1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // template-based folder for simple primitive constants like ConstantInt, and
16 // the special case hackery that we use to symbolically evaluate expressions
17 // that use ConstantExprs.
19 //===----------------------------------------------------------------------===//
21 #include "ConstantFold.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalAlias.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/GetElementPtrTypeIterator.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/MathExtras.h"
35 //===----------------------------------------------------------------------===//
36 // ConstantFold*Instruction Implementations
37 //===----------------------------------------------------------------------===//
39 /// BitCastConstantVector - Convert the specified ConstantVector node to the
40 /// specified vector type. At this point, we know that the elements of the
41 /// input vector constant are all simple integer or FP values.
42 static Constant *BitCastConstantVector(ConstantVector *CV,
43 const VectorType *DstTy) {
44 // If this cast changes element count then we can't handle it here:
45 // doing so requires endianness information. This should be handled by
46 // Analysis/ConstantFolding.cpp
47 unsigned NumElts = DstTy->getNumElements();
48 if (NumElts != CV->getNumOperands())
51 // Check to verify that all elements of the input are simple.
52 for (unsigned i = 0; i != NumElts; ++i) {
53 if (!isa<ConstantInt>(CV->getOperand(i)) &&
54 !isa<ConstantFP>(CV->getOperand(i)))
58 // Bitcast each element now.
59 std::vector<Constant*> Result;
60 const Type *DstEltTy = DstTy->getElementType();
61 for (unsigned i = 0; i != NumElts; ++i)
62 Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
63 return ConstantVector::get(Result);
66 /// This function determines which opcode to use to fold two constant cast
67 /// expressions together. It uses CastInst::isEliminableCastPair to determine
68 /// the opcode. Consequently its just a wrapper around that function.
69 /// @brief Determine if it is valid to fold a cast of a cast
72 unsigned opc, ///< opcode of the second cast constant expression
73 const ConstantExpr*Op, ///< the first cast constant expression
74 const Type *DstTy ///< desintation type of the first cast
76 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
77 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
78 assert(CastInst::isCast(opc) && "Invalid cast opcode");
80 // The the types and opcodes for the two Cast constant expressions
81 const Type *SrcTy = Op->getOperand(0)->getType();
82 const Type *MidTy = Op->getType();
83 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
84 Instruction::CastOps secondOp = Instruction::CastOps(opc);
86 // Let CastInst::isEliminableCastPair do the heavy lifting.
87 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
91 static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
92 const Type *SrcTy = V->getType();
94 return V; // no-op cast
96 // Check to see if we are casting a pointer to an aggregate to a pointer to
97 // the first element. If so, return the appropriate GEP instruction.
98 if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
99 if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
100 if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
101 SmallVector<Value*, 8> IdxList;
102 IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
103 const Type *ElTy = PTy->getElementType();
104 while (ElTy != DPTy->getElementType()) {
105 if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
106 if (STy->getNumElements() == 0) break;
107 ElTy = STy->getElementType(0);
108 IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
109 } else if (const SequentialType *STy =
110 dyn_cast<SequentialType>(ElTy)) {
111 if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
112 ElTy = STy->getElementType();
113 IdxList.push_back(IdxList[0]);
119 if (ElTy == DPTy->getElementType())
120 return ConstantExpr::getGetElementPtr(V, &IdxList[0], IdxList.size());
123 // Handle casts from one vector constant to another. We know that the src
124 // and dest type have the same size (otherwise its an illegal cast).
125 if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
126 if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
127 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
128 "Not cast between same sized vectors!");
129 // First, check for null. Undef is already handled.
130 if (isa<ConstantAggregateZero>(V))
131 return Constant::getNullValue(DestTy);
133 if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
134 return BitCastConstantVector(CV, DestPTy);
138 // Finally, implement bitcast folding now. The code below doesn't handle
140 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
141 return ConstantPointerNull::get(cast<PointerType>(DestTy));
143 // Handle integral constant input.
144 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
145 if (DestTy->isInteger())
146 // Integral -> Integral. This is a no-op because the bit widths must
147 // be the same. Consequently, we just fold to V.
150 if (DestTy->isFloatingPoint()) {
151 assert((DestTy == Type::DoubleTy || DestTy == Type::FloatTy) &&
153 return ConstantFP::get(APFloat(CI->getValue()));
155 // Otherwise, can't fold this (vector?)
159 // Handle ConstantFP input.
160 if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
162 if (DestTy == Type::Int32Ty) {
163 return ConstantInt::get(FP->getValueAPF().convertToAPInt());
165 assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
166 return ConstantInt::get(FP->getValueAPF().convertToAPInt());
173 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
174 const Type *DestTy) {
175 if (isa<UndefValue>(V)) {
176 // zext(undef) = 0, because the top bits will be zero.
177 // sext(undef) = 0, because the top bits will all be the same.
178 // [us]itofp(undef) = 0, because the result value is bounded.
179 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
180 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
181 return Constant::getNullValue(DestTy);
182 return UndefValue::get(DestTy);
184 // No compile-time operations on this type yet.
185 if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty)
188 // If the cast operand is a constant expression, there's a few things we can
189 // do to try to simplify it.
190 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
192 // Try hard to fold cast of cast because they are often eliminable.
193 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
194 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
195 } else if (CE->getOpcode() == Instruction::GetElementPtr) {
196 // If all of the indexes in the GEP are null values, there is no pointer
197 // adjustment going on. We might as well cast the source pointer.
198 bool isAllNull = true;
199 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
200 if (!CE->getOperand(i)->isNullValue()) {
205 // This is casting one pointer type to another, always BitCast
206 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
210 // We actually have to do a cast now. Perform the cast according to the
213 case Instruction::FPTrunc:
214 case Instruction::FPExt:
215 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
216 APFloat Val = FPC->getValueAPF();
217 Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
218 DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
219 DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
220 DestTy == Type::FP128Ty ? APFloat::IEEEquad :
222 APFloat::rmNearestTiesToEven);
223 return ConstantFP::get(Val);
225 return 0; // Can't fold.
