1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Constant* classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Constants.h"
15 #include "LLVMContextImpl.h"
16 #include "ConstantFold.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallVector.h"
38 //===----------------------------------------------------------------------===//
40 //===----------------------------------------------------------------------===//
42 // Constructor to create a '0' constant of arbitrary type...
43 Constant *Constant::getNullValue(const Type *Ty) {
44 switch (Ty->getTypeID()) {
45 case Type::IntegerTyID:
46 return ConstantInt::get(Ty, 0);
48 return ConstantFP::get(Ty->getContext(),
49 APFloat::getZero(APFloat::IEEEsingle));
50 case Type::DoubleTyID:
51 return ConstantFP::get(Ty->getContext(),
52 APFloat::getZero(APFloat::IEEEdouble));
53 case Type::X86_FP80TyID:
54 return ConstantFP::get(Ty->getContext(),
55 APFloat::getZero(APFloat::x87DoubleExtended));
57 return ConstantFP::get(Ty->getContext(),
58 APFloat::getZero(APFloat::IEEEquad));
59 case Type::PPC_FP128TyID:
60 return ConstantFP::get(Ty->getContext(),
61 APFloat(APInt::getNullValue(128)));
62 case Type::PointerTyID:
63 return ConstantPointerNull::get(cast<PointerType>(Ty));
64 case Type::StructTyID:
66 case Type::VectorTyID:
67 return ConstantAggregateZero::get(Ty);
69 // Function, Label, or Opaque type?
70 assert(!"Cannot create a null constant of that type!");
75 Constant* Constant::getIntegerValue(const Type *Ty, const APInt &V) {
76 const Type *ScalarTy = Ty->getScalarType();
78 // Create the base integer constant.
79 Constant *C = ConstantInt::get(Ty->getContext(), V);
81 // Convert an integer to a pointer, if necessary.
82 if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
83 C = ConstantExpr::getIntToPtr(C, PTy);
85 // Broadcast a scalar to a vector, if necessary.
86 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
87 C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
92 Constant* Constant::getAllOnesValue(const Type *Ty) {
93 if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
94 return ConstantInt::get(Ty->getContext(),
95 APInt::getAllOnesValue(ITy->getBitWidth()));
97 std::vector<Constant*> Elts;
98 const VectorType *VTy = cast<VectorType>(Ty);
99 Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
100 assert(Elts[0] && "Not a vector integer type!");
101 return cast<ConstantVector>(ConstantVector::get(Elts));
104 void Constant::destroyConstantImpl() {
105 // When a Constant is destroyed, there may be lingering
106 // references to the constant by other constants in the constant pool. These
107 // constants are implicitly dependent on the module that is being deleted,
108 // but they don't know that. Because we only find out when the CPV is
109 // deleted, we must now notify all of our users (that should only be
110 // Constants) that they are, in fact, invalid now and should be deleted.
112 while (!use_empty()) {
113 Value *V = use_back();
114 #ifndef NDEBUG // Only in -g mode...
115 if (!isa<Constant>(V)) {
116 dbgs() << "While deleting: " << *this
117 << "\n\nUse still stuck around after Def is destroyed: "
121 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
122 Constant *CV = cast<Constant>(V);
123 CV->destroyConstant();
125 // The constant should remove itself from our use list...
126 assert((use_empty() || use_back() != V) && "Constant not removed!");
129 // Value has no outstanding references it is safe to delete it now...
133 /// canTrap - Return true if evaluation of this constant could trap. This is
134 /// true for things like constant expressions that could divide by zero.
135 bool Constant::canTrap() const {
136 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
137 // The only thing that could possibly trap are constant exprs.
138 const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
139 if (!CE) return false;
141 // ConstantExpr traps if any operands can trap.
142 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
143 if (CE->getOperand(i)->canTrap())
146 // Otherwise, only specific operations can trap.
147 switch (CE->getOpcode()) {
150 case Instruction::UDiv:
151 case Instruction::SDiv:
152 case Instruction::FDiv:
153 case Instruction::URem:
154 case Instruction::SRem:
155 case Instruction::FRem:
156 // Div and rem can trap if the RHS is not known to be non-zero.
157 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
163 /// isConstantUsed - Return true if the constant has users other than constant
164 /// exprs and other dangling things.
165 bool Constant::isConstantUsed() const {
166 for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
167 const Constant *UC = dyn_cast<Constant>(*UI);
168 if (UC == 0 || isa<GlobalValue>(UC))
171 if (UC->isConstantUsed())
179 /// getRelocationInfo - This method classifies the entry according to
180 /// whether or not it may generate a relocation entry. This must be
181 /// conservative, so if it might codegen to a relocatable entry, it should say
182 /// so. The return values are:
184 /// NoRelocation: This constant pool entry is guaranteed to never have a
185 /// relocation applied to it (because it holds a simple constant like
187 /// LocalRelocation: This entry has relocations, but the entries are
188 /// guaranteed to be resolvable by the static linker, so the dynamic
189 /// linker will never see them.
190 /// GlobalRelocations: This entry may have arbitrary relocations.
192 /// FIXME: This really should not be in VMCore.
193 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
194 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
195 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
196 return LocalRelocation; // Local to this file/library.
197 return GlobalRelocations; // Global reference.
200 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
201 return BA->getFunction()->getRelocationInfo();
203 // While raw uses of blockaddress need to be relocated, differences between
204 // two of them don't when they are for labels in the same function. This is a
205 // common idiom when creating a table for the indirect goto extension, so we
206 // handle it efficiently here.
207 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
208 if (CE->getOpcode() == Instruction::Sub) {
209 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
210 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
212 LHS->getOpcode() == Instruction::PtrToInt &&
213 RHS->getOpcode() == Instruction::PtrToInt &&
214 isa<BlockAddress>(LHS->getOperand(0)) &&
215 isa<BlockAddress>(RHS->getOperand(0)) &&
216 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
217 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
221 PossibleRelocationsTy Result = NoRelocation;
222 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
223 Result = std::max(Result,
224 cast<Constant>(getOperand(i))->getRelocationInfo());
230 /// getVectorElements - This method, which is only valid on constant of vector
231 /// type, returns the elements of the vector in the specified smallvector.
232 /// This handles breaking down a vector undef into undef elements, etc. For
233 /// constant exprs and other cases we can't handle, we return an empty vector.
234 void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
235 assert(getType()->isVectorTy() && "Not a vector constant!");
237 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
238 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
239 Elts.push_back(CV->getOperand(i));
243 const VectorType *VT = cast<VectorType>(getType());
244 if (isa<ConstantAggregateZero>(this)) {
245 Elts.assign(VT->getNumElements(),
246 Constant::getNullValue(VT->getElementType()));
250 if (isa<UndefValue>(this)) {
251 Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
255 // Unknown type, must be constant expr etc.
