1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AsmAnnotationWriter.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/InlineAsm.h"
24 #include "llvm/Instruction.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Module.h"
27 #include "llvm/ValueSymbolTable.h"
28 #include "llvm/TypeSymbolTable.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/Support/CFG.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Streams.h"
34 #include "llvm/Support/raw_ostream.h"
41 // Make virtual table appear in this compilation unit.
42 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
44 /// This class provides computation of slot numbers for LLVM Assembly writing.
48 /// ValueMap - A mapping of Values to slot numbers
49 typedef std::map<const Value*, unsigned> ValueMap;
52 /// TheModule - The module for which we are holding slot numbers
53 const Module* TheModule;
55 /// TheFunction - The function for which we are holding slot numbers
56 const Function* TheFunction;
57 bool FunctionProcessed;
59 /// mMap - The TypePlanes map for the module level data
63 /// fMap - The TypePlanes map for the function level data
68 /// Construct from a module
69 explicit SlotMachine(const Module *M);
70 /// Construct from a function, starting out in incorp state.
71 explicit SlotMachine(const Function *F);
73 /// Return the slot number of the specified value in it's type
74 /// plane. If something is not in the SlotMachine, return -1.
75 int getLocalSlot(const Value *V);
76 int getGlobalSlot(const GlobalValue *V);
78 /// If you'd like to deal with a function instead of just a module, use
79 /// this method to get its data into the SlotMachine.
80 void incorporateFunction(const Function *F) {
82 FunctionProcessed = false;
85 /// After calling incorporateFunction, use this method to remove the
86 /// most recently incorporated function from the SlotMachine. This
87 /// will reset the state of the machine back to just the module contents.
90 // Implementation Details
92 /// This function does the actual initialization.
93 inline void initialize();
95 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
96 void CreateModuleSlot(const GlobalValue *V);
98 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
99 void CreateFunctionSlot(const Value *V);
101 /// Add all of the module level global variables (and their initializers)
102 /// and function declarations, but not the contents of those functions.
103 void processModule();
105 /// Add all of the functions arguments, basic blocks, and instructions
106 void processFunction();
108 SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT
109 void operator=(const SlotMachine &); // DO NOT IMPLEMENT
112 } // end namespace llvm
114 char PrintModulePass::ID = 0;
115 static RegisterPass<PrintModulePass>
116 X("printm", "Print module to stderr");
117 char PrintFunctionPass::ID = 0;
118 static RegisterPass<PrintFunctionPass>
119 Y("print","Print function to stderr");
121 static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
122 std::map<const Type *, std::string> &TypeTable,
123 SlotMachine *Machine);
125 static const Module *getModuleFromVal(const Value *V) {
126 if (const Argument *MA = dyn_cast<Argument>(V))
127 return MA->getParent() ? MA->getParent()->getParent() : 0;
128 else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
129 return BB->getParent() ? BB->getParent()->getParent() : 0;
130 else if (const Instruction *I = dyn_cast<Instruction>(V)) {
131 const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
132 return M ? M->getParent() : 0;
133 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
134 return GV->getParent();
138 static SlotMachine *createSlotMachine(const Value *V) {
139 if (const Argument *FA = dyn_cast<Argument>(V)) {
140 return new SlotMachine(FA->getParent());
141 } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
142 return new SlotMachine(I->getParent()->getParent());
143 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
144 return new SlotMachine(BB->getParent());
145 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
146 return new SlotMachine(GV->getParent());
147 } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)){
148 return new SlotMachine(GA->getParent());
149 } else if (const Function *Func = dyn_cast<Function>(V)) {
150 return new SlotMachine(Func);
155 /// NameNeedsQuotes - Return true if the specified llvm name should be wrapped
157 static std::string QuoteNameIfNeeded(const std::string &Name) {
159 bool needsQuotes = Name[0] >= '0' && Name[0] <= '9';
160 // Scan the name to see if it needs quotes and to replace funky chars with
161 // their octal equivalent.
162 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
164 assert(C != '"' && "Illegal character in LLVM value name!");
165 if (isalnum(C) || C == '-' || C == '.' || C == '_')
167 else if (C == '\\') {
170 } else if (isprint(C)) {
176 char hex1 = (C >> 4) & 0x0F;
178 result += hex1 + '0';
180 result += hex1 - 10 + 'A';
181 char hex2 = C & 0x0F;
183 result += hex2 + '0';
185 result += hex2 - 10 + 'A';
189 result.insert(0,"\"");
201 /// getLLVMName - Turn the specified string into an 'LLVM name', which is either
202 /// prefixed with % (if the string only contains simple characters) or is
203 /// surrounded with ""'s (if it has special chars in it).
204 static std::string getLLVMName(const std::string &Name, PrefixType Prefix) {
205 assert(!Name.empty() && "Cannot get empty name!");
207 default: assert(0 && "Bad prefix!");
208 case GlobalPrefix: return '@' + QuoteNameIfNeeded(Name);
209 case LabelPrefix: return QuoteNameIfNeeded(Name);
210 case LocalPrefix: return '%' + QuoteNameIfNeeded(Name);
214 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
215 /// prefixed with % (if the string only contains simple characters) or is
216 /// surrounded with ""'s (if it has special chars in it). Print it out.
217 static void PrintLLVMName(std::ostream &OS, const ValueName *Name,
219 assert(Name && "Cannot get empty name!");
221 default: assert(0 && "Bad prefix!");
222 case GlobalPrefix: OS << '@'; break;
223 case LabelPrefix: break;
224 case LocalPrefix: OS << '%'; break;
227 // Scan the name to see if it needs quotes first.