226 case Instruction::FPToUI:
227 case Instruction::FPToSI:
228 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
229 const APFloat &V = FPC->getValueAPF();
231 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
232 (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
233 APFloat::rmTowardZero);
234 APInt Val(DestBitWidth, 2, x);
235 return ConstantInt::get(Val);
237 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
238 std::vector<Constant*> res;
239 const VectorType *DestVecTy = cast<VectorType>(DestTy);
240 const Type *DstEltTy = DestVecTy->getElementType();
241 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
242 res.push_back(ConstantFoldCastInstruction(opc, V->getOperand(i),
244 return ConstantVector::get(DestVecTy, res);
246 return 0; // Can't fold.
247 case Instruction::IntToPtr: //always treated as unsigned
248 if (V->isNullValue()) // Is it an integral null value?
249 return ConstantPointerNull::get(cast<PointerType>(DestTy));
250 return 0; // Other pointer types cannot be casted
251 case Instruction::PtrToInt: // always treated as unsigned
252 if (V->isNullValue()) // is it a null pointer value?
253 return ConstantInt::get(DestTy, 0);
254 return 0; // Other pointer types cannot be casted
255 case Instruction::UIToFP:
256 case Instruction::SIToFP:
257 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
258 APInt api = CI->getValue();
259 const uint64_t zero[] = {0, 0};
260 APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
262 (void)apf.convertFromAPInt(api,
263 opc==Instruction::SIToFP,
264 APFloat::rmNearestTiesToEven);
265 return ConstantFP::get(apf);
267 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
268 std::vector<Constant*> res;
269 const VectorType *DestVecTy = cast<VectorType>(DestTy);
270 const Type *DstEltTy = DestVecTy->getElementType();
271 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
272 res.push_back(ConstantFoldCastInstruction(opc, V->getOperand(i),
274 return ConstantVector::get(DestVecTy, res);
277 case Instruction::ZExt:
278 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
279 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
280 APInt Result(CI->getValue());
281 Result.zext(BitWidth);
282 return ConstantInt::get(Result);
285 case Instruction::SExt:
286 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
287 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
288 APInt Result(CI->getValue());
289 Result.sext(BitWidth);
290 return ConstantInt::get(Result);
293 case Instruction::Trunc:
294 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
295 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
296 APInt Result(CI->getValue());
297 Result.trunc(BitWidth);
298 return ConstantInt::get(Result);
301 case Instruction::BitCast:
302 return FoldBitCast(const_cast<Constant*>(V), DestTy);
304 assert(!"Invalid CE CastInst opcode");
308 assert(0 && "Failed to cast constant expression");
312 Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
314 const Constant *V2) {
315 if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
316 return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
318 if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
319 if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
320 if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
321 if (V1 == V2) return const_cast<Constant*>(V1);
325 Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
326 const Constant *Idx) {
327 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
328 return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
329 if (Val->isNullValue()) // ee(zero, x) -> zero
330 return Constant::getNullValue(
331 cast<VectorType>(Val->getType())->getElementType());
333 if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
334 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
335 return CVal->getOperand(CIdx->getZExtValue());
336 } else if (isa<UndefValue>(Idx)) {
337 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
338 return CVal->getOperand(0);
344 Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
346 const Constant *Idx) {
347 const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
349 APInt idxVal = CIdx->getValue();
350 if (isa<UndefValue>(Val)) {
351 // Insertion of scalar constant into vector undef
352 // Optimize away insertion of undef
353 if (isa<UndefValue>(Elt))
354 return const_cast<Constant*>(Val);
355 // Otherwise break the aggregate undef into multiple undefs and do
358 cast<VectorType>(Val->getType())->getNumElements();
359 std::vector<Constant*> Ops;
361 for (unsigned i = 0; i < numOps; ++i) {
363 (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
364 Ops.push_back(const_cast<Constant*>(Op));
366 return ConstantVector::get(Ops);
368 if (isa<ConstantAggregateZero>(Val)) {
369 // Insertion of scalar constant into vector aggregate zero
370 // Optimize away insertion of zero
371 if (Elt->isNullValue())
372 return const_cast<Constant*>(Val);
373 // Otherwise break the aggregate zero into multiple zeros and do
376 cast<VectorType>(Val->getType())->getNumElements();
377 std::vector<Constant*> Ops;
379 for (unsigned i = 0; i < numOps; ++i) {
381 (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
382 Ops.push_back(const_cast<Constant*>(Op));
384 return ConstantVector::get(Ops);
386 if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
387 // Insertion of scalar constant into vector constant
388 std::vector<Constant*> Ops;
389 Ops.reserve(CVal->getNumOperands());
390 for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
392 (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
393 Ops.push_back(const_cast<Constant*>(Op));
395 return ConstantVector::get(Ops);
400 /// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
401 /// return the specified element value. Otherwise return null.
402 static Constant *GetVectorElement(const Constant *C, unsigned EltNo) {
403 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
404 return CV->getOperand(EltNo);
406 const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
407 if (isa<ConstantAggregateZero>(C))
408 return Constant::getNullValue(EltTy);
409 if (isa<UndefValue>(C))
410 return UndefValue::get(EltTy);
414 Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
416 const Constant *Mask) {
417 // Undefined shuffle mask -> undefined value.
418 if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
420 unsigned NumElts = cast<VectorType>(V1->getType())->getNumElements();
421 const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
423 // Loop over the shuffle mask, evaluating each element.
