1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // template-based folder for simple primitive constants like ConstantInt, and
16 // the special case hackery that we use to symbolically evaluate expressions
17 // that use ConstantExprs.
19 //===----------------------------------------------------------------------===//
21 #include "ConstantFold.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalAlias.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/GetElementPtrTypeIterator.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/MathExtras.h"
35 //===----------------------------------------------------------------------===//
36 // ConstantFold*Instruction Implementations
37 //===----------------------------------------------------------------------===//
39 /// BitCastConstantVector - Convert the specified ConstantVector node to the
40 /// specified vector type. At this point, we know that the elements of the
41 /// input vector constant are all simple integer or FP values.
42 static Constant *BitCastConstantVector(ConstantVector *CV,
43 const VectorType *DstTy) {
44 // If this cast changes element count then we can't handle it here:
45 // doing so requires endianness information. This should be handled by
46 // Analysis/ConstantFolding.cpp
47 unsigned NumElts = DstTy->getNumElements();
48 if (NumElts != CV->getNumOperands())
51 // Check to verify that all elements of the input are simple.
52 for (unsigned i = 0; i != NumElts; ++i) {
53 if (!isa<ConstantInt>(CV->getOperand(i)) &&
54 !isa<ConstantFP>(CV->getOperand(i)))
58 // Bitcast each element now.
59 std::vector<Constant*> Result;
60 const Type *DstEltTy = DstTy->getElementType();
61 for (unsigned i = 0; i != NumElts; ++i)
62 Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
63 return ConstantVector::get(Result);
66 /// This function determines which opcode to use to fold two constant cast
67 /// expressions together. It uses CastInst::isEliminableCastPair to determine
68 /// the opcode. Consequently its just a wrapper around that function.
69 /// @brief Determine if it is valid to fold a cast of a cast
72 unsigned opc, ///< opcode of the second cast constant expression
73 const ConstantExpr*Op, ///< the first cast constant expression
74 const Type *DstTy ///< desintation type of the first cast
76 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
77 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
78 assert(CastInst::isCast(opc) && "Invalid cast opcode");
80 // The the types and opcodes for the two Cast constant expressions
81 const Type *SrcTy = Op->getOperand(0)->getType();
82 const Type *MidTy = Op->getType();
83 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
84 Instruction::CastOps secondOp = Instruction::CastOps(opc);
86 // Let CastInst::isEliminableCastPair do the heavy lifting.
87 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
91 static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
92 const Type *SrcTy = V->getType();
94 return V; // no-op cast
96 // Check to see if we are casting a pointer to an aggregate to a pointer to
97 // the first element. If so, return the appropriate GEP instruction.
98 if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
99 if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
100 if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
101 SmallVector<Value*, 8> IdxList;
102 IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
103 const Type *ElTy = PTy->getElementType();
104 while (ElTy != DPTy->getElementType()) {
105 if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
106 if (STy->getNumElements() == 0) break;
107 ElTy = STy->getElementType(0);
108 IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
109 } else if (const SequentialType *STy =
110 dyn_cast<SequentialType>(ElTy)) {
111 if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
112 ElTy = STy->getElementType();
113 IdxList.push_back(IdxList[0]);
119 if (ElTy == DPTy->getElementType())
120 return ConstantExpr::getGetElementPtr(V, &IdxList[0], IdxList.size());
123 // Handle casts from one vector constant to another. We know that the src
124 // and dest type have the same size (otherwise its an illegal cast).
125 if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
126 if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
127 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
128 "Not cast between same sized vectors!");
129 // First, check for null. Undef is already handled.
130 if (isa<ConstantAggregateZero>(V))
131 return Constant::getNullValue(DestTy);
133 if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
134 return BitCastConstantVector(CV, DestPTy);
137 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
138 // This allows for other simplifications (although some of them
139 // can only be handled by Analysis/ConstantFolding.cpp).
140 if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
141 return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
144 // Finally, implement bitcast folding now. The code below doesn't handle
146 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
147 return ConstantPointerNull::get(cast<PointerType>(DestTy));
149 // Handle integral constant input.
150 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
151 if (DestTy->isInteger())
152 // Integral -> Integral. This is a no-op because the bit widths must
153 // be the same. Consequently, we just fold to V.
156 if (DestTy->isFloatingPoint()) {
157 assert((DestTy == Type::DoubleTy || DestTy == Type::FloatTy) &&
159 return ConstantFP::get(APFloat(CI->getValue()));
161 // Otherwise, can't fold this (vector?)
165 // Handle ConstantFP input.
166 if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
168 if (DestTy == Type::Int32Ty) {
169 return ConstantInt::get(FP->getValueAPF().bitcastToAPInt());
171 assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
172 return ConstantInt::get(FP->getValueAPF().bitcastToAPInt());
179 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
180 const Type *DestTy) {
181 if (isa<UndefValue>(V)) {
182 // zext(undef) = 0, because the top bits will be zero.
183 // sext(undef) = 0, because the top bits will all be the same.
184 // [us]itofp(undef) = 0, because the result value is bounded.
185 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
186 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
187 return Constant::getNullValue(DestTy);
188 return UndefValue::get(DestTy);
190 // No compile-time operations on this type yet.
191 if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty)
194 // If the cast operand is a constant expression, there's a few things we can
195 // do to try to simplify it.
196 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
198 // Try hard to fold cast of cast because they are often eliminable.
199 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
200 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
201 } else if (CE->getOpcode() == Instruction::GetElementPtr) {
202 // If all of the indexes in the GEP are null values, there is no pointer
203 // adjustment going on. We might as well cast the source pointer.
204 bool isAllNull = true;
205 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
206 if (!CE->getOperand(i)->isNullValue()) {
211 // This is casting one pointer type to another, always BitCast
212 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
216 // We actually have to do a cast now. Perform the cast according to the
219 case Instruction::FPTrunc:
220 case Instruction::FPExt:
221 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
223 APFloat Val = FPC->getValueAPF();
224 Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
225 DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
226 DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
227 DestTy == Type::FP128Ty ? APFloat::IEEEquad :
229 APFloat::rmNearestTiesToEven, &ignored);
230 return ConstantFP::get(Val);
232 return 0; // Can't fold.
