1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AsmAnnotationWriter.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/ParameterAttributes.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/Instruction.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Module.h"
28 #include "llvm/ValueSymbolTable.h"
29 #include "llvm/TypeSymbolTable.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/CFG.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/Streams.h"
41 // Make virtual table appear in this compilation unit.
42 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
44 /// This class provides computation of slot numbers for LLVM Assembly writing.
45 /// @brief LLVM Assembly Writing Slot Computation.
52 /// @brief A mapping of Values to slot numbers
53 typedef std::map<const Value*,unsigned> ValueMap;
56 /// @name Constructors
59 /// @brief Construct from a module
60 SlotMachine(const Module *M);
62 /// @brief Construct from a function, starting out in incorp state.
63 SlotMachine(const Function *F);
69 /// Return the slot number of the specified value in it's type
70 /// plane. If something is not in the SlotMachine, return -1.
71 int getLocalSlot(const Value *V);
72 int getGlobalSlot(const GlobalValue *V);
78 /// If you'd like to deal with a function instead of just a module, use
79 /// this method to get its data into the SlotMachine.
80 void incorporateFunction(const Function *F) {
82 FunctionProcessed = false;
85 /// After calling incorporateFunction, use this method to remove the
86 /// most recently incorporated function from the SlotMachine. This
87 /// will reset the state of the machine back to just the module contents.
91 /// @name Implementation Details
94 /// This function does the actual initialization.
95 inline void initialize();
97 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
98 void CreateModuleSlot(const GlobalValue *V);
100 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
101 void CreateFunctionSlot(const Value *V);
103 /// Add all of the module level global variables (and their initializers)
104 /// and function declarations, but not the contents of those functions.
105 void processModule();
107 /// Add all of the functions arguments, basic blocks, and instructions
108 void processFunction();
110 SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT
111 void operator=(const SlotMachine &); // DO NOT IMPLEMENT
118 /// @brief The module for which we are holding slot numbers
119 const Module* TheModule;
121 /// @brief The function for which we are holding slot numbers
122 const Function* TheFunction;
123 bool FunctionProcessed;
125 /// @brief The TypePlanes map for the module level data
129 /// @brief The TypePlanes map for the function level data
137 } // end namespace llvm
139 char PrintModulePass::ID = 0;
140 static RegisterPass<PrintModulePass>
141 X("printm", "Print module to stderr");
142 char PrintFunctionPass::ID = 0;
143 static RegisterPass<PrintFunctionPass>
144 Y("print","Print function to stderr");
146 static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
147 std::map<const Type *, std::string> &TypeTable,
148 SlotMachine *Machine);
150 static const Module *getModuleFromVal(const Value *V) {
151 if (const Argument *MA = dyn_cast<Argument>(V))
152 return MA->getParent() ? MA->getParent()->getParent() : 0;
153 else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
154 return BB->getParent() ? BB->getParent()->getParent() : 0;
155 else if (const Instruction *I = dyn_cast<Instruction>(V)) {
156 const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
157 return M ? M->getParent() : 0;
158 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
159 return GV->getParent();
163 static SlotMachine *createSlotMachine(const Value *V) {
164 if (const Argument *FA = dyn_cast<Argument>(V)) {
165 return new SlotMachine(FA->getParent());
166 } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
167 return new SlotMachine(I->getParent()->getParent());
168 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
169 return new SlotMachine(BB->getParent());
170 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
171 return new SlotMachine(GV->getParent());
172 } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)){
173 return new SlotMachine(GA->getParent());
174 } else if (const Function *Func = dyn_cast<Function>(V)) {
175 return new SlotMachine(Func);
180 /// NameNeedsQuotes - Return true if the specified llvm name should be wrapped
182 static std::string QuoteNameIfNeeded(const std::string &Name) {
184 bool needsQuotes = Name[0] >= '0' && Name[0] <= '9';
185 // Scan the name to see if it needs quotes and to replace funky chars with
186 // their octal equivalent.
187 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
189 assert(C != '"' && "Illegal character in LLVM value name!");
190 if (isalnum(C) || C == '-' || C == '.' || C == '_')
192 else if (C == '\\') {
195 } else if (isprint(C)) {
201 char hex1 = (C >> 4) & 0x0F;
203 result += hex1 + '0';
205 result += hex1 - 10 + 'A';
206 char hex2 = C & 0x0F;
208 result += hex2 + '0';
210 result += hex2 - 10 + 'A';
214 result.insert(0,"\"");
226 /// getLLVMName - Turn the specified string into an 'LLVM name', which is either
227 /// prefixed with % (if the string only contains simple characters) or is
228 /// surrounded with ""'s (if it has special chars in it).
229 static std::string getLLVMName(const std::string &Name, PrefixType Prefix) {
230 assert(!Name.empty() && "Cannot get empty name!");
232 default: assert(0 && "Bad prefix!");
233 case GlobalPrefix: return '@' + QuoteNameIfNeeded(Name);
234 case LabelPrefix: return QuoteNameIfNeeded(Name);
235 case LocalPrefix: return '%' + QuoteNameIfNeeded(Name);
240 /// fillTypeNameTable - If the module has a symbol table, take all global types
241 /// and stuff their names into the TypeNames map.
243 static void fillTypeNameTable(const Module *M,
244 std::map<const Type *, std::string> &TypeNames) {
246 const TypeSymbolTable &ST = M->getTypeSymbolTable();
247 TypeSymbolTable::const_iterator TI = ST.begin();
248 for (; TI != ST.end(); ++TI) {
249 // As a heuristic, don't insert pointer to primitive types, because
250 // they are used too often to have a single useful name.