228 const char *NameStr = Name->getKeyData();
229 unsigned NameLen = Name->getKeyLength();
231 bool NeedsQuotes = NameStr[0] >= '0' && NameStr[0] <= '9';
233 for (unsigned i = 0; i != NameLen; ++i) {
235 if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
242 // If we didn't need any quotes, just write out the name in one blast.
244 OS.write(NameStr, NameLen);
248 // Okay, we need quotes. Output the quotes and escape any scary characters as
251 for (unsigned i = 0; i != NameLen; ++i) {
253 assert(C != '"' && "Illegal character in LLVM value name!");
256 } else if (isprint(C)) {
260 char hex1 = (C >> 4) & 0x0F;
264 OS << (hex1 - 10 + 'A');
265 char hex2 = C & 0x0F;
269 OS << (hex2 - 10 + 'A');
275 static void PrintLLVMName(std::ostream &OS, const Value *V) {
276 PrintLLVMName(OS, V->getValueName(),
277 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
281 /// fillTypeNameTable - If the module has a symbol table, take all global types
282 /// and stuff their names into the TypeNames map.
284 static void fillTypeNameTable(const Module *M,
285 std::map<const Type *, std::string> &TypeNames) {
287 const TypeSymbolTable &ST = M->getTypeSymbolTable();
288 TypeSymbolTable::const_iterator TI = ST.begin();
289 for (; TI != ST.end(); ++TI) {
290 // As a heuristic, don't insert pointer to primitive types, because
291 // they are used too often to have a single useful name.
293 const Type *Ty = cast<Type>(TI->second);
294 if (!isa<PointerType>(Ty) ||
295 !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
296 !cast<PointerType>(Ty)->getElementType()->isInteger() ||
297 isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
298 TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first, LocalPrefix)));
304 static void calcTypeName(const Type *Ty,
305 std::vector<const Type *> &TypeStack,
306 std::map<const Type *, std::string> &TypeNames,
307 std::string & Result){
308 if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
309 Result += Ty->getDescription(); // Base case
313 // Check to see if the type is named.
314 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
315 if (I != TypeNames.end()) {
320 if (isa<OpaqueType>(Ty)) {
325 // Check to see if the Type is already on the stack...
326 unsigned Slot = 0, CurSize = TypeStack.size();
327 while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
329 // This is another base case for the recursion. In this case, we know
330 // that we have looped back to a type that we have previously visited.
331 // Generate the appropriate upreference to handle this.
332 if (Slot < CurSize) {
333 Result += "\\" + utostr(CurSize-Slot); // Here's the upreference
337 TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
339 switch (Ty->getTypeID()) {
340 case Type::IntegerTyID: {
341 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
342 Result += "i" + utostr(BitWidth);
345 case Type::FunctionTyID: {
346 const FunctionType *FTy = cast<FunctionType>(Ty);
347 calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
349 for (FunctionType::param_iterator I = FTy->param_begin(),
350 E = FTy->param_end(); I != E; ++I) {
351 if (I != FTy->param_begin())
353 calcTypeName(*I, TypeStack, TypeNames, Result);
355 if (FTy->isVarArg()) {
356 if (FTy->getNumParams()) Result += ", ";
362 case Type::StructTyID: {
363 const StructType *STy = cast<StructType>(Ty);
367 for (StructType::element_iterator I = STy->element_begin(),
368 E = STy->element_end(); I != E; ++I) {
369 if (I != STy->element_begin())
371 calcTypeName(*I, TypeStack, TypeNames, Result);
378 case Type::PointerTyID: {
379 const PointerType *PTy = cast<PointerType>(Ty);
380 calcTypeName(PTy->getElementType(),
381 TypeStack, TypeNames, Result);
382 if (unsigned AddressSpace = PTy->getAddressSpace())
383 Result += " addrspace(" + utostr(AddressSpace) + ")";
387 case Type::ArrayTyID: {
388 const ArrayType *ATy = cast<ArrayType>(Ty);
389 Result += "[" + utostr(ATy->getNumElements()) + " x ";
390 calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
394 case Type::VectorTyID: {
395 const VectorType *PTy = cast<VectorType>(Ty);
396 Result += "<" + utostr(PTy->getNumElements()) + " x ";
397 calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
401 case Type::OpaqueTyID:
405 Result += "<unrecognized-type>";
409 TypeStack.pop_back(); // Remove self from stack...
413 /// printTypeInt - The internal guts of printing out a type that has a
414 /// potentially named portion.
416 static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
417 std::map<const Type *, std::string> &TypeNames) {
418 // Primitive types always print out their description, regardless of whether
419 // they have been named or not.
421 if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)))
422 return Out << Ty->getDescription();
424 // Check to see if the type is named.
425 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
426 if (I != TypeNames.end()) return Out << I->second;
428 // Otherwise we have a type that has not been named but is a derived type.
429 // Carefully recurse the type hierarchy to print out any contained symbolic
432 std::vector<const Type *> TypeStack;
433 std::string TypeName;
434 calcTypeName(Ty, TypeStack, TypeNames, TypeName);
435 TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
436 return (Out << TypeName);
440 /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
441 /// type, iff there is an entry in the modules symbol table for the specified
442 /// type or one of it's component types. This is slower than a simple x << Type
444 std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
448 // If they want us to print out a type, but there is no context, we can't
449 // print it symbolically.
451 return Out << Ty->getDescription();
453 std::map<const Type *, std::string> TypeNames;
454 fillTypeNameTable(M, TypeNames);
455 return printTypeInt(Out, Ty, TypeNames);
458 // PrintEscapedString - Print each character of the specified string, escaping
459 // it if it is not printable or if it is an escape char.