233 case Instruction::FPToUI:
234 case Instruction::FPToSI:
235 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
236 const APFloat &V = FPC->getValueAPF();
239 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
240 (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
241 APFloat::rmTowardZero, &ignored);
242 APInt Val(DestBitWidth, 2, x);
243 return ConstantInt::get(Val);
245 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
246 std::vector<Constant*> res;
247 const VectorType *DestVecTy = cast<VectorType>(DestTy);
248 const Type *DstEltTy = DestVecTy->getElementType();
249 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
250 res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy));
251 return ConstantVector::get(DestVecTy, res);
253 return 0; // Can't fold.
254 case Instruction::IntToPtr: //always treated as unsigned
255 if (V->isNullValue()) // Is it an integral null value?
256 return ConstantPointerNull::get(cast<PointerType>(DestTy));
257 return 0; // Other pointer types cannot be casted
258 case Instruction::PtrToInt: // always treated as unsigned
259 if (V->isNullValue()) // is it a null pointer value?
260 return ConstantInt::get(DestTy, 0);
261 return 0; // Other pointer types cannot be casted
262 case Instruction::UIToFP:
263 case Instruction::SIToFP:
264 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
265 APInt api = CI->getValue();
266 const uint64_t zero[] = {0, 0};
267 APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
269 (void)apf.convertFromAPInt(api,
270 opc==Instruction::SIToFP,
271 APFloat::rmNearestTiesToEven);
272 return ConstantFP::get(apf);
274 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
275 std::vector<Constant*> res;
276 const VectorType *DestVecTy = cast<VectorType>(DestTy);
277 const Type *DstEltTy = DestVecTy->getElementType();
278 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
279 res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy));
280 return ConstantVector::get(DestVecTy, res);
283 case Instruction::ZExt:
284 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
285 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
286 APInt Result(CI->getValue());
287 Result.zext(BitWidth);
288 return ConstantInt::get(Result);
291 case Instruction::SExt:
292 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
293 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
294 APInt Result(CI->getValue());
295 Result.sext(BitWidth);
296 return ConstantInt::get(Result);
299 case Instruction::Trunc:
300 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
301 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
302 APInt Result(CI->getValue());
303 Result.trunc(BitWidth);
304 return ConstantInt::get(Result);
307 case Instruction::BitCast:
308 return FoldBitCast(const_cast<Constant*>(V), DestTy);
310 assert(!"Invalid CE CastInst opcode");
314 assert(0 && "Failed to cast constant expression");
318 Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
320 const Constant *V2) {
321 if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
322 return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
324 if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
325 if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
326 if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
327 if (V1 == V2) return const_cast<Constant*>(V1);
331 Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
332 const Constant *Idx) {
333 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
334 return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
335 if (Val->isNullValue()) // ee(zero, x) -> zero
336 return Constant::getNullValue(
337 cast<VectorType>(Val->getType())->getElementType());
339 if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
340 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
341 return CVal->getOperand(CIdx->getZExtValue());
342 } else if (isa<UndefValue>(Idx)) {
343 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
344 return CVal->getOperand(0);
350 Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
352 const Constant *Idx) {
353 const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
355 APInt idxVal = CIdx->getValue();
356 if (isa<UndefValue>(Val)) {
357 // Insertion of scalar constant into vector undef
358 // Optimize away insertion of undef
359 if (isa<UndefValue>(Elt))
360 return const_cast<Constant*>(Val);
361 // Otherwise break the aggregate undef into multiple undefs and do
364 cast<VectorType>(Val->getType())->getNumElements();
365 std::vector<Constant*> Ops;
367 for (unsigned i = 0; i < numOps; ++i) {
369 (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
370 Ops.push_back(const_cast<Constant*>(Op));
372 return ConstantVector::get(Ops);
374 if (isa<ConstantAggregateZero>(Val)) {
375 // Insertion of scalar constant into vector aggregate zero
376 // Optimize away insertion of zero
377 if (Elt->isNullValue())
378 return const_cast<Constant*>(Val);
379 // Otherwise break the aggregate zero into multiple zeros and do
382 cast<VectorType>(Val->getType())->getNumElements();
383 std::vector<Constant*> Ops;
385 for (unsigned i = 0; i < numOps; ++i) {
387 (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
388 Ops.push_back(const_cast<Constant*>(Op));
390 return ConstantVector::get(Ops);
392 if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
393 // Insertion of scalar constant into vector constant
394 std::vector<Constant*> Ops;
395 Ops.reserve(CVal->getNumOperands());
396 for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
398 (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
399 Ops.push_back(const_cast<Constant*>(Op));
401 return ConstantVector::get(Ops);
407 /// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
408 /// return the specified element value. Otherwise return null.
409 static Constant *GetVectorElement(const Constant *C, unsigned EltNo) {
410 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
411 return CV->getOperand(EltNo);
413 const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
414 if (isa<ConstantAggregateZero>(C))
415 return Constant::getNullValue(EltTy);
416 if (isa<UndefValue>(C))
417 return UndefValue::get(EltTy);
421 Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
423 const Constant *Mask) {
424 // Undefined shuffle mask -> undefined value.
425 if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
427 unsigned NumElts = cast<VectorType>(V1->getType())->getNumElements();
428 const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
430 // Loop over the shuffle mask, evaluating each element.
431 SmallVector<Constant*, 32> Result;
432 for (unsigned i = 0; i != NumElts; ++i) {
433 Constant *InElt = GetVectorElement(Mask, i);
434 if (InElt == 0) return 0;
436 if (isa<UndefValue>(InElt))
437 InElt = UndefValue::get(EltTy);
438 else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
439 unsigned Elt = CI->getZExtValue();
440 if (Elt >= NumElts*2)
441 InElt = UndefValue::get(EltTy);
442 else if (Elt >= NumElts)
443 InElt = GetVectorElement(V2, Elt-NumElts);
445 InElt = GetVectorElement(V1, Elt);
446 if (InElt == 0) return 0;
451 Result.push_back(InElt);
454 return ConstantVector::get(&Result[0], Result.size());
457 Constant *llvm::ConstantFoldExtractValueInstruction(const Constant *Agg,
458 const unsigned *Idxs,
460 // Base case: no indices, so return the entire value.
462 return const_cast<Constant *>(Agg);
464 if (isa<UndefValue>(Agg)) // ev(undef, x) -> undef
465 return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
469 if (isa<ConstantAggregateZero>(Agg)) // ev(0, x) -> 0
471 Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
475 // Otherwise recurse.