252 const Type *Ty = cast<Type>(TI->second);
253 if (!isa<PointerType>(Ty) ||
254 !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
255 !cast<PointerType>(Ty)->getElementType()->isInteger() ||
256 isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
257 TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first, LocalPrefix)));
263 static void calcTypeName(const Type *Ty,
264 std::vector<const Type *> &TypeStack,
265 std::map<const Type *, std::string> &TypeNames,
266 std::string & Result){
267 if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
268 Result += Ty->getDescription(); // Base case
272 // Check to see if the type is named.
273 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
274 if (I != TypeNames.end()) {
279 if (isa<OpaqueType>(Ty)) {
284 // Check to see if the Type is already on the stack...
285 unsigned Slot = 0, CurSize = TypeStack.size();
286 while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
288 // This is another base case for the recursion. In this case, we know
289 // that we have looped back to a type that we have previously visited.
290 // Generate the appropriate upreference to handle this.
291 if (Slot < CurSize) {
292 Result += "\\" + utostr(CurSize-Slot); // Here's the upreference
296 TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
298 switch (Ty->getTypeID()) {
299 case Type::IntegerTyID: {
300 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
301 Result += "i" + utostr(BitWidth);
304 case Type::FunctionTyID: {
305 const FunctionType *FTy = cast<FunctionType>(Ty);
306 calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
308 for (FunctionType::param_iterator I = FTy->param_begin(),
309 E = FTy->param_end(); I != E; ++I) {
310 if (I != FTy->param_begin())
312 calcTypeName(*I, TypeStack, TypeNames, Result);
314 if (FTy->isVarArg()) {
315 if (FTy->getNumParams()) Result += ", ";
321 case Type::StructTyID: {
322 const StructType *STy = cast<StructType>(Ty);
326 for (StructType::element_iterator I = STy->element_begin(),
327 E = STy->element_end(); I != E; ++I) {
328 if (I != STy->element_begin())
330 calcTypeName(*I, TypeStack, TypeNames, Result);
337 case Type::PointerTyID:
338 calcTypeName(cast<PointerType>(Ty)->getElementType(),
339 TypeStack, TypeNames, Result);
342 case Type::ArrayTyID: {
343 const ArrayType *ATy = cast<ArrayType>(Ty);
344 Result += "[" + utostr(ATy->getNumElements()) + " x ";
345 calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
349 case Type::VectorTyID: {
350 const VectorType *PTy = cast<VectorType>(Ty);
351 Result += "<" + utostr(PTy->getNumElements()) + " x ";
352 calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
356 case Type::OpaqueTyID:
360 Result += "<unrecognized-type>";
364 TypeStack.pop_back(); // Remove self from stack...
368 /// printTypeInt - The internal guts of printing out a type that has a
369 /// potentially named portion.
371 static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
372 std::map<const Type *, std::string> &TypeNames) {
373 // Primitive types always print out their description, regardless of whether
374 // they have been named or not.
376 if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)))
377 return Out << Ty->getDescription();
379 // Check to see if the type is named.
380 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
381 if (I != TypeNames.end()) return Out << I->second;
383 // Otherwise we have a type that has not been named but is a derived type.
384 // Carefully recurse the type hierarchy to print out any contained symbolic
387 std::vector<const Type *> TypeStack;
388 std::string TypeName;
389 calcTypeName(Ty, TypeStack, TypeNames, TypeName);
390 TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
391 return (Out << TypeName);
395 /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
396 /// type, iff there is an entry in the modules symbol table for the specified
397 /// type or one of it's component types. This is slower than a simple x << Type
399 std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
403 // If they want us to print out a type, but there is no context, we can't
404 // print it symbolically.
406 return Out << Ty->getDescription();
408 std::map<const Type *, std::string> TypeNames;
409 fillTypeNameTable(M, TypeNames);
410 return printTypeInt(Out, Ty, TypeNames);
413 // PrintEscapedString - Print each character of the specified string, escaping
414 // it if it is not printable or if it is an escape char.
415 static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
416 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
417 unsigned char C = Str[i];
418 if (isprint(C) && C != '"' && C != '\\') {
422 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
423 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
428 static const char *getPredicateText(unsigned predicate) {
429 const char * pred = "unknown";
431 case FCmpInst::FCMP_FALSE: pred = "false"; break;
432 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
433 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
434 case FCmpInst::FCMP_OGE: pred = "oge"; break;
435 case FCmpInst::FCMP_OLT: pred = "olt"; break;
436 case FCmpInst::FCMP_OLE: pred = "ole"; break;
437 case FCmpInst::FCMP_ONE: pred = "one"; break;
438 case FCmpInst::FCMP_ORD: pred = "ord"; break;
439 case FCmpInst::FCMP_UNO: pred = "uno"; break;
440 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
441 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
442 case FCmpInst::FCMP_UGE: pred = "uge"; break;
443 case FCmpInst::FCMP_ULT: pred = "ult"; break;
444 case FCmpInst::FCMP_ULE: pred = "ule"; break;
445 case FCmpInst::FCMP_UNE: pred = "une"; break;
446 case FCmpInst::FCMP_TRUE: pred = "true"; break;
447 case ICmpInst::ICMP_EQ: pred = "eq"; break;
448 case ICmpInst::ICMP_NE: pred = "ne"; break;
449 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
450 case ICmpInst::ICMP_SGE: pred = "sge"; break;
451 case ICmpInst::ICMP_SLT: pred = "slt"; break;
452 case ICmpInst::ICMP_SLE: pred = "sle"; break;
453 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
454 case ICmpInst::ICMP_UGE: pred = "uge"; break;
455 case ICmpInst::ICMP_ULT: pred = "ult"; break;
456 case ICmpInst::ICMP_ULE: pred = "ule"; break;
461 /// @brief Internal constant writer.