460 static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
461 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
462 unsigned char C = Str[i];
463 if (isprint(C) && C != '"' && C != '\\') {
467 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
468 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
473 static const char *getPredicateText(unsigned predicate) {
474 const char * pred = "unknown";
476 case FCmpInst::FCMP_FALSE: pred = "false"; break;
477 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
478 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
479 case FCmpInst::FCMP_OGE: pred = "oge"; break;
480 case FCmpInst::FCMP_OLT: pred = "olt"; break;
481 case FCmpInst::FCMP_OLE: pred = "ole"; break;
482 case FCmpInst::FCMP_ONE: pred = "one"; break;
483 case FCmpInst::FCMP_ORD: pred = "ord"; break;
484 case FCmpInst::FCMP_UNO: pred = "uno"; break;
485 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
486 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
487 case FCmpInst::FCMP_UGE: pred = "uge"; break;
488 case FCmpInst::FCMP_ULT: pred = "ult"; break;
489 case FCmpInst::FCMP_ULE: pred = "ule"; break;
490 case FCmpInst::FCMP_UNE: pred = "une"; break;
491 case FCmpInst::FCMP_TRUE: pred = "true"; break;
492 case ICmpInst::ICMP_EQ: pred = "eq"; break;
493 case ICmpInst::ICMP_NE: pred = "ne"; break;
494 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
495 case ICmpInst::ICMP_SGE: pred = "sge"; break;
496 case ICmpInst::ICMP_SLT: pred = "slt"; break;
497 case ICmpInst::ICMP_SLE: pred = "sle"; break;
498 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
499 case ICmpInst::ICMP_UGE: pred = "uge"; break;
500 case ICmpInst::ICMP_ULT: pred = "ult"; break;
501 case ICmpInst::ICMP_ULE: pred = "ule"; break;
506 static void WriteConstantInt(std::ostream &Out, const Constant *CV,
507 std::map<const Type *, std::string> &TypeTable,
508 SlotMachine *Machine) {
509 const int IndentSize = 4;
510 static std::string Indent = "\n";
511 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
512 if (CI->getType() == Type::Int1Ty)
513 Out << (CI->getZExtValue() ? "true" : "false");
515 Out << CI->getValue().toStringSigned(10);
516 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
517 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
518 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
519 // We would like to output the FP constant value in exponential notation,
520 // but we cannot do this if doing so will lose precision. Check here to
521 // make sure that we only output it in exponential format if we can parse
522 // the value back and get the same value.
524 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
525 double Val = (isDouble) ? CFP->getValueAPF().convertToDouble() :
526 CFP->getValueAPF().convertToFloat();
527 std::string StrVal = ftostr(CFP->getValueAPF());
529 // Check to make sure that the stringized number is not some string like
530 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
531 // that the string matches the "[-+]?[0-9]" regex.
533 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
534 ((StrVal[0] == '-' || StrVal[0] == '+') &&
535 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
536 // Reparse stringized version!
537 if (atof(StrVal.c_str()) == Val) {
542 // Otherwise we could not reparse it to exactly the same value, so we must
543 // output the string in hexadecimal format!
544 assert(sizeof(double) == sizeof(uint64_t) &&
545 "assuming that double is 64 bits!");
546 Out << "0x" << utohexstr(DoubleToBits(Val));
548 // Some form of long double. These appear as a magic letter identifying
549 // the type, then a fixed number of hex digits.
551 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended)
553 else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
555 else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
558 assert(0 && "Unsupported floating point type");
559 // api needed to prevent premature destruction
560 APInt api = CFP->getValueAPF().convertToAPInt();
561 const uint64_t* p = api.getRawData();
564 int width = api.getBitWidth();
565 for (int j=0; j<width; j+=4, shiftcount-=4) {
566 unsigned int nibble = (word>>shiftcount) & 15;
568 Out << (unsigned char)(nibble + '0');
570 Out << (unsigned char)(nibble - 10 + 'A');
571 if (shiftcount == 0 && j+4 < width) {
575 shiftcount = width-j-4;
579 } else if (isa<ConstantAggregateZero>(CV)) {
580 Out << "zeroinitializer";
581 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
582 // As a special case, print the array as a string if it is an array of
583 // i8 with ConstantInt values.
585 const Type *ETy = CA->getType()->getElementType();
586 if (CA->isString()) {
588 PrintEscapedString(CA->getAsString(), Out);
591 } else { // Cannot output in string format...
593 if (CA->getNumOperands()) {
595 printTypeInt(Out, ETy, TypeTable);
596 WriteAsOperandInternal(Out, CA->getOperand(0),
598 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
600 printTypeInt(Out, ETy, TypeTable);
601 WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
606 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
607 if (CS->getType()->isPacked())
610 unsigned N = CS->getNumOperands();
613 Indent += std::string(IndentSize, ' ');
618 printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
620 WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
622 for (unsigned i = 1; i < N; i++) {
624 if (N > 2) Out << Indent;
625 printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
627 WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
629 if (N > 2) Indent.resize(Indent.size() - IndentSize);
633 if (CS->getType()->isPacked())
635 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
636 const Type *ETy = CP->getType()->getElementType();
637 assert(CP->getNumOperands() > 0 &&
638 "Number of operands for a PackedConst must be > 0");
641 printTypeInt(Out, ETy, TypeTable);
642 WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
643 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
645 printTypeInt(Out, ETy, TypeTable);
646 WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
649 } else if (isa<ConstantPointerNull>(CV)) {
652 } else if (isa<UndefValue>(CV)) {
655 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
656 Out << CE->getOpcodeName();
658 Out << " " << getPredicateText(CE->getPredicate());
661 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
662 printTypeInt(Out, (*OI)->getType(), TypeTable);
663 WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
664 if (OI+1 != CE->op_end())
668 if (CE->hasIndices()) {
669 const SmallVector<unsigned, 4> &Indices = CE->getIndices();
670 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
671 Out << ", " << Indices[i];
676 printTypeInt(Out, CE->getType(), TypeTable);
682 Out << "<placeholder or erroneous Constant>";
687 /// WriteAsOperand - Write the name of the specified value out to the specified
688 /// ostream. This can be useful when you just want to print int %reg126, not
689 /// the whole instruction that generated it.