476 return ConstantFoldExtractValueInstruction(Agg->getOperand(*Idxs),
480 Constant *llvm::ConstantFoldInsertValueInstruction(const Constant *Agg,
482 const unsigned *Idxs,
484 // Base case: no indices, so replace the entire value.
486 return const_cast<Constant *>(Val);
488 if (isa<UndefValue>(Agg)) {
489 // Insertion of constant into aggregate undef
490 // Optimize away insertion of undef
491 if (isa<UndefValue>(Val))
492 return const_cast<Constant*>(Agg);
493 // Otherwise break the aggregate undef into multiple undefs and do
495 const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
497 if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
498 numOps = AR->getNumElements();
500 numOps = cast<StructType>(AggTy)->getNumElements();
501 std::vector<Constant*> Ops(numOps);
502 for (unsigned i = 0; i < numOps; ++i) {
503 const Type *MemberTy = AggTy->getTypeAtIndex(i);
506 ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
507 Val, Idxs+1, NumIdx-1) :
508 UndefValue::get(MemberTy);
509 Ops[i] = const_cast<Constant*>(Op);
511 if (isa<StructType>(AggTy))
512 return ConstantStruct::get(Ops);
514 return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
516 if (isa<ConstantAggregateZero>(Agg)) {
517 // Insertion of constant into aggregate zero
518 // Optimize away insertion of zero
519 if (Val->isNullValue())
520 return const_cast<Constant*>(Agg);
521 // Otherwise break the aggregate zero into multiple zeros and do
523 const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
525 if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
526 numOps = AR->getNumElements();
528 numOps = cast<StructType>(AggTy)->getNumElements();
529 std::vector<Constant*> Ops(numOps);
530 for (unsigned i = 0; i < numOps; ++i) {
531 const Type *MemberTy = AggTy->getTypeAtIndex(i);
534 ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
535 Val, Idxs+1, NumIdx-1) :
536 Constant::getNullValue(MemberTy);
537 Ops[i] = const_cast<Constant*>(Op);
539 if (isa<StructType>(AggTy))
540 return ConstantStruct::get(Ops);
542 return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
544 if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
545 // Insertion of constant into aggregate constant
546 std::vector<Constant*> Ops(Agg->getNumOperands());
547 for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
550 ConstantFoldInsertValueInstruction(Agg->getOperand(i),
551 Val, Idxs+1, NumIdx-1) :
553 Ops[i] = const_cast<Constant*>(Op);
556 if (isa<StructType>(Agg->getType()))
557 C = ConstantStruct::get(Ops);
559 C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
566 /// EvalVectorOp - Given two vector constants and a function pointer, apply the
567 /// function pointer to each element pair, producing a new ConstantVector
568 /// constant. Either or both of V1 and V2 may be NULL, meaning a
569 /// ConstantAggregateZero operand.
570 static Constant *EvalVectorOp(const ConstantVector *V1,
571 const ConstantVector *V2,
572 const VectorType *VTy,
573 Constant *(*FP)(Constant*, Constant*)) {
574 std::vector<Constant*> Res;
575 const Type *EltTy = VTy->getElementType();
576 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
577 const Constant *C1 = V1 ? V1->getOperand(i) : Constant::getNullValue(EltTy);
578 const Constant *C2 = V2 ? V2->getOperand(i) : Constant::getNullValue(EltTy);
579 Res.push_back(FP(const_cast<Constant*>(C1),
580 const_cast<Constant*>(C2)));
582 return ConstantVector::get(Res);
585 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
587 const Constant *C2) {
588 // No compile-time operations on this type yet.
589 if (C1->getType() == Type::PPC_FP128Ty)
592 // Handle UndefValue up front
593 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
595 case Instruction::Xor:
596 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
597 // Handle undef ^ undef -> 0 special case. This is a common
599 return Constant::getNullValue(C1->getType());
601 case Instruction::Add:
602 case Instruction::Sub:
603 return UndefValue::get(C1->getType());
604 case Instruction::Mul:
605 case Instruction::And:
606 return Constant::getNullValue(C1->getType());
607 case Instruction::UDiv:
608 case Instruction::SDiv:
609 case Instruction::FDiv:
610 case Instruction::URem:
611 case Instruction::SRem:
612 case Instruction::FRem:
613 if (!isa<UndefValue>(C2)) // undef / X -> 0
614 return Constant::getNullValue(C1->getType());
615 return const_cast<Constant*>(C2); // X / undef -> undef
616 case Instruction::Or: // X | undef -> -1
617 if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
618 return ConstantVector::getAllOnesValue(PTy);
619 return ConstantInt::getAllOnesValue(C1->getType());
620 case Instruction::LShr:
621 if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
622 return const_cast<Constant*>(C1); // undef lshr undef -> undef
623 return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
625 case Instruction::AShr:
626 if (!isa<UndefValue>(C2))
627 return const_cast<Constant*>(C1); // undef ashr X --> undef
628 else if (isa<UndefValue>(C1))
629 return const_cast<Constant*>(C1); // undef ashr undef -> undef
631 return const_cast<Constant*>(C1); // X ashr undef --> X
632 case Instruction::Shl:
633 // undef << X -> 0 or X << undef -> 0
634 return Constant::getNullValue(C1->getType());
638 // Handle simplifications of the RHS when a constant int.
639 if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
641 case Instruction::Add:
642 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X + 0 == X
644 case Instruction::Sub:
645 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X - 0 == X
647 case Instruction::Mul:
648 if (CI2->equalsInt(0)) return const_cast<Constant*>(C2); // X * 0 == 0
649 if (CI2->equalsInt(1))
650 return const_cast<Constant*>(C1); // X * 1 == X
652 case Instruction::UDiv:
653 case Instruction::SDiv:
654 if (CI2->equalsInt(1))
655 return const_cast<Constant*>(C1); // X / 1 == X
657 case Instruction::URem:
658 case Instruction::SRem:
659 if (CI2->equalsInt(1))
660 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
662 case Instruction::And:
663 if (CI2->isZero()) return const_cast<Constant*>(C2); // X & 0 == 0
664 if (CI2->isAllOnesValue())
665 return const_cast<Constant*>(C1); // X & -1 == X
667 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
668 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
669 if (CE1->getOpcode() == Instruction::ZExt) {
670 unsigned DstWidth = CI2->getType()->getBitWidth();
672 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
673 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
674 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
675 return const_cast<Constant*>(C1);
678 // If and'ing the address of a global with a constant, fold it.