462 static void WriteConstantInt(std::ostream &Out, const Constant *CV,
463 std::map<const Type *, std::string> &TypeTable,
464 SlotMachine *Machine) {
465 const int IndentSize = 4;
466 static std::string Indent = "\n";
467 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
468 if (CI->getType() == Type::Int1Ty)
469 Out << (CI->getZExtValue() ? "true" : "false");
471 Out << CI->getValue().toStringSigned(10);
472 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
473 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
474 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
475 // We would like to output the FP constant value in exponential notation,
476 // but we cannot do this if doing so will lose precision. Check here to
477 // make sure that we only output it in exponential format if we can parse
478 // the value back and get the same value.
480 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
481 double Val = (isDouble) ? CFP->getValueAPF().convertToDouble() :
482 CFP->getValueAPF().convertToFloat();
483 std::string StrVal = ftostr(CFP->getValueAPF());
485 // Check to make sure that the stringized number is not some string like
486 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
487 // that the string matches the "[-+]?[0-9]" regex.
489 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
490 ((StrVal[0] == '-' || StrVal[0] == '+') &&
491 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
492 // Reparse stringized version!
493 if (atof(StrVal.c_str()) == Val) {
498 // Otherwise we could not reparse it to exactly the same value, so we must
499 // output the string in hexadecimal format!
500 assert(sizeof(double) == sizeof(uint64_t) &&
501 "assuming that double is 64 bits!");
502 Out << "0x" << utohexstr(DoubleToBits(Val));
504 // Some form of long double. These appear as a magic letter identifying
505 // the type, then a fixed number of hex digits.
507 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended)
509 else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
511 else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
514 assert(0 && "Unsupported floating point type");
515 // api needed to prevent premature destruction
516 APInt api = CFP->getValueAPF().convertToAPInt();
517 const uint64_t* p = api.getRawData();
520 int width = api.getBitWidth();
521 for (int j=0; j<width; j+=4, shiftcount-=4) {
522 unsigned int nibble = (word>>shiftcount) & 15;
524 Out << (unsigned char)(nibble + '0');
526 Out << (unsigned char)(nibble - 10 + 'A');
527 if (shiftcount == 0) {
531 shiftcount = width-j-4;
535 } else if (isa<ConstantAggregateZero>(CV)) {
536 Out << "zeroinitializer";
537 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
538 // As a special case, print the array as a string if it is an array of
539 // ubytes or an array of sbytes with positive values.
541 const Type *ETy = CA->getType()->getElementType();
542 if (CA->isString()) {
544 PrintEscapedString(CA->getAsString(), Out);
547 } else { // Cannot output in string format...
549 if (CA->getNumOperands()) {
551 printTypeInt(Out, ETy, TypeTable);
552 WriteAsOperandInternal(Out, CA->getOperand(0),
554 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
556 printTypeInt(Out, ETy, TypeTable);
557 WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
562 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
563 if (CS->getType()->isPacked())
566 unsigned N = CS->getNumOperands();
569 Indent += std::string(IndentSize, ' ');
574 printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
576 WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
578 for (unsigned i = 1; i < N; i++) {
580 if (N > 2) Out << Indent;
581 printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
583 WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
585 if (N > 2) Indent.resize(Indent.size() - IndentSize);
589 if (CS->getType()->isPacked())
591 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
592 const Type *ETy = CP->getType()->getElementType();
593 assert(CP->getNumOperands() > 0 &&
594 "Number of operands for a PackedConst must be > 0");
597 printTypeInt(Out, ETy, TypeTable);
598 WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
599 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
601 printTypeInt(Out, ETy, TypeTable);
602 WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
605 } else if (isa<ConstantPointerNull>(CV)) {
608 } else if (isa<UndefValue>(CV)) {
611 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
612 Out << CE->getOpcodeName();
614 Out << " " << getPredicateText(CE->getPredicate());
617 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
618 printTypeInt(Out, (*OI)->getType(), TypeTable);
619 WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
620 if (OI+1 != CE->op_end())
626 printTypeInt(Out, CE->getType(), TypeTable);
632 Out << "<placeholder or erroneous Constant>";
637 /// WriteAsOperand - Write the name of the specified value out to the specified
638 /// ostream. This can be useful when you just want to print int %reg126, not
639 /// the whole instruction that generated it.
641 static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
642 std::map<const Type*, std::string> &TypeTable,
643 SlotMachine *Machine) {
646 Out << getLLVMName(V->getName(),
647 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
649 const Constant *CV = dyn_cast<Constant>(V);
650 if (CV && !isa<GlobalValue>(CV)) {
651 WriteConstantInt(Out, CV, TypeTable, Machine);
652 } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
654 if (IA->hasSideEffects())
655 Out << "sideeffect ";
657 PrintEscapedString(IA->getAsmString(), Out);
659 PrintEscapedString(IA->getConstraintString(), Out);
665 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
666 Slot = Machine->getGlobalSlot(GV);
669 Slot = Machine->getLocalSlot(V);
672 Machine = createSlotMachine(V);
674 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
675 Slot = Machine->getGlobalSlot(GV);
678 Slot = Machine->getLocalSlot(V);
686 Out << Prefix << Slot;
693 /// WriteAsOperand - Write the name of the specified value out to the specified
694 /// ostream. This can be useful when you just want to print int %reg126, not
695 /// the whole instruction that generated it.