260 //===----------------------------------------------------------------------===//
262 //===----------------------------------------------------------------------===//
264 ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
265 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
266 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
269 ConstantInt* ConstantInt::getTrue(LLVMContext &Context) {
270 LLVMContextImpl *pImpl = Context.pImpl;
271 if (!pImpl->TheTrueVal)
272 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
273 return pImpl->TheTrueVal;
276 ConstantInt* ConstantInt::getFalse(LLVMContext &Context) {
277 LLVMContextImpl *pImpl = Context.pImpl;
278 if (!pImpl->TheFalseVal)
279 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
280 return pImpl->TheFalseVal;
284 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
285 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
286 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
287 // compare APInt's of different widths, which would violate an APInt class
288 // invariant which generates an assertion.
289 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
290 // Get the corresponding integer type for the bit width of the value.
291 const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
292 // get an existing value or the insertion position
293 DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
294 ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
295 if (!Slot) Slot = new ConstantInt(ITy, V);
299 Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
300 Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
303 // For vectors, broadcast the value.
304 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
305 return ConstantVector::get(
306 std::vector<Constant *>(VTy->getNumElements(), C));
311 ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V,
313 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
316 ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
317 return get(Ty, V, true);
320 Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
321 return get(Ty, V, true);
324 Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
325 ConstantInt *C = get(Ty->getContext(), V);
326 assert(C->getType() == Ty->getScalarType() &&
327 "ConstantInt type doesn't match the type implied by its value!");
329 // For vectors, broadcast the value.
330 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
331 return ConstantVector::get(
332 std::vector<Constant *>(VTy->getNumElements(), C));
337 ConstantInt* ConstantInt::get(const IntegerType* Ty, StringRef Str,
339 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
342 //===----------------------------------------------------------------------===//
344 //===----------------------------------------------------------------------===//
346 static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
348 return &APFloat::IEEEsingle;
349 if (Ty->isDoubleTy())
350 return &APFloat::IEEEdouble;
351 if (Ty->isX86_FP80Ty())
352 return &APFloat::x87DoubleExtended;
353 else if (Ty->isFP128Ty())
354 return &APFloat::IEEEquad;
356 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
357 return &APFloat::PPCDoubleDouble;
360 /// get() - This returns a constant fp for the specified value in the
361 /// specified type. This should only be used for simple constant values like
362 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
363 Constant* ConstantFP::get(const Type* Ty, double V) {
364 LLVMContext &Context = Ty->getContext();
368 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
369 APFloat::rmNearestTiesToEven, &ignored);
370 Constant *C = get(Context, FV);
372 // For vectors, broadcast the value.
373 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
374 return ConstantVector::get(
375 std::vector<Constant *>(VTy->getNumElements(), C));
381 Constant* ConstantFP::get(const Type* Ty, StringRef Str) {
382 LLVMContext &Context = Ty->getContext();
384 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
385 Constant *C = get(Context, FV);
387 // For vectors, broadcast the value.
388 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
389 return ConstantVector::get(
390 std::vector<Constant *>(VTy->getNumElements(), C));
396 ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) {
397 LLVMContext &Context = Ty->getContext();
398 APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
400 return get(Context, apf);
404 Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) {
405 if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
406 if (PTy->getElementType()->isFloatingPointTy()) {
407 std::vector<Constant*> zeros(PTy->getNumElements(),
408 getNegativeZero(PTy->getElementType()));
409 return ConstantVector::get(PTy, zeros);
412 if (Ty->isFloatingPointTy())
413 return getNegativeZero(Ty);
415 return Constant::getNullValue(Ty);
419 // ConstantFP accessors.
420 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
421 DenseMapAPFloatKeyInfo::KeyTy Key(V);
423 LLVMContextImpl* pImpl = Context.pImpl;
425 ConstantFP *&Slot = pImpl->FPConstants[Key];
429 if (&V.getSemantics() == &APFloat::IEEEsingle)
430 Ty = Type::getFloatTy(Context);
431 else if (&V.getSemantics() == &APFloat::IEEEdouble)
432 Ty = Type::getDoubleTy(Context);
433 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
434 Ty = Type::getX86_FP80Ty(Context);
435 else if (&V.getSemantics() == &APFloat::IEEEquad)
436 Ty = Type::getFP128Ty(Context);
438 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
439 "Unknown FP format");
440 Ty = Type::getPPC_FP128Ty(Context);
442 Slot = new ConstantFP(Ty, V);
448 ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) {
449 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
450 return ConstantFP::get(Ty->getContext(),
451 APFloat::getInf(Semantics, Negative));
454 ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
455 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
456 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
460 bool ConstantFP::isNullValue() const {
461 return Val.isZero() && !Val.isNegative();
464 bool ConstantFP::isExactlyValue(const APFloat& V) const {
465 return Val.bitwiseIsEqual(V);
468 //===----------------------------------------------------------------------===//
469 // ConstantXXX Classes
470 //===----------------------------------------------------------------------===//
473 ConstantArray::ConstantArray(const ArrayType *T,
474 const std::vector<Constant*> &V)
475 : Constant(T, ConstantArrayVal,
476 OperandTraits<ConstantArray>::op_end(this) - V.size(),
478 assert(V.size() == T->getNumElements() &&
479 "Invalid initializer vector for constant array");
480 Use *OL = OperandList;
481 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
484 assert(C->getType() == T->getElementType() &&
485 "Initializer for array element doesn't match array element type!");
490 Constant *ConstantArray::get(const ArrayType *Ty,
491 const std::vector<Constant*> &V) {
492 for (unsigned i = 0, e = V.size(); i != e; ++i) {
493 assert(V[i]->getType() == Ty->getElementType() &&
494 "Wrong type in array element initializer");
496 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
497 // If this is an all-zero array, return a ConstantAggregateZero object
500 if (!C->isNullValue())
501 return pImpl->ArrayConstants.getOrCreate(Ty, V);
503 for (unsigned i = 1, e = V.size(); i != e; ++i)
505 return pImpl->ArrayConstants.getOrCreate(Ty, V);
508 return ConstantAggregateZero::get(Ty);
512 Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals,
514 // FIXME: make this the primary ctor method.
515 return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
518 /// ConstantArray::get(const string&) - Return an array that is initialized to
519 /// contain the specified string. If length is zero then a null terminator is
520 /// added to the specified string so that it may be used in a natural way.
521 /// Otherwise, the length parameter specifies how much of the string to use
522 /// and it won't be null terminated.