679 if (CE1->getOpcode() == Instruction::PtrToInt &&
680 isa<GlobalValue>(CE1->getOperand(0))) {
681 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
683 // Functions are at least 4-byte aligned.
684 unsigned GVAlign = GV->getAlignment();
685 if (isa<Function>(GV))
686 GVAlign = std::max(GVAlign, 4U);
689 unsigned DstWidth = CI2->getType()->getBitWidth();
690 unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
691 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
693 // If checking bits we know are clear, return zero.
694 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
695 return Constant::getNullValue(CI2->getType());
700 case Instruction::Or:
701 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X | 0 == X
702 if (CI2->isAllOnesValue())
703 return const_cast<Constant*>(C2); // X | -1 == -1
705 case Instruction::Xor:
706 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X ^ 0 == X
708 case Instruction::AShr:
709 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
710 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
711 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
712 return ConstantExpr::getLShr(const_cast<Constant*>(C1),
713 const_cast<Constant*>(C2));
718 // At this point we know neither constant is an UndefValue.
719 if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
720 if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
721 using namespace APIntOps;
722 const APInt &C1V = CI1->getValue();
723 const APInt &C2V = CI2->getValue();
727 case Instruction::Add:
728 return ConstantInt::get(C1V + C2V);
729 case Instruction::Sub:
730 return ConstantInt::get(C1V - C2V);
731 case Instruction::Mul:
732 return ConstantInt::get(C1V * C2V);
733 case Instruction::UDiv:
734 if (CI2->isNullValue())
735 return 0; // X / 0 -> can't fold
736 return ConstantInt::get(C1V.udiv(C2V));
737 case Instruction::SDiv:
738 if (CI2->isNullValue())
739 return 0; // X / 0 -> can't fold
740 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
741 return 0; // MIN_INT / -1 -> overflow
742 return ConstantInt::get(C1V.sdiv(C2V));
743 case Instruction::URem:
744 if (C2->isNullValue())
745 return 0; // X / 0 -> can't fold
746 return ConstantInt::get(C1V.urem(C2V));
747 case Instruction::SRem:
748 if (CI2->isNullValue())
749 return 0; // X % 0 -> can't fold
750 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
751 return 0; // MIN_INT % -1 -> overflow
752 return ConstantInt::get(C1V.srem(C2V));
753 case Instruction::And:
754 return ConstantInt::get(C1V & C2V);
755 case Instruction::Or:
756 return ConstantInt::get(C1V | C2V);
757 case Instruction::Xor:
758 return ConstantInt::get(C1V ^ C2V);
759 case Instruction::Shl: {
760 uint32_t shiftAmt = C2V.getZExtValue();
761 if (shiftAmt < C1V.getBitWidth())
762 return ConstantInt::get(C1V.shl(shiftAmt));
764 return UndefValue::get(C1->getType()); // too big shift is undef
766 case Instruction::LShr: {
767 uint32_t shiftAmt = C2V.getZExtValue();
768 if (shiftAmt < C1V.getBitWidth())
769 return ConstantInt::get(C1V.lshr(shiftAmt));
771 return UndefValue::get(C1->getType()); // too big shift is undef
773 case Instruction::AShr: {
774 uint32_t shiftAmt = C2V.getZExtValue();
775 if (shiftAmt < C1V.getBitWidth())
776 return ConstantInt::get(C1V.ashr(shiftAmt));
778 return UndefValue::get(C1->getType()); // too big shift is undef
782 } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
783 if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
784 APFloat C1V = CFP1->getValueAPF();
785 APFloat C2V = CFP2->getValueAPF();
786 APFloat C3V = C1V; // copy for modification
790 case Instruction::Add:
791 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
792 return ConstantFP::get(C3V);
793 case Instruction::Sub:
794 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
795 return ConstantFP::get(C3V);
796 case Instruction::Mul:
797 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
798 return ConstantFP::get(C3V);
799 case Instruction::FDiv:
800 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
801 return ConstantFP::get(C3V);
802 case Instruction::FRem:
804 // IEEE 754, Section 7.1, #5
805 if (CFP1->getType() == Type::DoubleTy)
806 return ConstantFP::get(APFloat(std::numeric_limits<double>::
808 if (CFP1->getType() == Type::FloatTy)
809 return ConstantFP::get(APFloat(std::numeric_limits<float>::
813 (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
814 return ConstantFP::get(C3V);
817 } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
818 const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
819 const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
820 if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
821 (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
825 case Instruction::Add:
826 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAdd);
827 case Instruction::Sub:
828 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSub);
829 case Instruction::Mul:
830 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getMul);
831 case Instruction::UDiv:
832 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getUDiv);
833 case Instruction::SDiv:
834 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSDiv);
835 case Instruction::FDiv:
836 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFDiv);
837 case Instruction::URem:
838 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getURem);
839 case Instruction::SRem:
840 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSRem);
841 case Instruction::FRem:
842 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFRem);
843 case Instruction::And:
844 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAnd);
845 case Instruction::Or:
846 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getOr);
847 case Instruction::Xor:
848 return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getXor);
853 if (isa<ConstantExpr>(C1)) {
854 // There are many possible foldings we could do here. We should probably
855 // at least fold add of a pointer with an integer into the appropriate
856 // getelementptr. This will improve alias analysis a bit.
857 } else if (isa<ConstantExpr>(C2)) {
858 // If C2 is a constant expr and C1 isn't, flop them around and fold the
859 // other way if possible.
861 case Instruction::Add:
862 case Instruction::Mul:
863 case Instruction::And:
864 case Instruction::Or:
865 case Instruction::Xor:
866 // No change of opcode required.
867 return ConstantFoldBinaryInstruction(Opcode, C2, C1);
869 case Instruction::Shl:
870 case Instruction::LShr:
871 case Instruction::AShr:
872 case Instruction::Sub:
873 case Instruction::SDiv:
874 case Instruction::UDiv:
875 case Instruction::FDiv:
876 case Instruction::URem:
877 case Instruction::SRem:
878 case Instruction::FRem:
879 default: // These instructions cannot be flopped around.