697 std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
698 bool PrintType, const Module *Context) {
699 std::map<const Type *, std::string> TypeNames;
700 if (Context == 0) Context = getModuleFromVal(V);
703 fillTypeNameTable(Context, TypeNames);
706 printTypeInt(Out, V->getType(), TypeNames);
708 WriteAsOperandInternal(Out, V, TypeNames, 0);
715 class AssemblyWriter {
717 SlotMachine &Machine;
718 const Module *TheModule;
719 std::map<const Type *, std::string> TypeNames;
720 AssemblyAnnotationWriter *AnnotationWriter;
722 inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
723 AssemblyAnnotationWriter *AAW)
724 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
726 // If the module has a symbol table, take all global types and stuff their
727 // names into the TypeNames map.
729 fillTypeNameTable(M, TypeNames);
732 inline void write(const Module *M) { printModule(M); }
733 inline void write(const GlobalVariable *G) { printGlobal(G); }
734 inline void write(const GlobalAlias *G) { printAlias(G); }
735 inline void write(const Function *F) { printFunction(F); }
736 inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
737 inline void write(const Instruction *I) { printInstruction(*I); }
738 inline void write(const Type *Ty) { printType(Ty); }
740 void writeOperand(const Value *Op, bool PrintType);
741 void writeParamOperand(const Value *Operand, uint16_t Attrs);
743 const Module* getModule() { return TheModule; }
746 void printModule(const Module *M);
747 void printTypeSymbolTable(const TypeSymbolTable &ST);
748 void printGlobal(const GlobalVariable *GV);
749 void printAlias(const GlobalAlias *GV);
750 void printFunction(const Function *F);
751 void printArgument(const Argument *FA, uint16_t ParamAttrs);
752 void printBasicBlock(const BasicBlock *BB);
753 void printInstruction(const Instruction &I);
755 // printType - Go to extreme measures to attempt to print out a short,
756 // symbolic version of a type name.
758 std::ostream &printType(const Type *Ty) {
759 return printTypeInt(Out, Ty, TypeNames);
762 // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
763 // without considering any symbolic types that we may have equal to it.
765 std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
767 // printInfoComment - Print a little comment after the instruction indicating
768 // which slot it occupies.
769 void printInfoComment(const Value &V);
771 } // end of llvm namespace
773 /// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
774 /// without considering any symbolic types that we may have equal to it.
776 std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
777 if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
778 Out << "i" << utostr(ITy->getBitWidth());
779 else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
780 printType(FTy->getReturnType());
782 for (FunctionType::param_iterator I = FTy->param_begin(),
783 E = FTy->param_end(); I != E; ++I) {
784 if (I != FTy->param_begin())
788 if (FTy->isVarArg()) {
789 if (FTy->getNumParams()) Out << ", ";
793 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
797 for (StructType::element_iterator I = STy->element_begin(),
798 E = STy->element_end(); I != E; ++I) {
799 if (I != STy->element_begin())
806 } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
807 printType(PTy->getElementType()) << '*';
808 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
809 Out << '[' << ATy->getNumElements() << " x ";
810 printType(ATy->getElementType()) << ']';
811 } else if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
812 Out << '<' << PTy->getNumElements() << " x ";
813 printType(PTy->getElementType()) << '>';
815 else if (isa<OpaqueType>(Ty)) {
818 if (!Ty->isPrimitiveType())
819 Out << "<unknown derived type>";
826 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
828 Out << "<null operand!>";
830 if (PrintType) { Out << ' '; printType(Operand->getType()); }
831 WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
835 void AssemblyWriter::writeParamOperand(const Value *Operand, uint16_t Attrs) {
837 Out << "<null operand!>";
841 printType(Operand->getType());
842 // Print parameter attributes list
843 if (Attrs != ParamAttr::None)
844 Out << ' ' << ParamAttrsList::getParamAttrsText(Attrs);
846 WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
850 void AssemblyWriter::printModule(const Module *M) {
851 if (!M->getModuleIdentifier().empty() &&
852 // Don't print the ID if it will start a new line (which would
853 // require a comment char before it).
854 M->getModuleIdentifier().find('\n') == std::string::npos)
855 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
857 if (!M->getDataLayout().empty())
858 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
859 if (!M->getTargetTriple().empty())
860 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
862 if (!M->getModuleInlineAsm().empty()) {
863 // Split the string into lines, to make it easier to read the .ll file.
864 std::string Asm = M->getModuleInlineAsm();
866 size_t NewLine = Asm.find_first_of('\n', CurPos);
867 while (NewLine != std::string::npos) {
868 // We found a newline, print the portion of the asm string from the
869 // last newline up to this newline.
870 Out << "module asm \"";
871 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
875 NewLine = Asm.find_first_of('\n', CurPos);
877 Out << "module asm \"";
878 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
882 // Loop over the dependent libraries and emit them.