524 Constant* ConstantArray::get(LLVMContext &Context, StringRef Str,
526 std::vector<Constant*> ElementVals;
527 ElementVals.reserve(Str.size() + size_t(AddNull));
528 for (unsigned i = 0; i < Str.size(); ++i)
529 ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
531 // Add a null terminator to the string...
533 ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
536 ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
537 return get(ATy, ElementVals);
542 ConstantStruct::ConstantStruct(const StructType *T,
543 const std::vector<Constant*> &V)
544 : Constant(T, ConstantStructVal,
545 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
547 assert(V.size() == T->getNumElements() &&
548 "Invalid initializer vector for constant structure");
549 Use *OL = OperandList;
550 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
553 assert(C->getType() == T->getElementType(I-V.begin()) &&
554 "Initializer for struct element doesn't match struct element type!");
559 // ConstantStruct accessors.
560 Constant* ConstantStruct::get(const StructType* T,
561 const std::vector<Constant*>& V) {
562 LLVMContextImpl* pImpl = T->getContext().pImpl;
564 // Create a ConstantAggregateZero value if all elements are zeros...
565 for (unsigned i = 0, e = V.size(); i != e; ++i)
566 if (!V[i]->isNullValue())
567 return pImpl->StructConstants.getOrCreate(T, V);
569 return ConstantAggregateZero::get(T);
572 Constant* ConstantStruct::get(LLVMContext &Context,
573 const std::vector<Constant*>& V, bool packed) {
574 std::vector<const Type*> StructEls;
575 StructEls.reserve(V.size());
576 for (unsigned i = 0, e = V.size(); i != e; ++i)
577 StructEls.push_back(V[i]->getType());
578 return get(StructType::get(Context, StructEls, packed), V);
581 Constant* ConstantStruct::get(LLVMContext &Context,
582 Constant* const *Vals, unsigned NumVals,
584 // FIXME: make this the primary ctor method.
585 return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed);
588 ConstantVector::ConstantVector(const VectorType *T,
589 const std::vector<Constant*> &V)
590 : Constant(T, ConstantVectorVal,
591 OperandTraits<ConstantVector>::op_end(this) - V.size(),
593 Use *OL = OperandList;
594 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
597 assert(C->getType() == T->getElementType() &&
598 "Initializer for vector element doesn't match vector element type!");
603 // ConstantVector accessors.
604 Constant* ConstantVector::get(const VectorType* T,
605 const std::vector<Constant*>& V) {
606 assert(!V.empty() && "Vectors can't be empty");
607 LLVMContext &Context = T->getContext();
608 LLVMContextImpl *pImpl = Context.pImpl;
610 // If this is an all-undef or alll-zero vector, return a
611 // ConstantAggregateZero or UndefValue.
613 bool isZero = C->isNullValue();
614 bool isUndef = isa<UndefValue>(C);
616 if (isZero || isUndef) {
617 for (unsigned i = 1, e = V.size(); i != e; ++i)
619 isZero = isUndef = false;
625 return ConstantAggregateZero::get(T);
627 return UndefValue::get(T);
629 return pImpl->VectorConstants.getOrCreate(T, V);
632 Constant* ConstantVector::get(const std::vector<Constant*>& V) {
633 assert(!V.empty() && "Cannot infer type if V is empty");
634 return get(VectorType::get(V.front()->getType(),V.size()), V);
637 Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) {
638 // FIXME: make this the primary ctor method.
639 return get(std::vector<Constant*>(Vals, Vals+NumVals));
642 Constant* ConstantExpr::getNSWNeg(Constant* C) {
643 assert(C->getType()->isIntOrIntVectorTy() &&
644 "Cannot NEG a nonintegral value!");
645 return getNSWSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
648 Constant* ConstantExpr::getNUWNeg(Constant* C) {
649 assert(C->getType()->isIntOrIntVectorTy() &&
650 "Cannot NEG a nonintegral value!");
651 return getNUWSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
654 Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) {
655 return getTy(C1->getType(), Instruction::Add, C1, C2,
656 OverflowingBinaryOperator::NoSignedWrap);
659 Constant* ConstantExpr::getNUWAdd(Constant* C1, Constant* C2) {
660 return getTy(C1->getType(), Instruction::Add, C1, C2,
661 OverflowingBinaryOperator::NoUnsignedWrap);
664 Constant* ConstantExpr::getNSWSub(Constant* C1, Constant* C2) {
665 return getTy(C1->getType(), Instruction::Sub, C1, C2,
666 OverflowingBinaryOperator::NoSignedWrap);
669 Constant* ConstantExpr::getNUWSub(Constant* C1, Constant* C2) {
670 return getTy(C1->getType(), Instruction::Sub, C1, C2,
671 OverflowingBinaryOperator::NoUnsignedWrap);
674 Constant* ConstantExpr::getNSWMul(Constant* C1, Constant* C2) {
675 return getTy(C1->getType(), Instruction::Mul, C1, C2,
676 OverflowingBinaryOperator::NoSignedWrap);
679 Constant* ConstantExpr::getNUWMul(Constant* C1, Constant* C2) {
680 return getTy(C1->getType(), Instruction::Mul, C1, C2,
681 OverflowingBinaryOperator::NoUnsignedWrap);
684 Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) {
685 return getTy(C1->getType(), Instruction::SDiv, C1, C2,
686 SDivOperator::IsExact);
689 // Utility function for determining if a ConstantExpr is a CastOp or not. This
690 // can't be inline because we don't want to #include Instruction.h into
692 bool ConstantExpr::isCast() const {
693 return Instruction::isCast(getOpcode());
696 bool ConstantExpr::isCompare() const {
697 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
700 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
701 if (getOpcode() != Instruction::GetElementPtr) return false;
703 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
704 User::const_op_iterator OI = llvm::next(this->op_begin());
706 // Skip the first index, as it has no static limit.
710 // The remaining indices must be compile-time known integers within the
711 // bounds of the corresponding notional static array types.
712 for (; GEPI != E; ++GEPI, ++OI) {
713 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
714 if (!CI) return false;
715 if (const ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
716 if (CI->getValue().getActiveBits() > 64 ||
717 CI->getZExtValue() >= ATy->getNumElements())
721 // All the indices checked out.
725 bool ConstantExpr::hasIndices() const {
726 return getOpcode() == Instruction::ExtractValue ||
727 getOpcode() == Instruction::InsertValue;
730 const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
731 if (const ExtractValueConstantExpr *EVCE =
732 dyn_cast<ExtractValueConstantExpr>(this))
733 return EVCE->Indices;
735 return cast<InsertValueConstantExpr>(this)->Indices;
738 unsigned ConstantExpr::getPredicate() const {
739 assert(getOpcode() == Instruction::FCmp ||
740 getOpcode() == Instruction::ICmp);
741 return ((const CompareConstantExpr*)this)->predicate;
744 /// getWithOperandReplaced - Return a constant expression identical to this
745 /// one, but with the specified operand set to the specified value.