884 // We don't know how to fold this.
888 /// isZeroSizedType - This type is zero sized if its an array or structure of
889 /// zero sized types. The only leaf zero sized type is an empty structure.
890 static bool isMaybeZeroSizedType(const Type *Ty) {
891 if (isa<OpaqueType>(Ty)) return true; // Can't say.
892 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
894 // If all of elements have zero size, this does too.
895 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
896 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
899 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
900 return isMaybeZeroSizedType(ATy->getElementType());
905 /// IdxCompare - Compare the two constants as though they were getelementptr
906 /// indices. This allows coersion of the types to be the same thing.
908 /// If the two constants are the "same" (after coersion), return 0. If the
909 /// first is less than the second, return -1, if the second is less than the
910 /// first, return 1. If the constants are not integral, return -2.
912 static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
913 if (C1 == C2) return 0;
915 // Ok, we found a different index. If they are not ConstantInt, we can't do
916 // anything with them.
917 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
918 return -2; // don't know!
920 // Ok, we have two differing integer indices. Sign extend them to be the same
921 // type. Long is always big enough, so we use it.
922 if (C1->getType() != Type::Int64Ty)
923 C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
925 if (C2->getType() != Type::Int64Ty)
926 C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
928 if (C1 == C2) return 0; // They are equal
930 // If the type being indexed over is really just a zero sized type, there is
931 // no pointer difference being made here.
932 if (isMaybeZeroSizedType(ElTy))
935 // If they are really different, now that they are the same type, then we
936 // found a difference!
937 if (cast<ConstantInt>(C1)->getSExtValue() <
938 cast<ConstantInt>(C2)->getSExtValue())
944 /// evaluateFCmpRelation - This function determines if there is anything we can
945 /// decide about the two constants provided. This doesn't need to handle simple
946 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
947 /// If we can determine that the two constants have a particular relation to
948 /// each other, we should return the corresponding FCmpInst predicate,
949 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
950 /// ConstantFoldCompareInstruction.
952 /// To simplify this code we canonicalize the relation so that the first
953 /// operand is always the most "complex" of the two. We consider ConstantFP
954 /// to be the simplest, and ConstantExprs to be the most complex.
955 static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
956 const Constant *V2) {
957 assert(V1->getType() == V2->getType() &&
958 "Cannot compare values of different types!");
960 // No compile-time operations on this type yet.
961 if (V1->getType() == Type::PPC_FP128Ty)
962 return FCmpInst::BAD_FCMP_PREDICATE;
964 // Handle degenerate case quickly
965 if (V1 == V2) return FCmpInst::FCMP_OEQ;
967 if (!isa<ConstantExpr>(V1)) {
968 if (!isa<ConstantExpr>(V2)) {
969 // We distilled thisUse the standard constant folder for a few cases
971 Constant *C1 = const_cast<Constant*>(V1);
972 Constant *C2 = const_cast<Constant*>(V2);
973 R = dyn_cast<ConstantInt>(
974 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
975 if (R && !R->isZero())
976 return FCmpInst::FCMP_OEQ;
977 R = dyn_cast<ConstantInt>(
978 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
979 if (R && !R->isZero())
980 return FCmpInst::FCMP_OLT;
981 R = dyn_cast<ConstantInt>(
982 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
983 if (R && !R->isZero())
984 return FCmpInst::FCMP_OGT;
986 // Nothing more we can do
987 return FCmpInst::BAD_FCMP_PREDICATE;
990 // If the first operand is simple and second is ConstantExpr, swap operands.
991 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
992 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
993 return FCmpInst::getSwappedPredicate(SwappedRelation);
995 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
996 // constantexpr or a simple constant.
997 const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
998 switch (CE1->getOpcode()) {
999 case Instruction::FPTrunc:
1000 case Instruction::FPExt:
1001 case Instruction::UIToFP:
1002 case Instruction::SIToFP:
1003 // We might be able to do something with these but we don't right now.
1009 // There are MANY other foldings that we could perform here. They will
1010 // probably be added on demand, as they seem needed.
1011 return FCmpInst::BAD_FCMP_PREDICATE;
1014 /// evaluateICmpRelation - This function determines if there is anything we can
1015 /// decide about the two constants provided. This doesn't need to handle simple
1016 /// things like integer comparisons, but should instead handle ConstantExprs
1017 /// and GlobalValues. If we can determine that the two constants have a
1018 /// particular relation to each other, we should return the corresponding ICmp
1019 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1021 /// To simplify this code we canonicalize the relation so that the first
1022 /// operand is always the most "complex" of the two. We consider simple
1023 /// constants (like ConstantInt) to be the simplest, followed by
1024 /// GlobalValues, followed by ConstantExpr's (the most complex).
1026 static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
1029 assert(V1->getType() == V2->getType() &&
1030 "Cannot compare different types of values!");
1031 if (V1 == V2) return ICmpInst::ICMP_EQ;
1033 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
1034 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
1035 // We distilled this down to a simple case, use the standard constant
1038 Constant *C1 = const_cast<Constant*>(V1);
1039 Constant *C2 = const_cast<Constant*>(V2);
1040 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1041 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1042 if (R && !R->isZero())
1044 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1045 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1046 if (R && !R->isZero())
1048 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1049 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1050 if (R && !R->isZero())
1053 // If we couldn't figure it out, bail.
1054 return ICmpInst::BAD_ICMP_PREDICATE;
1057 // If the first operand is simple, swap operands.
1058 ICmpInst::Predicate SwappedRelation =
1059 evaluateICmpRelation(V2, V1, isSigned);
1060 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1061 return ICmpInst::getSwappedPredicate(SwappedRelation);
1063 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
1064 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1065 ICmpInst::Predicate SwappedRelation =
1066 evaluateICmpRelation(V2, V1, isSigned);
1067 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1068 return ICmpInst::getSwappedPredicate(SwappedRelation);
1070 return ICmpInst::BAD_ICMP_PREDICATE;
1073 // Now we know that the RHS is a GlobalValue or simple constant,
1074 // which (since the types must match) means that it's a ConstantPointerNull.
1075 if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1076 // Don't try to decide equality of aliases.
1077 if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
1078 if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
1079 return ICmpInst::ICMP_NE;
1081 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1082 // GlobalVals can never be null. Don't try to evaluate aliases.