424 SmallVector<Constant*, 32> Result;
425 for (unsigned i = 0; i != NumElts; ++i) {
426 Constant *InElt = GetVectorElement(Mask, i);
427 if (InElt == 0) return 0;
429 if (isa<UndefValue>(InElt))
430 InElt = UndefValue::get(EltTy);
431 else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
432 unsigned Elt = CI->getZExtValue();
433 if (Elt >= NumElts*2)
434 InElt = UndefValue::get(EltTy);
435 else if (Elt >= NumElts)
436 InElt = GetVectorElement(V2, Elt-NumElts);
438 InElt = GetVectorElement(V1, Elt);
439 if (InElt == 0) return 0;
444 Result.push_back(InElt);
447 return ConstantVector::get(&Result[0], Result.size());
450 Constant *llvm::ConstantFoldExtractValue(const Constant *Agg,
451 Constant* const *Idxs,
453 // FIXME: implement some constant folds
457 Constant *llvm::ConstantFoldInsertValue(const Constant *Agg,
459 Constant* const *Idxs,
461 // FIXME: implement some constant folds
465 /// EvalVectorOp - Given two vector constants and a function pointer, apply the
466 /// function pointer to each element pair, producing a new ConstantVector
467 /// constant. Either or both of V1 and V2 may be NULL, meaning a
468 /// ConstantAggregateZero operand.
469 static Constant *EvalVectorOp(const ConstantVector *V1,
470 const ConstantVector *V2,
471 const VectorType *VTy,
472 Constant *(*FP)(Constant*, Constant*)) {
473 std::vector<Constant*> Res;
474 const Type *EltTy = VTy->getElementType();
475 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
476 const Constant *C1 = V1 ? V1->getOperand(i) : Constant::getNullValue(EltTy);
477 const Constant *C2 = V2 ? V2->getOperand(i) : Constant::getNullValue(EltTy);
478 Res.push_back(FP(const_cast<Constant*>(C1),
479 const_cast<Constant*>(C2)));
481 return ConstantVector::get(Res);
484 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
486 const Constant *C2) {
487 // No compile-time operations on this type yet.
488 if (C1->getType() == Type::PPC_FP128Ty)
491 // Handle UndefValue up front
492 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
494 case Instruction::Xor:
495 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
496 // Handle undef ^ undef -> 0 special case. This is a common
498 return Constant::getNullValue(C1->getType());
500 case Instruction::Add:
501 case Instruction::Sub:
502 return UndefValue::get(C1->getType());
503 case Instruction::Mul:
504 case Instruction::And:
505 return Constant::getNullValue(C1->getType());
506 case Instruction::UDiv:
507 case Instruction::SDiv:
508 case Instruction::FDiv:
509 case Instruction::URem:
510 case Instruction::SRem:
511 case Instruction::FRem:
512 if (!isa<UndefValue>(C2)) // undef / X -> 0
513 return Constant::getNullValue(C1->getType());
514 return const_cast<Constant*>(C2); // X / undef -> undef
515 case Instruction::Or: // X | undef -> -1
516 if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
517 return ConstantVector::getAllOnesValue(PTy);
518 return ConstantInt::getAllOnesValue(C1->getType());
519 case Instruction::LShr:
520 if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
521 return const_cast<Constant*>(C1); // undef lshr undef -> undef
522 return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
524 case Instruction::AShr:
525 if (!isa<UndefValue>(C2))
526 return const_cast<Constant*>(C1); // undef ashr X --> undef
527 else if (isa<UndefValue>(C1))
528 return const_cast<Constant*>(C1); // undef ashr undef -> undef
530 return const_cast<Constant*>(C1); // X ashr undef --> X
531 case Instruction::Shl:
532 // undef << X -> 0 or X << undef -> 0
533 return Constant::getNullValue(C1->getType());
537 // Handle simplifications of the RHS when a constant int.
538 if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
540 case Instruction::Add:
541 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X + 0 == X
543 case Instruction::Sub:
544 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X - 0 == X
546 case Instruction::Mul:
547 if (CI2->equalsInt(0)) return const_cast<Constant*>(C2); // X * 0 == 0
548 if (CI2->equalsInt(1))
549 return const_cast<Constant*>(C1); // X * 1 == X
551 case Instruction::UDiv:
552 case Instruction::SDiv:
553 if (CI2->equalsInt(1))
554 return const_cast<Constant*>(C1); // X / 1 == X
556 case Instruction::URem:
557 case Instruction::SRem:
558 if (CI2->equalsInt(1))
559 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
561 case Instruction::And:
562 if (CI2->isZero()) return const_cast<Constant*>(C2); // X & 0 == 0
563 if (CI2->isAllOnesValue())
564 return const_cast<Constant*>(C1); // X & -1 == X
566 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
567 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
568 if (CE1->getOpcode() == Instruction::ZExt) {
569 unsigned DstWidth = CI2->getType()->getBitWidth();
571 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
572 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
573 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
574 return const_cast<Constant*>(C1);
577 // If and'ing the address of a global with a constant, fold it.
578 if (CE1->getOpcode() == Instruction::PtrToInt &&
579 isa<GlobalValue>(CE1->getOperand(0))) {
580 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
582 // Functions are at least 4-byte aligned.
583 unsigned GVAlign = GV->getAlignment();
584 if (isa<Function>(GV))
585 GVAlign = std::max(GVAlign, 4U);
588 unsigned DstWidth = CI2->getType()->getBitWidth();
589 unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
590 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
592 // If checking bits we know are clear, return zero.
593 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
594 return Constant::getNullValue(CI2->getType());
599 case Instruction::Or:
600 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X | 0 == X
601 if (CI2->isAllOnesValue())
602 return const_cast<Constant*>(C2); // X | -1 == -1
604 case Instruction::Xor:
605 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X ^ 0 == X
607 case Instruction::AShr:
608 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
609 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
610 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
611 return ConstantExpr::getLShr(const_cast<Constant*>(C1),
612 const_cast<Constant*>(C2));
617 // At this point we know neither constant is an UndefValue.
