span.subtract(RHSC->getValue());
457       CandidateVal = RHSVal;
458     }
459
460     // If this is an and/!= check, then we are looking to build the set of
461     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
462     // x != 0 && x != 1.
463     if (!isEQ)
464       Span = Span.inverse();
465
466     // If there are a ton of values, we don't want to make a ginormous switch.
467     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
468       return false;
469     }
470
471     // If we already have a value for the switch, it has to match!
472     if(!setValueOnce(CandidateVal))
473       return false;
474
475     // Add all values from the range to the set
476     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
477       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
478
479     UsedICmps++;
480     return true;
481
482   }
483
484   /// Given a potentially 'or'd or 'and'd together collection of icmp
485   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
486   /// the value being compared, and stick the list constants into the Vals
487   /// vector.
488   /// One "Extra" case is allowed to differ from the other.
489   void gather(Value *V) {
490     Instruction *I = dyn_cast<Instruction>(V);
491     bool isEQ = (I->getOpcode() == Instruction::Or);
492
493     // Keep a stack (SmallVector for efficiency) for depth-first traversal
494     SmallVector<Value *, 8> DFT;
495
496     // Initialize
497     DFT.push_back(V);
498
499     while(!DFT.empty()) {
500       V = DFT.pop_back_val();
501
502       if (Instruction *I = dyn_cast<Instruction>(V)) {
503         // If it is a || (or && depending on isEQ), process the operands.
504         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
505           DFT.push_back(I->getOperand(1));
506           DFT.push_back(I->getOperand(0));
507           continue;
508         }
509
510         // Try to match the current instruction
511         if (matchInstruction(I, isEQ))
512           // Match succeed, continue the loop
513           continue;
514       }
515
516       // One element of the sequence of || (or &&) could not be match as a
517       // comparison against the same value as the others.
518       // We allow only one "Extra" case to be checked before the switch
519       if (!Extra) {
520         Extra = V;
521         continue;
522       }
523       // Failed to parse a proper sequence, abort now
524       CompValue = nullptr;
525       break;
526     }
527   }
528 };
529
530 }
531
532 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
533   Instruction *Cond = nullptr;
534   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
535     Cond = dyn_cast<Instruction>(SI->getCondition());
536   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
537     if (BI->isConditional())
538       Cond = dyn_cast<Instruction>(BI->getCondition());
539   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
540     Cond = dyn_cast<Instruction>(IBI->getAddress());
541   }
542
543   TI->eraseFromParent();
544   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
545 }
546
547 /// Return true if the specified terminator checks
548 /// to see if a value is equal to constant integer value.
549 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
550   Value *CV = nullptr;
551   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
552     // Do not permit merging of large switch instructions into their
553     // predecessors unless there is only one predecessor.
554     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
555                                              pred_end(SI->getParent())) <= 128)
556       CV = SI->getCondition();
557   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
558     if (BI->isConditional() && BI->getCondition()->hasOneUse())
559       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
560         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
561           CV = ICI->getOperand(0);
562       }
563
564   // Unwrap any lossless ptrtoint cast.
565   if (CV) {
566     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
567       Value *Ptr = PTII->getPointerOperand();
568       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
569         CV = Ptr;
570     }
571   }
572   return CV;
573 }
574
575 /// Given a value comparison instruction,
576 /// decode all of the 'cases' that it represents and return the 'default' block.
577 BasicBlock *SimplifyCFGOpt::
578 GetValueEqualityComparisonCases(TerminatorInst *TI,
579                                 std::vector<ValueEqualityComparisonCase>
580                                                                        &Cases) {
581   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
582     Cases.reserve(SI->getNumCases());
583     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
584       Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
585                                                   i.getCaseSuccessor()));
586     return SI->getDefaultDest();
587   }
588
589   BranchInst *BI = cast<BranchInst>(TI);
590   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
591   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
592   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
593                                                              DL),
594                                               Succ));
595   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
596 }
597
598
599 /// Given a vector of bb/value pairs, remove any entries
600 /// in the list that match the specified block.
601 static void EliminateBlockCases(BasicBlock *BB,
602                               std::vector<ValueEqualityComparisonCase> &Cases) {
603   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
604 }
605
606 /// Return true if there are any keys in C1 that exist in C2 as well.
607 static bool
608 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
609               std::vector<ValueEqualityComparisonCase > &C2) {
610   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
611
612   // Make V1 be smaller than V2.
613   if (V1->size() > V2->size())
614     std::swap(V1, V2);
615
616   if (V1->size() == 0) return false;
617   if (V1->size() == 1) {
618     // Just scan V2.
619     ConstantInt *TheVal = (*V1)[0].Value;
620     for (unsigned i = 0, e = V2->size(); i != e; ++i)
621       if (TheVal == (*V2)[i].Value)
622         return true;
623   }
624
625   // Otherwise, just sort both lists and compare element by element.
626   array_pod_sort(V1->begin(), V1->end());
627   array_pod_sort(V2->begin(), V2->end());
628   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
629   while (i1 != e1 && i2 != e2) {
630     if ((*V1)[i1].Value == (*V2)[i2].Value)
631       return true;
632     if ((*V1)[i1].Value < (*V2)[i2].Value)
633       ++i1;
634     else
635       ++i2;
636   }
637   return false;
638 }
639
640 /// If TI is known to be a terminator instruction and its block is known to
641 /// only have a single predecessor block, check to see if that predecessor is
642 /// also a value comparison with the same value, and if that comparison
643 /// determines the outcome of this comparison. If so, simplify TI. This does a
644 /// very limited form of jump threading.
645 bool SimplifyCFGOpt::
646 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
647                                               BasicBlock *Pred,
648                                               IRBuilder<> &Builder) {
649   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
650   if (!PredVal) return false;  // Not a value comparison in predecessor.
651
652   Value *ThisVal = isValueEqualityComparison(TI);
653   assert(ThisVal && "This isn't a value comparison!!");
654   if (ThisVal != PredVal) return false;  // Different predicates.
655
656   // TODO: Preserve branch weight metadata, similarly to how
657   // FoldValueComparisonIntoPredecessors preserves it.
658
659   // Find out information about when control will move from Pred to TI's block.
660   std::vector<ValueEqualityComparisonCase> PredCases;
661   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
662                                                         PredCases);
663   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
664
665   // Find information about how control leaves this block.
666   std::vector<ValueEqualityComparisonCase> ThisCases;
667   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
668   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
669
670   // If TI's block is the default block from Pred's comparison, potentially
671   // simplify TI based on this knowledge.
672   if (PredDef == TI->getParent()) {
673     // If we are here, we know that the value is none of those cases listed in
674     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
675     // can simplify TI.
676     if (!ValuesOverlap(PredCases, ThisCases))
677       return false;
678
679     if (isa<BranchInst>(TI)) {
680       // Okay, one of the successors of this condbr is dead.  Convert it to a
681       // uncond br.
682       assert(ThisCases.size() == 1 && "Branch can only have one case!");
683       // Insert the new branch.
684       Instruction *NI = Builder.CreateBr(ThisDef);
685       (void) NI;
686
687       // Remove PHI node entries for the dead edge.
688       ThisCases[0].Dest->removePredecessor(TI->getParent());
689
690       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
691            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
692
693       EraseTerminatorInstAndDCECond(TI);
694       return true;
695     }
696
697     SwitchInst *SI = cast<SwitchInst>(TI);
698     // Okay, TI has cases that are statically dead, prune them away.
699     SmallPtrSet<Constant*, 16> DeadCases;
700     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
701       DeadCases.insert(PredCases[i].Value);
702
703     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
704                  << "Through successor TI: " << *TI);
705
706     // Collect branch weights into a vector.
707     SmallVector<uint32_t, 8> Weights;
708     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
709     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
710     if (HasWeight)
711       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
712            ++MD_i) {
713         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
714         Weights.push_back(CI->getValue().getZExtValue());
715       }
716     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
717       --i;
718       if (DeadCases.count(i.getCaseValue())) {
719         if (HasWeight) {
720           std::swap(Weights[i.getCaseIndex()+1], Weights.back());
721           Weights.pop_back();
722         }
723         i.getCaseSuccessor()->removePredecessor(TI->getParent());
724         SI->removeCase(i);
725       }
726     }
727     if (HasWeight && Weights.size() >= 2)
728       SI->setMetadata(LLVMContext::MD_prof,
729                       MDBuilder(SI->getParent()->getContext()).
730                       createBranchWeights(Weights));
731
732     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
733     return true;
734   }
735
736   // Otherwise, TI's block must correspond to some matched value.  Find out
737   // which value (or set of values) this is.
738   ConstantInt *TIV = nullptr;
739   BasicBlock *TIBB = TI->getParent();
740   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
741     if (PredCases[i].Dest == TIBB) {
742       if (TIV)
743         return false;  // Cannot handle multiple values coming to this block.
744       TIV = PredCases[i].Value;
745     }
746   assert(TIV && "No edge from pred to succ?");
747
748   // Okay, we found the one constant that our value can be if we get into TI's
749   // BB.  Find out which successor will unconditionally be branched to.
750   BasicBlock *TheRealDest = nullptr;
751   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
752     if (ThisCases[i].Value == TIV) {
753       TheRealDest = ThisCases[i].Dest;
754       break;
755     }
756
757   // If not handled by any explicit cases, it is handled by the default case.
758   if (!TheRealDest) TheRealDest = ThisDef;
759
760   // Remove PHI node entries for dead edges.
761   BasicBlock *CheckEdge = TheRealDest;
762   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
763     if (*SI != CheckEdge)
764       (*SI)->removePredecessor(TIBB);
765     else
766       CheckEdge = nullptr;
767
768   // Insert the new branch.
769   Instruction *NI = Builder.CreateBr(TheRealDest);
770   (void) NI;
771
772   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
773             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
774
775   EraseTerminatorInstAndDCECond(TI);
776   return true;
777 }
778
779 namespace {
780   /// This class implements a stable ordering of constant
781   /// integers that does not depend on their address.  This is important for
782   /// applications that sort ConstantInt's to ensure uniqueness.
783   struct ConstantIntOrdering {
784     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
785       return LHS->getValue().ult(RHS->getValue());
786     }
787   };
788 }
789
790 static int ConstantIntSortPredicate(ConstantInt *const *P1,
791                                     ConstantInt *const *P2) {
792   const ConstantInt *LHS = *P1;
793   const ConstantInt *RHS = *P2;
794   if (LHS->getValue().ult(RHS->getValue()))
795     return 1;
796   if (LHS->getValue() == RHS->getValue())
797     return 0;
798   return -1;
799 }
800
801 static inline bool HasBranchWeights(const Instruction* I) {
802   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
803   if (ProfMD && ProfMD->getOperand(0))
804     if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
805       return MDS->getString().equals("branch_weights");
806
807   return false;
808 }
809
810 /// Get Weights of a given TerminatorInst, the default weight is at the front
811 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
812 /// metadata.
813 static void GetBranchWeights(TerminatorInst *TI,
814                              SmallVectorImpl<uint64_t> &Weights) {
815   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
816   assert(MD);
817   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
818     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
819     Weights.push_back(CI->getValue().getZExtValue());
820   }
821
822   // If TI is a conditional eq, the default case is the false case,
823   // and the corresponding branch-weight data is at index 2. We swap the
824   // default weight to be the first entry.
825   if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
826     assert(Weights.size() == 2);
827     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
828     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
829       std::swap(Weights.front(), Weights.back());
830   }
831 }
832
833 /// Keep halving the weights until all can fit in uint32_t.
834 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
835   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
836   if (Max > UINT_MAX) {
837     unsigned Offset = 32 - countLeadingZeros(Max);
838     for (uint64_t &I : Weights)
839       I >>= Offset;
840   }
841 }
842
843 /// The specified terminator is a value equality comparison instruction
844 /// (either a switch or a branch on "X == c").
845 /// See if any of the predecessors of the terminator block are value comparisons
846 /// on the same value.  If so, and if safe to do so, fold them together.
847 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
848                                                          IRBuilder<> &Builder) {
849   BasicBlock *BB = TI->getParent();
850   Value *CV = isValueEqualityComparison(TI);  // CondVal
851   assert(CV && "Not a comparison?");
852   bool Changed = false;
853
854   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
855   while (!Preds.empty()) {
856     BasicBlock *Pred = Preds.pop_back_val();
857
858     // See if the predecessor is a comparison with the same value.
859     TerminatorInst *PTI = Pred->getTerminator();
860     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
861
862     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
863       // Figure out which 'cases' to copy from SI to PSI.
864       std::vector<ValueEqualityComparisonCase> BBCases;
865       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
866
867       std::vector<ValueEqualityComparisonCase> PredCases;
868       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
869
870       // Based on whether the default edge from PTI goes to BB or not, fill in
871       // PredCases and PredDefault with the new switch cases we would like to
872       // build.
873       SmallVector<BasicBlock*, 8> NewSuccessors;
874
875       // Update the branch weight metadata along the way
876       SmallVector<uint64_t, 8> Weights;
877       bool PredHasWeights = HasBranchWeights(PTI);
878       bool SuccHasWeights = HasBranchWeights(TI);
879
880       if (PredHasWeights) {
881         GetBranchWeights(PTI, Weights);
882         // branch-weight metadata is inconsistent here.
883         if (Weights.size() != 1 + PredCases.size())
884           PredHasWeights = SuccHasWeights = false;
885       } else if (SuccHasWeights)
886         // If there are no predecessor weights but there are successor weights,
887         // populate Weights with 1, which will later be scaled to the sum of
888         // successor's weights
889         Weights.assign(1 + PredCases.size(), 1);
890
891       SmallVector<uint64_t, 8> SuccWeights;
892       if (SuccHasWeights) {
893         GetBranchWeights(TI, SuccWeights);
894         // branch-weight metadata is inconsistent here.
895         if (SuccWeights.size() != 1 + BBCases.size())
896           PredHasWeights = SuccHasWeights = false;
897       } else if (PredHasWeights)
898         SuccWeights.assign(1 + BBCases.size(), 1);
899
900       if (PredDefault == BB) {
901         // If this is the default destination from PTI, only the edges in TI
902         // that don't occur in PTI, or that branch to BB will be activated.
903         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
904         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
905           if (PredCases[i].Dest != BB)
906             PTIHandled.insert(PredCases[i].Value);
907           else {
908             // The default destination is BB, we don't need explicit targets.
909             std::swap(PredCases[i], PredCases.back());
910
911             if (PredHasWeights || SuccHasWeights) {
912               // Increase weight for the default case.
913               Weights[0] += Weights[i+1];
914               std::swap(Weights[i+1], Weights.back());
915               Weights.pop_back();
916             }
917
918             PredCases.pop_back();
919             --i; --e;
920           }
921
922         // Reconstruct the new switch statement we will be building.
923         if (PredDefault != BBDefault) {
924           PredDefault->removePredecessor(Pred);
925           PredDefault = BBDefault;
926           NewSuccessors.push_back(BBDefault);
927         }
928
929         unsigned CasesFromPred = Weights.size();
930         uint64_t ValidTotalSuccWeight = 0;
931         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
932           if (!PTIHandled.count(BBCases[i].Value) &&
933               BBCases[i].Dest != BBDefault) {
934             PredCases.push_back(BBCases[i]);
935             NewSuccessors.push_back(BBCases[i].Dest);
936             if (SuccHasWeights || PredHasWeights) {
937               // The default weight is at index 0, so weight for the ith case
938               // should be at index i+1. Scale the cases from successor by
939               // PredDefaultWeight (Weights[0]).
940               Weights.push_back(Weights[0] * SuccWeights[i+1]);
941               ValidTotalSuccWeight += SuccWeights[i+1];
942             }
943           }
944
945         if (SuccHasWeights || PredHasWeights) {
946           ValidTotalSuccWeight += SuccWeights[0];
947           // Scale the cases from predecessor by ValidTotalSuccWeight.
948           for (unsigned i = 1; i < CasesFromPred; ++i)
949             Weights[i] *= ValidTotalSuccWeight;
950           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
951           Weights[0] *= SuccWeights[0];
952         }
953       } else {
954         // If this is not the default destination from PSI, only the edges
955         // in SI that occur in PSI with a destination of BB will be
956         // activated.
957         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
958         std::map<ConstantInt*, uint64_t> WeightsForHandled;
959         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
960           if (PredCases[i].Dest == BB) {
961             PTIHandled.insert(PredCases[i].Value);
962
963             if (PredHasWeights || SuccHasWeights) {
964               WeightsForHandled[PredCases[i].Value] = Weights[i+1];
965               std::swap(Weights[i+1], Weights.back());
966               Weights.pop_back();
967             }
968
969             std::swap(PredCases[i], PredCases.back());
970             PredCases.pop_back();
971             --i; --e;
972           }
973
974         // Okay, now we know which constants were sent to BB from the
975         // predecessor.  Figure out where they will all go now.
976         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
977           if (PTIHandled.count(BBCases[i].Value)) {
978             // If this is one we are capable of getting...
979             if (PredHasWeights || SuccHasWeights)
980               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
981             PredCases.push_back(BBCases[i]);
982             NewSuccessors.push_back(BBCases[i].Dest);
983             PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
984           }
985
986         // If there are any constants vectored to BB that TI doesn't handle,
987         // they must go to the default destination of TI.
988         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
989                                     PTIHandled.begin(),
990                E = PTIHandled.end(); I != E; ++I) {
991           if (PredHasWeights || SuccHasWeights)
992             Weights.push_back(WeightsForHandled[*I]);
993           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
994           NewSuccessors.push_back(BBDefault);
995         }
996       }
997
998       // Okay, at this point, we know which new successor Pred will get.  Make
999       // sure we update the number of entries in the PHI nodes for these
1000       // successors.
1001       for (BasicBlock *NewSuccessor : NewSuccessors)
1002         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1003
1004       Builder.SetInsertPoint(PTI);
1005       // Convert pointer to int before we switch.
1006       if (CV->getType()->isPointerTy()) {
1007         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1008                                     "magicptr");
1009       }
1010
1011       // Now that the successors are updated, create the new Switch instruction.
1012       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
1013                                                PredCases.size());
1014       NewSI->setDebugLoc(PTI->getDebugLoc());
1015       for (ValueEqualityComparisonCase &V : PredCases)
1016         NewSI->addCase(V.Value, V.Dest);
1017
1018       if (PredHasWeights || SuccHasWeights) {
1019         // Halve the weights if any of them cannot fit in an uint32_t
1020         FitWeights(Weights);
1021
1022         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1023
1024         NewSI->setMetadata(LLVMContext::MD_prof,
1025                            MDBuilder(BB->getContext()).
1026                            createBranchWeights(MDWeights));
1027       }
1028
1029       EraseTerminatorInstAndDCECond(PTI);
1030
1031       // Okay, last check.  If BB is still a successor of PSI, then we must
1032       // have an infinite loop case.  If so, add an infinitely looping block
1033       // to handle the case to preserve the behavior of the code.
1034       BasicBlock *InfLoopBlock = nullptr;
1035       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1036         if (NewSI->getSuccessor(i) == BB) {
1037           if (!InfLoopBlock) {
1038             // Insert it at the end of the function, because it's either code,
1039             // or it won't matter if it's hot. :)
1040             InfLoopBlock = BasicBlock::Create(BB->getContext(),
1041                                               "infloop", BB->getParent());
1042             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1043           }
1044           NewSI->setSuccessor(i, InfLoopBlock);
1045         }
1046
1047       Changed = true;
1048     }
1049   }
1050   return Changed;
1051 }
1052
1053 // If we would need to insert a select that uses the value of this invoke
1054 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1055 // can't hoist the invoke, as there is nowhere to put the select in this case.