1083 if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
1084 return ICmpInst::ICMP_NE;
1087 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1088 // constantexpr, a CPR, or a simple constant.
1089 const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1090 const Constant *CE1Op0 = CE1->getOperand(0);
1092 switch (CE1->getOpcode()) {
1093 case Instruction::Trunc:
1094 case Instruction::FPTrunc:
1095 case Instruction::FPExt:
1096 case Instruction::FPToUI:
1097 case Instruction::FPToSI:
1098 break; // We can't evaluate floating point casts or truncations.
1100 case Instruction::UIToFP:
1101 case Instruction::SIToFP:
1102 case Instruction::BitCast:
1103 case Instruction::ZExt:
1104 case Instruction::SExt:
1105 // If the cast is not actually changing bits, and the second operand is a
1106 // null pointer, do the comparison with the pre-casted value.
1107 if (V2->isNullValue() &&
1108 (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
1109 bool sgnd = isSigned;
1110 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1111 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1112 return evaluateICmpRelation(CE1Op0,
1113 Constant::getNullValue(CE1Op0->getType()),
1117 // If the dest type is a pointer type, and the RHS is a constantexpr cast
1118 // from the same type as the src of the LHS, evaluate the inputs. This is
1119 // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1120 // which happens a lot in compilers with tagged integers.
1121 if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1122 if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
1123 CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1124 CE1->getOperand(0)->getType()->isInteger()) {
1125 bool sgnd = isSigned;
1126 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1127 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1128 return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
1133 case Instruction::GetElementPtr:
1134 // Ok, since this is a getelementptr, we know that the constant has a
1135 // pointer type. Check the various cases.
1136 if (isa<ConstantPointerNull>(V2)) {
1137 // If we are comparing a GEP to a null pointer, check to see if the base
1138 // of the GEP equals the null pointer.
1139 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1140 if (GV->hasExternalWeakLinkage())
1141 // Weak linkage GVals could be zero or not. We're comparing that
1142 // to null pointer so its greater-or-equal
1143 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1145 // If its not weak linkage, the GVal must have a non-zero address
1146 // so the result is greater-than
1147 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1148 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1149 // If we are indexing from a null pointer, check to see if we have any
1150 // non-zero indices.
1151 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1152 if (!CE1->getOperand(i)->isNullValue())
1153 // Offsetting from null, must not be equal.
1154 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1155 // Only zero indexes from null, must still be zero.
1156 return ICmpInst::ICMP_EQ;
1158 // Otherwise, we can't really say if the first operand is null or not.
1159 } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1160 if (isa<ConstantPointerNull>(CE1Op0)) {
1161 if (CPR2->hasExternalWeakLinkage())
1162 // Weak linkage GVals could be zero or not. We're comparing it to
1163 // a null pointer, so its less-or-equal
1164 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1166 // If its not weak linkage, the GVal must have a non-zero address
1167 // so the result is less-than
1168 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1169 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1171 // If this is a getelementptr of the same global, then it must be
1172 // different. Because the types must match, the getelementptr could
1173 // only have at most one index, and because we fold getelementptr's
1174 // with a single zero index, it must be nonzero.
1175 assert(CE1->getNumOperands() == 2 &&
1176 !CE1->getOperand(1)->isNullValue() &&
1177 "Suprising getelementptr!");
1178 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1180 // If they are different globals, we don't know what the value is,
1181 // but they can't be equal.
1182 return ICmpInst::ICMP_NE;
1186 const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1187 const Constant *CE2Op0 = CE2->getOperand(0);
1189 // There are MANY other foldings that we could perform here. They will
1190 // probably be added on demand, as they seem needed.
1191 switch (CE2->getOpcode()) {
1193 case Instruction::GetElementPtr:
1194 // By far the most common case to handle is when the base pointers are
1195 // obviously to the same or different globals.
1196 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1197 if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1198 return ICmpInst::ICMP_NE;
1199 // Ok, we know that both getelementptr instructions are based on the
1200 // same global. From this, we can precisely determine the relative
1201 // ordering of the resultant pointers.
1204 // Compare all of the operands the GEP's have in common.
1205 gep_type_iterator GTI = gep_type_begin(CE1);
1206 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1208 switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
1209 GTI.getIndexedType())) {
1210 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1211 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1212 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1215 // Ok, we ran out of things they have in common. If any leftovers
1216 // are non-zero then we have a difference, otherwise we are equal.
1217 for (; i < CE1->getNumOperands(); ++i)
1218 if (!CE1->getOperand(i)->isNullValue()) {
1219 if (isa<ConstantInt>(CE1->getOperand(i)))
1220 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1222 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1225 for (; i < CE2->getNumOperands(); ++i)
1226 if (!CE2->getOperand(i)->isNullValue()) {
1227 if (isa<ConstantInt>(CE2->getOperand(i)))
1228 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1230 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1232 return ICmpInst::ICMP_EQ;
1241 return ICmpInst::BAD_ICMP_PREDICATE;
1244 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1246 const Constant *C2) {
1247 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1248 if (pred == FCmpInst::FCMP_FALSE) {
1249 if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1250 return Constant::getNullValue(VectorType::getInteger(VT));
1252 return ConstantInt::getFalse();
1255 if (pred == FCmpInst::FCMP_TRUE) {
1256 if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1257 return Constant::getAllOnesValue(VectorType::getInteger(VT));
1259 return ConstantInt::getTrue();
1262 // Handle some degenerate cases first
1263 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1264 // vicmp/vfcmp -> [vector] undef
1265 if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType()))
1266 return UndefValue::get(VectorType::getInteger(VTy));
1268 // icmp/fcmp -> i1 undef
1269 return UndefValue::get(Type::Int1Ty);
1272 // No compile-time operations on this type yet.
1273 if (C1->getType() == Type::PPC_FP128Ty)
1276 // icmp eq/ne(null,GV) -> false/true
1277 if (C1->isNullValue()) {
1278 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1279 // Don't try to evaluate aliases. External weak GV can be null.
1280 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1281 if (pred == ICmpInst::ICMP_EQ)
1282 return ConstantInt::getFalse();
1283 else if (pred == ICmpInst::ICMP_NE)
1284 return ConstantInt::getTrue();
1286 // icmp eq/ne(GV,null) -> false/true
1287 } else if (C2->isNullValue()) {
1288 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1289 // Don't try to evaluate aliases. External weak GV can be null.