883 Module::lib_iterator LI = M->lib_begin();
884 Module::lib_iterator LE = M->lib_end();
886 Out << "deplibs = [ ";
888 Out << '"' << *LI << '"';
896 // Loop over the symbol table, emitting all named constants.
897 printTypeSymbolTable(M->getTypeSymbolTable());
899 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
903 // Output all aliases.
904 if (!M->alias_empty()) Out << "\n";
905 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
909 // Output all of the functions.
910 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
914 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
915 if (GV->hasName()) Out << getLLVMName(GV->getName(), GlobalPrefix) << " = ";
917 if (!GV->hasInitializer())
918 switch (GV->getLinkage()) {
919 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
920 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
921 default: Out << "external "; break;
923 switch (GV->getLinkage()) {
924 case GlobalValue::InternalLinkage: Out << "internal "; break;
925 case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
926 case GlobalValue::WeakLinkage: Out << "weak "; break;
927 case GlobalValue::AppendingLinkage: Out << "appending "; break;
928 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
929 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
930 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
931 case GlobalValue::ExternalLinkage: break;
932 case GlobalValue::GhostLinkage:
933 cerr << "GhostLinkage not allowed in AsmWriter!\n";
936 switch (GV->getVisibility()) {
937 default: assert(0 && "Invalid visibility style!");
938 case GlobalValue::DefaultVisibility: break;
939 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
940 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
944 if (GV->isThreadLocal()) Out << "thread_local ";
945 Out << (GV->isConstant() ? "constant " : "global ");
946 printType(GV->getType()->getElementType());
948 if (GV->hasInitializer()) {
949 Constant* C = cast<Constant>(GV->getInitializer());
950 assert(C && "GlobalVar initializer isn't constant?");
951 writeOperand(GV->getInitializer(), false);
954 if (GV->hasSection())
955 Out << ", section \"" << GV->getSection() << '"';
956 if (GV->getAlignment())
957 Out << ", align " << GV->getAlignment();
959 printInfoComment(*GV);
963 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
964 Out << getLLVMName(GA->getName(), GlobalPrefix) << " = ";
965 switch (GA->getVisibility()) {
966 default: assert(0 && "Invalid visibility style!");
967 case GlobalValue::DefaultVisibility: break;
968 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
969 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
974 switch (GA->getLinkage()) {
975 case GlobalValue::WeakLinkage: Out << "weak "; break;
976 case GlobalValue::InternalLinkage: Out << "internal "; break;
977 case GlobalValue::ExternalLinkage: break;
979 assert(0 && "Invalid alias linkage");
982 const Constant *Aliasee = GA->getAliasee();
984 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
985 printType(GV->getType());
986 Out << " " << getLLVMName(GV->getName(), GlobalPrefix);
987 } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
988 printType(F->getFunctionType());
991 if (!F->getName().empty())
992 Out << getLLVMName(F->getName(), GlobalPrefix);
996 const ConstantExpr *CE = 0;
997 if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
998 (CE->getOpcode() == Instruction::BitCast)) {
999 writeOperand(CE, false);
1001 assert(0 && "Unsupported aliasee");
1004 printInfoComment(*GA);
1008 void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1010 for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1012 Out << "\t" << getLLVMName(TI->first, LocalPrefix) << " = type ";
1014 // Make sure we print out at least one level of the type structure, so
1015 // that we do not get %FILE = type %FILE
1017 printTypeAtLeastOneLevel(TI->second) << "\n";
1021 /// printFunction - Print all aspects of a function.
1023 void AssemblyWriter::printFunction(const Function *F) {
1024 // Print out the return type and name...
1027 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1029 if (F->isDeclaration())
1034 switch (F->getLinkage()) {
1035 case GlobalValue::InternalLinkage: Out << "internal "; break;
1036 case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
1037 case GlobalValue::WeakLinkage: Out << "weak "; break;
1038 case GlobalValue::AppendingLinkage: Out << "appending "; break;
1039 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
1040 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
1041 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1042 case GlobalValue::ExternalLinkage: break;
1043 case GlobalValue::GhostLinkage:
1044 cerr << "GhostLinkage not allowed in AsmWriter!\n";
1047 switch (F->getVisibility()) {
1048 default: assert(0 && "Invalid visibility style!");
1049 case GlobalValue::DefaultVisibility: break;
1050 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1051 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1054 // Print the calling convention.
1055 switch (F->getCallingConv()) {
1056 case CallingConv::C: break; // default
1057 case CallingConv::Fast: Out << "fastcc "; break;
1058 case CallingConv::Cold: Out << "coldcc "; break;
1059 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
1060 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1061 default: Out << "cc" << F->getCallingConv() << " "; break;
1064 const FunctionType *FT = F->getFunctionType();
1065 const ParamAttrsList *Attrs = F->getParamAttrs();
1066 printType(F->getReturnType()) << ' ';
1067 if (!F->getName().empty())
1068 Out << getLLVMName(F->getName(), GlobalPrefix);
1072 Machine.incorporateFunction(F);
1074 // Loop over the arguments, printing them...
1077 if (!F->isDeclaration()) {
1078 // If this isn't a declaration, print the argument names as well.
1079 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1081 // Insert commas as we go... the first arg doesn't get a comma
1082 if (I != F->arg_begin()) Out << ", ";
1083 printArgument(I, (Attrs ? Attrs->getParamAttrs(Idx)
1084 : uint16_t(ParamAttr::None)));
1088 // Otherwise, print the types from the function type.