1056 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1057                                 Instruction *I1, Instruction *I2) {
1058   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1059     PHINode *PN;
1060     for (BasicBlock::iterator BBI = SI->begin();
1061          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1062       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1063       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1064       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1065         return false;
1066       }
1067     }
1068   }
1069   return true;
1070 }
1071
1072 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1073
1074 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1075 /// in the two blocks up into the branch block. The caller of this function
1076 /// guarantees that BI's block dominates BB1 and BB2.
1077 static bool HoistThenElseCodeToIf(BranchInst *BI,
1078                                   const TargetTransformInfo &TTI) {
1079   // This does very trivial matching, with limited scanning, to find identical
1080   // instructions in the two blocks.  In particular, we don't want to get into
1081   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1082   // such, we currently just scan for obviously identical instructions in an
1083   // identical order.
1084   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1085   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1086
1087   BasicBlock::iterator BB1_Itr = BB1->begin();
1088   BasicBlock::iterator BB2_Itr = BB2->begin();
1089
1090   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1091   // Skip debug info if it is not identical.
1092   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1093   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1094   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1095     while (isa<DbgInfoIntrinsic>(I1))
1096       I1 = &*BB1_Itr++;
1097     while (isa<DbgInfoIntrinsic>(I2))
1098       I2 = &*BB2_Itr++;
1099   }
1100   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1101       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1102     return false;
1103
1104   BasicBlock *BIParent = BI->getParent();
1105
1106   bool Changed = false;
1107   do {
1108     // If we are hoisting the terminator instruction, don't move one (making a
1109     // broken BB), instead clone it, and remove BI.
1110     if (isa<TerminatorInst>(I1))
1111       goto HoistTerminator;
1112
1113     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1114       return Changed;
1115
1116     // For a normal instruction, we just move one to right before the branch,
1117     // then replace all uses of the other with the first.  Finally, we remove
1118     // the now redundant second instruction.
1119     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1120     if (!I2->use_empty())
1121       I2->replaceAllUsesWith(I1);
1122     I1->intersectOptionalDataWith(I2);
1123     unsigned KnownIDs[] = {
1124         LLVMContext::MD_tbaa,    LLVMContext::MD_range,
1125         LLVMContext::MD_fpmath,  LLVMContext::MD_invariant_load,
1126         LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group,
1127         LLVMContext::MD_align,   LLVMContext::MD_dereferenceable,
1128         LLVMContext::MD_dereferenceable_or_null};
1129     combineMetadata(I1, I2, KnownIDs);
1130     I2->eraseFromParent();
1131     Changed = true;
1132
1133     I1 = &*BB1_Itr++;
1134     I2 = &*BB2_Itr++;
1135     // Skip debug info if it is not identical.
1136     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1137     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1138     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1139       while (isa<DbgInfoIntrinsic>(I1))
1140         I1 = &*BB1_Itr++;
1141       while (isa<DbgInfoIntrinsic>(I2))
1142         I2 = &*BB2_Itr++;
1143     }
1144   } while (I1->isIdenticalToWhenDefined(I2));
1145
1146   return true;
1147
1148 HoistTerminator:
1149   // It may not be possible to hoist an invoke.
1150   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1151     return Changed;
1152
1153   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1154     PHINode *PN;
1155     for (BasicBlock::iterator BBI = SI->begin();
1156          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1157       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1158       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1159       if (BB1V == BB2V)
1160         continue;
1161
1162       // Check for passingValueIsAlwaysUndefined here because we would rather
1163       // eliminate undefined control flow then converting it to a select.
1164       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1165           passingValueIsAlwaysUndefined(BB2V, PN))
1166        return Changed;
1167
1168       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1169         return Changed;
1170       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1171         return Changed;
1172     }
1173   }
1174
1175   // Okay, it is safe to hoist the terminator.
1176   Instruction *NT = I1->clone();
1177   BIParent->getInstList().insert(BI->getIterator(), NT);
1178   if (!NT->getType()->isVoidTy()) {
1179     I1->replaceAllUsesWith(NT);
1180     I2->replaceAllUsesWith(NT);
1181     NT->takeName(I1);
1182   }
1183
1184   IRBuilder<true, NoFolder> Builder(NT);
1185   // Hoisting one of the terminators from our successor is a great thing.
1186   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1187   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1188   // nodes, so we insert select instruction to compute the final result.
1189   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1190   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1191     PHINode *PN;
1192     for (BasicBlock::iterator BBI = SI->begin();
1193          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1194       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1195       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1196       if (BB1V == BB2V) continue;
1197
1198       // These values do not agree.  Insert a select instruction before NT
1199       // that determines the right value.
1200       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1201       if (!SI)
1202         SI = cast<SelectInst>
1203           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1204                                 BB1V->getName()+"."+BB2V->getName()));
1205
1206       // Make the PHI node use the select for all incoming values for BB1/BB2
1207       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1208         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1209           PN->setIncomingValue(i, SI);
1210     }
1211   }
1212
1213   // Update any PHI nodes in our new successors.
1214   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1215     AddPredecessorToBlock(*SI, BIParent, BB1);
1216
1217   EraseTerminatorInstAndDCECond(BI);
1218   return true;
1219 }
1220
1221 /// Given an unconditional branch that goes to BBEnd,
1222 /// check whether BBEnd has only two predecessors and the other predecessor
1223 /// ends with an unconditional branch. If it is true, sink any common code
1224 /// in the two predecessors to BBEnd.
1225 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1226   assert(BI1->isUnconditional());
1227   BasicBlock *BB1 = BI1->getParent();
1228   BasicBlock *BBEnd = BI1->getSuccessor(0);
1229
1230   // Check that BBEnd has two predecessors and the other predecessor ends with
1231   // an unconditional branch.
1232   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1233   BasicBlock *Pred0 = *PI++;
1234   if (PI == PE) // Only one predecessor.
1235     return false;
1236   BasicBlock *Pred1 = *PI++;
1237   if (PI != PE) // More than two predecessors.
1238     return false;
1239   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1240   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1241   if (!BI2 || !BI2->isUnconditional())
1242     return false;
1243
1244   // Gather the PHI nodes in BBEnd.
1245   SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1246   Instruction *FirstNonPhiInBBEnd = nullptr;
1247   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1248     if (PHINode *PN = dyn_cast<PHINode>(I)) {
1249       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1250       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1251       JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1252     } else {
1253       FirstNonPhiInBBEnd = &*I;
1254       break;
1255     }
1256   }
1257   if (!FirstNonPhiInBBEnd)
1258     return false;
1259
1260   // This does very trivial matching, with limited scanning, to find identical
1261   // instructions in the two blocks.  We scan backward for obviously identical
1262   // instructions in an identical order.
1263   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1264                                              RE1 = BB1->getInstList().rend(),
1265                                              RI2 = BB2->getInstList().rbegin(),
1266                                              RE2 = BB2->getInstList().rend();
1267   // Skip debug info.
1268   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1269   if (RI1 == RE1)
1270     return false;
1271   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1272   if (RI2 == RE2)
1273     return false;
1274   // Skip the unconditional branches.
1275   ++RI1;
1276   ++RI2;
1277
1278   bool Changed = false;
1279   while (RI1 != RE1 && RI2 != RE2) {
1280     // Skip debug info.
1281     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1282     if (RI1 == RE1)
1283       return Changed;
1284     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1285     if (RI2 == RE2)
1286       return Changed;
1287
1288     Instruction *I1 = &*RI1, *I2 = &*RI2;
1289     auto InstPair = std::make_pair(I1, I2);
1290     // I1 and I2 should have a single use in the same PHI node, and they
1291     // perform the same operation.
1292     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1293     if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1294         isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1295         I1->isEHPad() || I2->isEHPad() ||
1296         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1297         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1298         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1299         !I1->hasOneUse() || !I2->hasOneUse() ||
1300         !JointValueMap.count(InstPair))
1301       return Changed;
1302
1303     // Check whether we should swap the operands of ICmpInst.
1304     // TODO: Add support of communativity.
1305     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1306     bool SwapOpnds = false;
1307     if (ICmp1 && ICmp2 &&
1308         ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1309         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1310         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1311          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1312       ICmp2->swapOperands();
1313       SwapOpnds = true;
1314     }
1315     if (!I1->isSameOperationAs(I2)) {
1316       if (SwapOpnds)
1317         ICmp2->swapOperands();
1318       return Changed;
1319     }
1320
1321     // The operands should be either the same or they need to be generated
1322     // with a PHI node after sinking. We only handle the case where there is
1323     // a single pair of different operands.
1324     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1325     unsigned Op1Idx = ~0U;
1326     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1327       if (I1->getOperand(I) == I2->getOperand(I))
1328         continue;
1329       // Early exit if we have more-than one pair of different operands or if
1330       // we need a PHI node to replace a constant.
1331       if (Op1Idx != ~0U ||
1332           isa<Constant>(I1->getOperand(I)) ||
1333           isa<Constant>(I2->getOperand(I))) {
1334         // If we can't sink the instructions, undo the swapping.
1335         if (SwapOpnds)
1336           ICmp2->swapOperands();
1337         return Changed;
1338       }
1339       DifferentOp1 = I1->getOperand(I);
1340       Op1Idx = I;
1341       DifferentOp2 = I2->getOperand(I);
1342     }
1343
1344     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1345     DEBUG(dbgs() << "                         " << *I2 << "\n");
1346
1347     // We insert the pair of different operands to JointValueMap and
1348     // remove (I1, I2) from JointValueMap.
1349     if (Op1Idx != ~0U) {
1350       auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1351       if (!NewPN) {
1352         NewPN =
1353             PHINode::Create(DifferentOp1->getType(), 2,
1354                             DifferentOp1->getName() + ".sink", &BBEnd->front());
1355         NewPN->addIncoming(DifferentOp1, BB1);
1356         NewPN->addIncoming(DifferentOp2, BB2);
1357         DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1358       }
1359       // I1 should use NewPN instead of DifferentOp1.
1360       I1->setOperand(Op1Idx, NewPN);
1361     }
1362     PHINode *OldPN = JointValueMap[InstPair];
1363     JointValueMap.erase(InstPair);
1364
1365     // We need to update RE1 and RE2 if we are going to sink the first
1366     // instruction in the basic block down.
1367     bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1368     // Sink the instruction.
1369     BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
1370                                 BB1->getInstList(), I1);
1371     if (!OldPN->use_empty())
1372       OldPN->replaceAllUsesWith(I1);
1373     OldPN->eraseFromParent();
1374
1375     if (!I2->use_empty())
1376       I2->replaceAllUsesWith(I1);
1377     I1->intersectOptionalDataWith(I2);
1378     // TODO: Use combineMetadata here to preserve what metadata we can
1379     // (analogous to the hoisting case above).
1380     I2->eraseFromParent();
1381
1382     if (UpdateRE1)
1383       RE1 = BB1->getInstList().rend();
1384     if (UpdateRE2)
1385       RE2 = BB2->getInstList().rend();
1386     FirstNonPhiInBBEnd = &*I1;
1387     NumSinkCommons++;
1388     Changed = true;
1389   }
1390   return Changed;
1391 }
1392
1393 /// \brief Determine if we can hoist sink a sole store instruction out of a
1394 /// conditional block.
1395 ///
1396 /// We are looking for code like the following:
1397 ///   BrBB:
1398 ///     store i32 %add, i32* %arrayidx2
1399 ///     ... // No other stores or function calls (we could be calling a memory
1400 ///     ... // function).
1401 ///     %cmp = icmp ult %x, %y
1402 ///     br i1 %cmp, label %EndBB, label %ThenBB
1403 ///   ThenBB:
1404 ///     store i32 %add5, i32* %arrayidx2
1405 ///     br label EndBB
1406 ///   EndBB:
1407 ///     ...
1408 ///   We are going to transform this into:
1409 ///   BrBB:
1410 ///     store i32 %add, i32* %arrayidx2
1411 ///     ... //
1412 ///     %cmp = icmp ult %x, %y
1413 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1414 ///     store i32 %add.add5, i32* %arrayidx2
1415 ///     ...
1416 ///
1417 /// \return The pointer to the value of the previous store if the store can be
1418 ///         hoisted into the predecessor block. 0 otherwise.
1419 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1420                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1421   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1422   if (!StoreToHoist)
1423     return nullptr;
1424
1425   // Volatile or atomic.
1426   if (!StoreToHoist->isSimple())
1427     return nullptr;
1428
1429   Value *StorePtr = StoreToHoist->getPointerOperand();
1430
1431   // Look for a store to the same pointer in BrBB.
1432   unsigned MaxNumInstToLookAt = 10;
1433   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1434        RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1435     Instruction *CurI = &*RI;
1436
1437     // Could be calling an instruction that effects memory like free().
1438     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1439       return nullptr;
1440
1441     StoreInst *SI = dyn_cast<StoreInst>(CurI);
1442     // Found the previous store make sure it stores to the same location.
1443     if (SI && SI->getPointerOperand() == StorePtr)
1444       // Found the previous store, return its value operand.
1445       return SI->getValueOperand();
1446     else if (SI)
1447       return nullptr; // Unknown store.
1448   }
1449
1450   return nullptr;
1451 }
1452
1453 /// \brief Speculate a conditional basic block flattening the CFG.
1454 ///
1455 /// Note that this is a very risky transform currently. Speculating
1456 /// instructions like this is most often not desirable. Instead, there is an MI
1457 /// pass which can do it with full awareness of the resource constraints.
1458 /// However, some cases are "obvious" and we should do directly. An example of
1459 /// this is speculating a single, reasonably cheap instruction.
1460 ///
1461 /// There is only one distinct advantage to flattening the CFG at the IR level:
1462 /// it makes very common but simplistic optimizations such as are common in
1463 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1464 /// modeling their effects with easier to reason about SSA value graphs.
1465 ///
1466 ///
1467 /// An illustration of this transform is turning this IR:
1468 /// \code
1469 ///   BB:
1470 ///     %cmp = icmp ult %x, %y
1471 ///     br i1 %cmp, label %EndBB, label %ThenBB
1472 ///   ThenBB:
1473 ///     %sub = sub %x, %y
1474 ///     br label BB2
1475 ///   EndBB:
1476 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1477 ///     ...
1478 /// \endcode
1479 ///
1480 /// Into this IR:
1481 /// \code
1482 ///   BB:
1483 ///     %cmp = icmp ult %x, %y
1484 ///     %sub = sub %x, %y
1485 ///     %cond = select i1 %cmp, 0, %sub
1486 ///     ...
1487 /// \endcode
1488 ///
1489 /// \returns true if the conditional block is removed.
1490 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1491                                    const TargetTransformInfo &TTI) {
1492   // Be conservative for now. FP select instruction can often be expensive.
1493   Value *BrCond = BI->getCondition();
1494   if (isa<FCmpInst>(BrCond))
1495     return false;
1496
1497   BasicBlock *BB = BI->getParent();
1498   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1499
1500   // If ThenBB is actually on the false edge of the conditional branch, remember
1501   // to swap the select operands later.
1502   bool Invert = false;
1503   if (ThenBB != BI->getSuccessor(0)) {
1504     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1505     Invert = true;
1506   }
1507   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1508
1509   // Keep a count of how many times instructions are used within CondBB when
1510   // they are candidates for sinking into CondBB. Specifically:
1511   // - They are defined in BB, and
1512   // - They have no side effects, and
1513   // - All of their uses are in CondBB.
1514   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1515
1516   unsigned SpeculationCost = 0;
1517   Value *SpeculatedStoreValue = nullptr;
1518   StoreInst *SpeculatedStore = nullptr;
1519   for (BasicBlock::iterator BBI = ThenBB->begin(),
1520                             BBE = std::prev(ThenBB->end());
1521        BBI != BBE; ++BBI) {
1522     Instruction *I = &*BBI;
1523     // Skip debug info.
1524     if (isa<DbgInfoIntrinsic>(I))
1525       continue;
1526
1527     // Only speculatively execute a single instruction (not counting the
1528     // terminator) for now.
1529     ++SpeculationCost;
1530     if (SpeculationCost > 1)
1531       return false;
1532
1533     // Don't hoist the instruction if it's unsafe or expensive.
1534     if (!isSafeToSpeculativelyExecute(I) &&
1535         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1536                                   I, BB, ThenBB, EndBB))))
1537       return false;
1538     if (!SpeculatedStoreValue &&
1539         ComputeSpeculationCost(I, TTI) >
1540             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1541       return false;
1542
1543     // Store the store speculation candidate.
1544     if (SpeculatedStoreValue)
1545       SpeculatedStore = cast<StoreInst>(I);
1546
1547     // Do not hoist the instruction if any of its operands are defined but not
1548     // used in BB. The transformation will prevent the operand from
1549     // being sunk into the use block.
1550     for (User::op_iterator i = I->op_begin(), e = I->op_end();
1551          i != e; ++i) {
1552       Instruction *OpI = dyn_cast<Instruction>(*i);
1553       if (!OpI || OpI->getParent() != BB ||
1554           OpI->mayHaveSideEffects())
1555         continue; // Not a candidate for sinking.
1556
1557       ++SinkCandidateUseCounts[OpI];
1558     }
1559   }
1560
1561   // Consider any sink candidates which are only used in CondBB as costs for
1562   // speculation. Note, while we iterate over a DenseMap here, we are summing
1563   // and so iteration order isn't significant.
1564   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1565            SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1566        I != E; ++I)
1567     if (I->first->getNumUses() == I->second) {
1568       ++SpeculationCost;
1569       if (SpeculationCost > 1)
1570         return false;
1571     }
1572
1573   // Check that the PHI nodes can be converted to selects.
1574   bool HaveRewritablePHIs = false;
1575   for (BasicBlock::iterator I = EndBB->begin();
1576        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1577     Value *OrigV = PN->getIncomingValueForBlock(BB);
1578     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1579
1580     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1581     // Skip PHIs which are trivial.
1582     if (ThenV == OrigV)
1583       continue;
1584
1585     // Don't convert to selects if we could remove undefined behavior instead.
1586     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1587         passingValueIsAlwaysUndefined(ThenV, PN))
1588       return false;
1589
1590     HaveRewritablePHIs = true;
1591     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1592     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1593     if (!OrigCE && !ThenCE)
1594       continue; // Known safe and cheap.
1595
1596     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1597         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1598       return false;
1599     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1600     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1601     unsigned MaxCost = 2 * PHINodeFoldingThreshold *
1602       TargetTransformInfo::TCC_Basic;
1603     if (OrigCost + ThenCost > MaxCost)
1604       return false;
1605
1606     // Account for the cost of an unfolded ConstantExpr which could end up
1607     // getting expanded into Instructions.
1608     // FIXME: This doesn't account for how many operations are combined in the
1609     // constant expression.
1610     ++SpeculationCost;
1611     if (SpeculationCost > 1)
1612       return false;
1613   }
1614
1615   // If there are no PHIs to process, bail early. This helps ensure idempotence
1616   // as well.
1617   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1618     return false;
1619
1620   // If we get here, we can hoist the instruction and if-convert.
1621   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1622
1623   // Insert a select of the value of the speculated store.
1624   if (SpeculatedStoreValue) {
1625     IRBuilder<true, NoFolder> Builder(BI);
1626     Value *TrueV = SpeculatedStore->getValueOperand();
1627     Value *FalseV = SpeculatedStoreValue;
1628     if (Invert)
1629       std::swap(TrueV, FalseV);
1630     Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1631                                     "." + FalseV->getName());
1632     SpeculatedStore->setOperand(0, S);
1633   }
1634
1635   // Metadata can be dependent on the condition we are hoisting above.
1636   // Conservatively strip all metadata on the instruction.
1637   for (auto &I: *ThenBB)
1638     I.dropUnknownNonDebugMetadata();
1639
1640   // Hoist the instructions.