618 if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
619 if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
620 using namespace APIntOps;
621 const APInt &C1V = CI1->getValue();
622 const APInt &C2V = CI2->getValue();
626 case Instruction::Add:
627 return ConstantInt::get(C1V + C2V);
628 case Instruction::Sub:
629 return ConstantInt::get(C1V - C2V);
630 case Instruction::Mul:
631 return ConstantInt::get(C1V * C2V);
632 case Instruction::UDiv:
633 if (CI2->isNullValue())
634 return 0; // X / 0 -> can't fold
635 return ConstantInt::get(C1V.udiv(C2V));
636 case Instruction::SDiv:
637 if (CI2->isNullValue())
638 return 0; // X / 0 -> can't fold
639 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
640 return 0; // MIN_INT / -1 -> overflow
641 return ConstantInt::get(C1V.sdiv(C2V));
642 case Instruction::URem:
643 if (C2->isNullValue())
644 return 0; // X / 0 -> can't fold
645 return ConstantInt::get(C1V.urem(C2V));
646 case Instruction::SRem:
647 if (CI2->isNullValue())
648 return 0; // X % 0 -> can't fold
649 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
650 return 0; // MIN_INT % -1 -> overflow
651 return ConstantInt::get(C1V.srem(C2V));
652 case Instruction::And:
653 return ConstantInt::get(C1V & C2V);
654 case Instruction::Or:
655 return ConstantInt::get(C1V | C2V);
656 case Instruction::Xor:
657 return ConstantInt::get(C1V ^ C2V);
658 case Instruction::Shl: {
659 uint32_t shiftAmt = C2V.getZExtValue();
660 if (shiftAmt < C1V.getBitWidth())
661 return ConstantInt::get(C1V.shl(shiftAmt));
663 return UndefValue::get(C1->getType()); // too big shift is undef
665 case Instruction::LShr: {
666 uint32_t shiftAmt = C2V.getZExtValue();
667 if (shiftAmt < C1V.getBitWidth())
668 return ConstantInt::get(C1V.lshr(shiftAmt));
670 return UndefValue::get(C1->getType()); // too big shift is undef
672 case Instruction::AShr: {
673 uint32_t shiftAmt = C2V.getZExtValue();
674 if (shiftAmt < C1V.getBitWidth())
675 return ConstantInt::get(C1V.ashr(shiftAmt));
677 return UndefValue::get(C1->getType()); // too big shift is undef
681 } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
682 if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
683 APFloat C1V = CFP1->getValueAPF();
684 APFloat C2V = CFP2->getValueAPF();
685 APFloat C3V = C1V; // copy for modification
689 case Instruction::Add:
690 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
691 return ConstantFP::get(C3V);
692 case Instruction::Sub:
693 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
694 return ConstantFP::get(C3V);
695 case Instruction::Mul:
696 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
697 return ConstantFP::get(C3V);
698 case Instruction::FDiv:
699 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
700 return ConstantFP::get(C3V);
701 case Instruction::FRem:
703 // IEEE 754, Section 7.1, #5
704 if (CFP1->getType() == Type::DoubleTy)
705 return ConstantFP::get(APFloat(std::numeric_limits<double>::
707 if (CFP1->getType() == Type::FloatTy)
708 return ConstantFP::get(APFloat(std::numeric_limits<float>::
712 (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
713 return ConstantFP::get(C3V);
716 } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
717 const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
718 const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
719 if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
720 (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
724 case Instruction::Add:
725 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAdd);
726 case Instruction::Sub:
727 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSub);
728 case Instruction::Mul:
729 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getMul);
730 case Instruction::UDiv:
731 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getUDiv);
732 case Instruction::SDiv:
733 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSDiv);
734 case Instruction::FDiv:
735 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFDiv);
736 case Instruction::URem:
737 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getURem);
738 case Instruction::SRem:
739 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSRem);
740 case Instruction::FRem:
741 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFRem);
742 case Instruction::And:
743 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAnd);
744 case Instruction::Or:
745 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getOr);
746 case Instruction::Xor:
747 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getXor);
752 if (isa<ConstantExpr>(C1)) {
753 // There are many possible foldings we could do here. We should probably
754 // at least fold add of a pointer with an integer into the appropriate
755 // getelementptr. This will improve alias analysis a bit.
756 } else if (isa<ConstantExpr>(C2)) {
757 // If C2 is a constant expr and C1 isn't, flop them around and fold the
758 // other way if possible.
760 case Instruction::Add:
761 case Instruction::Mul:
762 case Instruction::And:
763 case Instruction::Or:
764 case Instruction::Xor:
765 // No change of opcode required.
766 return ConstantFoldBinaryInstruction(Opcode, C2, C1);
768 case Instruction::Shl:
769 case Instruction::LShr:
770 case Instruction::AShr:
771 case Instruction::Sub:
772 case Instruction::SDiv:
773 case Instruction::UDiv:
774 case Instruction::FDiv:
775 case Instruction::URem:
776 case Instruction::SRem:
777 case Instruction::FRem:
778 default: // These instructions cannot be flopped around.
783 // We don't know how to fold this.
787 /// isZeroSizedType - This type is zero sized if its an array or structure of
788 /// zero sized types. The only leaf zero sized type is an empty structure.
789 static bool isMaybeZeroSizedType(const Type *Ty) {
790 if (isa<OpaqueType>(Ty)) return true; // Can't say.
791 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
793 // If all of elements have zero size, this does too.
794 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
795 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
798 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
799 return isMaybeZeroSizedType(ATy->getElementType());
804 /// IdxCompare - Compare the two constants as though they were getelementptr
805 /// indices. This allows coersion of the types to be the same thing.