1089 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1090 // Insert commas as we go... the first arg doesn't get a comma
1094 printType(FT->getParamType(i));
1096 unsigned ArgAttrs = ParamAttr::None;
1097 if (Attrs) ArgAttrs = Attrs->getParamAttrs(i+1);
1098 if (ArgAttrs != ParamAttr::None)
1099 Out << ' ' << ParamAttrsList::getParamAttrsText(ArgAttrs);
1103 // Finish printing arguments...
1104 if (FT->isVarArg()) {
1105 if (FT->getNumParams()) Out << ", ";
1106 Out << "..."; // Output varargs portion of signature!
1109 if (Attrs && Attrs->getParamAttrs(0) != ParamAttr::None)
1110 Out << ' ' << Attrs->getParamAttrsTextByIndex(0);
1111 if (F->hasSection())
1112 Out << " section \"" << F->getSection() << '"';
1113 if (F->getAlignment())
1114 Out << " align " << F->getAlignment();
1115 if (F->hasCollector())
1116 Out << " gc \"" << F->getCollector() << '"';
1118 if (F->isDeclaration()) {
1123 // Output all of its basic blocks... for the function
1124 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1130 Machine.purgeFunction();
1133 /// printArgument - This member is called for every argument that is passed into
1134 /// the function. Simply print it out
1136 void AssemblyWriter::printArgument(const Argument *Arg, uint16_t Attrs) {
1138 printType(Arg->getType());
1140 // Output parameter attributes list
1141 if (Attrs != ParamAttr::None)
1142 Out << ' ' << ParamAttrsList::getParamAttrsText(Attrs);
1144 // Output name, if available...
1146 Out << ' ' << getLLVMName(Arg->getName(), LocalPrefix);
1149 /// printBasicBlock - This member is called for each basic block in a method.
1151 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1152 if (BB->hasName()) { // Print out the label if it exists...
1153 Out << "\n" << getLLVMName(BB->getName(), LabelPrefix) << ':';
1154 } else if (!BB->use_empty()) { // Don't print block # of no uses...
1155 Out << "\n; <label>:";
1156 int Slot = Machine.getLocalSlot(BB);
1163 if (BB->getParent() == 0)
1164 Out << "\t\t; Error: Block without parent!";
1166 if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
1167 // Output predecessors for the block...
1169 pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1172 Out << " No predecessors!";
1175 writeOperand(*PI, false);
1176 for (++PI; PI != PE; ++PI) {
1178 writeOperand(*PI, false);
1186 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1188 // Output all of the instructions in the basic block...
1189 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1190 printInstruction(*I);
1192 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1196 /// printInfoComment - Print a little comment after the instruction indicating
1197 /// which slot it occupies.
1199 void AssemblyWriter::printInfoComment(const Value &V) {
1200 if (V.getType() != Type::VoidTy) {
1202 printType(V.getType()) << '>';
1206 if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1207 SlotNum = Machine.getGlobalSlot(GV);
1209 SlotNum = Machine.getLocalSlot(&V);
1213 Out << ':' << SlotNum; // Print out the def slot taken.
1215 Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses
1219 // This member is called for each Instruction in a function..
1220 void AssemblyWriter::printInstruction(const Instruction &I) {
1221 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1225 // Print out name if it exists...
1227 Out << getLLVMName(I.getName(), LocalPrefix) << " = ";
1229 // If this is a volatile load or store, print out the volatile marker.
1230 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
1231 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1233 } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1234 // If this is a call, check if it's a tail call.
1238 // Print out the opcode...
1239 Out << I.getOpcodeName();
1241 // Print out the compare instruction predicates
1242 if (const FCmpInst *FCI = dyn_cast<FCmpInst>(&I)) {
1243 Out << " " << getPredicateText(FCI->getPredicate());
1244 } else if (const ICmpInst *ICI = dyn_cast<ICmpInst>(&I)) {
1245 Out << " " << getPredicateText(ICI->getPredicate());
1248 // Print out the type of the operands...
1249 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1251 // Special case conditional branches to swizzle the condition out to the front
1252 if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1253 writeOperand(I.getOperand(2), true);
1255 writeOperand(Operand, true);
1257 writeOperand(I.getOperand(1), true);
1259 } else if (isa<SwitchInst>(I)) {
1260 // Special case switch statement to get formatting nice and correct...
1261 writeOperand(Operand , true); Out << ',';
1262 writeOperand(I.getOperand(1), true); Out << " [";
1264 for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1266 writeOperand(I.getOperand(op ), true); Out << ',';
1267 writeOperand(I.getOperand(op+1), true);
1270 } else if (isa<PHINode>(I)) {
1272 printType(I.getType());
1275 for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1276 if (op) Out << ", ";
1278 writeOperand(I.getOperand(op ), false); Out << ',';
1279 writeOperand(I.getOperand(op+1), false); Out << " ]";
1281 } else if (isa<ReturnInst>(I) && !Operand) {
1283 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1284 // Print the calling convention being used.
1285 switch (CI->getCallingConv()) {
1286 case CallingConv::C: break; // default
1287 case CallingConv::Fast: Out << " fastcc"; break;
1288 case CallingConv::Cold: Out << " coldcc"; break;
1289 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1290 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1291 default: Out << " cc" << CI->getCallingConv(); break;
1294 const PointerType *PTy = cast<PointerType>(Operand->getType());
1295 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1296 const Type *RetTy = FTy->getReturnType();
1297 const ParamAttrsList *PAL = CI->getParamAttrs();
1299 // If possible, print out the short form of the call instruction. We can
1300 // only do this if the first argument is a pointer to a nonvararg function,
1301 // and if the return type is not a pointer to a function.