747 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
748 assert(OpNo < getNumOperands() && "Operand num is out of range!");
749 assert(Op->getType() == getOperand(OpNo)->getType() &&
750 "Replacing operand with value of different type!");
751 if (getOperand(OpNo) == Op)
752 return const_cast<ConstantExpr*>(this);
754 Constant *Op0, *Op1, *Op2;
755 switch (getOpcode()) {
756 case Instruction::Trunc:
757 case Instruction::ZExt:
758 case Instruction::SExt:
759 case Instruction::FPTrunc:
760 case Instruction::FPExt:
761 case Instruction::UIToFP:
762 case Instruction::SIToFP:
763 case Instruction::FPToUI:
764 case Instruction::FPToSI:
765 case Instruction::PtrToInt:
766 case Instruction::IntToPtr:
767 case Instruction::BitCast:
768 return ConstantExpr::getCast(getOpcode(), Op, getType());
769 case Instruction::Select:
770 Op0 = (OpNo == 0) ? Op : getOperand(0);
771 Op1 = (OpNo == 1) ? Op : getOperand(1);
772 Op2 = (OpNo == 2) ? Op : getOperand(2);
773 return ConstantExpr::getSelect(Op0, Op1, Op2);
774 case Instruction::InsertElement:
775 Op0 = (OpNo == 0) ? Op : getOperand(0);
776 Op1 = (OpNo == 1) ? Op : getOperand(1);
777 Op2 = (OpNo == 2) ? Op : getOperand(2);
778 return ConstantExpr::getInsertElement(Op0, Op1, Op2);
779 case Instruction::ExtractElement:
780 Op0 = (OpNo == 0) ? Op : getOperand(0);
781 Op1 = (OpNo == 1) ? Op : getOperand(1);
782 return ConstantExpr::getExtractElement(Op0, Op1);
783 case Instruction::ShuffleVector:
784 Op0 = (OpNo == 0) ? Op : getOperand(0);
785 Op1 = (OpNo == 1) ? Op : getOperand(1);
786 Op2 = (OpNo == 2) ? Op : getOperand(2);
787 return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
788 case Instruction::GetElementPtr: {
789 SmallVector<Constant*, 8> Ops;
790 Ops.resize(getNumOperands()-1);
791 for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
792 Ops[i-1] = getOperand(i);
794 return cast<GEPOperator>(this)->isInBounds() ?
795 ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
796 ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
798 return cast<GEPOperator>(this)->isInBounds() ?
799 ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0],Ops.size()):
800 ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
803 assert(getNumOperands() == 2 && "Must be binary operator?");
804 Op0 = (OpNo == 0) ? Op : getOperand(0);
805 Op1 = (OpNo == 1) ? Op : getOperand(1);
806 return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData);
810 /// getWithOperands - This returns the current constant expression with the
811 /// operands replaced with the specified values. The specified operands must
812 /// match count and type with the existing ones.
813 Constant *ConstantExpr::
814 getWithOperands(Constant* const *Ops, unsigned NumOps) const {
815 assert(NumOps == getNumOperands() && "Operand count mismatch!");
816 bool AnyChange = false;
817 for (unsigned i = 0; i != NumOps; ++i) {
818 assert(Ops[i]->getType() == getOperand(i)->getType() &&
819 "Operand type mismatch!");
820 AnyChange |= Ops[i] != getOperand(i);
822 if (!AnyChange) // No operands changed, return self.
823 return const_cast<ConstantExpr*>(this);
825 switch (getOpcode()) {
826 case Instruction::Trunc:
827 case Instruction::ZExt:
828 case Instruction::SExt:
829 case Instruction::FPTrunc:
830 case Instruction::FPExt:
831 case Instruction::UIToFP:
832 case Instruction::SIToFP:
833 case Instruction::FPToUI:
834 case Instruction::FPToSI:
835 case Instruction::PtrToInt:
836 case Instruction::IntToPtr:
837 case Instruction::BitCast:
838 return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
839 case Instruction::Select:
840 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
841 case Instruction::InsertElement:
842 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
843 case Instruction::ExtractElement:
844 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
845 case Instruction::ShuffleVector:
846 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
847 case Instruction::GetElementPtr:
848 return cast<GEPOperator>(this)->isInBounds() ?
849 ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) :
850 ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
851 case Instruction::ICmp:
852 case Instruction::FCmp:
853 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
855 assert(getNumOperands() == 2 && "Must be binary operator?");
856 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
861 //===----------------------------------------------------------------------===//
862 // isValueValidForType implementations
864 bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
865 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
866 if (Ty == Type::getInt1Ty(Ty->getContext()))
867 return Val == 0 || Val == 1;
869 return true; // always true, has to fit in largest type
870 uint64_t Max = (1ll << NumBits) - 1;
874 bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
875 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
876 if (Ty == Type::getInt1Ty(Ty->getContext()))
877 return Val == 0 || Val == 1 || Val == -1;
879 return true; // always true, has to fit in largest type
880 int64_t Min = -(1ll << (NumBits-1));
881 int64_t Max = (1ll << (NumBits-1)) - 1;
882 return (Val >= Min && Val <= Max);
885 bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
886 // convert modifies in place, so make a copy.
887 APFloat Val2 = APFloat(Val);
889 switch (Ty->getTypeID()) {
891 return false; // These can't be represented as floating point!
893 // FIXME rounding mode needs to be more flexible
894 case Type::FloatTyID: {
895 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
897 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
900 case Type::DoubleTyID: {
901 if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
902 &Val2.getSemantics() == &APFloat::IEEEdouble)
904 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
907 case Type::X86_FP80TyID:
908 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
909 &Val2.getSemantics() == &APFloat::IEEEdouble ||
910 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
911 case Type::FP128TyID:
912 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
913 &Val2.getSemantics() == &APFloat::IEEEdouble ||
914 &Val2.getSemantics() == &APFloat::IEEEquad;
915 case Type::PPC_FP128TyID:
916 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
917 &Val2.getSemantics() == &APFloat::IEEEdouble ||
918 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
922 //===----------------------------------------------------------------------===//
923 // Factory Function Implementation
925 ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) {
926 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
927 "Cannot create an aggregate zero of non-aggregate type!");
929 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
930 return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
933 /// destroyConstant - Remove the constant from the constant table...