691 static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
692 std::map<const Type*, std::string> &TypeTable,
693 SlotMachine *Machine) {
696 PrintLLVMName(Out, V);
700 const Constant *CV = dyn_cast<Constant>(V);
701 if (CV && !isa<GlobalValue>(CV)) {
702 WriteConstantInt(Out, CV, TypeTable, Machine);
703 } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
705 if (IA->hasSideEffects())
706 Out << "sideeffect ";
708 PrintEscapedString(IA->getAsmString(), Out);
710 PrintEscapedString(IA->getConstraintString(), Out);
716 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
717 Slot = Machine->getGlobalSlot(GV);
720 Slot = Machine->getLocalSlot(V);
723 Machine = createSlotMachine(V);
725 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
726 Slot = Machine->getGlobalSlot(GV);
729 Slot = Machine->getLocalSlot(V);
737 Out << Prefix << Slot;
743 /// WriteAsOperand - Write the name of the specified value out to the specified
744 /// ostream. This can be useful when you just want to print int %reg126, not
745 /// the whole instruction that generated it.
747 std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
748 bool PrintType, const Module *Context) {
749 std::map<const Type *, std::string> TypeNames;
750 if (Context == 0) Context = getModuleFromVal(V);
753 fillTypeNameTable(Context, TypeNames);
756 printTypeInt(Out, V->getType(), TypeNames);
758 WriteAsOperandInternal(Out, V, TypeNames, 0);
765 class AssemblyWriter {
767 SlotMachine &Machine;
768 const Module *TheModule;
769 std::map<const Type *, std::string> TypeNames;
770 AssemblyAnnotationWriter *AnnotationWriter;
772 inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
773 AssemblyAnnotationWriter *AAW)
774 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
776 // If the module has a symbol table, take all global types and stuff their
777 // names into the TypeNames map.
779 fillTypeNameTable(M, TypeNames);
782 inline void write(const Module *M) { printModule(M); }
783 inline void write(const GlobalVariable *G) { printGlobal(G); }
784 inline void write(const GlobalAlias *G) { printAlias(G); }
785 inline void write(const Function *F) { printFunction(F); }
786 inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
787 inline void write(const Instruction *I) { printInstruction(*I); }
788 inline void write(const Type *Ty) { printType(Ty); }
790 void writeOperand(const Value *Op, bool PrintType);
791 void writeParamOperand(const Value *Operand, ParameterAttributes Attrs);
793 const Module* getModule() { return TheModule; }
796 void printModule(const Module *M);
797 void printTypeSymbolTable(const TypeSymbolTable &ST);
798 void printGlobal(const GlobalVariable *GV);
799 void printAlias(const GlobalAlias *GV);
800 void printFunction(const Function *F);
801 void printArgument(const Argument *FA, ParameterAttributes Attrs);
802 void printBasicBlock(const BasicBlock *BB);
803 void printInstruction(const Instruction &I);
805 // printType - Go to extreme measures to attempt to print out a short,
806 // symbolic version of a type name.
808 std::ostream &printType(const Type *Ty) {
809 return printTypeInt(Out, Ty, TypeNames);
812 // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
813 // without considering any symbolic types that we may have equal to it.
815 std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
817 // printInfoComment - Print a little comment after the instruction indicating
818 // which slot it occupies.
819 void printInfoComment(const Value &V);
821 } // end of llvm namespace
823 /// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
824 /// without considering any symbolic types that we may have equal to it.
826 std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
827 if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
828 Out << "i" << utostr(ITy->getBitWidth());
829 else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
830 printType(FTy->getReturnType());
832 for (FunctionType::param_iterator I = FTy->param_begin(),
833 E = FTy->param_end(); I != E; ++I) {
834 if (I != FTy->param_begin())
838 if (FTy->isVarArg()) {
839 if (FTy->getNumParams()) Out << ", ";
843 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
847 for (StructType::element_iterator I = STy->element_begin(),
848 E = STy->element_end(); I != E; ++I) {
849 if (I != STy->element_begin())
856 } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
857 printType(PTy->getElementType());
858 if (unsigned AddressSpace = PTy->getAddressSpace())
859 Out << " addrspace(" << AddressSpace << ")";
861 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
862 Out << '[' << ATy->getNumElements() << " x ";
863 printType(ATy->getElementType()) << ']';
864 } else if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
865 Out << '<' << PTy->getNumElements() << " x ";
866 printType(PTy->getElementType()) << '>';
868 else if (isa<OpaqueType>(Ty)) {
871 if (!Ty->isPrimitiveType())
872 Out << "<unknown derived type>";
879 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
881 Out << "<null operand!>";
883 if (PrintType) { Out << ' '; printType(Operand->getType()); }
884 WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
888 void AssemblyWriter::writeParamOperand(const Value *Operand,
889 ParameterAttributes Attrs) {
891 Out << "<null operand!>";
895 printType(Operand->getType());
896 // Print parameter attributes list
897 if (Attrs != ParamAttr::None)
898 Out << ' ' << ParamAttr::getAsString(Attrs);
900 WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
904 void AssemblyWriter::printModule(const Module *M) {
905 if (!M->getModuleIdentifier().empty() &&
906 // Don't print the ID if it will start a new line (which would
907 // require a comment char before it).