1641   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
1642                            ThenBB->begin(), std::prev(ThenBB->end()));
1643
1644   // Insert selects and rewrite the PHI operands.
1645   IRBuilder<true, NoFolder> Builder(BI);
1646   for (BasicBlock::iterator I = EndBB->begin();
1647        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1648     unsigned OrigI = PN->getBasicBlockIndex(BB);
1649     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1650     Value *OrigV = PN->getIncomingValue(OrigI);
1651     Value *ThenV = PN->getIncomingValue(ThenI);
1652
1653     // Skip PHIs which are trivial.
1654     if (OrigV == ThenV)
1655       continue;
1656
1657     // Create a select whose true value is the speculatively executed value and
1658     // false value is the preexisting value. Swap them if the branch
1659     // destinations were inverted.
1660     Value *TrueV = ThenV, *FalseV = OrigV;
1661     if (Invert)
1662       std::swap(TrueV, FalseV);
1663     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1664                                     TrueV->getName() + "." + FalseV->getName());
1665     PN->setIncomingValue(OrigI, V);
1666     PN->setIncomingValue(ThenI, V);
1667   }
1668
1669   ++NumSpeculations;
1670   return true;
1671 }
1672
1673 /// \returns True if this block contains a CallInst with the NoDuplicate
1674 /// attribute.
1675 static bool HasNoDuplicateCall(const BasicBlock *BB) {
1676   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1677     const CallInst *CI = dyn_cast<CallInst>(I);
1678     if (!CI)
1679       continue;
1680     if (CI->cannotDuplicate())
1681       return true;
1682   }
1683   return false;
1684 }
1685
1686 /// Return true if we can thread a branch across this block.
1687 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1688   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1689   unsigned Size = 0;
1690
1691   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1692     if (isa<DbgInfoIntrinsic>(BBI))
1693       continue;
1694     if (Size > 10) return false;  // Don't clone large BB's.
1695     ++Size;
1696
1697     // We can only support instructions that do not define values that are
1698     // live outside of the current basic block.
1699     for (User *U : BBI->users()) {
1700       Instruction *UI = cast<Instruction>(U);
1701       if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1702     }
1703
1704     // Looks ok, continue checking.
1705   }
1706
1707   return true;
1708 }
1709
1710 /// If we have a conditional branch on a PHI node value that is defined in the
1711 /// same block as the branch and if any PHI entries are constants, thread edges
1712 /// corresponding to that entry to be branches to their ultimate destination.
1713 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1714   BasicBlock *BB = BI->getParent();
1715   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1716   // NOTE: we currently cannot transform this case if the PHI node is used
1717   // outside of the block.
1718   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1719     return false;
1720
1721   // Degenerate case of a single entry PHI.
1722   if (PN->getNumIncomingValues() == 1) {
1723     FoldSingleEntryPHINodes(PN->getParent());
1724     return true;
1725   }
1726
1727   // Now we know that this block has multiple preds and two succs.
1728   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1729
1730   if (HasNoDuplicateCall(BB)) return false;
1731
1732   // Okay, this is a simple enough basic block.  See if any phi values are
1733   // constants.
1734   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1735     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1736     if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1737
1738     // Okay, we now know that all edges from PredBB should be revectored to
1739     // branch to RealDest.
1740     BasicBlock *PredBB = PN->getIncomingBlock(i);
1741     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1742
1743     if (RealDest == BB) continue;  // Skip self loops.
1744     // Skip if the predecessor's terminator is an indirect branch.
1745     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1746
1747     // The dest block might have PHI nodes, other predecessors and other
1748     // difficult cases.  Instead of being smart about this, just insert a new
1749     // block that jumps to the destination block, effectively splitting
1750     // the edge we are about to create.
1751     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1752                                             RealDest->getName()+".critedge",
1753                                             RealDest->getParent(), RealDest);
1754     BranchInst::Create(RealDest, EdgeBB);
1755
1756     // Update PHI nodes.
1757     AddPredecessorToBlock(RealDest, EdgeBB, BB);
1758
1759     // BB may have instructions that are being threaded over.  Clone these
1760     // instructions into EdgeBB.  We know that there will be no uses of the
1761     // cloned instructions outside of EdgeBB.
1762     BasicBlock::iterator InsertPt = EdgeBB->begin();
1763     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1764     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1765       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1766         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1767         continue;
1768       }
1769       // Clone the instruction.
1770       Instruction *N = BBI->clone();
1771       if (BBI->hasName()) N->setName(BBI->getName()+".c");
1772
1773       // Update operands due to translation.
1774       for (User::op_iterator i = N->op_begin(), e = N->op_end();
1775            i != e; ++i) {
1776         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1777         if (PI != TranslateMap.end())
1778           *i = PI->second;
1779       }
1780
1781       // Check for trivial simplification.
1782       if (Value *V = SimplifyInstruction(N, DL)) {
1783         TranslateMap[&*BBI] = V;
1784         delete N;   // Instruction folded away, don't need actual inst
1785       } else {
1786         // Insert the new instruction into its new home.
1787         EdgeBB->getInstList().insert(InsertPt, N);
1788         if (!BBI->use_empty())
1789           TranslateMap[&*BBI] = N;
1790       }
1791     }
1792
1793     // Loop over all of the edges from PredBB to BB, changing them to branch
1794     // to EdgeBB instead.
1795     TerminatorInst *PredBBTI = PredBB->getTerminator();
1796     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1797       if (PredBBTI->getSuccessor(i) == BB) {
1798         BB->removePredecessor(PredBB);
1799         PredBBTI->setSuccessor(i, EdgeBB);
1800       }
1801
1802     // Recurse, simplifying any other constants.
1803     return FoldCondBranchOnPHI(BI, DL) | true;
1804   }
1805
1806   return false;
1807 }
1808
1809 /// Given a BB that starts with the specified two-entry PHI node,
1810 /// see if we can eliminate it.
1811 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
1812                                 const DataLayout &DL) {
1813   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1814   // statement", which has a very simple dominance structure.  Basically, we
1815   // are trying to find the condition that is being branched on, which
1816   // subsequently causes this merge to happen.  We really want control
1817   // dependence information for this check, but simplifycfg can't keep it up
1818   // to date, and this catches most of the cases we care about anyway.
1819   BasicBlock *BB = PN->getParent();
1820   BasicBlock *IfTrue, *IfFalse;
1821   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1822   if (!IfCond ||
1823       // Don't bother if the branch will be constant folded trivially.
1824       isa<ConstantInt>(IfCond))
1825     return false;
1826
1827   // Okay, we found that we can merge this two-entry phi node into a select.
1828   // Doing so would require us to fold *all* two entry phi nodes in this block.
1829   // At some point this becomes non-profitable (particularly if the target
1830   // doesn't support cmov's).  Only do this transformation if there are two or
1831   // fewer PHI nodes in this block.
1832   unsigned NumPhis = 0;
1833   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1834     if (NumPhis > 2)
1835       return false;
1836
1837   // Loop over the PHI's seeing if we can promote them all to select
1838   // instructions.  While we are at it, keep track of the instructions
1839   // that need to be moved to the dominating block.
1840   SmallPtrSet<Instruction*, 4> AggressiveInsts;
1841   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1842            MaxCostVal1 = PHINodeFoldingThreshold;
1843   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
1844   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
1845
1846   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1847     PHINode *PN = cast<PHINode>(II++);
1848     if (Value *V = SimplifyInstruction(PN, DL)) {
1849       PN->replaceAllUsesWith(V);
1850       PN->eraseFromParent();
1851       continue;
1852     }
1853
1854     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1855                              MaxCostVal0, TTI) ||
1856         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1857                              MaxCostVal1, TTI))
1858       return false;
1859   }
1860
1861   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1862   // we ran out of PHIs then we simplified them all.
1863   PN = dyn_cast<PHINode>(BB->begin());
1864   if (!PN) return true;
1865
1866   // Don't fold i1 branches on PHIs which contain binary operators.  These can
1867   // often be turned into switches and other things.
1868   if (PN->getType()->isIntegerTy(1) &&
1869       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1870        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1871        isa<BinaryOperator>(IfCond)))
1872     return false;
1873
1874   // If we all PHI nodes are promotable, check to make sure that all
1875   // instructions in the predecessor blocks can be promoted as well.  If
1876   // not, we won't be able to get rid of the control flow, so it's not
1877   // worth promoting to select instructions.
1878   BasicBlock *DomBlock = nullptr;
1879   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1880   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1881   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1882     IfBlock1 = nullptr;
1883   } else {
1884     DomBlock = *pred_begin(IfBlock1);
1885     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1886       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1887         // This is not an aggressive instruction that we can promote.
1888         // Because of this, we won't be able to get rid of the control
1889         // flow, so the xform is not worth it.
1890         return false;
1891       }
1892   }
1893
1894   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1895     IfBlock2 = nullptr;
1896   } else {
1897     DomBlock = *pred_begin(IfBlock2);
1898     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1899       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1900         // This is not an aggressive instruction that we can promote.
1901         // Because of this, we won't be able to get rid of the control
1902         // flow, so the xform is not worth it.
1903         return false;
1904       }
1905   }
1906
1907   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1908                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1909
1910   // If we can still promote the PHI nodes after this gauntlet of tests,
1911   // do all of the PHI's now.
1912   Instruction *InsertPt = DomBlock->getTerminator();
1913   IRBuilder<true, NoFolder> Builder(InsertPt);
1914
1915   // Move all 'aggressive' instructions, which are defined in the
1916   // conditional parts of the if's up to the dominating block.
1917   if (IfBlock1)
1918     DomBlock->getInstList().splice(InsertPt->getIterator(),
1919                                    IfBlock1->getInstList(), IfBlock1->begin(),
1920                                    IfBlock1->getTerminator()->getIterator());
1921   if (IfBlock2)
1922     DomBlock->getInstList().splice(InsertPt->getIterator(),
1923                                    IfBlock2->getInstList(), IfBlock2->begin(),
1924                                    IfBlock2->getTerminator()->getIterator());
1925
1926   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1927     // Change the PHI node into a select instruction.
1928     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1929     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1930
1931     SelectInst *NV =
1932       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1933     PN->replaceAllUsesWith(NV);
1934     NV->takeName(PN);
1935     PN->eraseFromParent();
1936   }
1937
1938   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1939   // has been flattened.  Change DomBlock to jump directly to our new block to
1940   // avoid other simplifycfg's kicking in on the diamond.
1941   TerminatorInst *OldTI = DomBlock->getTerminator();
1942   Builder.SetInsertPoint(OldTI);
1943   Builder.CreateBr(BB);
1944   OldTI->eraseFromParent();
1945   return true;
1946 }
1947
1948 /// If we found a conditional branch that goes to two returning blocks,
1949 /// try to merge them together into one return,
1950 /// introducing a select if the return values disagree.
1951 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1952                                            IRBuilder<> &Builder) {
1953   assert(BI->isConditional() && "Must be a conditional branch");
1954   BasicBlock *TrueSucc = BI->getSuccessor(0);
1955   BasicBlock *FalseSucc = BI->getSuccessor(1);
1956   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1957   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1958
1959   // Check to ensure both blocks are empty (just a return) or optionally empty
1960   // with PHI nodes.  If there are other instructions, merging would cause extra
1961   // computation on one path or the other.
1962   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1963     return false;
1964   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1965     return false;
1966
1967   Builder.SetInsertPoint(BI);
1968   // Okay, we found a branch that is going to two return nodes.  If
1969   // there is no return value for this function, just change the
1970   // branch into a return.
1971   if (FalseRet->getNumOperands() == 0) {
1972     TrueSucc->removePredecessor(BI->getParent());
1973     FalseSucc->removePredecessor(BI->getParent());
1974     Builder.CreateRetVoid();
1975     EraseTerminatorInstAndDCECond(BI);
1976     return true;
1977   }
1978
1979   // Otherwise, figure out what the true and false return values are
1980   // so we can insert a new select instruction.
1981   Value *TrueValue = TrueRet->getReturnValue();
1982   Value *FalseValue = FalseRet->getReturnValue();
1983
1984   // Unwrap any PHI nodes in the return blocks.
1985   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1986     if (TVPN->getParent() == TrueSucc)
1987       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1988   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1989     if (FVPN->getParent() == FalseSucc)
1990       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1991
1992   // In order for this transformation to be safe, we must be able to
1993   // unconditionally execute both operands to the return.  This is
1994   // normally the case, but we could have a potentially-trapping
1995   // constant expression that prevents this transformation from being
1996   // safe.
1997   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1998     if (TCV->canTrap())
1999       return false;
2000   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2001     if (FCV->canTrap())
2002       return false;
2003
2004   // Okay, we collected all the mapped values and checked them for sanity, and
2005   // defined to really do this transformation.  First, update the CFG.
2006   TrueSucc->removePredecessor(BI->getParent());
2007   FalseSucc->removePredecessor(BI->getParent());
2008
2009   // Insert select instructions where needed.
2010   Value *BrCond = BI->getCondition();
2011   if (TrueValue) {
2012     // Insert a select if the results differ.
2013     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2014     } else if (isa<UndefValue>(TrueValue)) {
2015       TrueValue = FalseValue;
2016     } else {
2017       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
2018                                        FalseValue, "retval");
2019     }
2020   }
2021
2022   Value *RI = !TrueValue ?
2023     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2024
2025   (void) RI;
2026
2027   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2028                << "\n  " << *BI << "NewRet = " << *RI
2029                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
2030
2031   EraseTerminatorInstAndDCECond(BI);
2032
2033   return true;
2034 }
2035
2036 /// Given a conditional BranchInstruction, retrieve the probabilities of the
2037 /// branch taking each edge. Fills in the two APInt parameters and returns true,
2038 /// or returns false if no or invalid metadata was found.
2039 static bool ExtractBranchMetadata(BranchInst *BI,
2040                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
2041   assert(BI->isConditional() &&
2042          "Looking for probabilities on unconditional branch?");
2043   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
2044   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
2045   ConstantInt *CITrue =
2046       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
2047   ConstantInt *CIFalse =
2048       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
2049   if (!CITrue || !CIFalse) return false;
2050   ProbTrue = CITrue->getValue().getZExtValue();
2051   ProbFalse = CIFalse->getValue().getZExtValue();
2052   return true;
2053 }
2054
2055 /// Return true if the given instruction is available
2056 /// in its predecessor block. If yes, the instruction will be removed.
2057 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2058   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2059     return false;
2060   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
2061     Instruction *PBI = &*I;
2062     // Check whether Inst and PBI generate the same value.
2063     if (Inst->isIdenticalTo(PBI)) {
2064       Inst->replaceAllUsesWith(PBI);
2065       Inst->eraseFromParent();
2066       return true;
2067     }
2068   }
2069   return false;
2070 }
2071
2072 /// If this basic block is simple enough, and if a predecessor branches to us
2073 /// and one of our successors, fold the block into the predecessor and use
2074 /// logical operations to pick the right destination.
2075 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2076   BasicBlock *BB = BI->getParent();
2077
2078   Instruction *Cond = nullptr;
2079   if (BI->isConditional())
2080     Cond = dyn_cast<Instruction>(BI->getCondition());
2081   else {
2082     // For unconditional branch, check for a simple CFG pattern, where
2083     // BB has a single predecessor and BB's successor is also its predecessor's
2084     // successor. If such pattern exisits, check for CSE between BB and its
2085     // predecessor.
2086     if (BasicBlock *PB = BB->getSinglePredecessor())
2087       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2088         if (PBI->isConditional() &&
2089             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2090              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2091           for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2092                I != E; ) {
2093             Instruction *Curr = &*I++;
2094             if (isa<CmpInst>(Curr)) {
2095               Cond = Curr;
2096               break;
2097             }
2098             // Quit if we can't remove this instruction.
2099             if (!checkCSEInPredecessor(Curr, PB))
2100               return false;
2101           }
2102         }
2103
2104     if (!Cond)
2105       return false;
2106   }
2107
2108   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2109       Cond->getParent() != BB || !Cond->hasOneUse())
2110   return false;
2111
2112   // Make sure the instruction after the condition is the cond branch.
2113   BasicBlock::iterator CondIt = ++Cond->getIterator();
2114
2115   // Ignore dbg intrinsics.
2116   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2117
2118   if (&*CondIt != BI)
2119     return false;
2120
2121   // Only allow this transformation if computing the condition doesn't involve
2122   // too many instructions and these involved instructions can be executed
2123   // unconditionally. We denote all involved instructions except the condition
2124   // as "bonus instructions", and only allow this transformation when the
2125   // number of the bonus instructions does not exceed a certain threshold.
2126   unsigned NumBonusInsts = 0;
2127   for (auto I = BB->begin(); Cond != I; ++I) {
2128     // Ignore dbg intrinsics.
2129     if (isa<DbgInfoIntrinsic>(I))
2130       continue;
2131     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2132       return false;
2133     // I has only one use and can be executed unconditionally.
2134     Instruction *User = dyn_cast<Instruction>(I->user_back());
2135     if (User == nullptr || User->getParent() != BB)
2136       return false;
2137     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2138     // to use any other instruction, User must be an instruction between next(I)
2139     // and Cond.
2140     ++NumBonusInsts;
2141     // Early exits once we reach the limit.
2142     if (NumBonusInsts > BonusInstThreshold)
2143       return false;
2144   }
2145
2146   // Cond is known to be a compare or binary operator.  Check to make sure that
2147   // neither operand is a potentially-trapping constant expression.
2148   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2149     if (CE->canTrap())
2150       return false;
2151   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2152     if (CE->canTrap())
2153       return false;
2154
2155   // Finally, don't infinitely unroll conditional loops.
2156   BasicBlock *TrueDest  = BI->getSuccessor(0);
2157   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2158   if (TrueDest == BB || FalseDest == BB)
2159     return false;
2160
2161   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2162     BasicBlock *PredBlock = *PI;
2163     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2164
2165     // Check that we have two conditional branches.  If there is a PHI node in
2166     // the common successor, verify that the same value flows in from both
2167     // blocks.
2168     SmallVector<PHINode*, 4> PHIs;
2169     if (!PBI || PBI->isUnconditional() ||
2170         (BI->isConditional() &&
2171          !SafeToMergeTerminators(BI, PBI)) ||
2172         (!BI->isConditional() &&
2173          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2174       continue;
2175
2176     // Determine if the two branches share a common destination.
2177     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2178     bool InvertPredCond = false;
2179
2180     if (BI->isConditional()) {
2181       if (PBI->getSuccessor(0) == TrueDest)
2182         Opc = Instruction::Or;
2183       else if (PBI->getSuccessor(1) == FalseDest)
2184         Opc = Instruction::And;
2185       else if (PBI->getSuccessor(0) == FalseDest)
2186         Opc = Instruction::And, InvertPredCond = true;
2187       else if (PBI->getSuccessor(1) == TrueDest)
2188         Opc = Instruction::Or, InvertPredCond = true;
2189       else
2190         continue;
2191     } else {
2192       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2193         continue;
2194     }
2195
2196     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2197     IRBuilder<> Builder(PBI);
2198
2199     // If we need to invert the condition in the pred block to match, do so now.
2200     if (InvertPredCond) {
2201       Value *NewCond = PBI->getCondition();
2202
2203       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2204         CmpInst *CI = cast<CmpInst>(NewCond);
2205         CI->setPredicate(CI->getInversePredicate());
2206       } else {
2207         NewCond = Builder.CreateNot(NewCond,
2208                                     PBI->getCondition()->getName()+".not");
2209       }
2210
2211       PBI->setCondition(NewCond);
2212       PBI->swapSuccessors();
2213     }
2214
2215     // If we have bonus instructions, clone them into the predecessor block.
2216     // Note that there may be multiple predecessor blocks, so we cannot move
2217     // bonus instructions to a predecessor block.