807 /// If the two constants are the "same" (after coersion), return 0. If the
808 /// first is less than the second, return -1, if the second is less than the
809 /// first, return 1. If the constants are not integral, return -2.
811 static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
812 if (C1 == C2) return 0;
814 // Ok, we found a different index. If they are not ConstantInt, we can't do
815 // anything with them.
816 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
817 return -2; // don't know!
819 // Ok, we have two differing integer indices. Sign extend them to be the same
820 // type. Long is always big enough, so we use it.
821 if (C1->getType() != Type::Int64Ty)
822 C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
824 if (C2->getType() != Type::Int64Ty)
825 C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
827 if (C1 == C2) return 0; // They are equal
829 // If the type being indexed over is really just a zero sized type, there is
830 // no pointer difference being made here.
831 if (isMaybeZeroSizedType(ElTy))
834 // If they are really different, now that they are the same type, then we
835 // found a difference!
836 if (cast<ConstantInt>(C1)->getSExtValue() <
837 cast<ConstantInt>(C2)->getSExtValue())
843 /// evaluateFCmpRelation - This function determines if there is anything we can
844 /// decide about the two constants provided. This doesn't need to handle simple
845 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
846 /// If we can determine that the two constants have a particular relation to
847 /// each other, we should return the corresponding FCmpInst predicate,
848 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
849 /// ConstantFoldCompareInstruction.
851 /// To simplify this code we canonicalize the relation so that the first
852 /// operand is always the most "complex" of the two. We consider ConstantFP
853 /// to be the simplest, and ConstantExprs to be the most complex.
854 static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
855 const Constant *V2) {
856 assert(V1->getType() == V2->getType() &&
857 "Cannot compare values of different types!");
859 // No compile-time operations on this type yet.
860 if (V1->getType() == Type::PPC_FP128Ty)
861 return FCmpInst::BAD_FCMP_PREDICATE;
863 // Handle degenerate case quickly
864 if (V1 == V2) return FCmpInst::FCMP_OEQ;
866 if (!isa<ConstantExpr>(V1)) {
867 if (!isa<ConstantExpr>(V2)) {
868 // We distilled thisUse the standard constant folder for a few cases
870 Constant *C1 = const_cast<Constant*>(V1);
871 Constant *C2 = const_cast<Constant*>(V2);
872 R = dyn_cast<ConstantInt>(
873 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
874 if (R && !R->isZero())
875 return FCmpInst::FCMP_OEQ;
876 R = dyn_cast<ConstantInt>(
877 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
878 if (R && !R->isZero())
879 return FCmpInst::FCMP_OLT;
880 R = dyn_cast<ConstantInt>(
881 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
882 if (R && !R->isZero())
883 return FCmpInst::FCMP_OGT;
885 // Nothing more we can do
886 return FCmpInst::BAD_FCMP_PREDICATE;
889 // If the first operand is simple and second is ConstantExpr, swap operands.
890 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
891 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
892 return FCmpInst::getSwappedPredicate(SwappedRelation);
894 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
895 // constantexpr or a simple constant.
896 const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
897 switch (CE1->getOpcode()) {
898 case Instruction::FPTrunc:
899 case Instruction::FPExt:
900 case Instruction::UIToFP:
901 case Instruction::SIToFP:
902 // We might be able to do something with these but we don't right now.
908 // There are MANY other foldings that we could perform here. They will
909 // probably be added on demand, as they seem needed.
910 return FCmpInst::BAD_FCMP_PREDICATE;
913 /// evaluateICmpRelation - This function determines if there is anything we can
914 /// decide about the two constants provided. This doesn't need to handle simple
915 /// things like integer comparisons, but should instead handle ConstantExprs
916 /// and GlobalValues. If we can determine that the two constants have a
917 /// particular relation to each other, we should return the corresponding ICmp
918 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
920 /// To simplify this code we canonicalize the relation so that the first
921 /// operand is always the most "complex" of the two. We consider simple
922 /// constants (like ConstantInt) to be the simplest, followed by
923 /// GlobalValues, followed by ConstantExpr's (the most complex).
925 static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
928 assert(V1->getType() == V2->getType() &&
929 "Cannot compare different types of values!");
930 if (V1 == V2) return ICmpInst::ICMP_EQ;
932 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
933 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
934 // We distilled this down to a simple case, use the standard constant
937 Constant *C1 = const_cast<Constant*>(V1);
938 Constant *C2 = const_cast<Constant*>(V2);
939 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
940 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
941 if (R && !R->isZero())
943 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
944 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
945 if (R && !R->isZero())
947 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
948 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
949 if (R && !R->isZero())
952 // If we couldn't figure it out, bail.
953 return ICmpInst::BAD_ICMP_PREDICATE;
956 // If the first operand is simple, swap operands.
957 ICmpInst::Predicate SwappedRelation =
958 evaluateICmpRelation(V2, V1, isSigned);
959 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
960 return ICmpInst::getSwappedPredicate(SwappedRelation);
962 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
963 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
964 ICmpInst::Predicate SwappedRelation =
965 evaluateICmpRelation(V2, V1, isSigned);
966 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
967 return ICmpInst::getSwappedPredicate(SwappedRelation);
969 return ICmpInst::BAD_ICMP_PREDICATE;
972 // Now we know that the RHS is a GlobalValue or simple constant,
973 // which (since the types must match) means that it's a ConstantPointerNull.
974 if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
975 // Don't try to decide equality of aliases.
976 if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
977 if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
978 return ICmpInst::ICMP_NE;
980 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
981 // GlobalVals can never be null. Don't try to evaluate aliases.
982 if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
983 return ICmpInst::ICMP_NE;
986 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
987 // constantexpr, a CPR, or a simple constant.
988 const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
989 const Constant *CE1Op0 = CE1->getOperand(0);
991 switch (CE1->getOpcode()) {
992 case Instruction::Trunc:
993 case Instruction::FPTrunc:
994 case Instruction::FPExt:
995 case Instruction::FPToUI:
996 case Instruction::FPToSI:
997 break; // We can't evaluate floating point casts or truncations.