1303 if (!FTy->isVarArg() &&
1304 (!isa<PointerType>(RetTy) ||
1305 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1306 Out << ' '; printType(RetTy);
1307 writeOperand(Operand, false);
1309 writeOperand(Operand, true);
1312 for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1315 writeParamOperand(I.getOperand(op), PAL ? PAL->getParamAttrs(op) : 0);
1318 if (PAL && PAL->getParamAttrs(0) != ParamAttr::None)
1319 Out << ' ' << PAL->getParamAttrsTextByIndex(0);
1320 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1321 const PointerType *PTy = cast<PointerType>(Operand->getType());
1322 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1323 const Type *RetTy = FTy->getReturnType();
1324 const ParamAttrsList *PAL = II->getParamAttrs();
1326 // Print the calling convention being used.
1327 switch (II->getCallingConv()) {
1328 case CallingConv::C: break; // default
1329 case CallingConv::Fast: Out << " fastcc"; break;
1330 case CallingConv::Cold: Out << " coldcc"; break;
1331 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
1332 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1333 default: Out << " cc" << II->getCallingConv(); break;
1336 // If possible, print out the short form of the invoke instruction. We can
1337 // only do this if the first argument is a pointer to a nonvararg function,
1338 // and if the return type is not a pointer to a function.
1340 if (!FTy->isVarArg() &&
1341 (!isa<PointerType>(RetTy) ||
1342 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1343 Out << ' '; printType(RetTy);
1344 writeOperand(Operand, false);
1346 writeOperand(Operand, true);
1350 for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1353 writeParamOperand(I.getOperand(op), PAL ? PAL->getParamAttrs(op-2) : 0);
1357 if (PAL && PAL->getParamAttrs(0) != ParamAttr::None)
1358 Out << " " << PAL->getParamAttrsTextByIndex(0);
1359 Out << "\n\t\t\tto";
1360 writeOperand(II->getNormalDest(), true);
1362 writeOperand(II->getUnwindDest(), true);
1364 } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1366 printType(AI->getType()->getElementType());
1367 if (AI->isArrayAllocation()) {
1369 writeOperand(AI->getArraySize(), true);
1371 if (AI->getAlignment()) {
1372 Out << ", align " << AI->getAlignment();
1374 } else if (isa<CastInst>(I)) {
1375 if (Operand) writeOperand(Operand, true); // Work with broken code
1377 printType(I.getType());
1378 } else if (isa<VAArgInst>(I)) {
1379 if (Operand) writeOperand(Operand, true); // Work with broken code
1381 printType(I.getType());
1382 } else if (Operand) { // Print the normal way...
1384 // PrintAllTypes - Instructions who have operands of all the same type
1385 // omit the type from all but the first operand. If the instruction has
1386 // different type operands (for example br), then they are all printed.
1387 bool PrintAllTypes = false;
1388 const Type *TheType = Operand->getType();
1390 // Select, Store and ShuffleVector always print all types.
1391 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)) {
1392 PrintAllTypes = true;
1394 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1395 Operand = I.getOperand(i);
1396 if (Operand->getType() != TheType) {
1397 PrintAllTypes = true; // We have differing types! Print them all!
1403 if (!PrintAllTypes) {
1408 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1410 writeOperand(I.getOperand(i), PrintAllTypes);
1414 // Print post operand alignment for load/store
1415 if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1416 Out << ", align " << cast<LoadInst>(I).getAlignment();
1417 } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1418 Out << ", align " << cast<StoreInst>(I).getAlignment();
1421 printInfoComment(I);
1426 //===----------------------------------------------------------------------===//
1427 // External Interface declarations
1428 //===----------------------------------------------------------------------===//
1430 void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1431 SlotMachine SlotTable(this);
1432 AssemblyWriter W(o, SlotTable, this, AAW);
1436 void GlobalVariable::print(std::ostream &o) const {
1437 SlotMachine SlotTable(getParent());
1438 AssemblyWriter W(o, SlotTable, getParent(), 0);
1442 void GlobalAlias::print(std::ostream &o) const {
1443 SlotMachine SlotTable(getParent());
1444 AssemblyWriter W(o, SlotTable, getParent(), 0);
1448 void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1449 SlotMachine SlotTable(getParent());
1450 AssemblyWriter W(o, SlotTable, getParent(), AAW);
1455 void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1456 WriteAsOperand(o, this, true, 0);
1459 void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1460 SlotMachine SlotTable(getParent());
1461 AssemblyWriter W(o, SlotTable,
1462 getParent() ? getParent()->getParent() : 0, AAW);
1466 void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1467 const Function *F = getParent() ? getParent()->getParent() : 0;
1468 SlotMachine SlotTable(F);
1469 AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1474 void Constant::print(std::ostream &o) const {
1475 if (this == 0) { o << "<null> constant value\n"; return; }
1477 o << ' ' << getType()->getDescription() << ' ';
1479 std::map<const Type *, std::string> TypeTable;
1480 WriteConstantInt(o, this, TypeTable, 0);
1483 void Type::print(std::ostream &o) const {
1487 o << getDescription();
1490 void Argument::print(std::ostream &o) const {
1491 WriteAsOperand(o, this, true, getParent() ? getParent()->getParent() : 0);
1494 // Value::dump - allow easy printing of Values from the debugger.