2218     ValueToValueMapTy VMap; // maps original values to cloned values
2219     // We already make sure Cond is the last instruction before BI. Therefore,
2220     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2221     // instructions.
2222     for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
2223       if (isa<DbgInfoIntrinsic>(BonusInst))
2224         continue;
2225       Instruction *NewBonusInst = BonusInst->clone();
2226       RemapInstruction(NewBonusInst, VMap,
2227                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2228       VMap[&*BonusInst] = NewBonusInst;
2229
2230       // If we moved a load, we cannot any longer claim any knowledge about
2231       // its potential value. The previous information might have been valid
2232       // only given the branch precondition.
2233       // For an analogous reason, we must also drop all the metadata whose
2234       // semantics we don't understand.
2235       NewBonusInst->dropUnknownNonDebugMetadata();
2236
2237       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2238       NewBonusInst->takeName(&*BonusInst);
2239       BonusInst->setName(BonusInst->getName() + ".old");
2240     }
2241
2242     // Clone Cond into the predecessor basic block, and or/and the
2243     // two conditions together.
2244     Instruction *New = Cond->clone();
2245     RemapInstruction(New, VMap,
2246                      RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2247     PredBlock->getInstList().insert(PBI->getIterator(), New);
2248     New->takeName(Cond);
2249     Cond->setName(New->getName() + ".old");
2250
2251     if (BI->isConditional()) {
2252       Instruction *NewCond =
2253         cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2254                                             New, "or.cond"));
2255       PBI->setCondition(NewCond);
2256
2257       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2258       bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2259                                                   PredFalseWeight);
2260       bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2261                                                   SuccFalseWeight);
2262       SmallVector<uint64_t, 8> NewWeights;
2263
2264       if (PBI->getSuccessor(0) == BB) {
2265         if (PredHasWeights && SuccHasWeights) {
2266           // PBI: br i1 %x, BB, FalseDest
2267           // BI:  br i1 %y, TrueDest, FalseDest
2268           //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2269           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2270           //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2271           //               TrueWeight for PBI * FalseWeight for BI.
2272           // We assume that total weights of a BranchInst can fit into 32 bits.
2273           // Therefore, we will not have overflow using 64-bit arithmetic.
2274           NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2275                SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2276         }
2277         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2278         PBI->setSuccessor(0, TrueDest);
2279       }
2280       if (PBI->getSuccessor(1) == BB) {
2281         if (PredHasWeights && SuccHasWeights) {
2282           // PBI: br i1 %x, TrueDest, BB
2283           // BI:  br i1 %y, TrueDest, FalseDest
2284           //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2285           //              FalseWeight for PBI * TrueWeight for BI.
2286           NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2287               SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2288           //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2289           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2290         }
2291         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2292         PBI->setSuccessor(1, FalseDest);
2293       }
2294       if (NewWeights.size() == 2) {
2295         // Halve the weights if any of them cannot fit in an uint32_t
2296         FitWeights(NewWeights);
2297
2298         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2299         PBI->setMetadata(LLVMContext::MD_prof,
2300                          MDBuilder(BI->getContext()).
2301                          createBranchWeights(MDWeights));
2302       } else
2303         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2304     } else {
2305       // Update PHI nodes in the common successors.
2306       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2307         ConstantInt *PBI_C = cast<ConstantInt>(
2308           PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2309         assert(PBI_C->getType()->isIntegerTy(1));
2310         Instruction *MergedCond = nullptr;
2311         if (PBI->getSuccessor(0) == TrueDest) {
2312           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2313           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2314           //       is false: !PBI_Cond and BI_Value
2315           Instruction *NotCond =
2316             cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2317                                 "not.cond"));
2318           MergedCond =
2319             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2320                                 NotCond, New,
2321                                 "and.cond"));
2322           if (PBI_C->isOne())
2323             MergedCond =
2324               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2325                                   PBI->getCondition(), MergedCond,
2326                                   "or.cond"));
2327         } else {
2328           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2329           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2330           //       is false: PBI_Cond and BI_Value
2331           MergedCond =
2332             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2333                                 PBI->getCondition(), New,
2334                                 "and.cond"));
2335           if (PBI_C->isOne()) {
2336             Instruction *NotCond =
2337               cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2338                                   "not.cond"));
2339             MergedCond =
2340               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2341                                   NotCond, MergedCond,
2342                                   "or.cond"));
2343           }
2344         }
2345         // Update PHI Node.
2346         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2347                                   MergedCond);
2348       }
2349       // Change PBI from Conditional to Unconditional.
2350       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2351       EraseTerminatorInstAndDCECond(PBI);
2352       PBI = New_PBI;
2353     }
2354
2355     // TODO: If BB is reachable from all paths through PredBlock, then we
2356     // could replace PBI's branch probabilities with BI's.
2357
2358     // Copy any debug value intrinsics into the end of PredBlock.
2359     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2360       if (isa<DbgInfoIntrinsic>(*I))
2361         I->clone()->insertBefore(PBI);
2362
2363     return true;
2364   }
2365   return false;
2366 }
2367
2368 // If there is only one store in BB1 and BB2, return it, otherwise return
2369 // nullptr.
2370 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2371   StoreInst *S = nullptr;
2372   for (auto *BB : {BB1, BB2}) {
2373     if (!BB)
2374       continue;
2375     for (auto &I : *BB)
2376       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2377         if (S)
2378           // Multiple stores seen.
2379           return nullptr;
2380         else
2381           S = SI;
2382       }
2383   }
2384   return S;
2385 }
2386
2387 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2388                                               Value *AlternativeV = nullptr) {
2389   // PHI is going to be a PHI node that allows the value V that is defined in
2390   // BB to be referenced in BB's only successor.
2391   //
2392   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2393   // doesn't matter to us what the other operand is (it'll never get used). We
2394   // could just create a new PHI with an undef incoming value, but that could
2395   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2396   // other PHI. So here we directly look for some PHI in BB's successor with V
2397   // as an incoming operand. If we find one, we use it, else we create a new
2398   // one.
2399   //
2400   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2401   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2402   // where OtherBB is the single other predecessor of BB's only successor.
2403   PHINode *PHI = nullptr;
2404   BasicBlock *Succ = BB->getSingleSuccessor();
2405   
2406   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2407     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2408       PHI = cast<PHINode>(I);
2409       if (!AlternativeV)
2410         break;
2411
2412       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2413       auto PredI = pred_begin(Succ);
2414       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2415       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2416         break;
2417       PHI = nullptr;
2418     }
2419   if (PHI)
2420     return PHI;
2421
2422   // If V is not an instruction defined in BB, just return it.
2423   if (!AlternativeV &&
2424       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2425     return V;
2426
2427   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2428   PHI->addIncoming(V, BB);
2429   for (BasicBlock *PredBB : predecessors(Succ))
2430     if (PredBB != BB)
2431       PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()),
2432                        PredBB);
2433   return PHI;
2434 }
2435
2436 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2437                                            BasicBlock *QTB, BasicBlock *QFB,
2438                                            BasicBlock *PostBB, Value *Address,
2439                                            bool InvertPCond, bool InvertQCond) {
2440   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2441     return Operator::getOpcode(&I) == Instruction::BitCast &&
2442            I.getType()->isPointerTy();
2443   };
2444
2445   // If we're not in aggressive mode, we only optimize if we have some
2446   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2447   auto IsWorthwhile = [&](BasicBlock *BB) {
2448     if (!BB)
2449       return true;
2450     // Heuristic: if the block can be if-converted/phi-folded and the
2451     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2452     // thread this store.
2453     unsigned N = 0;
2454     for (auto &I : *BB) {
2455       // Cheap instructions viable for folding.
2456       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2457           isa<StoreInst>(I))
2458         ++N;
2459       // Free instructions.
2460       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2461                IsaBitcastOfPointerType(I))
2462         continue;
2463       else
2464         return false;
2465     }
2466     return N <= PHINodeFoldingThreshold;
2467   };
2468
2469   if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) ||
2470                                        !IsWorthwhile(PFB) ||
2471                                        !IsWorthwhile(QTB) ||
2472                                        !IsWorthwhile(QFB)))
2473     return false;
2474
2475   // For every pointer, there must be exactly two stores, one coming from
2476   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2477   // store (to any address) in PTB,PFB or QTB,QFB.
2478   // FIXME: We could relax this restriction with a bit more work and performance
2479   // testing.
2480   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2481   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2482   if (!PStore || !QStore)
2483     return false;
2484
2485   // Now check the stores are compatible.
2486   if (!QStore->isUnordered() || !PStore->isUnordered())
2487     return false;
2488
2489   // Check that sinking the store won't cause program behavior changes. Sinking
2490   // the store out of the Q blocks won't change any behavior as we're sinking
2491   // from a block to its unconditional successor. But we're moving a store from
2492   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2493   // So we need to check that there are no aliasing loads or stores in
2494   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2495   // operations between PStore and the end of its parent block.
2496   //
2497   // The ideal way to do this is to query AliasAnalysis, but we don't
2498   // preserve AA currently so that is dangerous. Be super safe and just
2499   // check there are no other memory operations at all.
2500   for (auto &I : *QFB->getSinglePredecessor())
2501     if (I.mayReadOrWriteMemory())
2502       return false;
2503   for (auto &I : *QFB)
2504     if (&I != QStore && I.mayReadOrWriteMemory())
2505       return false;
2506   if (QTB)
2507     for (auto &I : *QTB)
2508       if (&I != QStore && I.mayReadOrWriteMemory())
2509         return false;
2510   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2511        I != E; ++I)
2512     if (&*I != PStore && I->mayReadOrWriteMemory())
2513       return false;
2514
2515   // OK, we're going to sink the stores to PostBB. The store has to be
2516   // conditional though, so first create the predicate.
2517   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2518                      ->getCondition();
2519   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2520                      ->getCondition();
2521
2522   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2523                                                 PStore->getParent());
2524   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2525                                                 QStore->getParent(), PPHI);
2526
2527   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2528
2529   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2530   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2531
2532   if (InvertPCond)
2533     PPred = QB.CreateNot(PPred);
2534   if (InvertQCond)
2535     QPred = QB.CreateNot(QPred);
2536   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2537
2538   auto *T =
2539       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2540   QB.SetInsertPoint(T);
2541   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2542   AAMDNodes AAMD;
2543   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2544   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2545   SI->setAAMetadata(AAMD);
2546
2547   QStore->eraseFromParent();
2548   PStore->eraseFromParent();
2549   
2550   return true;
2551 }
2552
2553 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2554   // The intention here is to find diamonds or triangles (see below) where each
2555   // conditional block contains a store to the same address. Both of these
2556   // stores are conditional, so they can't be unconditionally sunk. But it may
2557   // be profitable to speculatively sink the stores into one merged store at the
2558   // end, and predicate the merged store on the union of the two conditions of
2559   // PBI and QBI.
2560   //
2561   // This can reduce the number of stores executed if both of the conditions are
2562   // true, and can allow the blocks to become small enough to be if-converted.
2563   // This optimization will also chain, so that ladders of test-and-set
2564   // sequences can be if-converted away.
2565   //
2566   // We only deal with simple diamonds or triangles:
2567   //
2568   //     PBI       or      PBI        or a combination of the two
2569   //    /   \               | \
2570   //   PTB  PFB             |  PFB
2571   //    \   /               | /
2572   //     QBI                QBI
2573   //    /  \                | \
2574   //   QTB  QFB             |  QFB
2575   //    \  /                | /
2576   //    PostBB            PostBB
2577   //
2578   // We model triangles as a type of diamond with a nullptr "true" block.
2579   // Triangles are canonicalized so that the fallthrough edge is represented by
2580   // a true condition, as in the diagram above.
2581   //  
2582   BasicBlock *PTB = PBI->getSuccessor(0);
2583   BasicBlock *PFB = PBI->getSuccessor(1);
2584   BasicBlock *QTB = QBI->getSuccessor(0);
2585   BasicBlock *QFB = QBI->getSuccessor(1);
2586   BasicBlock *PostBB = QFB->getSingleSuccessor();
2587
2588   bool InvertPCond = false, InvertQCond = false;
2589   // Canonicalize fallthroughs to the true branches.
2590   if (PFB == QBI->getParent()) {
2591     std::swap(PFB, PTB);
2592     InvertPCond = true;
2593   }
2594   if (QFB == PostBB) {
2595     std::swap(QFB, QTB);
2596     InvertQCond = true;
2597   }
2598
2599   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2600   // and QFB may not. Model fallthroughs as a nullptr block.
2601   if (PTB == QBI->getParent())
2602     PTB = nullptr;
2603   if (QTB == PostBB)
2604     QTB = nullptr;
2605
2606   // Legality bailouts. We must have at least the non-fallthrough blocks and
2607   // the post-dominating block, and the non-fallthroughs must only have one
2608   // predecessor.
2609   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2610     return BB->getSinglePredecessor() == P &&
2611            BB->getSingleSuccessor() == S;
2612   };
2613   if (!PostBB ||
2614       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
2615       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
2616     return false;
2617   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
2618       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
2619     return false;
2620   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
2621     return false;
2622
2623   // OK, this is a sequence of two diamonds or triangles.
2624   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
2625   SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses;
2626   for (auto *BB : {PTB, PFB}) {
2627     if (!BB)
2628       continue;
2629     for (auto &I : *BB)
2630       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2631         PStoreAddresses.insert(SI->getPointerOperand());
2632   }
2633   for (auto *BB : {QTB, QFB}) {
2634     if (!BB)
2635       continue;
2636     for (auto &I : *BB)
2637       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2638         QStoreAddresses.insert(SI->getPointerOperand());
2639   }
2640   
2641   set_intersect(PStoreAddresses, QStoreAddresses);
2642   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
2643   // clear what it contains.
2644   auto &CommonAddresses = PStoreAddresses;
2645
2646   bool Changed = false;
2647   for (auto *Address : CommonAddresses)
2648     Changed |= mergeConditionalStoreToAddress(
2649         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
2650   return Changed;
2651 }
2652
2653 /// If we have a conditional branch as a predecessor of another block,
2654 /// this function tries to simplify it.  We know
2655 /// that PBI and BI are both conditional branches, and BI is in one of the
2656 /// successor blocks of PBI - PBI branches to BI.
2657 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
2658                                            const DataLayout &DL) {
2659   assert(PBI->isConditional() && BI->isConditional());
2660   BasicBlock *BB = BI->getParent();
2661
2662   // If this block ends with a branch instruction, and if there is a
2663   // predecessor that ends on a branch of the same condition, make
2664   // this conditional branch redundant.
2665   if (PBI->getCondition() == BI->getCondition() &&
2666       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2667     // Okay, the outcome of this conditional branch is statically
2668     // knowable.  If this block had a single pred, handle specially.
2669     if (BB->getSinglePredecessor()) {
2670       // Turn this into a branch on constant.
2671       bool CondIsTrue = PBI->getSuccessor(0) == BB;
2672       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2673                                         CondIsTrue));
2674       return true;  // Nuke the branch on constant.
2675     }
2676
2677     // Otherwise, if there are multiple predecessors, insert a PHI that merges
2678     // in the constant and simplify the block result.  Subsequent passes of
2679     // simplifycfg will thread the block.
2680     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2681       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2682       PHINode *NewPN = PHINode::Create(
2683           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
2684           BI->getCondition()->getName() + ".pr", &BB->front());
2685       // Okay, we're going to insert the PHI node.  Since PBI is not the only
2686       // predecessor, compute the PHI'd conditional value for all of the preds.
2687       // Any predecessor where the condition is not computable we keep symbolic.
2688       for (pred_iterator PI = PB; PI != PE; ++PI) {
2689         BasicBlock *P = *PI;
2690         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2691             PBI != BI && PBI->isConditional() &&
2692             PBI->getCondition() == BI->getCondition() &&
2693             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2694           bool CondIsTrue = PBI->getSuccessor(0) == BB;
2695           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2696                                               CondIsTrue), P);
2697         } else {
2698           NewPN->addIncoming(BI->getCondition(), P);
2699         }
2700       }
2701
2702       BI->setCondition(NewPN);
2703       return true;
2704     }
2705   }
2706
2707   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2708     if (CE->canTrap())
2709       return false;
2710
2711   // If BI is reached from the true path of PBI and PBI's condition implies
2712   // BI's condition, we know the direction of the BI branch.
2713   if (PBI->getSuccessor(0) == BI->getParent() &&
2714       isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) &&
2715       PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
2716       BB->getSinglePredecessor()) {
2717     // Turn this into a branch on constant.
2718     auto *OldCond = BI->getCondition();
2719     BI->setCondition(ConstantInt::getTrue(BB->getContext()));
2720     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
2721     return true;  // Nuke the branch on constant.
2722   }
2723
2724   // If both branches are conditional and both contain stores to the same
2725   // address, remove the stores from the conditionals and create a conditional
2726   // merged store at the end.
2727   if (MergeCondStores && mergeConditionalStores(PBI, BI))
2728     return true;
2729
2730   // If this is a conditional branch in an empty block, and if any
2731   // predecessors are a conditional branch to one of our destinations,
2732   // fold the conditions into logical ops and one cond br.
2733   BasicBlock::iterator BBI = BB->begin();
2734   // Ignore dbg intrinsics.
2735   while (isa<DbgInfoIntrinsic>(BBI))
2736     ++BBI;
2737   if (&*BBI != BI)
2738     return false;
2739
2740   int PBIOp, BIOp;
2741   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2742     PBIOp = BIOp = 0;
2743   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2744     PBIOp = 0, BIOp = 1;
2745   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2746     PBIOp = 1, BIOp = 0;
2747   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2748     PBIOp = BIOp = 1;
2749   else
2750     return false;
2751
2752   // Check to make sure that the other destination of this branch
2753   // isn't BB itself.  If so, this is an infinite loop that will
2754   // keep getting unwound.
2755   if (PBI->getSuccessor(PBIOp) == BB)
2756     return false;
2757
2758   // Do not perform this transformation if it would require
2759   // insertion of a large number of select instructions. For targets
2760   // without predication/cmovs, this is a big pessimization.
2761
2762   // Also do not perform this transformation if any phi node in the common
2763   // destination block can trap when reached by BB or PBB (PR17073). In that
2764   // case, it would be unsafe to hoist the operation into a select instruction.
2765
2766   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2767   unsigned NumPhis = 0;
2768   for (BasicBlock::iterator II = CommonDest->begin();
2769        isa<PHINode>(II); ++II, ++NumPhis) {
2770     if (NumPhis > 2) // Disable this xform.
2771       return false;
2772
2773     PHINode *PN = cast<PHINode>(II);
2774     Value *BIV = PN->getIncomingValueForBlock(BB);
2775     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2776       if (CE->canTrap())
2777         return false;
2778
2779     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2780     Value *PBIV = PN->getIncomingValue(PBBIdx);
2781     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2782       if (CE->canTrap())
2783         return false;
2784   }
2785
2786   // Finally, if everything is ok, fold the branches to logical ops.
2787   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2788
2789   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2790                << "AND: " << *BI->getParent());
2791
2792
2793   // If OtherDest *is* BB, then BB is a basic block with a single conditional
2794   // branch in it, where one edge (OtherDest) goes back to itself but the other
2795   // exits.  We don't *know* that the program avoids the infinite loop
2796   // (even though that seems likely).  If we do this xform naively, we'll end up
2797   // recursively unpeeling the loop.  Since we know that (after the xform is
2798   // done) that the block *is* infinite if reached, we just make it an obviously
2799   // infinite loop with no cond branch.