999 case Instruction::UIToFP:
1000 case Instruction::SIToFP:
1001 case Instruction::BitCast:
1002 case Instruction::ZExt:
1003 case Instruction::SExt:
1004 // If the cast is not actually changing bits, and the second operand is a
1005 // null pointer, do the comparison with the pre-casted value.
1006 if (V2->isNullValue() &&
1007 (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
1008 bool sgnd = isSigned;
1009 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1010 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1011 return evaluateICmpRelation(CE1Op0,
1012 Constant::getNullValue(CE1Op0->getType()),
1016 // If the dest type is a pointer type, and the RHS is a constantexpr cast
1017 // from the same type as the src of the LHS, evaluate the inputs. This is
1018 // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1019 // which happens a lot in compilers with tagged integers.
1020 if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1021 if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
1022 CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1023 CE1->getOperand(0)->getType()->isInteger()) {
1024 bool sgnd = isSigned;
1025 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1026 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1027 return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
1032 case Instruction::PtrToInt:
1033 case Instruction::IntToPtr:
1034 // inttoptr(x1) != inttoptr(x2) iff x1 != x2
1035 if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1036 if (CE1->getOpcode() == CE2->getOpcode()) {
1037 Constant *Op1 = const_cast<Constant*>(CE1Op0);
1038 Constant *Op2 = CE2->getOperand(0);
1039 if (Op1->getType() == Op2->getType()) {
1042 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1043 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, Op1, Op2));
1044 if (R && !R->isZero())
1047 pred = ICmpInst::ICMP_NE;
1048 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, Op1, Op2));
1049 if (R && !R->isZero())
1055 case Instruction::GetElementPtr:
1056 // Ok, since this is a getelementptr, we know that the constant has a
1057 // pointer type. Check the various cases.
1058 if (isa<ConstantPointerNull>(V2)) {
1059 // If we are comparing a GEP to a null pointer, check to see if the base
1060 // of the GEP equals the null pointer.
1061 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1062 if (GV->hasExternalWeakLinkage())
1063 // Weak linkage GVals could be zero or not. We're comparing that
1064 // to null pointer so its greater-or-equal
1065 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1067 // If its not weak linkage, the GVal must have a non-zero address
1068 // so the result is greater-than
1069 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1070 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1071 // If we are indexing from a null pointer, check to see if we have any
1072 // non-zero indices.
1073 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1074 if (!CE1->getOperand(i)->isNullValue())
1075 // Offsetting from null, must not be equal.
1076 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1077 // Only zero indexes from null, must still be zero.
1078 return ICmpInst::ICMP_EQ;
1080 // Otherwise, we can't really say if the first operand is null or not.
1081 } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1082 if (isa<ConstantPointerNull>(CE1Op0)) {
1083 if (CPR2->hasExternalWeakLinkage())
1084 // Weak linkage GVals could be zero or not. We're comparing it to
1085 // a null pointer, so its less-or-equal
1086 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1088 // If its not weak linkage, the GVal must have a non-zero address
1089 // so the result is less-than
1090 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1091 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1093 // If this is a getelementptr of the same global, then it must be
1094 // different. Because the types must match, the getelementptr could
1095 // only have at most one index, and because we fold getelementptr's
1096 // with a single zero index, it must be nonzero.
1097 assert(CE1->getNumOperands() == 2 &&
1098 !CE1->getOperand(1)->isNullValue() &&
1099 "Suprising getelementptr!");
1100 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1102 // If they are different globals, we don't know what the value is,
1103 // but they can't be equal.
1104 return ICmpInst::ICMP_NE;
1108 const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1109 const Constant *CE2Op0 = CE2->getOperand(0);
1111 // There are MANY other foldings that we could perform here. They will
1112 // probably be added on demand, as they seem needed.
1113 switch (CE2->getOpcode()) {
1115 case Instruction::GetElementPtr:
1116 // By far the most common case to handle is when the base pointers are
1117 // obviously to the same or different globals.
1118 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1119 if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1120 return ICmpInst::ICMP_NE;
1121 // Ok, we know that both getelementptr instructions are based on the
1122 // same global. From this, we can precisely determine the relative
1123 // ordering of the resultant pointers.
1126 // Compare all of the operands the GEP's have in common.
1127 gep_type_iterator GTI = gep_type_begin(CE1);
1128 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1130 switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
1131 GTI.getIndexedType())) {
1132 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1133 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1134 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1137 // Ok, we ran out of things they have in common. If any leftovers
1138 // are non-zero then we have a difference, otherwise we are equal.
1139 for (; i < CE1->getNumOperands(); ++i)
1140 if (!CE1->getOperand(i)->isNullValue()) {
1141 if (isa<ConstantInt>(CE1->getOperand(i)))
1142 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1144 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1147 for (; i < CE2->getNumOperands(); ++i)
1148 if (!CE2->getOperand(i)->isNullValue()) {
1149 if (isa<ConstantInt>(CE2->getOperand(i)))
1150 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1152 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1154 return ICmpInst::ICMP_EQ;
1163 return ICmpInst::BAD_ICMP_PREDICATE;
1166 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1168 const Constant *C2) {
1170 // Handle some degenerate cases first
1171 if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1172 return UndefValue::get(Type::Int1Ty);
1174 // No compile-time operations on this type yet.
1175 if (C1->getType() == Type::PPC_FP128Ty)
1178 // icmp eq/ne(null,GV) -> false/true
1179 if (C1->isNullValue()) {
1180 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1181 // Don't try to evaluate aliases. External weak GV can be null.