908 M->getModuleIdentifier().find('\n') == std::string::npos)
909 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
911 if (!M->getDataLayout().empty())
912 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
913 if (!M->getTargetTriple().empty())
914 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
916 if (!M->getModuleInlineAsm().empty()) {
917 // Split the string into lines, to make it easier to read the .ll file.
918 std::string Asm = M->getModuleInlineAsm();
920 size_t NewLine = Asm.find_first_of('\n', CurPos);
921 while (NewLine != std::string::npos) {
922 // We found a newline, print the portion of the asm string from the
923 // last newline up to this newline.
924 Out << "module asm \"";
925 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
929 NewLine = Asm.find_first_of('\n', CurPos);
931 Out << "module asm \"";
932 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
936 // Loop over the dependent libraries and emit them.
937 Module::lib_iterator LI = M->lib_begin();
938 Module::lib_iterator LE = M->lib_end();
940 Out << "deplibs = [ ";
942 Out << '"' << *LI << '"';
950 // Loop over the symbol table, emitting all named constants.
951 printTypeSymbolTable(M->getTypeSymbolTable());
953 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
957 // Output all aliases.
958 if (!M->alias_empty()) Out << "\n";
959 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
963 // Output all of the functions.
964 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
968 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
970 PrintLLVMName(Out, GV);
974 if (!GV->hasInitializer()) {
975 switch (GV->getLinkage()) {
976 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
977 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
978 default: Out << "external "; break;
981 switch (GV->getLinkage()) {
982 case GlobalValue::InternalLinkage: Out << "internal "; break;
983 case GlobalValue::CommonLinkage: Out << "common "; break;
984 case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
985 case GlobalValue::WeakLinkage: Out << "weak "; break;
986 case GlobalValue::AppendingLinkage: Out << "appending "; break;
987 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
988 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
989 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
990 case GlobalValue::ExternalLinkage: break;
991 case GlobalValue::GhostLinkage:
992 cerr << "GhostLinkage not allowed in AsmWriter!\n";
995 switch (GV->getVisibility()) {
996 default: assert(0 && "Invalid visibility style!");
997 case GlobalValue::DefaultVisibility: break;
998 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
999 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1003 if (GV->isThreadLocal()) Out << "thread_local ";
1004 Out << (GV->isConstant() ? "constant " : "global ");
1005 printType(GV->getType()->getElementType());
1007 if (GV->hasInitializer())
1008 writeOperand(GV->getInitializer(), false);
1010 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1011 Out << " addrspace(" << AddressSpace << ") ";
1013 if (GV->hasSection())
1014 Out << ", section \"" << GV->getSection() << '"';
1015 if (GV->getAlignment())
1016 Out << ", align " << GV->getAlignment();
1018 printInfoComment(*GV);
1022 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1023 // Don't crash when dumping partially built GA
1025 Out << "<<nameless>> = ";
1027 PrintLLVMName(Out, GA);
1030 switch (GA->getVisibility()) {
1031 default: assert(0 && "Invalid visibility style!");
1032 case GlobalValue::DefaultVisibility: break;
1033 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1034 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1039 switch (GA->getLinkage()) {
1040 case GlobalValue::WeakLinkage: Out << "weak "; break;
1041 case GlobalValue::InternalLinkage: Out << "internal "; break;
1042 case GlobalValue::ExternalLinkage: break;
1044 assert(0 && "Invalid alias linkage");
1047 const Constant *Aliasee = GA->getAliasee();
1049 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1050 printType(GV->getType());
1052 PrintLLVMName(Out, GV);
1053 } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1054 printType(F->getFunctionType());
1058 PrintLLVMName(Out, F);
1061 } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1062 printType(GA->getType());
1064 PrintLLVMName(Out, GA);
1066 const ConstantExpr *CE = 0;
1067 if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
1068 (CE->getOpcode() == Instruction::BitCast)) {
1069 writeOperand(CE, false);
1071 assert(0 && "Unsupported aliasee");
1074 printInfoComment(*GA);
1078 void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1080 for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1082 Out << "\t" << getLLVMName(TI->first, LocalPrefix) << " = type ";
1084 // Make sure we print out at least one level of the type structure, so
1085 // that we do not get %FILE = type %FILE
1087 printTypeAtLeastOneLevel(TI->second) << "\n";
1091 /// printFunction - Print all aspects of a function.
1093 void AssemblyWriter::printFunction(const Function *F) {
1094 // Print out the return type and name...
1097 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1099 if (F->isDeclaration())
1104 switch (F->getLinkage()) {
1105 case GlobalValue::InternalLinkage: Out << "internal "; break;
1106 case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
1107 case GlobalValue::WeakLinkage: Out << "weak "; break;
1108 case GlobalValue::CommonLinkage: Out << "common "; break;
1109 case GlobalValue::AppendingLinkage: Out << "appending "; break;
1110 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
1111 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
1112 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1113 case GlobalValue::ExternalLinkage: break;
1114 case GlobalValue::GhostLinkage:
1115 cerr << "GhostLinkage not allowed in AsmWriter!\n";
1118 switch (F->getVisibility()) {
1119 default: assert(0 && "Invalid visibility style!");
1120 case GlobalValue::DefaultVisibility: break;
1121 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1122 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1125 // Print the calling convention.