2800   if (OtherDest == BB) {
2801     // Insert it at the end of the function, because it's either code,
2802     // or it won't matter if it's hot. :)
2803     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2804                                                   "infloop", BB->getParent());
2805     BranchInst::Create(InfLoopBlock, InfLoopBlock);
2806     OtherDest = InfLoopBlock;
2807   }
2808
2809   DEBUG(dbgs() << *PBI->getParent()->getParent());
2810
2811   // BI may have other predecessors.  Because of this, we leave
2812   // it alone, but modify PBI.
2813
2814   // Make sure we get to CommonDest on True&True directions.
2815   Value *PBICond = PBI->getCondition();
2816   IRBuilder<true, NoFolder> Builder(PBI);
2817   if (PBIOp)
2818     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2819
2820   Value *BICond = BI->getCondition();
2821   if (BIOp)
2822     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2823
2824   // Merge the conditions.
2825   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2826
2827   // Modify PBI to branch on the new condition to the new dests.
2828   PBI->setCondition(Cond);
2829   PBI->setSuccessor(0, CommonDest);
2830   PBI->setSuccessor(1, OtherDest);
2831
2832   // Update branch weight for PBI.
2833   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2834   bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2835                                               PredFalseWeight);
2836   bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2837                                               SuccFalseWeight);
2838   if (PredHasWeights && SuccHasWeights) {
2839     uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2840     uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2841     uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2842     uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2843     // The weight to CommonDest should be PredCommon * SuccTotal +
2844     //                                    PredOther * SuccCommon.
2845     // The weight to OtherDest should be PredOther * SuccOther.
2846     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
2847                                   PredOther * SuccCommon,
2848                               PredOther * SuccOther};
2849     // Halve the weights if any of them cannot fit in an uint32_t
2850     FitWeights(NewWeights);
2851
2852     PBI->setMetadata(LLVMContext::MD_prof,
2853                      MDBuilder(BI->getContext())
2854                          .createBranchWeights(NewWeights[0], NewWeights[1]));
2855   }
2856
2857   // OtherDest may have phi nodes.  If so, add an entry from PBI's
2858   // block that are identical to the entries for BI's block.
2859   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2860
2861   // We know that the CommonDest already had an edge from PBI to
2862   // it.  If it has PHIs though, the PHIs may have different
2863   // entries for BB and PBI's BB.  If so, insert a select to make
2864   // them agree.
2865   PHINode *PN;
2866   for (BasicBlock::iterator II = CommonDest->begin();
2867        (PN = dyn_cast<PHINode>(II)); ++II) {
2868     Value *BIV = PN->getIncomingValueForBlock(BB);
2869     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2870     Value *PBIV = PN->getIncomingValue(PBBIdx);
2871     if (BIV != PBIV) {
2872       // Insert a select in PBI to pick the right value.
2873       Value *NV = cast<SelectInst>
2874         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2875       PN->setIncomingValue(PBBIdx, NV);
2876     }
2877   }
2878
2879   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2880   DEBUG(dbgs() << *PBI->getParent()->getParent());
2881
2882   // This basic block is probably dead.  We know it has at least
2883   // one fewer predecessor.
2884   return true;
2885 }
2886
2887 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
2888 // true or to FalseBB if Cond is false.
2889 // Takes care of updating the successors and removing the old terminator.
2890 // Also makes sure not to introduce new successors by assuming that edges to
2891 // non-successor TrueBBs and FalseBBs aren't reachable.
2892 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2893                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
2894                                        uint32_t TrueWeight,
2895                                        uint32_t FalseWeight){
2896   // Remove any superfluous successor edges from the CFG.
2897   // First, figure out which successors to preserve.
2898   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2899   // successor.
2900   BasicBlock *KeepEdge1 = TrueBB;
2901   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2902
2903   // Then remove the rest.
2904   for (BasicBlock *Succ : OldTerm->successors()) {
2905     // Make sure only to keep exactly one copy of each edge.
2906     if (Succ == KeepEdge1)
2907       KeepEdge1 = nullptr;
2908     else if (Succ == KeepEdge2)
2909       KeepEdge2 = nullptr;
2910     else
2911       Succ->removePredecessor(OldTerm->getParent(),
2912                               /*DontDeleteUselessPHIs=*/true);
2913   }
2914
2915   IRBuilder<> Builder(OldTerm);
2916   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2917
2918   // Insert an appropriate new terminator.
2919   if (!KeepEdge1 && !KeepEdge2) {
2920     if (TrueBB == FalseBB)
2921       // We were only looking for one successor, and it was present.
2922       // Create an unconditional branch to it.
2923       Builder.CreateBr(TrueBB);
2924     else {
2925       // We found both of the successors we were looking for.
2926       // Create a conditional branch sharing the condition of the select.
2927       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2928       if (TrueWeight != FalseWeight)
2929         NewBI->setMetadata(LLVMContext::MD_prof,
2930                            MDBuilder(OldTerm->getContext()).
2931                            createBranchWeights(TrueWeight, FalseWeight));
2932     }
2933   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2934     // Neither of the selected blocks were successors, so this
2935     // terminator must be unreachable.
2936     new UnreachableInst(OldTerm->getContext(), OldTerm);
2937   } else {
2938     // One of the selected values was a successor, but the other wasn't.
2939     // Insert an unconditional branch to the one that was found;
2940     // the edge to the one that wasn't must be unreachable.
2941     if (!KeepEdge1)
2942       // Only TrueBB was found.
2943       Builder.CreateBr(TrueBB);
2944     else
2945       // Only FalseBB was found.
2946       Builder.CreateBr(FalseBB);
2947   }
2948
2949   EraseTerminatorInstAndDCECond(OldTerm);
2950   return true;
2951 }
2952
2953 // Replaces
2954 //   (switch (select cond, X, Y)) on constant X, Y
2955 // with a branch - conditional if X and Y lead to distinct BBs,
2956 // unconditional otherwise.
2957 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2958   // Check for constant integer values in the select.
2959   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2960   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2961   if (!TrueVal || !FalseVal)
2962     return false;
2963
2964   // Find the relevant condition and destinations.
2965   Value *Condition = Select->getCondition();
2966   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2967   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2968
2969   // Get weight for TrueBB and FalseBB.
2970   uint32_t TrueWeight = 0, FalseWeight = 0;
2971   SmallVector<uint64_t, 8> Weights;
2972   bool HasWeights = HasBranchWeights(SI);
2973   if (HasWeights) {
2974     GetBranchWeights(SI, Weights);
2975     if (Weights.size() == 1 + SI->getNumCases()) {
2976       TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2977                                      getSuccessorIndex()];
2978       FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2979                                       getSuccessorIndex()];
2980     }
2981   }
2982
2983   // Perform the actual simplification.
2984   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2985                                     TrueWeight, FalseWeight);
2986 }
2987
2988 // Replaces
2989 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
2990 //                             blockaddress(@fn, BlockB)))
2991 // with
2992 //   (br cond, BlockA, BlockB).
2993 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2994   // Check that both operands of the select are block addresses.
2995   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2996   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2997   if (!TBA || !FBA)
2998     return false;
2999
3000   // Extract the actual blocks.
3001   BasicBlock *TrueBB = TBA->getBasicBlock();
3002   BasicBlock *FalseBB = FBA->getBasicBlock();
3003
3004   // Perform the actual simplification.
3005   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
3006                                     0, 0);
3007 }
3008
3009 /// This is called when we find an icmp instruction
3010 /// (a seteq/setne with a constant) as the only instruction in a
3011 /// block that ends with an uncond branch.  We are looking for a very specific
3012 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3013 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3014 /// default value goes to an uncond block with a seteq in it, we get something
3015 /// like:
3016 ///
3017 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3018 /// DEFAULT:
3019 ///   %tmp = icmp eq i8 %A, 92
3020 ///   br label %end
3021 /// end:
3022 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3023 ///
3024 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3025 /// the PHI, merging the third icmp into the switch.
3026 static bool TryToSimplifyUncondBranchWithICmpInIt(
3027     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3028     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3029     AssumptionCache *AC) {
3030   BasicBlock *BB = ICI->getParent();
3031
3032   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3033   // complex.
3034   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
3035
3036   Value *V = ICI->getOperand(0);
3037   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3038
3039   // The pattern we're looking for is where our only predecessor is a switch on
3040   // 'V' and this block is the default case for the switch.  In this case we can
3041   // fold the compared value into the switch to simplify things.
3042   BasicBlock *Pred = BB->getSinglePredecessor();
3043   if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
3044
3045   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3046   if (SI->getCondition() != V)
3047     return false;
3048
3049   // If BB is reachable on a non-default case, then we simply know the value of
3050   // V in this block.  Substitute it and constant fold the icmp instruction
3051   // away.
3052   if (SI->getDefaultDest() != BB) {
3053     ConstantInt *VVal = SI->findCaseDest(BB);
3054     assert(VVal && "Should have a unique destination value");
3055     ICI->setOperand(0, VVal);
3056
3057     if (Value *V = SimplifyInstruction(ICI, DL)) {
3058       ICI->replaceAllUsesWith(V);
3059       ICI->eraseFromParent();
3060     }
3061     // BB is now empty, so it is likely to simplify away.
3062     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3063   }
3064
3065   // Ok, the block is reachable from the default dest.  If the constant we're
3066   // comparing exists in one of the other edges, then we can constant fold ICI
3067   // and zap it.
3068   if (SI->findCaseValue(Cst) != SI->case_default()) {
3069     Value *V;
3070     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3071       V = ConstantInt::getFalse(BB->getContext());
3072     else
3073       V = ConstantInt::getTrue(BB->getContext());
3074
3075     ICI->replaceAllUsesWith(V);
3076     ICI->eraseFromParent();
3077     // BB is now empty, so it is likely to simplify away.
3078     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3079   }
3080
3081   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3082   // the block.
3083   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3084   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3085   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3086       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3087     return false;
3088
3089   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3090   // true in the PHI.
3091   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3092   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
3093
3094   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3095     std::swap(DefaultCst, NewCst);
3096
3097   // Replace ICI (which is used by the PHI for the default value) with true or
3098   // false depending on if it is EQ or NE.
3099   ICI->replaceAllUsesWith(DefaultCst);
3100   ICI->eraseFromParent();
3101
3102   // Okay, the switch goes to this block on a default value.  Add an edge from
3103   // the switch to the merge point on the compared value.
3104   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
3105                                          BB->getParent(), BB);
3106   SmallVector<uint64_t, 8> Weights;
3107   bool HasWeights = HasBranchWeights(SI);
3108   if (HasWeights) {
3109     GetBranchWeights(SI, Weights);
3110     if (Weights.size() == 1 + SI->getNumCases()) {
3111       // Split weight for default case to case for "Cst".
3112       Weights[0] = (Weights[0]+1) >> 1;
3113       Weights.push_back(Weights[0]);
3114
3115       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3116       SI->setMetadata(LLVMContext::MD_prof,
3117                       MDBuilder(SI->getContext()).
3118                       createBranchWeights(MDWeights));
3119     }
3120   }
3121   SI->addCase(Cst, NewBB);
3122
3123   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3124   Builder.SetInsertPoint(NewBB);
3125   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3126   Builder.CreateBr(SuccBlock);
3127   PHIUse->addIncoming(NewCst, NewBB);
3128   return true;
3129 }
3130
3131 /// The specified branch is a conditional branch.
3132 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3133 /// fold it into a switch instruction if so.
3134 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3135                                       const DataLayout &DL) {
3136   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3137   if (!Cond) return false;
3138
3139   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3140   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3141   // 'setne's and'ed together, collect them.
3142
3143   // Try to gather values from a chain of and/or to be turned into a switch
3144   ConstantComparesGatherer ConstantCompare(Cond, DL);
3145   // Unpack the result
3146   SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
3147   Value *CompVal = ConstantCompare.CompValue;
3148   unsigned UsedICmps = ConstantCompare.UsedICmps;
3149   Value *ExtraCase = ConstantCompare.Extra;
3150
3151   // If we didn't have a multiply compared value, fail.
3152   if (!CompVal) return false;
3153
3154   // Avoid turning single icmps into a switch.
3155   if (UsedICmps <= 1)
3156     return false;
3157
3158   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3159
3160   // There might be duplicate constants in the list, which the switch
3161   // instruction can't handle, remove them now.
3162   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3163   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3164
3165   // If Extra was used, we require at least two switch values to do the
3166   // transformation.  A switch with one value is just a conditional branch.
3167   if (ExtraCase && Values.size() < 2) return false;
3168
3169   // TODO: Preserve branch weight metadata, similarly to how
3170   // FoldValueComparisonIntoPredecessors preserves it.
3171
3172   // Figure out which block is which destination.
3173   BasicBlock *DefaultBB = BI->getSuccessor(1);
3174   BasicBlock *EdgeBB    = BI->getSuccessor(0);
3175   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
3176
3177   BasicBlock *BB = BI->getParent();
3178
3179   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3180                << " cases into SWITCH.  BB is:\n" << *BB);
3181
3182   // If there are any extra values that couldn't be folded into the switch
3183   // then we evaluate them with an explicit branch first.  Split the block
3184   // right before the condbr to handle it.
3185   if (ExtraCase) {
3186     BasicBlock *NewBB =
3187         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3188     // Remove the uncond branch added to the old block.
3189     TerminatorInst *OldTI = BB->getTerminator();
3190     Builder.SetInsertPoint(OldTI);
3191
3192     if (TrueWhenEqual)
3193       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3194     else
3195       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3196
3197     OldTI->eraseFromParent();
3198
3199     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3200     // for the edge we just added.
3201     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3202
3203     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3204           << "\nEXTRABB = " << *BB);
3205     BB = NewBB;
3206   }
3207
3208   Builder.SetInsertPoint(BI);
3209   // Convert pointer to int before we switch.
3210   if (CompVal->getType()->isPointerTy()) {
3211     CompVal = Builder.CreatePtrToInt(
3212         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3213   }
3214
3215   // Create the new switch instruction now.
3216   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3217
3218   // Add all of the 'cases' to the switch instruction.
3219   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3220     New->addCase(Values[i], EdgeBB);
3221
3222   // We added edges from PI to the EdgeBB.  As such, if there were any
3223   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3224   // the number of edges added.
3225   for (BasicBlock::iterator BBI = EdgeBB->begin();
3226        isa<PHINode>(BBI); ++BBI) {
3227     PHINode *PN = cast<PHINode>(BBI);
3228     Value *InVal = PN->getIncomingValueForBlock(BB);
3229     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
3230       PN->addIncoming(InVal, BB);
3231   }
3232
3233   // Erase the old branch instruction.
3234   EraseTerminatorInstAndDCECond(BI);
3235
3236   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3237   return true;
3238 }
3239
3240 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3241   // If this is a trivial landing pad that just continues unwinding the caught
3242   // exception then zap the landing pad, turning its invokes into calls.
3243   BasicBlock *BB = RI->getParent();
3244   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3245   if (RI->getValue() != LPInst)
3246     // Not a landing pad, or the resume is not unwinding the exception that
3247     // caused control to branch here.
3248     return false;
3249
3250   // Check that there are no other instructions except for debug intrinsics.
3251   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3252   while (++I != E)
3253     if (!isa<DbgInfoIntrinsic>(I))
3254       return false;
3255
3256   // Turn all invokes that unwind here into calls and delete the basic block.
3257   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3258     BasicBlock *Pred = *PI++;
3259     removeUnwindEdge(Pred);
3260   }
3261
3262   // The landingpad is now unreachable.  Zap it.
3263   BB->eraseFromParent();
3264   return true;
3265 }
3266
3267 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3268   // If this is a trivial cleanup pad that executes no instructions, it can be
3269   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3270   // that is an EH pad will be updated to continue to the caller and any
3271   // predecessor that terminates with an invoke instruction will have its invoke
3272   // instruction converted to a call instruction.  If the cleanup pad being
3273   // simplified does not continue to the caller, each predecessor will be
3274   // updated to continue to the unwind destination of the cleanup pad being
3275   // simplified.
3276   BasicBlock *BB = RI->getParent();
3277   CleanupPadInst *CPInst = RI->getCleanupPad();
3278   if (CPInst->getParent() != BB)
3279     // This isn't an empty cleanup.
3280     return false;
3281
3282   // Check that there are no other instructions except for debug intrinsics.
3283   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3284   while (++I != E)
3285     if (!isa<DbgInfoIntrinsic>(I))
3286       return false;
3287
3288   // If the cleanup return we are simplifying unwinds to the caller, this will
3289   // set UnwindDest to nullptr.
3290   BasicBlock *UnwindDest = RI->getUnwindDest();
3291   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3292
3293   // We're about to remove BB from the control flow.  Before we do, sink any
3294   // PHINodes into the unwind destination.  Doing this before changing the
3295   // control flow avoids some potentially slow checks, since we can currently
3296   // be certain that UnwindDest and BB have no common predecessors (since they
3297   // are both EH pads).
3298   if (UnwindDest) {
3299     // First, go through the PHI nodes in UnwindDest and update any nodes that
3300     // reference the block we are removing
3301     for (BasicBlock::iterator I = UnwindDest->begin(),
3302                               IE = DestEHPad->getIterator();
3303          I != IE; ++I) {
3304       PHINode *DestPN = cast<PHINode>(I);
3305
3306       int Idx = DestPN->getBasicBlockIndex(BB);
3307       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3308       assert(Idx != -1);
3309       // This PHI node has an incoming value that corresponds to a control
3310       // path through the cleanup pad we are removing.  If the incoming
3311       // value is in the cleanup pad, it must be a PHINode (because we
3312       // verified above that the block is otherwise empty).  Otherwise, the
3313       // value is either a constant or a value that dominates the cleanup
3314       // pad being removed.
3315       //
3316       // Because BB and UnwindDest are both EH pads, all of their
3317       // predecessors must unwind to these blocks, and since no instruction
3318       // can have multiple unwind destinations, there will be no overlap in
3319       // incoming blocks between SrcPN and DestPN.
3320       Value *SrcVal = DestPN->getIncomingValue(Idx);
3321       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3322
3323       // Remove the entry for the block we are deleting.
3324       DestPN->removeIncomingValue(Idx, false);
3325
3326       if (SrcPN && SrcPN->getParent() == BB) {
3327         // If the incoming value was a PHI node in the cleanup pad we are
3328         // removing, we need to merge that PHI node's incoming values into
3329         // DestPN.
3330         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3331               SrcIdx != SrcE; ++SrcIdx) {
3332           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3333                               SrcPN->getIncomingBlock(SrcIdx));
3334         }
3335       } else {
3336         // Otherwise, the incoming value came from above BB and
3337         // so we can just reuse it.  We must associate all of BB's
3338         // predecessors with this value.
3339         for (auto *pred : predecessors(BB)) {
3340           DestPN->addIncoming(SrcVal, pred);
3341         }
3342       }
3343     }
3344
3345     // Sink any remaining PHI nodes directly into UnwindDest.
3346     Instruction *InsertPt = DestEHPad;
3347     for (BasicBlock::iterator I = BB->begin(),
3348                               IE = BB->getFirstNonPHI()->getIterator();
3349          I != IE;) {
3350       // The iterator must be incremented here because the instructions are
3351       // being moved to another block.
3352       PHINode *PN = cast<PHINode>(I++);
3353       if (PN->use_empty())
3354         // If the PHI node has no uses, just leave it.  It will be erased
3355         // when we erase BB below.
3356         continue;
3357
3358       // Otherwise, sink this PHI node into UnwindDest.
3359       // Any predecessors to UnwindDest which are not already represented
3360       // must be back edges which inherit the value from the path through
3361       // BB.  In this case, the PHI value must reference itself.
3362       for (auto *pred : predecessors(UnwindDest))
3363         if (pred != BB)
3364           PN->addIncoming(PN, pred);
3365       PN->moveBefore(InsertPt);
3366     }
3367   }
3368
3369   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3370     // The iterator must be updated here because we are removing this pred.