935 void ConstantAggregateZero::destroyConstant() {
936 getRawType()->getContext().pImpl->AggZeroConstants.remove(this);
937 destroyConstantImpl();
940 /// destroyConstant - Remove the constant from the constant table...
942 void ConstantArray::destroyConstant() {
943 getRawType()->getContext().pImpl->ArrayConstants.remove(this);
944 destroyConstantImpl();
947 /// isString - This method returns true if the array is an array of i8, and
948 /// if the elements of the array are all ConstantInt's.
949 bool ConstantArray::isString() const {
950 // Check the element type for i8...
951 if (!getType()->getElementType()->isIntegerTy(8))
953 // Check the elements to make sure they are all integers, not constant
955 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
956 if (!isa<ConstantInt>(getOperand(i)))
961 /// isCString - This method returns true if the array is a string (see
962 /// isString) and it ends in a null byte \\0 and does not contains any other
963 /// null bytes except its terminator.
964 bool ConstantArray::isCString() const {
965 // Check the element type for i8...
966 if (!getType()->getElementType()->isIntegerTy(8))
969 // Last element must be a null.
970 if (!getOperand(getNumOperands()-1)->isNullValue())
972 // Other elements must be non-null integers.
973 for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
974 if (!isa<ConstantInt>(getOperand(i)))
976 if (getOperand(i)->isNullValue())
983 /// getAsString - If the sub-element type of this array is i8
984 /// then this method converts the array to an std::string and returns it.
985 /// Otherwise, it asserts out.
987 std::string ConstantArray::getAsString() const {
988 assert(isString() && "Not a string!");
990 Result.reserve(getNumOperands());
991 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
992 Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
997 //---- ConstantStruct::get() implementation...
1004 // destroyConstant - Remove the constant from the constant table...
1006 void ConstantStruct::destroyConstant() {
1007 getRawType()->getContext().pImpl->StructConstants.remove(this);
1008 destroyConstantImpl();
1011 // destroyConstant - Remove the constant from the constant table...
1013 void ConstantVector::destroyConstant() {
1014 getRawType()->getContext().pImpl->VectorConstants.remove(this);
1015 destroyConstantImpl();
1018 /// This function will return true iff every element in this vector constant
1019 /// is set to all ones.
1020 /// @returns true iff this constant's emements are all set to all ones.
1021 /// @brief Determine if the value is all ones.
1022 bool ConstantVector::isAllOnesValue() const {
1023 // Check out first element.
1024 const Constant *Elt = getOperand(0);
1025 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1026 if (!CI || !CI->isAllOnesValue()) return false;
1027 // Then make sure all remaining elements point to the same value.
1028 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1029 if (getOperand(I) != Elt) return false;
1034 /// getSplatValue - If this is a splat constant, where all of the
1035 /// elements have the same value, return that value. Otherwise return null.
1036 Constant *ConstantVector::getSplatValue() {
1037 // Check out first element.
1038 Constant *Elt = getOperand(0);
1039 // Then make sure all remaining elements point to the same value.
1040 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1041 if (getOperand(I) != Elt) return 0;
1045 //---- ConstantPointerNull::get() implementation.
1048 ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
1049 return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
1052 // destroyConstant - Remove the constant from the constant table...
1054 void ConstantPointerNull::destroyConstant() {
1055 getRawType()->getContext().pImpl->NullPtrConstants.remove(this);
1056 destroyConstantImpl();
1060 //---- UndefValue::get() implementation.
1063 UndefValue *UndefValue::get(const Type *Ty) {
1064 return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
1067 // destroyConstant - Remove the constant from the constant table.
1069 void UndefValue::destroyConstant() {
1070 getRawType()->getContext().pImpl->UndefValueConstants.remove(this);
1071 destroyConstantImpl();
1074 //---- BlockAddress::get() implementation.
1077 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1078 assert(BB->getParent() != 0 && "Block must have a parent");
1079 return get(BB->getParent(), BB);
1082 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1084 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1086 BA = new BlockAddress(F, BB);
1088 assert(BA->getFunction() == F && "Basic block moved between functions");
1092 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1093 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1097 BB->AdjustBlockAddressRefCount(1);
1101 // destroyConstant - Remove the constant from the constant table.
1103 void BlockAddress::destroyConstant() {
1104 getFunction()->getRawType()->getContext().pImpl
1105 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1106 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1107 destroyConstantImpl();
1110 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1111 // This could be replacing either the Basic Block or the Function. In either
1112 // case, we have to remove the map entry.
1113 Function *NewF = getFunction();
1114 BasicBlock *NewBB = getBasicBlock();
1117 NewF = cast<Function>(To);
1119 NewBB = cast<BasicBlock>(To);
1121 // See if the 'new' entry already exists, if not, just update this in place
1122 // and return early.
1123 BlockAddress *&NewBA =
1124 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1126 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1128 // Remove the old entry, this can't cause the map to rehash (just a
1129 // tombstone will get added).
1130 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1133 setOperand(0, NewF);
1134 setOperand(1, NewBB);
1135 getBasicBlock()->AdjustBlockAddressRefCount(1);
1139 // Otherwise, I do need to replace this with an existing value.
1140 assert(NewBA != this && "I didn't contain From!");
1142 // Everyone using this now uses the replacement.
1143 uncheckedReplaceAllUsesWith(NewBA);
1148 //---- ConstantExpr::get() implementations.
1151 /// This is a utility function to handle folding of casts and lookup of the
1152 /// cast in the ExprConstants map. It is used by the various get* methods below.