1126 switch (F->getCallingConv()) {
1127 case CallingConv::C: break; // default
1128 case CallingConv::Fast: Out << "fastcc "; break;
1129 case CallingConv::Cold: Out << "coldcc "; break;
1130 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
1131 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1132 case CallingConv::X86_SSECall: Out << "x86_ssecallcc "; break;
1133 default: Out << "cc" << F->getCallingConv() << " "; break;
1136 const FunctionType *FT = F->getFunctionType();
1137 const PAListPtr &Attrs = F->getParamAttrs();
1138 printType(F->getReturnType()) << ' ';
1139 if (!F->getName().empty())
1140 PrintLLVMName(Out, F);
1144 Machine.incorporateFunction(F);
1146 // Loop over the arguments, printing them...
1149 if (!F->isDeclaration()) {
1150 // If this isn't a declaration, print the argument names as well.
1151 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1153 // Insert commas as we go... the first arg doesn't get a comma
1154 if (I != F->arg_begin()) Out << ", ";
1155 printArgument(I, Attrs.getParamAttrs(Idx));
1159 // Otherwise, print the types from the function type.
1160 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1161 // Insert commas as we go... the first arg doesn't get a comma
1165 printType(FT->getParamType(i));
1167 ParameterAttributes ArgAttrs = Attrs.getParamAttrs(i+1);
1168 if (ArgAttrs != ParamAttr::None)
1169 Out << ' ' << ParamAttr::getAsString(ArgAttrs);
1173 // Finish printing arguments...
1174 if (FT->isVarArg()) {
1175 if (FT->getNumParams()) Out << ", ";
1176 Out << "..."; // Output varargs portion of signature!
1179 ParameterAttributes RetAttrs = Attrs.getParamAttrs(0);
1180 if (RetAttrs != ParamAttr::None)
1181 Out << ' ' << ParamAttr::getAsString(Attrs.getParamAttrs(0));
1182 if (F->hasSection())
1183 Out << " section \"" << F->getSection() << '"';
1184 if (F->getAlignment())
1185 Out << " align " << F->getAlignment();
1186 if (F->hasCollector())
1187 Out << " gc \"" << F->getCollector() << '"';
1189 if (F->isDeclaration()) {
1194 // Output all of its basic blocks... for the function
1195 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1201 Machine.purgeFunction();
1204 /// printArgument - This member is called for every argument that is passed into
1205 /// the function. Simply print it out
1207 void AssemblyWriter::printArgument(const Argument *Arg,
1208 ParameterAttributes Attrs) {
1210 printType(Arg->getType());
1212 // Output parameter attributes list
1213 if (Attrs != ParamAttr::None)
1214 Out << ' ' << ParamAttr::getAsString(Attrs);
1216 // Output name, if available...
1217 if (Arg->hasName()) {
1219 PrintLLVMName(Out, Arg);
1223 /// printBasicBlock - This member is called for each basic block in a method.
1225 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1226 if (BB->hasName()) { // Print out the label if it exists...
1228 PrintLLVMName(Out, BB->getValueName(), LabelPrefix);
1230 } else if (!BB->use_empty()) { // Don't print block # of no uses...
1231 Out << "\n; <label>:";
1232 int Slot = Machine.getLocalSlot(BB);
1239 if (BB->getParent() == 0)
1240 Out << "\t\t; Error: Block without parent!";
1241 else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
1242 // Output predecessors for the block...
1244 pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1247 Out << " No predecessors!";
1250 writeOperand(*PI, false);
1251 for (++PI; PI != PE; ++PI) {
1253 writeOperand(*PI, false);
1260 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1262 // Output all of the instructions in the basic block...
1263 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1264 printInstruction(*I);
1266 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1270 /// printInfoComment - Print a little comment after the instruction indicating
1271 /// which slot it occupies.
1273 void AssemblyWriter::printInfoComment(const Value &V) {
1274 if (V.getType() != Type::VoidTy) {
1276 printType(V.getType()) << '>';
1280 if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1281 SlotNum = Machine.getGlobalSlot(GV);
1283 SlotNum = Machine.getLocalSlot(&V);
1287 Out << ':' << SlotNum; // Print out the def slot taken.
1289 Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses
1293 // This member is called for each Instruction in a function..
1294 void AssemblyWriter::printInstruction(const Instruction &I) {
1295 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1299 // Print out name if it exists...
1301 PrintLLVMName(Out, &I);
1305 // If this is a volatile load or store, print out the volatile marker.
1306 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
1307 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1309 } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1310 // If this is a call, check if it's a tail call.
1314 // Print out the opcode...
1315 Out << I.getOpcodeName();
1317 // Print out the compare instruction predicates
1318 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1319 Out << " " << getPredicateText(CI->getPredicate());
1321 // Print out the type of the operands...
1322 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1324 // Special case conditional branches to swizzle the condition out to the front
1325 if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1326 writeOperand(I.getOperand(2), true);
1328 writeOperand(Operand, true);
1330 writeOperand(I.getOperand(1), true);
1332 } else if (isa<SwitchInst>(I)) {
1333 // Special case switch statement to get formatting nice and correct...
1334 writeOperand(Operand , true); Out << ',';
1335 writeOperand(I.getOperand(1), true); Out << " [";
1337 for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1339 writeOperand(I.getOperand(op ), true); Out << ',';
1340 writeOperand(I.getOperand(op+1), true);
1343 } else if (isa<PHINode>(I)) {
1345 printType(I.getType());
1348 for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1349 if (op) Out << ", ";
1351 writeOperand(I.getOperand(op ), false); Out << ',';
1352 writeOperand(I.getOperand(op+1), false); Out << " ]";
1354 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1355 writeOperand(I.getOperand(0), true);
1356 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1358 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1359 writeOperand(I.getOperand(0), true); Out << ',';
1360 writeOperand(I.getOperand(1), true);
1361 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1363 } else if (isa<ReturnInst>(I) && !Operand) {
1365 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1366 // Print the calling convention being used.