3371     BasicBlock *PredBB = *PI++;
3372     if (UnwindDest == nullptr) {
3373       removeUnwindEdge(PredBB);
3374     } else {
3375       TerminatorInst *TI = PredBB->getTerminator();
3376       TI->replaceUsesOfWith(BB, UnwindDest);
3377     }
3378   }
3379
3380   // The cleanup pad is now unreachable.  Zap it.
3381   BB->eraseFromParent();
3382   return true;
3383 }
3384
3385 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3386   BasicBlock *BB = RI->getParent();
3387   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
3388
3389   // Find predecessors that end with branches.
3390   SmallVector<BasicBlock*, 8> UncondBranchPreds;
3391   SmallVector<BranchInst*, 8> CondBranchPreds;
3392   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3393     BasicBlock *P = *PI;
3394     TerminatorInst *PTI = P->getTerminator();
3395     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3396       if (BI->isUnconditional())
3397         UncondBranchPreds.push_back(P);
3398       else
3399         CondBranchPreds.push_back(BI);
3400     }
3401   }
3402
3403   // If we found some, do the transformation!
3404   if (!UncondBranchPreds.empty() && DupRet) {
3405     while (!UncondBranchPreds.empty()) {
3406       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3407       DEBUG(dbgs() << "FOLDING: " << *BB
3408             << "INTO UNCOND BRANCH PRED: " << *Pred);
3409       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3410     }
3411
3412     // If we eliminated all predecessors of the block, delete the block now.
3413     if (pred_empty(BB))
3414       // We know there are no successors, so just nuke the block.
3415       BB->eraseFromParent();
3416
3417     return true;
3418   }
3419
3420   // Check out all of the conditional branches going to this return
3421   // instruction.  If any of them just select between returns, change the
3422   // branch itself into a select/return pair.
3423   while (!CondBranchPreds.empty()) {
3424     BranchInst *BI = CondBranchPreds.pop_back_val();
3425
3426     // Check to see if the non-BB successor is also a return block.
3427     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3428         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3429         SimplifyCondBranchToTwoReturns(BI, Builder))
3430       return true;
3431   }
3432   return false;
3433 }
3434
3435 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3436   BasicBlock *BB = UI->getParent();
3437
3438   bool Changed = false;
3439
3440   // If there are any instructions immediately before the unreachable that can
3441   // be removed, do so.
3442   while (UI->getIterator() != BB->begin()) {
3443     BasicBlock::iterator BBI = UI->getIterator();
3444     --BBI;
3445     // Do not delete instructions that can have side effects which might cause
3446     // the unreachable to not be reachable; specifically, calls and volatile
3447     // operations may have this effect.
3448     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
3449
3450     if (BBI->mayHaveSideEffects()) {
3451       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
3452         if (SI->isVolatile())
3453           break;
3454       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
3455         if (LI->isVolatile())
3456           break;
3457       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3458         if (RMWI->isVolatile())
3459           break;
3460       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3461         if (CXI->isVolatile())
3462           break;
3463       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3464                  !isa<LandingPadInst>(BBI)) {
3465         break;
3466       }
3467       // Note that deleting LandingPad's here is in fact okay, although it
3468       // involves a bit of subtle reasoning. If this inst is a LandingPad,
3469       // all the predecessors of this block will be the unwind edges of Invokes,
3470       // and we can therefore guarantee this block will be erased.
3471     }
3472
3473     // Delete this instruction (any uses are guaranteed to be dead)
3474     if (!BBI->use_empty())
3475       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3476     BBI->eraseFromParent();
3477     Changed = true;
3478   }
3479
3480   // If the unreachable instruction is the first in the block, take a gander
3481   // at all of the predecessors of this instruction, and simplify them.
3482   if (&BB->front() != UI) return Changed;
3483
3484   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3485   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3486     TerminatorInst *TI = Preds[i]->getTerminator();
3487     IRBuilder<> Builder(TI);
3488     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3489       if (BI->isUnconditional()) {
3490         if (BI->getSuccessor(0) == BB) {
3491           new UnreachableInst(TI->getContext(), TI);
3492           TI->eraseFromParent();
3493           Changed = true;
3494         }
3495       } else {
3496         if (BI->getSuccessor(0) == BB) {
3497           Builder.CreateBr(BI->getSuccessor(1));
3498           EraseTerminatorInstAndDCECond(BI);
3499         } else if (BI->getSuccessor(1) == BB) {
3500           Builder.CreateBr(BI->getSuccessor(0));
3501           EraseTerminatorInstAndDCECond(BI);
3502           Changed = true;
3503         }
3504       }
3505     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3506       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3507            i != e; ++i)
3508         if (i.getCaseSuccessor() == BB) {
3509           BB->removePredecessor(SI->getParent());
3510           SI->removeCase(i);
3511           --i; --e;
3512           Changed = true;
3513         }
3514     } else if ((isa<InvokeInst>(TI) &&
3515                 cast<InvokeInst>(TI)->getUnwindDest() == BB) ||
3516                isa<CatchSwitchInst>(TI)) {
3517       removeUnwindEdge(TI->getParent());
3518       Changed = true;
3519     } else if (isa<CleanupReturnInst>(TI)) {
3520       new UnreachableInst(TI->getContext(), TI);
3521       TI->eraseFromParent();
3522       Changed = true;
3523     }
3524     // TODO: We can remove a catchswitch if all it's catchpads end in
3525     // unreachable.
3526   }
3527
3528   // If this block is now dead, remove it.
3529   if (pred_empty(BB) &&
3530       BB != &BB->getParent()->getEntryBlock()) {
3531     // We know there are no successors, so just nuke the block.
3532     BB->eraseFromParent();
3533     return true;
3534   }
3535
3536   return Changed;
3537 }
3538
3539 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3540   assert(Cases.size() >= 1);
3541
3542   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3543   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3544     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3545       return false;
3546   }
3547   return true;
3548 }
3549
3550 /// Turn a switch with two reachable destinations into an integer range
3551 /// comparison and branch.
3552 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3553   assert(SI->getNumCases() > 1 && "Degenerate switch?");
3554
3555   bool HasDefault =
3556       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3557
3558   // Partition the cases into two sets with different destinations.
3559   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3560   BasicBlock *DestB = nullptr;
3561   SmallVector <ConstantInt *, 16> CasesA;
3562   SmallVector <ConstantInt *, 16> CasesB;
3563
3564   for (SwitchInst::CaseIt I : SI->cases()) {
3565     BasicBlock *Dest = I.getCaseSuccessor();
3566     if (!DestA) DestA = Dest;
3567     if (Dest == DestA) {
3568       CasesA.push_back(I.getCaseValue());
3569       continue;
3570     }
3571     if (!DestB) DestB = Dest;
3572     if (Dest == DestB) {
3573       CasesB.push_back(I.getCaseValue());
3574       continue;
3575     }
3576     return false;  // More than two destinations.
3577   }
3578
3579   assert(DestA && DestB && "Single-destination switch should have been folded.");
3580   assert(DestA != DestB);
3581   assert(DestB != SI->getDefaultDest());
3582   assert(!CasesB.empty() && "There must be non-default cases.");
3583   assert(!CasesA.empty() || HasDefault);
3584
3585   // Figure out if one of the sets of cases form a contiguous range.
3586   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3587   BasicBlock *ContiguousDest = nullptr;
3588   BasicBlock *OtherDest = nullptr;
3589   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
3590     ContiguousCases = &CasesA;
3591     ContiguousDest = DestA;
3592     OtherDest = DestB;
3593   } else if (CasesAreContiguous(CasesB)) {
3594     ContiguousCases = &CasesB;
3595     ContiguousDest = DestB;
3596     OtherDest = DestA;
3597   } else
3598     return false;
3599
3600   // Start building the compare and branch.
3601
3602   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
3603   Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
3604
3605   Value *Sub = SI->getCondition();
3606   if (!Offset->isNullValue())
3607     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
3608
3609   Value *Cmp;
3610   // If NumCases overflowed, then all possible values jump to the successor.
3611   if (NumCases->isNullValue() && !ContiguousCases->empty())
3612     Cmp = ConstantInt::getTrue(SI->getContext());
3613   else
3614     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3615   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
3616
3617   // Update weight for the newly-created conditional branch.
3618   if (HasBranchWeights(SI)) {
3619     SmallVector<uint64_t, 8> Weights;
3620     GetBranchWeights(SI, Weights);
3621     if (Weights.size() == 1 + SI->getNumCases()) {
3622       uint64_t TrueWeight = 0;
3623       uint64_t FalseWeight = 0;
3624       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
3625         if (SI->getSuccessor(I) == ContiguousDest)
3626           TrueWeight += Weights[I];
3627         else
3628           FalseWeight += Weights[I];
3629       }
3630       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
3631         TrueWeight /= 2;
3632         FalseWeight /= 2;
3633       }
3634       NewBI->setMetadata(LLVMContext::MD_prof,
3635                          MDBuilder(SI->getContext()).createBranchWeights(
3636                              (uint32_t)TrueWeight, (uint32_t)FalseWeight));
3637     }
3638   }
3639
3640   // Prune obsolete incoming values off the successors' PHI nodes.
3641   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
3642     unsigned PreviousEdges = ContiguousCases->size();
3643     if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
3644     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3645       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3646   }
3647   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
3648     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
3649     if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
3650     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3651       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3652   }
3653
3654   // Drop the switch.
3655   SI->eraseFromParent();
3656
3657   return true;
3658 }
3659
3660 /// Compute masked bits for the condition of a switch
3661 /// and use it to remove dead cases.
3662 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
3663                                      const DataLayout &DL) {
3664   Value *Cond = SI->getCondition();
3665   unsigned Bits = Cond->getType()->getIntegerBitWidth();
3666   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3667   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3668
3669   // Gather dead cases.
3670   SmallVector<ConstantInt*, 8> DeadCases;
3671   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3672     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3673         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3674       DeadCases.push_back(I.getCaseValue());
3675       DEBUG(dbgs() << "SimplifyCFG: switch case '"
3676                    << I.getCaseValue() << "' is dead.\n");
3677     }
3678   }
3679
3680   // If we can prove that the cases must cover all possible values, the 
3681   // default destination becomes dead and we can remove it.  If we know some 
3682   // of the bits in the value, we can use that to more precisely compute the
3683   // number of possible unique case values.
3684   bool HasDefault =
3685     !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3686   const unsigned NumUnknownBits = Bits - 
3687     (KnownZero.Or(KnownOne)).countPopulation();
3688   assert(NumUnknownBits <= Bits);
3689   if (HasDefault && DeadCases.empty() &&
3690       NumUnknownBits < 64 /* avoid overflow */ &&  
3691       SI->getNumCases() == (1ULL << NumUnknownBits)) {
3692     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
3693     BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(),
3694                                                     SI->getParent(), "");
3695     SI->setDefaultDest(&*NewDefault);
3696     SplitBlock(&*NewDefault, &NewDefault->front());
3697     auto *OldTI = NewDefault->getTerminator();
3698     new UnreachableInst(SI->getContext(), OldTI);
3699     EraseTerminatorInstAndDCECond(OldTI);
3700     return true;
3701   }
3702
3703   SmallVector<uint64_t, 8> Weights;
3704   bool HasWeight = HasBranchWeights(SI);
3705   if (HasWeight) {
3706     GetBranchWeights(SI, Weights);
3707     HasWeight = (Weights.size() == 1 + SI->getNumCases());
3708   }
3709
3710   // Remove dead cases from the switch.
3711   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3712     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3713     assert(Case != SI->case_default() &&
3714            "Case was not found. Probably mistake in DeadCases forming.");
3715     if (HasWeight) {
3716       std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3717       Weights.pop_back();
3718     }
3719
3720     // Prune unused values from PHI nodes.
3721     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3722     SI->removeCase(Case);
3723   }
3724   if (HasWeight && Weights.size() >= 2) {
3725     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3726     SI->setMetadata(LLVMContext::MD_prof,
3727                     MDBuilder(SI->getParent()->getContext()).
3728                     createBranchWeights(MDWeights));
3729   }
3730
3731   return !DeadCases.empty();
3732 }
3733
3734 /// If BB would be eligible for simplification by
3735 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3736 /// by an unconditional branch), look at the phi node for BB in the successor
3737 /// block and see if the incoming value is equal to CaseValue. If so, return
3738 /// the phi node, and set PhiIndex to BB's index in the phi node.
3739 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3740                                               BasicBlock *BB,
3741                                               int *PhiIndex) {
3742   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3743     return nullptr; // BB must be empty to be a candidate for simplification.
3744   if (!BB->getSinglePredecessor())
3745     return nullptr; // BB must be dominated by the switch.
3746
3747   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3748   if (!Branch || !Branch->isUnconditional())
3749     return nullptr; // Terminator must be unconditional branch.
3750
3751   BasicBlock *Succ = Branch->getSuccessor(0);
3752
3753   BasicBlock::iterator I = Succ->begin();
3754   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3755     int Idx = PHI->getBasicBlockIndex(BB);
3756     assert(Idx >= 0 && "PHI has no entry for predecessor?");
3757
3758     Value *InValue = PHI->getIncomingValue(Idx);
3759     if (InValue != CaseValue) continue;
3760
3761     *PhiIndex = Idx;
3762     return PHI;
3763   }
3764
3765   return nullptr;
3766 }
3767
3768 /// Try to forward the condition of a switch instruction to a phi node
3769 /// dominated by the switch, if that would mean that some of the destination
3770 /// blocks of the switch can be folded away.
3771 /// Returns true if a change is made.
3772 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3773   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3774   ForwardingNodesMap ForwardingNodes;
3775
3776   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3777     ConstantInt *CaseValue = I.getCaseValue();
3778     BasicBlock *CaseDest = I.getCaseSuccessor();
3779
3780     int PhiIndex;
3781     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3782                                                  &PhiIndex);
3783     if (!PHI) continue;
3784
3785     ForwardingNodes[PHI].push_back(PhiIndex);
3786   }
3787
3788   bool Changed = false;
3789
3790   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3791        E = ForwardingNodes.end(); I != E; ++I) {
3792     PHINode *Phi = I->first;
3793     SmallVectorImpl<int> &Indexes = I->second;
3794
3795     if (Indexes.size() < 2) continue;
3796
3797     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3798       Phi->setIncomingValue(Indexes[I], SI->getCondition());
3799     Changed = true;
3800   }
3801
3802   return Changed;
3803 }
3804
3805 /// Return true if the backend will be able to handle
3806 /// initializing an array of constants like C.
3807 static bool ValidLookupTableConstant(Constant *C) {
3808   if (C->isThreadDependent())
3809     return false;
3810   if (C->isDLLImportDependent())
3811     return false;
3812
3813   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3814     return CE->isGEPWithNoNotionalOverIndexing();
3815
3816   return isa<ConstantFP>(C) ||
3817       isa<ConstantInt>(C) ||
3818       isa<ConstantPointerNull>(C) ||
3819       isa<GlobalValue>(C) ||
3820       isa<UndefValue>(C);
3821 }
3822
3823 /// If V is a Constant, return it. Otherwise, try to look up
3824 /// its constant value in ConstantPool, returning 0 if it's not there.
3825 static Constant *LookupConstant(Value *V,
3826                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3827   if (Constant *C = dyn_cast<Constant>(V))
3828     return C;
3829   return ConstantPool.lookup(V);
3830 }
3831
3832 /// Try to fold instruction I into a constant. This works for
3833 /// simple instructions such as binary operations where both operands are
3834 /// constant or can be replaced by constants from the ConstantPool. Returns the
3835 /// resulting constant on success, 0 otherwise.
3836 static Constant *
3837 ConstantFold(Instruction *I, const DataLayout &DL,
3838              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
3839   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3840     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3841     if (!A)
3842       return nullptr;
3843     if (A->isAllOnesValue())
3844       return LookupConstant(Select->getTrueValue(), ConstantPool);
3845     if (A->isNullValue())
3846       return LookupConstant(Select->getFalseValue(), ConstantPool);
3847     return nullptr;
3848   }
3849
3850   SmallVector<Constant *, 4> COps;
3851   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
3852     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
3853       COps.push_back(A);
3854     else
3855       return nullptr;
3856   }
3857
3858   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
3859     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
3860                                            COps[1], DL);
3861   }
3862
3863   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
3864 }
3865
3866 /// Try to determine the resulting constant values in phi nodes
3867 /// at the common destination basic block, *CommonDest, for one of the case
3868 /// destionations CaseDest corresponding to value CaseVal (0 for the default
3869 /// case), of a switch instruction SI.
3870 static bool
3871 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
3872                BasicBlock **CommonDest,
3873                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
3874                const DataLayout &DL) {
3875   // The block from which we enter the common destination.
3876   BasicBlock *Pred = SI->getParent();
3877
3878   // If CaseDest is empty except for some side-effect free instructions through
3879   // which we can constant-propagate the CaseVal, continue to its successor.
3880   SmallDenseMap<Value*, Constant*> ConstantPool;
3881   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3882   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3883        ++I) {
3884     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3885       // If the terminator is a simple branch, continue to the next block.
3886       if (T->getNumSuccessors() != 1)
3887         return false;
3888       Pred = CaseDest;
3889       CaseDest = T->getSuccessor(0);
3890     } else if (isa<DbgInfoIntrinsic>(I)) {
3891       // Skip debug intrinsic.
3892       continue;
3893     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
3894       // Instruction is side-effect free and constant.
3895
3896       // If the instruction has uses outside this block or a phi node slot for
3897       // the block, it is not safe to bypass the instruction since it would then
3898       // no longer dominate all its uses.
3899       for (auto &Use : I->uses()) {
3900         User *User = Use.getUser();
3901         if (Instruction *I = dyn_cast<Instruction>(User))
3902           if (I->getParent() == CaseDest)
3903             continue;
3904         if (PHINode *Phi = dyn_cast<PHINode>(User))
3905           if (Phi->getIncomingBlock(Use) == CaseDest)
3906             continue;
3907         return false;
3908       }
3909
3910       ConstantPool.insert(std::make_pair(&*I, C));
3911     } else {
3912       break;
3913     }
3914   }
3915
3916   // If we did not have a CommonDest before, use the current one.
3917   if (!*CommonDest)
3918     *CommonDest = CaseDest;
3919   // If the destination isn't the common one, abort.
3920   if (CaseDest != *CommonDest)
3921     return false;
3922
3923   // Get the values for this case from phi nodes in the destination block.
3924   BasicBlock::iterator I = (*CommonDest)->begin();
3925   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3926     int Idx = PHI->getBasicBlockIndex(Pred);
3927     if (Idx == -1)
3928       continue;
3929
3930     Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3931                                         ConstantPool);
3932     if (!ConstVal)
3933       return false;
3934
3935     // Be conservative about which kinds of constants we support.
3936     if (!ValidLookupTableConstant(ConstVal))
3937       return false;
3938
3939     Res.push_back(std::make_pair(PHI, ConstVal));
3940   }
3941
3942   return Res.size() > 0;
3943 }
3944
3945 // Helper function used to add CaseVal to the list of cases that generate
3946 // Result.
3947 static void MapCaseToResult(ConstantInt *CaseVal,
3948     SwitchCaseResultVectorTy &UniqueResults,
3949     Constant *Result) {
3950   for (auto &I : UniqueResults) {
3951     if (I.first == Result) {
3952       I.second.push_back(CaseVal);
3953       return;
3954     }
3955   }
3956   UniqueResults.push_back(std::make_pair(Result,
3957         SmallVector<ConstantInt*, 4>(1, CaseVal)));
3958 }
3959
3960 // Helper function that initializes a map containing
3961 // results for the PHI node of the common destination block for a switch
3962 // instruction. Returns false if multiple PHI nodes have been found or if
3963 // there is not a common destination block for the switch.