1290 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1291 if (pred == ICmpInst::ICMP_EQ)
1292 return ConstantInt::getFalse();
1293 else if (pred == ICmpInst::ICMP_NE)
1294 return ConstantInt::getTrue();
1298 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1299 APInt V1 = cast<ConstantInt>(C1)->getValue();
1300 APInt V2 = cast<ConstantInt>(C2)->getValue();
1302 default: assert(0 && "Invalid ICmp Predicate"); return 0;
1303 case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
1304 case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
1305 case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
1306 case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
1307 case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
1308 case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
1309 case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
1310 case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
1311 case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
1312 case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
1314 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1315 APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1316 APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1317 APFloat::cmpResult R = C1V.compare(C2V);
1319 default: assert(0 && "Invalid FCmp Predicate"); return 0;
1320 case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
1321 case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue();
1322 case FCmpInst::FCMP_UNO:
1323 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
1324 case FCmpInst::FCMP_ORD:
1325 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
1326 case FCmpInst::FCMP_UEQ:
1327 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1328 R==APFloat::cmpEqual);
1329 case FCmpInst::FCMP_OEQ:
1330 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
1331 case FCmpInst::FCMP_UNE:
1332 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
1333 case FCmpInst::FCMP_ONE:
1334 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1335 R==APFloat::cmpGreaterThan);
1336 case FCmpInst::FCMP_ULT:
1337 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1338 R==APFloat::cmpLessThan);
1339 case FCmpInst::FCMP_OLT:
1340 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
1341 case FCmpInst::FCMP_UGT:
1342 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1343 R==APFloat::cmpGreaterThan);
1344 case FCmpInst::FCMP_OGT:
1345 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
1346 case FCmpInst::FCMP_ULE:
1347 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
1348 case FCmpInst::FCMP_OLE:
1349 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1350 R==APFloat::cmpEqual);
1351 case FCmpInst::FCMP_UGE:
1352 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
1353 case FCmpInst::FCMP_OGE:
1354 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
1355 R==APFloat::cmpEqual);
1357 } else if (isa<VectorType>(C1->getType())) {
1358 SmallVector<Constant*, 16> C1Elts, C2Elts;
1359 C1->getVectorElements(C1Elts);
1360 C2->getVectorElements(C2Elts);
1362 // If we can constant fold the comparison of each element, constant fold
1363 // the whole vector comparison.
1364 SmallVector<Constant*, 4> ResElts;
1365 const Type *InEltTy = C1Elts[0]->getType();
1366 bool isFP = InEltTy->isFloatingPoint();
1367 const Type *ResEltTy = InEltTy;
1369 ResEltTy = IntegerType::get(InEltTy->getPrimitiveSizeInBits());
1371 for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1372 // Compare the elements, producing an i1 result or constant expr.
1375 C = ConstantExpr::getFCmp(pred, C1Elts[i], C2Elts[i]);
1377 C = ConstantExpr::getICmp(pred, C1Elts[i], C2Elts[i]);
1379 // If it is a bool or undef result, convert to the dest type.
1380 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1382 ResElts.push_back(Constant::getNullValue(ResEltTy));
1384 ResElts.push_back(Constant::getAllOnesValue(ResEltTy));
1385 } else if (isa<UndefValue>(C)) {
1386 ResElts.push_back(UndefValue::get(ResEltTy));
1392 if (ResElts.size() == C1Elts.size())
1393 return ConstantVector::get(&ResElts[0], ResElts.size());
1396 if (C1->getType()->isFloatingPoint()) {
1397 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1398 switch (evaluateFCmpRelation(C1, C2)) {
1399 default: assert(0 && "Unknown relation!");
1400 case FCmpInst::FCMP_UNO:
1401 case FCmpInst::FCMP_ORD:
1402 case FCmpInst::FCMP_UEQ:
1403 case FCmpInst::FCMP_UNE:
1404 case FCmpInst::FCMP_ULT:
1405 case FCmpInst::FCMP_UGT:
1406 case FCmpInst::FCMP_ULE:
1407 case FCmpInst::FCMP_UGE:
1408 case FCmpInst::FCMP_TRUE:
1409 case FCmpInst::FCMP_FALSE:
1410 case FCmpInst::BAD_FCMP_PREDICATE:
1411 break; // Couldn't determine anything about these constants.
1412 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1413 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1414 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1415 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1417 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1418 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1419 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1420 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1422 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1423 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1424 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1425 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1427 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1428 // We can only partially decide this relation.
1429 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1431 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1434 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1435 // We can only partially decide this relation.
1436 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1438 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1441 case ICmpInst::ICMP_NE: // We know that C1 != C2
1442 // We can only partially decide this relation.
1443 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1445 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1450 // If we evaluated the result, return it now.
1452 if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
1454 return Constant::getNullValue(VectorType::getInteger(VT));
1456 return Constant::getAllOnesValue(VectorType::getInteger(VT));
1458 return ConstantInt::get(Type::Int1Ty, Result);
1462 // Evaluate the relation between the two constants, per the predicate.
1463 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1464 switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1465 default: assert(0 && "Unknown relational!");
1466 case ICmpInst::BAD_ICMP_PREDICATE:
1467 break; // Couldn't determine anything about these constants.
1468 case ICmpInst::ICMP_EQ: // We know the constants are equal!
1469 // If we know the constants are equal, we can decide the result of this
1470 // computation precisely.
1471 Result = (pred == ICmpInst::ICMP_EQ ||
1472 pred == ICmpInst::ICMP_ULE ||
1473 pred == ICmpInst::ICMP_SLE ||
1474 pred == ICmpInst::ICMP_UGE ||
1475 pred == ICmpInst::ICMP_SGE);
1477 case ICmpInst::ICMP_ULT:
1478 // If we know that C1 < C2, we can decide the result of this computation
1480 Result = (pred == ICmpInst::ICMP_ULT ||
1481 pred == ICmpInst::ICMP_NE ||
1482 pred == ICmpInst::ICMP_ULE);
1484 case ICmpInst::ICMP_SLT:
1485 // If we know that C1 < C2, we can decide the result of this computation
1487 Result = (pred == ICmpInst::ICMP_SLT ||
1488 pred == ICmpInst::ICMP_NE ||
1489 pred == ICmpInst::ICMP_SLE);
1491 case ICmpInst::ICMP_UGT:
1492 // If we know that C1 > C2, we can decide the result of this computation
1494 Result = (pred == ICmpInst::ICMP_UGT ||
1495 pred == ICmpInst::ICMP_NE ||
1496 pred == ICmpInst::ICMP_UGE);
1498 case ICmpInst::ICMP_SGT:
1499 // If we know that C1 > C2, we can decide the result of this computation
1501 Result = (pred == ICmpInst::ICMP_SGT ||
1502 pred == ICmpInst::ICMP_NE ||
1503 pred == ICmpInst::ICMP_SGE);
1505 case ICmpInst::ICMP_ULE:
1506 // If we know that C1 <= C2, we can only partially decide this relation.