1367 switch (CI->getCallingConv()) {
1368 case CallingConv::C: break; // default
1369 case CallingConv::Fast: Out << " fastcc"; break;
1370 case CallingConv::Cold: Out << " coldcc"; break;
1371 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1372 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1373 case CallingConv::X86_SSECall: Out << " x86_ssecallcc"; break;
1374 default: Out << " cc" << CI->getCallingConv(); break;
1377 const PointerType *PTy = cast<PointerType>(Operand->getType());
1378 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1379 const Type *RetTy = FTy->getReturnType();
1380 const PAListPtr &PAL = CI->getParamAttrs();
1382 // If possible, print out the short form of the call instruction. We can
1383 // only do this if the first argument is a pointer to a nonvararg function,
1384 // and if the return type is not a pointer to a function.
1386 if (!FTy->isVarArg() &&
1387 (!isa<PointerType>(RetTy) ||
1388 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1389 Out << ' '; printType(RetTy);
1390 writeOperand(Operand, false);
1392 writeOperand(Operand, true);
1395 for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1398 writeParamOperand(I.getOperand(op), PAL.getParamAttrs(op));
1401 if (PAL.getParamAttrs(0) != ParamAttr::None)
1402 Out << ' ' << ParamAttr::getAsString(PAL.getParamAttrs(0));
1403 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1404 const PointerType *PTy = cast<PointerType>(Operand->getType());
1405 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1406 const Type *RetTy = FTy->getReturnType();
1407 const PAListPtr &PAL = II->getParamAttrs();
1409 // Print the calling convention being used.
1410 switch (II->getCallingConv()) {
1411 case CallingConv::C: break; // default
1412 case CallingConv::Fast: Out << " fastcc"; break;
1413 case CallingConv::Cold: Out << " coldcc"; break;
1414 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
1415 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1416 case CallingConv::X86_SSECall: Out << "x86_ssecallcc "; break;
1417 default: Out << " cc" << II->getCallingConv(); break;
1420 // If possible, print out the short form of the invoke instruction. We can
1421 // only do this if the first argument is a pointer to a nonvararg function,
1422 // and if the return type is not a pointer to a function.
1424 if (!FTy->isVarArg() &&
1425 (!isa<PointerType>(RetTy) ||
1426 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1427 Out << ' '; printType(RetTy);
1428 writeOperand(Operand, false);
1430 writeOperand(Operand, true);
1434 for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1437 writeParamOperand(I.getOperand(op), PAL.getParamAttrs(op-2));
1441 if (PAL.getParamAttrs(0) != ParamAttr::None)
1442 Out << ' ' << ParamAttr::getAsString(PAL.getParamAttrs(0));
1443 Out << "\n\t\t\tto";
1444 writeOperand(II->getNormalDest(), true);
1446 writeOperand(II->getUnwindDest(), true);
1448 } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1450 printType(AI->getType()->getElementType());
1451 if (AI->isArrayAllocation()) {
1453 writeOperand(AI->getArraySize(), true);
1455 if (AI->getAlignment()) {
1456 Out << ", align " << AI->getAlignment();
1458 } else if (isa<CastInst>(I)) {
1459 if (Operand) writeOperand(Operand, true); // Work with broken code
1461 printType(I.getType());
1462 } else if (isa<VAArgInst>(I)) {
1463 if (Operand) writeOperand(Operand, true); // Work with broken code
1465 printType(I.getType());
1466 } else if (Operand) { // Print the normal way...
1468 // PrintAllTypes - Instructions who have operands of all the same type
1469 // omit the type from all but the first operand. If the instruction has
1470 // different type operands (for example br), then they are all printed.
1471 bool PrintAllTypes = false;
1472 const Type *TheType = Operand->getType();
1474 // Select, Store and ShuffleVector always print all types.
1475 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1476 || isa<ReturnInst>(I)) {
1477 PrintAllTypes = true;
1479 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1480 Operand = I.getOperand(i);
1481 if (Operand->getType() != TheType) {
1482 PrintAllTypes = true; // We have differing types! Print them all!
1488 if (!PrintAllTypes) {
1493 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1495 writeOperand(I.getOperand(i), PrintAllTypes);
1499 // Print post operand alignment for load/store
1500 if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1501 Out << ", align " << cast<LoadInst>(I).getAlignment();
1502 } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1503 Out << ", align " << cast<StoreInst>(I).getAlignment();
1506 printInfoComment(I);
1511 //===----------------------------------------------------------------------===//
1512 // External Interface declarations
1513 //===----------------------------------------------------------------------===//
1515 void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1516 SlotMachine SlotTable(this);
1517 AssemblyWriter W(o, SlotTable, this, AAW);
1521 void GlobalVariable::print(std::ostream &o) const {
1522 SlotMachine SlotTable(getParent());
1523 AssemblyWriter W(o, SlotTable, getParent(), 0);
1527 void GlobalAlias::print(std::ostream &o) const {
1528 SlotMachine SlotTable(getParent());
1529 AssemblyWriter W(o, SlotTable, getParent(), 0);
1533 void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1534 SlotMachine SlotTable(getParent());
1535 AssemblyWriter W(o, SlotTable, getParent(), AAW);
1540 void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1541 WriteAsOperand(o, this, true, 0);
1544 void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1545 SlotMachine SlotTable(getParent());
1546 AssemblyWriter W(o, SlotTable,
1547 getParent() ? getParent()->getParent() : 0, AAW);
1551 void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1552 const Function *F = getParent() ? getParent()->getParent() : 0;
1553 SlotMachine SlotTable(F);
1554 AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1559 void Constant::print(std::ostream &o) const {
1560 if (this == 0) { o << "<null> constant value\n"; return; }
1562 o << ' ' << getType()->getDescription() << ' ';
1564 std::map<const Type *, std::string> TypeTable;
1565 WriteConstantInt(o, this, TypeTable, 0);
1568 void Type::print(std::ostream &o) const {
1572 o << getDescription();
1575 void Argument::print(std::ostream &o) const {
1576 WriteAsOperand(o, this, true, getParent() ? getParent()->getParent() : 0);
1579 // Value::dump - allow easy printing of Values from the debugger.