3964 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
3965                                   BasicBlock *&CommonDest,
3966                                   SwitchCaseResultVectorTy &UniqueResults,
3967                                   Constant *&DefaultResult,
3968                                   const DataLayout &DL) {
3969   for (auto &I : SI->cases()) {
3970     ConstantInt *CaseVal = I.getCaseValue();
3971
3972     // Resulting value at phi nodes for this case value.
3973     SwitchCaseResultsTy Results;
3974     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
3975                         DL))
3976       return false;
3977
3978     // Only one value per case is permitted
3979     if (Results.size() > 1)
3980       return false;
3981     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
3982
3983     // Check the PHI consistency.
3984     if (!PHI)
3985       PHI = Results[0].first;
3986     else if (PHI != Results[0].first)
3987       return false;
3988   }
3989   // Find the default result value.
3990   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
3991   BasicBlock *DefaultDest = SI->getDefaultDest();
3992   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
3993                  DL);
3994   // If the default value is not found abort unless the default destination
3995   // is unreachable.
3996   DefaultResult =
3997       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
3998   if ((!DefaultResult &&
3999         !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4000     return false;
4001
4002   return true;
4003 }
4004
4005 // Helper function that checks if it is possible to transform a switch with only
4006 // two cases (or two cases + default) that produces a result into a select.
4007 // Example:
4008 // switch (a) {
4009 //   case 10:                %0 = icmp eq i32 %a, 10
4010 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4011 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4012 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4013 //   default:
4014 //     return 4;
4015 // }
4016 static Value *
4017 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4018                      Constant *DefaultResult, Value *Condition,
4019                      IRBuilder<> &Builder) {
4020   assert(ResultVector.size() == 2 &&
4021       "We should have exactly two unique results at this point");
4022   // If we are selecting between only two cases transform into a simple
4023   // select or a two-way select if default is possible.
4024   if (ResultVector[0].second.size() == 1 &&
4025       ResultVector[1].second.size() == 1) {
4026     ConstantInt *const FirstCase = ResultVector[0].second[0];
4027     ConstantInt *const SecondCase = ResultVector[1].second[0];
4028
4029     bool DefaultCanTrigger = DefaultResult;
4030     Value *SelectValue = ResultVector[1].first;
4031     if (DefaultCanTrigger) {
4032       Value *const ValueCompare =
4033           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4034       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4035                                          DefaultResult, "switch.select");
4036     }
4037     Value *const ValueCompare =
4038         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4039     return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
4040                                 "switch.select");
4041   }
4042
4043   return nullptr;
4044 }
4045
4046 // Helper function to cleanup a switch instruction that has been converted into
4047 // a select, fixing up PHI nodes and basic blocks.
4048 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4049                                               Value *SelectValue,
4050                                               IRBuilder<> &Builder) {
4051   BasicBlock *SelectBB = SI->getParent();
4052   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4053     PHI->removeIncomingValue(SelectBB);
4054   PHI->addIncoming(SelectValue, SelectBB);
4055
4056   Builder.CreateBr(PHI->getParent());
4057
4058   // Remove the switch.
4059   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4060     BasicBlock *Succ = SI->getSuccessor(i);
4061
4062     if (Succ == PHI->getParent())
4063       continue;
4064     Succ->removePredecessor(SelectBB);
4065   }
4066   SI->eraseFromParent();
4067 }
4068
4069 /// If the switch is only used to initialize one or more
4070 /// phi nodes in a common successor block with only two different
4071 /// constant values, replace the switch with select.
4072 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4073                            AssumptionCache *AC, const DataLayout &DL) {
4074   Value *const Cond = SI->getCondition();
4075   PHINode *PHI = nullptr;
4076   BasicBlock *CommonDest = nullptr;
4077   Constant *DefaultResult;
4078   SwitchCaseResultVectorTy UniqueResults;
4079   // Collect all the cases that will deliver the same value from the switch.
4080   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4081                              DL))
4082     return false;
4083   // Selects choose between maximum two values.
4084   if (UniqueResults.size() != 2)
4085     return false;
4086   assert(PHI != nullptr && "PHI for value select not found");
4087
4088   Builder.SetInsertPoint(SI);
4089   Value *SelectValue = ConvertTwoCaseSwitch(
4090       UniqueResults,
4091       DefaultResult, Cond, Builder);
4092   if (SelectValue) {
4093     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4094     return true;
4095   }
4096   // The switch couldn't be converted into a select.
4097   return false;
4098 }
4099
4100 namespace {
4101   /// This class represents a lookup table that can be used to replace a switch.
4102   class SwitchLookupTable {
4103   public:
4104     /// Create a lookup table to use as a switch replacement with the contents
4105     /// of Values, using DefaultValue to fill any holes in the table.
4106     SwitchLookupTable(
4107         Module &M, uint64_t TableSize, ConstantInt *Offset,
4108         const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4109         Constant *DefaultValue, const DataLayout &DL);
4110
4111     /// Build instructions with Builder to retrieve the value at
4112     /// the position given by Index in the lookup table.
4113     Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4114
4115     /// Return true if a table with TableSize elements of
4116     /// type ElementType would fit in a target-legal register.
4117     static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4118                                    Type *ElementType);
4119
4120   private:
4121     // Depending on the contents of the table, it can be represented in
4122     // different ways.
4123     enum {
4124       // For tables where each element contains the same value, we just have to
4125       // store that single value and return it for each lookup.
4126       SingleValueKind,
4127
4128       // For tables where there is a linear relationship between table index
4129       // and values. We calculate the result with a simple multiplication
4130       // and addition instead of a table lookup.
4131       LinearMapKind,
4132
4133       // For small tables with integer elements, we can pack them into a bitmap
4134       // that fits into a target-legal register. Values are retrieved by
4135       // shift and mask operations.
4136       BitMapKind,
4137
4138       // The table is stored as an array of values. Values are retrieved by load
4139       // instructions from the table.
4140       ArrayKind
4141     } Kind;
4142
4143     // For SingleValueKind, this is the single value.
4144     Constant *SingleValue;
4145
4146     // For BitMapKind, this is the bitmap.
4147     ConstantInt *BitMap;
4148     IntegerType *BitMapElementTy;
4149
4150     // For LinearMapKind, these are the constants used to derive the value.
4151     ConstantInt *LinearOffset;
4152     ConstantInt *LinearMultiplier;
4153
4154     // For ArrayKind, this is the array.
4155     GlobalVariable *Array;
4156   };
4157 }
4158
4159 SwitchLookupTable::SwitchLookupTable(
4160     Module &M, uint64_t TableSize, ConstantInt *Offset,
4161     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4162     Constant *DefaultValue, const DataLayout &DL)
4163     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4164       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4165   assert(Values.size() && "Can't build lookup table without values!");
4166   assert(TableSize >= Values.size() && "Can't fit values in table!");
4167
4168   // If all values in the table are equal, this is that value.
4169   SingleValue = Values.begin()->second;
4170
4171   Type *ValueType = Values.begin()->second->getType();
4172
4173   // Build up the table contents.
4174   SmallVector<Constant*, 64> TableContents(TableSize);
4175   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4176     ConstantInt *CaseVal = Values[I].first;
4177     Constant *CaseRes = Values[I].second;
4178     assert(CaseRes->getType() == ValueType);
4179
4180     uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
4181                    .getLimitedValue();
4182     TableContents[Idx] = CaseRes;
4183
4184     if (CaseRes != SingleValue)
4185       SingleValue = nullptr;
4186   }
4187
4188   // Fill in any holes in the table with the default result.
4189   if (Values.size() < TableSize) {
4190     assert(DefaultValue &&
4191            "Need a default value to fill the lookup table holes.");
4192     assert(DefaultValue->getType() == ValueType);
4193     for (uint64_t I = 0; I < TableSize; ++I) {
4194       if (!TableContents[I])
4195         TableContents[I] = DefaultValue;
4196     }
4197
4198     if (DefaultValue != SingleValue)
4199       SingleValue = nullptr;
4200   }
4201
4202   // If each element in the table contains the same value, we only need to store
4203   // that single value.
4204   if (SingleValue) {
4205     Kind = SingleValueKind;
4206     return;
4207   }
4208
4209   // Check if we can derive the value with a linear transformation from the
4210   // table index.
4211   if (isa<IntegerType>(ValueType)) {
4212     bool LinearMappingPossible = true;
4213     APInt PrevVal;
4214     APInt DistToPrev;
4215     assert(TableSize >= 2 && "Should be a SingleValue table.");
4216     // Check if there is the same distance between two consecutive values.
4217     for (uint64_t I = 0; I < TableSize; ++I) {
4218       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4219       if (!ConstVal) {
4220         // This is an undef. We could deal with it, but undefs in lookup tables
4221         // are very seldom. It's probably not worth the additional complexity.
4222         LinearMappingPossible = false;
4223         break;
4224       }
4225       APInt Val = ConstVal->getValue();
4226       if (I != 0) {
4227         APInt Dist = Val - PrevVal;
4228         if (I == 1) {
4229           DistToPrev = Dist;
4230         } else if (Dist != DistToPrev) {
4231           LinearMappingPossible = false;
4232           break;
4233         }
4234       }
4235       PrevVal = Val;
4236     }
4237     if (LinearMappingPossible) {
4238       LinearOffset = cast<ConstantInt>(TableContents[0]);
4239       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4240       Kind = LinearMapKind;
4241       ++NumLinearMaps;
4242       return;
4243     }
4244   }
4245
4246   // If the type is integer and the table fits in a register, build a bitmap.
4247   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4248     IntegerType *IT = cast<IntegerType>(ValueType);
4249     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4250     for (uint64_t I = TableSize; I > 0; --I) {
4251       TableInt <<= IT->getBitWidth();
4252       // Insert values into the bitmap. Undef values are set to zero.
4253       if (!isa<UndefValue>(TableContents[I - 1])) {
4254         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4255         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4256       }
4257     }
4258     BitMap = ConstantInt::get(M.getContext(), TableInt);
4259     BitMapElementTy = IT;
4260     Kind = BitMapKind;
4261     ++NumBitMaps;
4262     return;
4263   }
4264
4265   // Store the table in an array.
4266   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4267   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4268
4269   Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
4270                              GlobalVariable::PrivateLinkage,
4271                              Initializer,
4272                              "switch.table");
4273   Array->setUnnamedAddr(true);
4274   Kind = ArrayKind;
4275 }
4276
4277 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4278   switch (Kind) {
4279     case SingleValueKind:
4280       return SingleValue;
4281     case LinearMapKind: {
4282       // Derive the result value from the input value.
4283       Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4284                                             false, "switch.idx.cast");
4285       if (!LinearMultiplier->isOne())
4286         Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4287       if (!LinearOffset->isZero())
4288         Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4289       return Result;
4290     }
4291     case BitMapKind: {
4292       // Type of the bitmap (e.g. i59).
4293       IntegerType *MapTy = BitMap->getType();
4294
4295       // Cast Index to the same type as the bitmap.
4296       // Note: The Index is <= the number of elements in the table, so
4297       // truncating it to the width of the bitmask is safe.
4298       Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4299
4300       // Multiply the shift amount by the element width.
4301       ShiftAmt = Builder.CreateMul(ShiftAmt,
4302                       ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4303                                    "switch.shiftamt");
4304
4305       // Shift down.
4306       Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
4307                                               "switch.downshift");
4308       // Mask off.
4309       return Builder.CreateTrunc(DownShifted, BitMapElementTy,
4310                                  "switch.masked");
4311     }
4312     case ArrayKind: {
4313       // Make sure the table index will not overflow when treated as signed.
4314       IntegerType *IT = cast<IntegerType>(Index->getType());
4315       uint64_t TableSize = Array->getInitializer()->getType()
4316                                 ->getArrayNumElements();
4317       if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4318         Index = Builder.CreateZExt(Index,
4319                                    IntegerType::get(IT->getContext(),
4320                                                     IT->getBitWidth() + 1),
4321                                    "switch.tableidx.zext");
4322
4323       Value *GEPIndices[] = { Builder.getInt32(0), Index };
4324       Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4325                                              GEPIndices, "switch.gep");
4326       return Builder.CreateLoad(GEP, "switch.load");
4327     }
4328   }
4329   llvm_unreachable("Unknown lookup table kind!");
4330 }
4331
4332 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4333                                            uint64_t TableSize,
4334                                            Type *ElementType) {
4335   auto *IT = dyn_cast<IntegerType>(ElementType);
4336   if (!IT)
4337     return false;
4338   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4339   // are <= 15, we could try to narrow the type.
4340
4341   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4342   if (TableSize >= UINT_MAX/IT->getBitWidth())
4343     return false;
4344   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4345 }
4346
4347 /// Determine whether a lookup table should be built for this switch, based on
4348 /// the number of cases, size of the table, and the types of the results.
4349 static bool
4350 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4351                        const TargetTransformInfo &TTI, const DataLayout &DL,
4352                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4353   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4354     return false; // TableSize overflowed, or mul below might overflow.
4355
4356   bool AllTablesFitInRegister = true;
4357   bool HasIllegalType = false;
4358   for (const auto &I : ResultTypes) {
4359     Type *Ty = I.second;
4360
4361     // Saturate this flag to true.
4362     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4363
4364     // Saturate this flag to false.
4365     AllTablesFitInRegister = AllTablesFitInRegister &&
4366       SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4367
4368     // If both flags saturate, we're done. NOTE: This *only* works with
4369     // saturating flags, and all flags have to saturate first due to the
4370     // non-deterministic behavior of iterating over a dense map.
4371     if (HasIllegalType && !AllTablesFitInRegister)
4372       break;
4373   }
4374
4375   // If each table would fit in a register, we should build it anyway.
4376   if (AllTablesFitInRegister)
4377     return true;
4378
4379   // Don't build a table that doesn't fit in-register if it has illegal types.
4380   if (HasIllegalType)
4381     return false;
4382
4383   // The table density should be at least 40%. This is the same criterion as for
4384   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4385   // FIXME: Find the best cut-off.
4386   return SI->getNumCases() * 10 >= TableSize * 4;
4387 }
4388
4389 /// Try to reuse the switch table index compare. Following pattern:
4390 /// \code
4391 ///     if (idx < tablesize)
4392 ///        r = table[idx]; // table does not contain default_value
4393 ///     else
4394 ///        r = default_value;
4395 ///     if (r != default_value)
4396 ///        ...
4397 /// \endcode
4398 /// Is optimized to:
4399 /// \code
4400 ///     cond = idx < tablesize;
4401 ///     if (cond)
4402 ///        r = table[idx];
4403 ///     else
4404 ///        r = default_value;
4405 ///     if (cond)
4406 ///        ...
4407 /// \endcode
4408 /// Jump threading will then eliminate the second if(cond).
4409 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
4410           BranchInst *RangeCheckBranch, Constant *DefaultValue,
4411           const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
4412
4413   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
4414   if (!CmpInst)
4415     return;
4416
4417   // We require that the compare is in the same block as the phi so that jump
4418   // threading can do its work afterwards.
4419   if (CmpInst->getParent() != PhiBlock)
4420     return;
4421
4422   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
4423   if (!CmpOp1)
4424     return;
4425
4426   Value *RangeCmp = RangeCheckBranch->getCondition();
4427   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
4428   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
4429
4430   // Check if the compare with the default value is constant true or false.
4431   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4432                                                  DefaultValue, CmpOp1, true);
4433   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
4434     return;
4435
4436   // Check if the compare with the case values is distinct from the default
4437   // compare result.
4438   for (auto ValuePair : Values) {
4439     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4440                               ValuePair.second, CmpOp1, true);
4441     if (!CaseConst || CaseConst == DefaultConst)
4442       return;
4443     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4444            "Expect true or false as compare result.");
4445   }
4446   
4447   // Check if the branch instruction dominates the phi node. It's a simple
4448   // dominance check, but sufficient for our needs.
4449   // Although this check is invariant in the calling loops, it's better to do it
4450   // at this late stage. Practically we do it at most once for a switch.
4451   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4452   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4453     BasicBlock *Pred = *PI;
4454     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4455       return;
4456   }
4457
4458   if (DefaultConst == FalseConst) {
4459     // The compare yields the same result. We can replace it.
4460     CmpInst->replaceAllUsesWith(RangeCmp);
4461     ++NumTableCmpReuses;
4462   } else {
4463     // The compare yields the same result, just inverted. We can replace it.
4464     Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
4465                 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4466                 RangeCheckBranch);
4467     CmpInst->replaceAllUsesWith(InvertedTableCmp);
4468     ++NumTableCmpReuses;
4469   }
4470 }
4471
4472 /// If the switch is only used to initialize one or more phi nodes in a common
4473 /// successor block with different constant values, replace the switch with
4474 /// lookup tables.
4475 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4476                                 const DataLayout &DL,
4477                                 const TargetTransformInfo &TTI) {
4478   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4479
4480   // Only build lookup table when we have a target that supports it.
4481   if (!TTI.shouldBuildLookupTables())
4482     return false;
4483
4484   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4485   // split off a dense part and build a lookup table for that.
4486
4487   // FIXME: This creates arrays of GEPs to constant strings, which means each
4488   // GEP needs a runtime relocation in PIC code. We should just build one big
4489   // string and lookup indices into that.
4490
4491   // Ignore switches with less than three cases. Lookup tables will not make them
4492   // faster, so we don't analyze them.
4493   if (SI->getNumCases() < 3)
4494     return false;
4495
4496   // Figure out the corresponding result for each case value and phi node in the
4497   // common destination, as well as the min and max case values.
4498   assert(SI->case_begin() != SI->case_end());
4499   SwitchInst::CaseIt CI = SI->case_begin();
4500   ConstantInt *MinCaseVal = CI.getCaseValue();
4501   ConstantInt *MaxCaseVal = CI.getCaseValue();
4502
4503   BasicBlock *CommonDest = nullptr;
4504   typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
4505   SmallDenseMap<PHINode*, ResultListTy> ResultLists;
4506   SmallDenseMap<PHINode*, Constant*> DefaultResults;
4507   SmallDenseMap<PHINode*, Type*> ResultTypes;
4508   SmallVector<PHINode*, 4> PHIs;
4509
4510   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4511     ConstantInt *CaseVal = CI.getCaseValue();
4512     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4513       MinCaseVal = CaseVal;
4514     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4515       MaxCaseVal = CaseVal;
4516
4517     // Resulting value at phi nodes for this case value.
4518     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
4519     ResultsTy Results;
4520     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4521                         Results, DL))
4522       return false;
4523
4524     // Append the result from this case to the list for each phi.
4525     for (const auto &I : Results) {
4526       PHINode *PHI = I.first;
4527       Constant *Value = I.second;
4528       if (!ResultLists.count(PHI))
4529         PHIs.push_back(PHI);
4530       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4531     }
4532   }
4533
4534   // Keep track of the result types.
4535   for (PHINode *PHI : PHIs) {
4536     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4537   }
4538
4539   uint64_t NumResults = ResultLists[PHIs[0]].size();
4540   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4541   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4542   bool TableHasHoles = (NumResults < TableSize);
4543
4544   // If the table has holes, we need a constant result for the default case
4545   // or a bitmask that fits in a register.
4546   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
4547   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4548                                           &CommonDest, DefaultResultsList, DL);
4549
4550   bool NeedMask = (TableHasHoles && !HasDefaultResults);
4551   if (NeedMask) {
4552     // As an extra penalty for the validity test we require more cases.
4553     if (SI->getNumCases() < 4)  // FIXME: Find best threshold value (benchmark).