1153 static inline Constant *getFoldedCast(
1154 Instruction::CastOps opc, Constant *C, const Type *Ty) {
1155 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1156 // Fold a few common cases
1157 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1160 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1162 // Look up the constant in the table first to ensure uniqueness
1163 std::vector<Constant*> argVec(1, C);
1164 ExprMapKeyType Key(opc, argVec);
1166 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1169 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
1170 Instruction::CastOps opc = Instruction::CastOps(oc);
1171 assert(Instruction::isCast(opc) && "opcode out of range");
1172 assert(C && Ty && "Null arguments to getCast");
1173 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1177 llvm_unreachable("Invalid cast opcode");
1179 case Instruction::Trunc: return getTrunc(C, Ty);
1180 case Instruction::ZExt: return getZExt(C, Ty);
1181 case Instruction::SExt: return getSExt(C, Ty);
1182 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1183 case Instruction::FPExt: return getFPExtend(C, Ty);
1184 case Instruction::UIToFP: return getUIToFP(C, Ty);
1185 case Instruction::SIToFP: return getSIToFP(C, Ty);
1186 case Instruction::FPToUI: return getFPToUI(C, Ty);
1187 case Instruction::FPToSI: return getFPToSI(C, Ty);
1188 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1189 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1190 case Instruction::BitCast: return getBitCast(C, Ty);
1195 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
1196 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1197 return getBitCast(C, Ty);
1198 return getZExt(C, Ty);
1201 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
1202 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1203 return getBitCast(C, Ty);
1204 return getSExt(C, Ty);
1207 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
1208 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1209 return getBitCast(C, Ty);
1210 return getTrunc(C, Ty);
1213 Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
1214 assert(S->getType()->isPointerTy() && "Invalid cast");
1215 assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
1217 if (Ty->isIntegerTy())
1218 return getPtrToInt(S, Ty);
1219 return getBitCast(S, Ty);
1222 Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
1224 assert(C->getType()->isIntOrIntVectorTy() &&
1225 Ty->isIntOrIntVectorTy() && "Invalid cast");
1226 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1227 unsigned DstBits = Ty->getScalarSizeInBits();
1228 Instruction::CastOps opcode =
1229 (SrcBits == DstBits ? Instruction::BitCast :
1230 (SrcBits > DstBits ? Instruction::Trunc :
1231 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1232 return getCast(opcode, C, Ty);
1235 Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
1236 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1238 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1239 unsigned DstBits = Ty->getScalarSizeInBits();
1240 if (SrcBits == DstBits)
1241 return C; // Avoid a useless cast
1242 Instruction::CastOps opcode =
1243 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1244 return getCast(opcode, C, Ty);
1247 Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
1249 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1250 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1252 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1253 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1254 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1255 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1256 "SrcTy must be larger than DestTy for Trunc!");
1258 return getFoldedCast(Instruction::Trunc, C, Ty);
1261 Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
1263 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1264 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1266 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1267 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1268 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1269 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1270 "SrcTy must be smaller than DestTy for SExt!");
1272 return getFoldedCast(Instruction::SExt, C, Ty);
1275 Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
1277 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1278 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1280 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1281 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1282 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1283 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1284 "SrcTy must be smaller than DestTy for ZExt!");
1286 return getFoldedCast(Instruction::ZExt, C, Ty);
1289 Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
1291 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1292 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1294 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1295 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1296 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1297 "This is an illegal floating point truncation!");
1298 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1301 Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
1303 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1304 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1306 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1307 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1308 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1309 "This is an illegal floating point extension!");
1310 return getFoldedCast(Instruction::FPExt, C, Ty);
1313 Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
1315 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1316 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1318 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1319 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1320 "This is an illegal uint to floating point cast!");
1321 return getFoldedCast(Instruction::UIToFP, C, Ty);
1324 Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
1326 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1327 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1329 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1330 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1331 "This is an illegal sint to floating point cast!");
1332 return getFoldedCast(Instruction::SIToFP, C, Ty);
1335 Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
1337 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1338 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1340 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1341 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1342 "This is an illegal floating point to uint cast!");
1343 return getFoldedCast(Instruction::FPToUI, C, Ty);
1346 Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
1348 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1349 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1351 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1352 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1353 "This is an illegal floating point to sint cast!");
1354 return getFoldedCast(Instruction::FPToSI, C, Ty);
1357 Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
1358 assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer");
1359 assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral");
1360 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1363 Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
1364 assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral");
1365 assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer");
1366 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1369 Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
1370 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1371 "Invalid constantexpr bitcast!");
1373 // It is common to ask for a bitcast of a value to its own type, handle this
1375 if (C->getType() == DstTy) return C;
1377 return getFoldedCast(Instruction::BitCast, C, DstTy);
1380 Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
1381 Constant *C1, Constant *C2,
1383 // Check the operands for consistency first
1384 assert(Opcode >= Instruction::BinaryOpsBegin &&
1385 Opcode < Instruction::BinaryOpsEnd &&
1386 "Invalid opcode in binary constant expression");
1387 assert(C1->getType() == C2->getType() &&
1388 "Operand types in binary constant expression should match");
1390 if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext()))
1391 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1392 return FC; // Fold a few common cases...
1394 std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
1395 ExprMapKeyType Key(Opcode, argVec, 0, Flags);
1397 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1398 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1401 Constant *ConstantExpr::getCompareTy(unsigned short predicate,
1402 Constant *C1, Constant *C2) {
1403 switch (predicate) {
1404 default: llvm_unreachable("Invalid CmpInst predicate");
1405 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1406 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1407 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1408 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1409 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1410 case CmpInst::FCMP_TRUE:
1411 return getFCmp(predicate, C1, C2);
1413 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1414 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1415 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1416 case CmpInst::ICMP_SLE:
1417 return getICmp(predicate, C1, C2);
1421 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1425 case Instruction::Add:
1426 case Instruction::Sub:
1427 case Instruction::Mul:
1428 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1429 assert(C1->getType()->isIntOrIntVectorTy() &&
1430 "Tried to create an integer operation on a non-integer type!");
1432 case Instruction::FAdd:
1433 case Instruction::FSub:
1434 case Instruction::FMul:
1435 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1436 assert(C1->getType()->isFPOrFPVectorTy() &&
1437 "Tried to create a floating-point operation on a "
1438 "non-floating-point type!");
1440 case Instruction::UDiv:
1441 case Instruction::SDiv:
1442 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1443 assert(C1->getType()->isIntOrIntVectorTy() &&
1444 "Tried to create an arithmetic operation on a non-arithmetic type!");
1446 case Instruction::FDiv:
1447 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1448 assert(C1->getType()->isFPOrFPVectorTy() &&
1449 "Tried to create an arithmetic operation on a non-arithmetic type!");
1451 case Instruction::URem:
1452 case Instruction::SRem:
1453 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1454 assert(C1->getType()->isIntOrIntVectorTy() &&
1455 "Tried to create an arithmetic operation on a non-arithmetic type!");
1457 case Instruction::FRem:
1458 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1459 assert(C1->getType()->isFPOrFPVectorTy() &&
1460 "Tried to create an arithmetic operation on a non-arithmetic type!");
1462 case Instruction::And:
1463 case Instruction::Or:
1464 case Instruction::Xor:
1465 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1466 assert(C1->getType()->isIntOrIntVectorTy() &&
1467 "Tried to create a logical operation on a non-integral type!");
1469 case Instruction::Shl:
1470 case Instruction::LShr:
1471 case Instruction::AShr:
1472 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1473 assert(C1->getType()->isIntOrIntVectorTy() &&
1474 "Tried to create a shift operation on a non-integer type!");
1481 return getTy(C1->getType(), Opcode, C1, C2, Flags);
1484 Constant* ConstantExpr::getSizeOf(const Type* Ty) {
1485 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1486 // Note that a non-inbounds gep is used, as null isn't within any object.