1507 if (pred == ICmpInst::ICMP_UGT) Result = 0;
1508 if (pred == ICmpInst::ICMP_ULT) Result = 1;
1510 case ICmpInst::ICMP_SLE:
1511 // If we know that C1 <= C2, we can only partially decide this relation.
1512 if (pred == ICmpInst::ICMP_SGT) Result = 0;
1513 if (pred == ICmpInst::ICMP_SLT) Result = 1;
1516 case ICmpInst::ICMP_UGE:
1517 // If we know that C1 >= C2, we can only partially decide this relation.
1518 if (pred == ICmpInst::ICMP_ULT) Result = 0;
1519 if (pred == ICmpInst::ICMP_UGT) Result = 1;
1521 case ICmpInst::ICMP_SGE:
1522 // If we know that C1 >= C2, we can only partially decide this relation.
1523 if (pred == ICmpInst::ICMP_SLT) Result = 0;
1524 if (pred == ICmpInst::ICMP_SGT) Result = 1;
1527 case ICmpInst::ICMP_NE:
1528 // If we know that C1 != C2, we can only partially decide this relation.
1529 if (pred == ICmpInst::ICMP_EQ) Result = 0;
1530 if (pred == ICmpInst::ICMP_NE) Result = 1;
1534 // If we evaluated the result, return it now.
1536 if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
1538 return Constant::getNullValue(VT);
1540 return Constant::getAllOnesValue(VT);
1542 return ConstantInt::get(Type::Int1Ty, Result);
1545 if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1546 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1547 // other way if possible.
1549 case ICmpInst::ICMP_EQ:
1550 case ICmpInst::ICMP_NE:
1551 // No change of predicate required.
1552 return ConstantFoldCompareInstruction(pred, C2, C1);
1554 case ICmpInst::ICMP_ULT:
1555 case ICmpInst::ICMP_SLT:
1556 case ICmpInst::ICMP_UGT:
1557 case ICmpInst::ICMP_SGT:
1558 case ICmpInst::ICMP_ULE:
1559 case ICmpInst::ICMP_SLE:
1560 case ICmpInst::ICMP_UGE:
1561 case ICmpInst::ICMP_SGE:
1562 // Change the predicate as necessary to swap the operands.
1563 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1564 return ConstantFoldCompareInstruction(pred, C2, C1);
1566 default: // These predicates cannot be flopped around.
1574 Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
1575 Constant* const *Idxs,
1578 (NumIdx == 1 && Idxs[0]->isNullValue()))
1579 return const_cast<Constant*>(C);
1581 if (isa<UndefValue>(C)) {
1582 const PointerType *Ptr = cast<PointerType>(C->getType());
1583 const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1585 (Value **)Idxs+NumIdx);
1586 assert(Ty != 0 && "Invalid indices for GEP!");
1587 return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1590 Constant *Idx0 = Idxs[0];
1591 if (C->isNullValue()) {
1593 for (unsigned i = 0, e = NumIdx; i != e; ++i)
1594 if (!Idxs[i]->isNullValue()) {
1599 const PointerType *Ptr = cast<PointerType>(C->getType());
1600 const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1602 (Value**)Idxs+NumIdx);
1603 assert(Ty != 0 && "Invalid indices for GEP!");
1605 ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace()));
1609 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1610 // Combine Indices - If the source pointer to this getelementptr instruction
1611 // is a getelementptr instruction, combine the indices of the two
1612 // getelementptr instructions into a single instruction.
1614 if (CE->getOpcode() == Instruction::GetElementPtr) {
1615 const Type *LastTy = 0;
1616 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1620 if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1621 SmallVector<Value*, 16> NewIndices;
1622 NewIndices.reserve(NumIdx + CE->getNumOperands());
1623 for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1624 NewIndices.push_back(CE->getOperand(i));
1626 // Add the last index of the source with the first index of the new GEP.
1627 // Make sure to handle the case when they are actually different types.
1628 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1629 // Otherwise it must be an array.
1630 if (!Idx0->isNullValue()) {
1631 const Type *IdxTy = Combined->getType();
1632 if (IdxTy != Idx0->getType()) {
1633 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
1634 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1636 Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1639 ConstantExpr::get(Instruction::Add, Idx0, Combined);
1643 NewIndices.push_back(Combined);
1644 NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1645 return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
1650 // Implement folding of:
1651 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1653 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1655 if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1656 if (const PointerType *SPT =
1657 dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1658 if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1659 if (const ArrayType *CAT =
1660 dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1661 if (CAT->getElementType() == SAT->getElementType())
1662 return ConstantExpr::getGetElementPtr(
1663 (Constant*)CE->getOperand(0), Idxs, NumIdx);
1666 // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1667 // Into: inttoptr (i64 0 to i8*)
1668 // This happens with pointers to member functions in C++.
1669 if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1670 isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1671 cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
1672 Constant *Base = CE->getOperand(0);
1673 Constant *Offset = Idxs[0];
1675 // Convert the smaller integer to the larger type.
1676 if (Offset->getType()->getPrimitiveSizeInBits() <
1677 Base->getType()->getPrimitiveSizeInBits())
1678 Offset = ConstantExpr::getSExt(Offset, Base->getType());
1679 else if (Base->getType()->getPrimitiveSizeInBits() <
1680 Offset->getType()->getPrimitiveSizeInBits())
1681 Base = ConstantExpr::getZExt(Base, Base->getType());
1683 Base = ConstantExpr::getAdd(Base, Offset);
1684 return ConstantExpr::getIntToPtr(Base, CE->getType());