4554       return false;
4555     if (!DL.fitsInLegalInteger(TableSize))
4556       return false;
4557   }
4558
4559   for (const auto &I : DefaultResultsList) {
4560     PHINode *PHI = I.first;
4561     Constant *Result = I.second;
4562     DefaultResults[PHI] = Result;
4563   }
4564
4565   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4566     return false;
4567
4568   // Create the BB that does the lookups.
4569   Module &Mod = *CommonDest->getParent()->getParent();
4570   BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
4571                                             "switch.lookup",
4572                                             CommonDest->getParent(),
4573                                             CommonDest);
4574
4575   // Compute the table index value.
4576   Builder.SetInsertPoint(SI);
4577   Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
4578                                         "switch.tableidx");
4579
4580   // Compute the maximum table size representable by the integer type we are
4581   // switching upon.
4582   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4583   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4584   assert(MaxTableSize >= TableSize &&
4585          "It is impossible for a switch to have more entries than the max "
4586          "representable value of its input integer type's size.");
4587
4588   // If the default destination is unreachable, or if the lookup table covers
4589   // all values of the conditional variable, branch directly to the lookup table
4590   // BB. Otherwise, check that the condition is within the case range.
4591   const bool DefaultIsReachable =
4592       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4593   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
4594   BranchInst *RangeCheckBranch = nullptr;
4595
4596   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4597     Builder.CreateBr(LookupBB);
4598     // Note: We call removeProdecessor later since we need to be able to get the
4599     // PHI value for the default case in case we're using a bit mask.
4600   } else {
4601     Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
4602                                        MinCaseVal->getType(), TableSize));
4603     RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4604   }
4605
4606   // Populate the BB that does the lookups.
4607   Builder.SetInsertPoint(LookupBB);
4608
4609   if (NeedMask) {
4610     // Before doing the lookup we do the hole check.
4611     // The LookupBB is therefore re-purposed to do the hole check
4612     // and we create a new LookupBB.
4613     BasicBlock *MaskBB = LookupBB;
4614     MaskBB->setName("switch.hole_check");
4615     LookupBB = BasicBlock::Create(Mod.getContext(),
4616                                   "switch.lookup",
4617                                   CommonDest->getParent(),
4618                                   CommonDest);
4619
4620     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4621     // unnecessary illegal types.
4622     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4623     APInt MaskInt(TableSizePowOf2, 0);
4624     APInt One(TableSizePowOf2, 1);
4625     // Build bitmask; fill in a 1 bit for every case.
4626     const ResultListTy &ResultList = ResultLists[PHIs[0]];
4627     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4628       uint64_t Idx = (ResultList[I].first->getValue() -
4629                       MinCaseVal->getValue()).getLimitedValue();
4630       MaskInt |= One << Idx;
4631     }
4632     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4633
4634     // Get the TableIndex'th bit of the bitmask.
4635     // If this bit is 0 (meaning hole) jump to the default destination,
4636     // else continue with table lookup.
4637     IntegerType *MapTy = TableMask->getType();
4638     Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
4639                                                  "switch.maskindex");
4640     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
4641                                         "switch.shifted");
4642     Value *LoBit = Builder.CreateTrunc(Shifted,
4643                                        Type::getInt1Ty(Mod.getContext()),
4644                                        "switch.lobit");
4645     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4646
4647     Builder.SetInsertPoint(LookupBB);
4648     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4649   }
4650
4651   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4652     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4653     // do not delete PHINodes here.
4654     SI->getDefaultDest()->removePredecessor(SI->getParent(),
4655                                             /*DontDeleteUselessPHIs=*/true);
4656   }
4657
4658   bool ReturnedEarly = false;
4659   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4660     PHINode *PHI = PHIs[I];
4661     const ResultListTy &ResultList = ResultLists[PHI];
4662
4663     // If using a bitmask, use any value to fill the lookup table holes.
4664     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4665     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4666
4667     Value *Result = Table.BuildLookup(TableIndex, Builder);
4668
4669     // If the result is used to return immediately from the function, we want to
4670     // do that right here.
4671     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
4672         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
4673       Builder.CreateRet(Result);
4674       ReturnedEarly = true;
4675       break;
4676     }
4677
4678     // Do a small peephole optimization: re-use the switch table compare if
4679     // possible.
4680     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
4681       BasicBlock *PhiBlock = PHI->getParent();
4682       // Search for compare instructions which use the phi.
4683       for (auto *User : PHI->users()) {
4684         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
4685       }
4686     }
4687
4688     PHI->addIncoming(Result, LookupBB);
4689   }
4690
4691   if (!ReturnedEarly)
4692     Builder.CreateBr(CommonDest);
4693
4694   // Remove the switch.
4695   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4696     BasicBlock *Succ = SI->getSuccessor(i);
4697
4698     if (Succ == SI->getDefaultDest())
4699       continue;
4700     Succ->removePredecessor(SI->getParent());
4701   }
4702   SI->eraseFromParent();
4703
4704   ++NumLookupTables;
4705   if (NeedMask)
4706     ++NumLookupTablesHoles;
4707   return true;
4708 }
4709
4710 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
4711   BasicBlock *BB = SI->getParent();
4712
4713   if (isValueEqualityComparison(SI)) {
4714     // If we only have one predecessor, and if it is a branch on this value,
4715     // see if that predecessor totally determines the outcome of this switch.
4716     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4717       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
4718         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4719
4720     Value *Cond = SI->getCondition();
4721     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
4722       if (SimplifySwitchOnSelect(SI, Select))
4723         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4724
4725     // If the block only contains the switch, see if we can fold the block
4726     // away into any preds.
4727     BasicBlock::iterator BBI = BB->begin();
4728     // Ignore dbg intrinsics.
4729     while (isa<DbgInfoIntrinsic>(BBI))
4730       ++BBI;
4731     if (SI == &*BBI)
4732       if (FoldValueComparisonIntoPredecessors(SI, Builder))
4733         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4734   }
4735
4736   // Try to transform the switch into an icmp and a branch.
4737   if (TurnSwitchRangeIntoICmp(SI, Builder))
4738     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4739
4740   // Remove unreachable cases.
4741   if (EliminateDeadSwitchCases(SI, AC, DL))
4742     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4743
4744   if (SwitchToSelect(SI, Builder, AC, DL))
4745     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4746
4747   if (ForwardSwitchConditionToPHI(SI))
4748     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4749
4750   if (SwitchToLookupTable(SI, Builder, DL, TTI))
4751     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4752
4753   return false;
4754 }
4755
4756 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
4757   BasicBlock *BB = IBI->getParent();
4758   bool Changed = false;
4759
4760   // Eliminate redundant destinations.
4761   SmallPtrSet<Value *, 8> Succs;
4762   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
4763     BasicBlock *Dest = IBI->getDestination(i);
4764     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
4765       Dest->removePredecessor(BB);
4766       IBI->removeDestination(i);
4767       --i; --e;
4768       Changed = true;
4769     }
4770   }
4771
4772   if (IBI->getNumDestinations() == 0) {
4773     // If the indirectbr has no successors, change it to unreachable.
4774     new UnreachableInst(IBI->getContext(), IBI);
4775     EraseTerminatorInstAndDCECond(IBI);
4776     return true;
4777   }
4778
4779   if (IBI->getNumDestinations() == 1) {
4780     // If the indirectbr has one successor, change it to a direct branch.
4781     BranchInst::Create(IBI->getDestination(0), IBI);
4782     EraseTerminatorInstAndDCECond(IBI);
4783     return true;
4784   }
4785
4786   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
4787     if (SimplifyIndirectBrOnSelect(IBI, SI))
4788       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4789   }
4790   return Changed;
4791 }
4792
4793 /// Given an block with only a single landing pad and a unconditional branch
4794 /// try to find another basic block which this one can be merged with.  This
4795 /// handles cases where we have multiple invokes with unique landing pads, but
4796 /// a shared handler.
4797 ///
4798 /// We specifically choose to not worry about merging non-empty blocks
4799 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
4800 /// practice, the optimizer produces empty landing pad blocks quite frequently
4801 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
4802 /// sinking in this file)
4803 ///
4804 /// This is primarily a code size optimization.  We need to avoid performing
4805 /// any transform which might inhibit optimization (such as our ability to
4806 /// specialize a particular handler via tail commoning).  We do this by not
4807 /// merging any blocks which require us to introduce a phi.  Since the same
4808 /// values are flowing through both blocks, we don't loose any ability to
4809 /// specialize.  If anything, we make such specialization more likely.
4810 ///
4811 /// TODO - This transformation could remove entries from a phi in the target
4812 /// block when the inputs in the phi are the same for the two blocks being
4813 /// merged.  In some cases, this could result in removal of the PHI entirely.
4814 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
4815                                  BasicBlock *BB) {
4816   auto Succ = BB->getUniqueSuccessor();
4817   assert(Succ);
4818   // If there's a phi in the successor block, we'd likely have to introduce
4819   // a phi into the merged landing pad block.
4820   if (isa<PHINode>(*Succ->begin()))
4821     return false;
4822
4823   for (BasicBlock *OtherPred : predecessors(Succ)) {
4824     if (BB == OtherPred)
4825       continue;
4826     BasicBlock::iterator I = OtherPred->begin();
4827     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
4828     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
4829       continue;
4830     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
4831     BranchInst *BI2 = dyn_cast<BranchInst>(I);
4832     if (!BI2 || !BI2->isIdenticalTo(BI))
4833       continue;
4834
4835     // We've found an identical block.  Update our predeccessors to take that
4836     // path instead and make ourselves dead.
4837     SmallSet<BasicBlock *, 16> Preds;
4838     Preds.insert(pred_begin(BB), pred_end(BB));
4839     for (BasicBlock *Pred : Preds) {
4840       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
4841       assert(II->getNormalDest() != BB &&
4842              II->getUnwindDest() == BB && "unexpected successor");
4843       II->setUnwindDest(OtherPred);
4844     }
4845
4846     // The debug info in OtherPred doesn't cover the merged control flow that
4847     // used to go through BB.  We need to delete it or update it.
4848     for (auto I = OtherPred->begin(), E = OtherPred->end();
4849          I != E;) {
4850       Instruction &Inst = *I; I++;
4851       if (isa<DbgInfoIntrinsic>(Inst))
4852         Inst.eraseFromParent();
4853     }
4854
4855     SmallSet<BasicBlock *, 16> Succs;
4856     Succs.insert(succ_begin(BB), succ_end(BB));
4857     for (BasicBlock *Succ : Succs) {
4858       Succ->removePredecessor(BB);
4859     }
4860
4861     IRBuilder<> Builder(BI);
4862     Builder.CreateUnreachable();
4863     BI->eraseFromParent();
4864     return true;
4865   }
4866   return false;
4867 }
4868
4869 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
4870   BasicBlock *BB = BI->getParent();
4871
4872   if (SinkCommon && SinkThenElseCodeToEnd(BI))
4873     return true;
4874
4875   // If the Terminator is the only non-phi instruction, simplify the block.
4876   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
4877   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
4878       TryToSimplifyUncondBranchFromEmptyBlock(BB))
4879     return true;
4880
4881   // If the only instruction in the block is a seteq/setne comparison
4882   // against a constant, try to simplify the block.
4883   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
4884     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
4885       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
4886         ;
4887       if (I->isTerminator() &&
4888           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
4889                                                 BonusInstThreshold, AC))
4890         return true;
4891     }
4892
4893   // See if we can merge an empty landing pad block with another which is
4894   // equivalent.
4895   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
4896     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
4897     if (I->isTerminator() &&
4898         TryToMergeLandingPad(LPad, BI, BB))
4899       return true;
4900   }
4901
4902   // If this basic block is ONLY a compare and a branch, and if a predecessor
4903   // branches to us and our successor, fold the comparison into the
4904   // predecessor and use logical operations to update the incoming value
4905   // for PHI nodes in common successor.
4906   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
4907     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4908   return false;
4909 }
4910
4911 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
4912   BasicBlock *PredPred = nullptr;
4913   for (auto *P : predecessors(BB)) {
4914     BasicBlock *PPred = P->getSinglePredecessor();
4915     if (!PPred || (PredPred && PredPred != PPred))
4916       return nullptr;
4917     PredPred = PPred;
4918   }
4919   return PredPred;
4920 }
4921
4922 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
4923   BasicBlock *BB = BI->getParent();
4924
4925   // Conditional branch
4926   if (isValueEqualityComparison(BI)) {
4927     // If we only have one predecessor, and if it is a branch on this value,
4928     // see if that predecessor totally determines the outcome of this
4929     // switch.
4930     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4931       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
4932         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4933
4934     // This block must be empty, except for the setcond inst, if it exists.
4935     // Ignore dbg intrinsics.
4936     BasicBlock::iterator I = BB->begin();
4937     // Ignore dbg intrinsics.
4938     while (isa<DbgInfoIntrinsic>(I))
4939       ++I;
4940     if (&*I == BI) {
4941       if (FoldValueComparisonIntoPredecessors(BI, Builder))
4942         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4943     } else if (&*I == cast<Instruction>(BI->getCondition())){
4944       ++I;
4945       // Ignore dbg intrinsics.
4946       while (isa<DbgInfoIntrinsic>(I))
4947         ++I;
4948       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
4949         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4950     }
4951   }
4952
4953   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
4954   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
4955     return true;
4956
4957   // If this basic block is ONLY a compare and a branch, and if a predecessor
4958   // branches to us and one of our successors, fold the comparison into the
4959   // predecessor and use logical operations to pick the right destination.
4960   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
4961     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4962
4963   // We have a conditional branch to two blocks that are only reachable
4964   // from BI.  We know that the condbr dominates the two blocks, so see if
4965   // there is any identical code in the "then" and "else" blocks.  If so, we
4966   // can hoist it up to the branching block.
4967   if (BI->getSuccessor(0)->getSinglePredecessor()) {
4968     if (BI->getSuccessor(1)->getSinglePredecessor()) {
4969       if (HoistThenElseCodeToIf(BI, TTI))
4970         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4971     } else {
4972       // If Successor #1 has multiple preds, we may be able to conditionally
4973       // execute Successor #0 if it branches to Successor #1.
4974       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
4975       if (Succ0TI->getNumSuccessors() == 1 &&
4976           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
4977         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
4978           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4979     }
4980   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
4981     // If Successor #0 has multiple preds, we may be able to conditionally
4982     // execute Successor #1 if it branches to Successor #0.
4983     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
4984     if (Succ1TI->getNumSuccessors() == 1 &&
4985         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
4986       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
4987         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4988   }
4989
4990   // If this is a branch on a phi node in the current block, thread control
4991   // through this block if any PHI node entries are constants.
4992   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4993     if (PN->getParent() == BI->getParent())
4994       if (FoldCondBranchOnPHI(BI, DL))
4995         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4996
4997   // Scan predecessor blocks for conditional branches.
4998   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4999     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5000       if (PBI != BI && PBI->isConditional())
5001         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5002           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5003
5004   // Look for diamond patterns.
5005   if (MergeCondStores)
5006     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5007       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5008         if (PBI != BI && PBI->isConditional())
5009           if (mergeConditionalStores(PBI, BI))
5010             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5011   
5012   return false;
5013 }
5014
5015 /// Check if passing a value to an instruction will cause undefined behavior.
5016 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5017   Constant *C = dyn_cast<Constant>(V);
5018   if (!C)
5019     return false;
5020
5021   if (I->use_empty())
5022     return false;
5023
5024   if (C->isNullValue()) {
5025     // Only look at the first use, avoid hurting compile time with long uselists
5026     User *Use = *I->user_begin();
5027
5028     // Now make sure that there are no instructions in between that can alter
5029     // control flow (eg. calls)
5030     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
5031       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5032         return false;
5033
5034     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5035     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5036       if (GEP->getPointerOperand() == I)
5037         return passingValueIsAlwaysUndefined(V, GEP);
5038
5039     // Look through bitcasts.
5040     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5041       return passingValueIsAlwaysUndefined(V, BC);
5042
5043     // Load from null is undefined.
5044     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5045       if (!LI->isVolatile())
5046         return LI->getPointerAddressSpace() == 0;
5047
5048     // Store to null is undefined.
5049     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5050       if (!SI->isVolatile())
5051         return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
5052   }
5053   return false;
5054 }
5055
5056 /// If BB has an incoming value that will always trigger undefined behavior
5057 /// (eg. null pointer dereference), remove the branch leading here.
5058 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5059   for (BasicBlock::iterator i = BB->begin();
5060        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5061     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5062       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5063         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5064         IRBuilder<> Builder(T);
5065         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5066           BB->removePredecessor(PHI->getIncomingBlock(i));
5067           // Turn uncoditional branches into unreachables and remove the dead
5068           // destination from conditional branches.
5069           if (BI->isUnconditional())
5070             Builder.CreateUnreachable();
5071           else
5072             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
5073                                                          BI->getSuccessor(0));
5074           BI->eraseFromParent();
5075           return true;
5076         }
5077         // TODO: SwitchInst.
5078       }
5079
5080   return false;
5081 }
5082
5083 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5084   bool Changed = false;
5085
5086   assert(BB && BB->getParent() && "Block not embedded in function!");
5087   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5088
5089   // Remove basic blocks that have no predecessors (except the entry block)...
5090   // or that just have themself as a predecessor.  These are unreachable.
5091   if ((pred_empty(BB) &&
5092        BB != &BB->getParent()->getEntryBlock()) ||
5093       BB->getSinglePredecessor() == BB) {
5094     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5095     DeleteDeadBlock(BB);
5096     return true;
5097   }
5098
5099   // Check to see if we can constant propagate this terminator instruction
5100   // away...
5101   Changed |= ConstantFoldTerminator(BB, true);
5102
5103   // Check for and eliminate duplicate PHI nodes in this block.
5104   Changed |= EliminateDuplicatePHINodes(BB);
5105
5106   // Check for and remove branches that will always cause undefined behavior.
5107   Changed |= removeUndefIntroducingPredecessor(BB);
5108
5109   // Merge basic blocks into their predecessor if there is only one distinct
5110   // pred, and if there is only one distinct successor of the predecessor, and
5111   // if there are no PHI nodes.
5112   //
5113   if (MergeBlockIntoPredecessor(BB))
5114     return true;
5115
5116   IRBuilder<> Builder(BB);
5117
5118   // If there is a trivial two-entry PHI node in this basic block, and we can
5119   // eliminate it, do so now.
5120   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5121     if (PN->getNumIncomingValues() == 2)
5122       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5123
5124   Builder.SetInsertPoint(BB->getTerminator());
5125   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5126     if (BI->isUnconditional()) {
5127       if (SimplifyUncondBranch(BI, Builder)) return true;
5128     } else {
5129       if (SimplifyCondBranch(BI, Builder)) return true;
5130     }
5131   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5132     if (SimplifyReturn(RI, Builder)) return true;
5133   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5134     if (SimplifyResume(RI, Builder)) return true;
5135   } else if (CleanupReturnInst *RI =
5136                dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5137     if (SimplifyCleanupReturn(RI)) return true;
5138   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5139     if (SimplifySwitch(SI, Builder)) return true;
5140   } else if (UnreachableInst *UI =
5141                dyn_cast<UnreachableInst>(BB->getTerminator())) {
5142     if (SimplifyUnreachable(UI)) return true;
5143   } else if (IndirectBrInst *IBI =
5144                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5145     if (SimplifyIndirectBr(IBI)) return true;
5146   }
5147
5148   return Changed;
5149 }
5150
5151 /// This function is used to do simplification of a CFG.
5152 /// For example, it adjusts branches to branches to eliminate the extra hop,
5153 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5154 /// of the CFG.  It returns true if a modification was made.
5155 ///
5156 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5157                        unsigned BonusInstThreshold, AssumptionCache *AC) {
5158   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5159                         BonusInstThreshold, AC).run(BB);
5160 }