1495 // Located here because so much of the needed functionality is here.
1496 void Value::dump() const { print(*cerr.stream()); cerr << '\n'; }
1498 // Type::dump - allow easy printing of Values from the debugger.
1499 // Located here because so much of the needed functionality is here.
1500 void Type::dump() const { print(*cerr.stream()); cerr << '\n'; }
1503 ParamAttrsList::dump() const {
1505 for (unsigned i = 0; i < attrs.size(); ++i) {
1506 uint16_t index = getParamIndex(i);
1507 uint16_t attrs = getParamAttrs(index);
1508 cerr << "{" << index << "," << attrs << "} ";
1513 //===----------------------------------------------------------------------===//
1514 // SlotMachine Implementation
1515 //===----------------------------------------------------------------------===//
1518 #define SC_DEBUG(X) cerr << X
1523 // Module level constructor. Causes the contents of the Module (sans functions)
1524 // to be added to the slot table.
1525 SlotMachine::SlotMachine(const Module *M)
1526 : TheModule(M) ///< Saved for lazy initialization.
1528 , FunctionProcessed(false)
1529 , mMap(), mNext(0), fMap(), fNext(0)
1533 // Function level constructor. Causes the contents of the Module and the one
1534 // function provided to be added to the slot table.
1535 SlotMachine::SlotMachine(const Function *F)
1536 : TheModule(F ? F->getParent() : 0) ///< Saved for lazy initialization
1537 , TheFunction(F) ///< Saved for lazy initialization
1538 , FunctionProcessed(false)
1539 , mMap(), mNext(0), fMap(), fNext(0)
1543 inline void SlotMachine::initialize() {
1546 TheModule = 0; ///< Prevent re-processing next time we're called.
1548 if (TheFunction && !FunctionProcessed)
1552 // Iterate through all the global variables, functions, and global
1553 // variable initializers and create slots for them.
1554 void SlotMachine::processModule() {
1555 SC_DEBUG("begin processModule!\n");
1557 // Add all of the unnamed global variables to the value table.
1558 for (Module::const_global_iterator I = TheModule->global_begin(),
1559 E = TheModule->global_end(); I != E; ++I)
1561 CreateModuleSlot(I);
1563 // Add all the unnamed functions to the table.
1564 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1567 CreateModuleSlot(I);
1569 SC_DEBUG("end processModule!\n");
1573 // Process the arguments, basic blocks, and instructions of a function.
1574 void SlotMachine::processFunction() {
1575 SC_DEBUG("begin processFunction!\n");
1578 // Add all the function arguments with no names.
1579 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1580 AE = TheFunction->arg_end(); AI != AE; ++AI)
1582 CreateFunctionSlot(AI);
1584 SC_DEBUG("Inserting Instructions:\n");
1586 // Add all of the basic blocks and instructions with no names.
1587 for (Function::const_iterator BB = TheFunction->begin(),
1588 E = TheFunction->end(); BB != E; ++BB) {
1590 CreateFunctionSlot(BB);
1591 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1592 if (I->getType() != Type::VoidTy && !I->hasName())
1593 CreateFunctionSlot(I);
1596 FunctionProcessed = true;
1598 SC_DEBUG("end processFunction!\n");
1601 /// Clean up after incorporating a function. This is the only way to get out of
1602 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1603 /// incorporation state is indicated by TheFunction != 0.
1604 void SlotMachine::purgeFunction() {
1605 SC_DEBUG("begin purgeFunction!\n");
1606 fMap.clear(); // Simply discard the function level map
1608 FunctionProcessed = false;
1609 SC_DEBUG("end purgeFunction!\n");
1612 /// getGlobalSlot - Get the slot number of a global value.
1613 int SlotMachine::getGlobalSlot(const GlobalValue *V) {
1614 // Check for uninitialized state and do lazy initialization.
1617 // Find the type plane in the module map
1618 ValueMap::const_iterator MI = mMap.find(V);
1619 if (MI == mMap.end()) return -1;
1625 /// getLocalSlot - Get the slot number for a value that is local to a function.
1626 int SlotMachine::getLocalSlot(const Value *V) {
1627 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1629 // Check for uninitialized state and do lazy initialization.
1632 ValueMap::const_iterator FI = fMap.find(V);
1633 if (FI == fMap.end()) return -1;
1639 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1640 void SlotMachine::CreateModuleSlot(const GlobalValue *V) {
1641 assert(V && "Can't insert a null Value into SlotMachine!");
1642 assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
1643 assert(!V->hasName() && "Doesn't need a slot!");
1645 unsigned DestSlot = mNext++;
1648 SC_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1650 // G = Global, F = Function, A = Alias, o = other
1651 SC_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1652 (isa<Function> ? 'F' :
1653 (isa<GlobalAlias> ? 'A' : 'o'))) << "]\n");
1657 /// CreateSlot - Create a new slot for the specified value if it has no name.
1658 void SlotMachine::CreateFunctionSlot(const Value *V) {
1659 const Type *VTy = V->getType();
1660 assert(VTy != Type::VoidTy && !V->hasName() && "Doesn't need a slot!");
1662 unsigned DestSlot = fNext++;
1665 // G = Global, F = Function, o = other
1666 SC_DEBUG(" Inserting value [" << VTy << "] = " << V << " slot=" <<
1667 DestSlot << " [o]\n");