1182 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1183 if (pred == ICmpInst::ICMP_EQ)
1184 return ConstantInt::getFalse();
1185 else if (pred == ICmpInst::ICMP_NE)
1186 return ConstantInt::getTrue();
1188 // icmp eq/ne(GV,null) -> false/true
1189 } else if (C2->isNullValue()) {
1190 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1191 // Don't try to evaluate aliases. External weak GV can be null.
1192 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1193 if (pred == ICmpInst::ICMP_EQ)
1194 return ConstantInt::getFalse();
1195 else if (pred == ICmpInst::ICMP_NE)
1196 return ConstantInt::getTrue();
1200 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1201 APInt V1 = cast<ConstantInt>(C1)->getValue();
1202 APInt V2 = cast<ConstantInt>(C2)->getValue();
1204 default: assert(0 && "Invalid ICmp Predicate"); return 0;
1205 case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
1206 case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
1207 case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
1208 case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
1209 case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
1210 case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
1211 case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
1212 case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
1213 case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
1214 case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
1216 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1217 APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1218 APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1219 APFloat::cmpResult R = C1V.compare(C2V);
1221 default: assert(0 && "Invalid FCmp Predicate"); return 0;
1222 case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
1223 case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue();
1224 case FCmpInst::FCMP_UNO:
1225 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
1226 case FCmpInst::FCMP_ORD:
1227 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
1228 case FCmpInst::FCMP_UEQ:
1229 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1230 R==APFloat::cmpEqual);
1231 case FCmpInst::FCMP_OEQ:
1232 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
1233 case FCmpInst::FCMP_UNE:
1234 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
1235 case FCmpInst::FCMP_ONE:
1236 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1237 R==APFloat::cmpGreaterThan);
1238 case FCmpInst::FCMP_ULT:
1239 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1240 R==APFloat::cmpLessThan);
1241 case FCmpInst::FCMP_OLT:
1242 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
1243 case FCmpInst::FCMP_UGT:
1244 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1245 R==APFloat::cmpGreaterThan);
1246 case FCmpInst::FCMP_OGT:
1247 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
1248 case FCmpInst::FCMP_ULE:
1249 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
1250 case FCmpInst::FCMP_OLE:
1251 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1252 R==APFloat::cmpEqual);
1253 case FCmpInst::FCMP_UGE:
1254 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
1255 case FCmpInst::FCMP_OGE:
1256 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
1257 R==APFloat::cmpEqual);
1259 } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
1260 if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {
1261 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) {
1262 for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
1263 Constant *C = ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ,
1265 CP2->getOperand(i));
1266 if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
1269 // Otherwise, could not decide from any element pairs.
1271 } else if (pred == ICmpInst::ICMP_EQ) {
1272 for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
1273 Constant *C = ConstantExpr::getICmp(ICmpInst::ICMP_EQ,
1275 CP2->getOperand(i));
1276 if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
1279 // Otherwise, could not decide from any element pairs.
1285 if (C1->getType()->isFloatingPoint()) {
1286 switch (evaluateFCmpRelation(C1, C2)) {
1287 default: assert(0 && "Unknown relation!");
1288 case FCmpInst::FCMP_UNO:
1289 case FCmpInst::FCMP_ORD:
1290 case FCmpInst::FCMP_UEQ:
1291 case FCmpInst::FCMP_UNE:
1292 case FCmpInst::FCMP_ULT:
1293 case FCmpInst::FCMP_UGT:
1294 case FCmpInst::FCMP_ULE:
1295 case FCmpInst::FCMP_UGE:
1296 case FCmpInst::FCMP_TRUE:
1297 case FCmpInst::FCMP_FALSE:
1298 case FCmpInst::BAD_FCMP_PREDICATE:
1299 break; // Couldn't determine anything about these constants.
1300 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1301 return ConstantInt::get(Type::Int1Ty,
1302 pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1303 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1304 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1305 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1306 return ConstantInt::get(Type::Int1Ty,
1307 pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1308 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1309 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1310 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1311 return ConstantInt::get(Type::Int1Ty,
1312 pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1313 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1314 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1315 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1316 // We can only partially decide this relation.
1317 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1318 return ConstantInt::getFalse();
1319 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1320 return ConstantInt::getTrue();
1322 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1323 // We can only partially decide this relation.
1324 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1325 return ConstantInt::getFalse();
1326 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1327 return ConstantInt::getTrue();
1329 case ICmpInst::ICMP_NE: // We know that C1 != C2
1330 // We can only partially decide this relation.
1331 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1332 return ConstantInt::getFalse();
1333 if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1334 return ConstantInt::getTrue();
1338 // Evaluate the relation between the two constants, per the predicate.
1339 switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1340 default: assert(0 && "Unknown relational!");
1341 case ICmpInst::BAD_ICMP_PREDICATE:
1342 break; // Couldn't determine anything about these constants.
1343 case ICmpInst::ICMP_EQ: // We know the constants are equal!
1344 // If we know the constants are equal, we can decide the result of this
1345 // computation precisely.