1487 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1488 Constant *GEP = getGetElementPtr(
1489 Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
1490 return getPtrToInt(GEP,
1491 Type::getInt64Ty(Ty->getContext()));
1494 Constant* ConstantExpr::getAlignOf(const Type* Ty) {
1495 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1496 // Note that a non-inbounds gep is used, as null isn't within any object.
1497 const Type *AligningTy = StructType::get(Ty->getContext(),
1498 Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1499 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1500 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1501 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1502 Constant *Indices[2] = { Zero, One };
1503 Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
1504 return getPtrToInt(GEP,
1505 Type::getInt64Ty(Ty->getContext()));
1508 Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) {
1509 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1513 Constant* ConstantExpr::getOffsetOf(const Type* Ty, Constant *FieldNo) {
1514 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1515 // Note that a non-inbounds gep is used, as null isn't within any object.
1516 Constant *GEPIdx[] = {
1517 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1520 Constant *GEP = getGetElementPtr(
1521 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx, 2);
1522 return getPtrToInt(GEP,
1523 Type::getInt64Ty(Ty->getContext()));
1526 Constant *ConstantExpr::getCompare(unsigned short pred,
1527 Constant *C1, Constant *C2) {
1528 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1529 return getCompareTy(pred, C1, C2);
1532 Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
1533 Constant *V1, Constant *V2) {
1534 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1536 if (ReqTy == V1->getType())
1537 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1538 return SC; // Fold common cases
1540 std::vector<Constant*> argVec(3, C);
1543 ExprMapKeyType Key(Instruction::Select, argVec);
1545 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1546 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1549 template<typename IndexTy>
1550 Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
1551 IndexTy const *Idxs,
1553 assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
1555 cast<PointerType>(ReqTy)->getElementType() &&
1556 "GEP indices invalid!");
1558 if (Constant *FC = ConstantFoldGetElementPtr(C, /*inBounds=*/false,
1560 return FC; // Fold a few common cases...
1562 assert(C->getType()->isPointerTy() &&
1563 "Non-pointer type for constant GetElementPtr expression");
1564 // Look up the constant in the table first to ensure uniqueness
1565 std::vector<Constant*> ArgVec;
1566 ArgVec.reserve(NumIdx+1);
1567 ArgVec.push_back(C);
1568 for (unsigned i = 0; i != NumIdx; ++i)
1569 ArgVec.push_back(cast<Constant>(Idxs[i]));
1570 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
1572 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1573 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1576 template<typename IndexTy>
1577 Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy,
1579 IndexTy const *Idxs,
1581 assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
1583 cast<PointerType>(ReqTy)->getElementType() &&
1584 "GEP indices invalid!");
1586 if (Constant *FC = ConstantFoldGetElementPtr(C, /*inBounds=*/true,
1588 return FC; // Fold a few common cases...
1590 assert(C->getType()->isPointerTy() &&
1591 "Non-pointer type for constant GetElementPtr expression");
1592 // Look up the constant in the table first to ensure uniqueness
1593 std::vector<Constant*> ArgVec;
1594 ArgVec.reserve(NumIdx+1);
1595 ArgVec.push_back(C);
1596 for (unsigned i = 0; i != NumIdx; ++i)
1597 ArgVec.push_back(cast<Constant>(Idxs[i]));
1598 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1599 GEPOperator::IsInBounds);
1601 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1602 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1605 template<typename IndexTy>
1606 Constant *ConstantExpr::getGetElementPtrImpl(Constant *C, IndexTy const *Idxs,
1608 // Get the result type of the getelementptr!
1610 GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
1611 assert(Ty && "GEP indices invalid!");
1612 unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
1613 return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
1616 template<typename IndexTy>
1617 Constant *ConstantExpr::getInBoundsGetElementPtrImpl(Constant *C,
1618 IndexTy const *Idxs,
1620 // Get the result type of the getelementptr!
1622 GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
1623 assert(Ty && "GEP indices invalid!");
1624 unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
1625 return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
1628 Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
1630 return getGetElementPtrImpl(C, Idxs, NumIdx);
1633 Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant *const *Idxs,
1635 return getGetElementPtrImpl(C, Idxs, NumIdx);
1638 Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
1641 return getInBoundsGetElementPtrImpl(C, Idxs, NumIdx);
1644 Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
1645 Constant *const *Idxs,
1647 return getInBoundsGetElementPtrImpl(C, Idxs, NumIdx);
1651 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1652 assert(LHS->getType() == RHS->getType());
1653 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1654 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1656 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1657 return FC; // Fold a few common cases...
1659 // Look up the constant in the table first to ensure uniqueness
1660 std::vector<Constant*> ArgVec;
1661 ArgVec.push_back(LHS);
1662 ArgVec.push_back(RHS);
1663 // Get the key type with both the opcode and predicate
1664 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1666 const Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1667 if (const VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1668 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1670 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1671 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1675 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1676 assert(LHS->getType() == RHS->getType());
1677 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1679 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1680 return FC; // Fold a few common cases...
1682 // Look up the constant in the table first to ensure uniqueness
1683 std::vector<Constant*> ArgVec;
1684 ArgVec.push_back(LHS);
1685 ArgVec.push_back(RHS);
1686 // Get the key type with both the opcode and predicate
1687 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1689 const Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1690 if (const VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1691 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1693 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1694 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1697 Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
1699 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1700 return FC; // Fold a few common cases.
1701 // Look up the constant in the table first to ensure uniqueness
1702 std::vector<Constant*> ArgVec(1, Val);
1703 ArgVec.push_back(Idx);
1704 const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1706 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1707 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1710 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1711 assert(Val->getType()->isVectorTy() &&
1712 "Tried to create extractelement operation on non-vector type!");
1713 assert(Idx->getType()->isIntegerTy(32) &&
1714 "Extractelement index must be i32 type!");
1715 return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
1719 Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
1720 Constant *Elt, Constant *Idx) {
1721 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1722 return FC; // Fold a few common cases.
1723 // Look up the constant in the table first to ensure uniqueness
1724 std::vector<Constant*> ArgVec(1, Val);
1725 ArgVec.push_back(Elt);
1726 ArgVec.push_back(Idx);
1727 const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1729 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1730 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1733 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1735 assert(Val->getType()->isVectorTy() &&
1736 "Tried to create insertelement operation on non-vector type!");
1737 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
1738 && "Insertelement types must match!");
1739 assert(Idx->getType()->isIntegerTy(32) &&
1740 "Insertelement index must be i32 type!");
1741 return getInsertElementTy(Val->getType(), Val, Elt, Idx);
1744 Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
1745 Constant *V2, Constant *Mask) {
1746 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1747 return FC; // Fold a few common cases...