1580 // Located here because so much of the needed functionality is here.
1581 void Value::dump() const { print(*cerr.stream()); cerr << '\n'; }
1583 // Type::dump - allow easy printing of Values from the debugger.
1584 // Located here because so much of the needed functionality is here.
1585 void Type::dump() const { print(*cerr.stream()); cerr << '\n'; }
1587 //===----------------------------------------------------------------------===//
1588 // SlotMachine Implementation
1589 //===----------------------------------------------------------------------===//
1592 #define SC_DEBUG(X) cerr << X
1597 // Module level constructor. Causes the contents of the Module (sans functions)
1598 // to be added to the slot table.
1599 SlotMachine::SlotMachine(const Module *M)
1600 : TheModule(M) ///< Saved for lazy initialization.
1602 , FunctionProcessed(false)
1603 , mNext(0), fMap(), fNext(0)
1607 // Function level constructor. Causes the contents of the Module and the one
1608 // function provided to be added to the slot table.
1609 SlotMachine::SlotMachine(const Function *F)
1610 : TheModule(F ? F->getParent() : 0) ///< Saved for lazy initialization
1611 , TheFunction(F) ///< Saved for lazy initialization
1612 , FunctionProcessed(false)
1613 , mNext(0), fMap(), fNext(0)
1617 inline void SlotMachine::initialize() {
1620 TheModule = 0; ///< Prevent re-processing next time we're called.
1622 if (TheFunction && !FunctionProcessed)
1626 // Iterate through all the global variables, functions, and global
1627 // variable initializers and create slots for them.
1628 void SlotMachine::processModule() {
1629 SC_DEBUG("begin processModule!\n");
1631 // Add all of the unnamed global variables to the value table.
1632 for (Module::const_global_iterator I = TheModule->global_begin(),
1633 E = TheModule->global_end(); I != E; ++I)
1635 CreateModuleSlot(I);
1637 // Add all the unnamed functions to the table.
1638 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1641 CreateModuleSlot(I);
1643 SC_DEBUG("end processModule!\n");
1647 // Process the arguments, basic blocks, and instructions of a function.
1648 void SlotMachine::processFunction() {
1649 SC_DEBUG("begin processFunction!\n");
1652 // Add all the function arguments with no names.
1653 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1654 AE = TheFunction->arg_end(); AI != AE; ++AI)
1656 CreateFunctionSlot(AI);
1658 SC_DEBUG("Inserting Instructions:\n");
1660 // Add all of the basic blocks and instructions with no names.
1661 for (Function::const_iterator BB = TheFunction->begin(),
1662 E = TheFunction->end(); BB != E; ++BB) {
1664 CreateFunctionSlot(BB);
1665 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1666 if (I->getType() != Type::VoidTy && !I->hasName())
1667 CreateFunctionSlot(I);
1670 FunctionProcessed = true;
1672 SC_DEBUG("end processFunction!\n");
1675 /// Clean up after incorporating a function. This is the only way to get out of
1676 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1677 /// incorporation state is indicated by TheFunction != 0.
1678 void SlotMachine::purgeFunction() {
1679 SC_DEBUG("begin purgeFunction!\n");
1680 fMap.clear(); // Simply discard the function level map
1682 FunctionProcessed = false;
1683 SC_DEBUG("end purgeFunction!\n");
1686 /// getGlobalSlot - Get the slot number of a global value.
1687 int SlotMachine::getGlobalSlot(const GlobalValue *V) {
1688 // Check for uninitialized state and do lazy initialization.
1691 // Find the type plane in the module map
1692 ValueMap::const_iterator MI = mMap.find(V);
1693 if (MI == mMap.end()) return -1;
1699 /// getLocalSlot - Get the slot number for a value that is local to a function.
1700 int SlotMachine::getLocalSlot(const Value *V) {
1701 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1703 // Check for uninitialized state and do lazy initialization.
1706 ValueMap::const_iterator FI = fMap.find(V);
1707 if (FI == fMap.end()) return -1;
1713 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1714 void SlotMachine::CreateModuleSlot(const GlobalValue *V) {
1715 assert(V && "Can't insert a null Value into SlotMachine!");
1716 assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
1717 assert(!V->hasName() && "Doesn't need a slot!");
1719 unsigned DestSlot = mNext++;
1722 SC_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1724 // G = Global, F = Function, A = Alias, o = other
1725 SC_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1726 (isa<Function>(V) ? 'F' :
1727 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
1731 /// CreateSlot - Create a new slot for the specified value if it has no name.
1732 void SlotMachine::CreateFunctionSlot(const Value *V) {
1733 assert(V->getType() != Type::VoidTy && !V->hasName() &&
1734 "Doesn't need a slot!");
1736 unsigned DestSlot = fNext++;
1739 // G = Global, F = Function, o = other
1740 SC_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1741 DestSlot << " [o]\n");