1346 return ConstantInt::get(Type::Int1Ty,
1347 pred == ICmpInst::ICMP_EQ ||
1348 pred == ICmpInst::ICMP_ULE ||
1349 pred == ICmpInst::ICMP_SLE ||
1350 pred == ICmpInst::ICMP_UGE ||
1351 pred == ICmpInst::ICMP_SGE);
1352 case ICmpInst::ICMP_ULT:
1353 // If we know that C1 < C2, we can decide the result of this computation
1355 return ConstantInt::get(Type::Int1Ty,
1356 pred == ICmpInst::ICMP_ULT ||
1357 pred == ICmpInst::ICMP_NE ||
1358 pred == ICmpInst::ICMP_ULE);
1359 case ICmpInst::ICMP_SLT:
1360 // If we know that C1 < C2, we can decide the result of this computation
1362 return ConstantInt::get(Type::Int1Ty,
1363 pred == ICmpInst::ICMP_SLT ||
1364 pred == ICmpInst::ICMP_NE ||
1365 pred == ICmpInst::ICMP_SLE);
1366 case ICmpInst::ICMP_UGT:
1367 // If we know that C1 > C2, we can decide the result of this computation
1369 return ConstantInt::get(Type::Int1Ty,
1370 pred == ICmpInst::ICMP_UGT ||
1371 pred == ICmpInst::ICMP_NE ||
1372 pred == ICmpInst::ICMP_UGE);
1373 case ICmpInst::ICMP_SGT:
1374 // If we know that C1 > C2, we can decide the result of this computation
1376 return ConstantInt::get(Type::Int1Ty,
1377 pred == ICmpInst::ICMP_SGT ||
1378 pred == ICmpInst::ICMP_NE ||
1379 pred == ICmpInst::ICMP_SGE);
1380 case ICmpInst::ICMP_ULE:
1381 // If we know that C1 <= C2, we can only partially decide this relation.
1382 if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getFalse();
1383 if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getTrue();
1385 case ICmpInst::ICMP_SLE:
1386 // If we know that C1 <= C2, we can only partially decide this relation.
1387 if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getFalse();
1388 if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getTrue();
1391 case ICmpInst::ICMP_UGE:
1392 // If we know that C1 >= C2, we can only partially decide this relation.
1393 if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getFalse();
1394 if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getTrue();
1396 case ICmpInst::ICMP_SGE:
1397 // If we know that C1 >= C2, we can only partially decide this relation.
1398 if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getFalse();
1399 if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getTrue();
1402 case ICmpInst::ICMP_NE:
1403 // If we know that C1 != C2, we can only partially decide this relation.
1404 if (pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse();
1405 if (pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue();
1409 if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1410 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1411 // other way if possible.
1413 case ICmpInst::ICMP_EQ:
1414 case ICmpInst::ICMP_NE:
1415 // No change of predicate required.
1416 return ConstantFoldCompareInstruction(pred, C2, C1);
1418 case ICmpInst::ICMP_ULT:
1419 case ICmpInst::ICMP_SLT:
1420 case ICmpInst::ICMP_UGT:
1421 case ICmpInst::ICMP_SGT:
1422 case ICmpInst::ICMP_ULE:
1423 case ICmpInst::ICMP_SLE:
1424 case ICmpInst::ICMP_UGE:
1425 case ICmpInst::ICMP_SGE:
1426 // Change the predicate as necessary to swap the operands.
1427 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1428 return ConstantFoldCompareInstruction(pred, C2, C1);
1430 default: // These predicates cannot be flopped around.
1438 Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
1439 Constant* const *Idxs,
1442 (NumIdx == 1 && Idxs[0]->isNullValue()))
1443 return const_cast<Constant*>(C);
1445 if (isa<UndefValue>(C)) {
1446 const PointerType *Ptr = cast<PointerType>(C->getType());
1447 const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1449 (Value **)Idxs+NumIdx);
1450 assert(Ty != 0 && "Invalid indices for GEP!");
1451 return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1454 Constant *Idx0 = Idxs[0];
1455 if (C->isNullValue()) {
1457 for (unsigned i = 0, e = NumIdx; i != e; ++i)
1458 if (!Idxs[i]->isNullValue()) {
1463 const PointerType *Ptr = cast<PointerType>(C->getType());
1464 const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1466 (Value**)Idxs+NumIdx);
1467 assert(Ty != 0 && "Invalid indices for GEP!");
1469 ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace()));
1473 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1474 // Combine Indices - If the source pointer to this getelementptr instruction
1475 // is a getelementptr instruction, combine the indices of the two
1476 // getelementptr instructions into a single instruction.
1478 if (CE->getOpcode() == Instruction::GetElementPtr) {
1479 const Type *LastTy = 0;
1480 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1484 if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1485 SmallVector<Value*, 16> NewIndices;
1486 NewIndices.reserve(NumIdx + CE->getNumOperands());
1487 for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1488 NewIndices.push_back(CE->getOperand(i));
1490 // Add the last index of the source with the first index of the new GEP.
1491 // Make sure to handle the case when they are actually different types.
1492 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1493 // Otherwise it must be an array.
1494 if (!Idx0->isNullValue()) {
1495 const Type *IdxTy = Combined->getType();
1496 if (IdxTy != Idx0->getType()) {
1497 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
1498 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1500 Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1503 ConstantExpr::get(Instruction::Add, Idx0, Combined);
1507 NewIndices.push_back(Combined);
1508 NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1509 return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
1514 // Implement folding of:
1515 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1517 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1519 if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1520 if (const PointerType *SPT =
1521 dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1522 if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1523 if (const ArrayType *CAT =
1524 dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1525 if (CAT->getElementType() == SAT->getElementType())
1526 return ConstantExpr::getGetElementPtr(
1527 (Constant*)CE->getOperand(0), Idxs, NumIdx);
1530 // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1531 // Into: inttoptr (i64 0 to i8*)
1532 // This happens with pointers to member functions in C++.
1533 if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1534 isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1535 cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
1536 Constant *Base = CE->getOperand(0);
1537 Constant *Offset = Idxs[0];
1539 // Convert the smaller integer to the larger type.
1540 if (Offset->getType()->getPrimitiveSizeInBits() <
1541 Base->getType()->getPrimitiveSizeInBits())
1542 Offset = ConstantExpr::getSExt(Offset, Base->getType());
1543 else if (Base->getType()->getPrimitiveSizeInBits() <
1544 Offset->getType()->getPrimitiveSizeInBits())
1545 Base = ConstantExpr::getZExt(Base, Base->getType());
1547 Base = ConstantExpr::getAdd(Base, Offset);
1548 return ConstantExpr::getIntToPtr(Base, CE->getType());