1748 // Look up the constant in the table first to ensure uniqueness
1749 std::vector<Constant*> ArgVec(1, V1);
1750 ArgVec.push_back(V2);
1751 ArgVec.push_back(Mask);
1752 const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1754 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1755 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1758 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1760 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1761 "Invalid shuffle vector constant expr operands!");
1763 unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
1764 const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
1765 const Type *ShufTy = VectorType::get(EltTy, NElts);
1766 return getShuffleVectorTy(ShufTy, V1, V2, Mask);
1769 Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
1771 const unsigned *Idxs, unsigned NumIdx) {
1772 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
1773 Idxs+NumIdx) == Val->getType() &&
1774 "insertvalue indices invalid!");
1775 assert(Agg->getType() == ReqTy &&
1776 "insertvalue type invalid!");
1777 assert(Agg->getType()->isFirstClassType() &&
1778 "Non-first-class type for constant InsertValue expression");
1779 Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx);
1780 assert(FC && "InsertValue constant expr couldn't be folded!");
1784 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1785 const unsigned *IdxList, unsigned NumIdx) {
1786 assert(Agg->getType()->isFirstClassType() &&
1787 "Tried to create insertelement operation on non-first-class type!");
1789 const Type *ReqTy = Agg->getType();
1792 ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
1794 assert(ValTy == Val->getType() && "insertvalue indices invalid!");
1795 return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
1798 Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
1799 const unsigned *Idxs, unsigned NumIdx) {
1800 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
1801 Idxs+NumIdx) == ReqTy &&
1802 "extractvalue indices invalid!");
1803 assert(Agg->getType()->isFirstClassType() &&
1804 "Non-first-class type for constant extractvalue expression");
1805 Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx);
1806 assert(FC && "ExtractValue constant expr couldn't be folded!");
1810 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1811 const unsigned *IdxList, unsigned NumIdx) {
1812 assert(Agg->getType()->isFirstClassType() &&
1813 "Tried to create extractelement operation on non-first-class type!");
1816 ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
1817 assert(ReqTy && "extractvalue indices invalid!");
1818 return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
1821 Constant* ConstantExpr::getNeg(Constant* C) {
1822 assert(C->getType()->isIntOrIntVectorTy() &&
1823 "Cannot NEG a nonintegral value!");
1824 return get(Instruction::Sub,
1825 ConstantFP::getZeroValueForNegation(C->getType()),
1829 Constant* ConstantExpr::getFNeg(Constant* C) {
1830 assert(C->getType()->isFPOrFPVectorTy() &&
1831 "Cannot FNEG a non-floating-point value!");
1832 return get(Instruction::FSub,
1833 ConstantFP::getZeroValueForNegation(C->getType()),
1837 Constant* ConstantExpr::getNot(Constant* C) {
1838 assert(C->getType()->isIntOrIntVectorTy() &&
1839 "Cannot NOT a nonintegral value!");
1840 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1843 Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) {
1844 return get(Instruction::Add, C1, C2);
1847 Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) {
1848 return get(Instruction::FAdd, C1, C2);
1851 Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) {
1852 return get(Instruction::Sub, C1, C2);
1855 Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) {
1856 return get(Instruction::FSub, C1, C2);
1859 Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) {
1860 return get(Instruction::Mul, C1, C2);
1863 Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) {
1864 return get(Instruction::FMul, C1, C2);
1867 Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) {
1868 return get(Instruction::UDiv, C1, C2);
1871 Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) {
1872 return get(Instruction::SDiv, C1, C2);
1875 Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) {
1876 return get(Instruction::FDiv, C1, C2);
1879 Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) {
1880 return get(Instruction::URem, C1, C2);
1883 Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) {
1884 return get(Instruction::SRem, C1, C2);
1887 Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) {
1888 return get(Instruction::FRem, C1, C2);
1891 Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) {
1892 return get(Instruction::And, C1, C2);
1895 Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) {
1896 return get(Instruction::Or, C1, C2);
1899 Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) {
1900 return get(Instruction::Xor, C1, C2);
1903 Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) {
1904 return get(Instruction::Shl, C1, C2);
1907 Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) {
1908 return get(Instruction::LShr, C1, C2);
1911 Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) {
1912 return get(Instruction::AShr, C1, C2);
1915 // destroyConstant - Remove the constant from the constant table...
1917 void ConstantExpr::destroyConstant() {
1918 getRawType()->getContext().pImpl->ExprConstants.remove(this);
1919 destroyConstantImpl();
1922 const char *ConstantExpr::getOpcodeName() const {
1923 return Instruction::getOpcodeName(getOpcode());
1928 GetElementPtrConstantExpr::
1929 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
1931 : ConstantExpr(DestTy, Instruction::GetElementPtr,
1932 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
1933 - (IdxList.size()+1), IdxList.size()+1) {
1935 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
1936 OperandList[i+1] = IdxList[i];
1940 //===----------------------------------------------------------------------===//
1941 // replaceUsesOfWithOnConstant implementations
1943 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1944 /// 'From' to be uses of 'To'. This must update the uniquing data structures
1947 /// Note that we intentionally replace all uses of From with To here. Consider
1948 /// a large array that uses 'From' 1000 times. By handling this case all here,
1949 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1950 /// single invocation handles all 1000 uses. Handling them one at a time would
1951 /// work, but would be really slow because it would have to unique each updated
1954 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
1956 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1957 Constant *ToC = cast<Constant>(To);
1959 LLVMContextImpl *pImpl = getRawType()->getContext().pImpl;
1961 std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
1962 Lookup.first.first = cast<ArrayType>(getRawType());
1963 Lookup.second = this;
1965 std::vector<Constant*> &Values = Lookup.first.second;
1966 Values.reserve(getNumOperands()); // Build replacement array.
1968 // Fill values with the modified operands of the constant array. Also,
1969 // compute whether this turns into an all-zeros array.
1970 bool isAllZeros = false;
1971 unsigned NumUpdated = 0;
1972 if (!ToC->isNullValue()) {
1973 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1974 Constant *Val = cast<Constant>(O->get());
1979 Values.push_back(Val);
1983 for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
1984 Constant *Val = cast<Constant>(O->get());
1989 Values.push_back(Val);
1990 if (isAllZeros) isAllZeros = Val->isNullValue();
1994 Constant *Replacement = 0;
1996 Replacement = ConstantAggregateZero::get(getRawType());
1998 // Check to see if we have this array type already.
2000 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2001 pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
2004 Replacement = I->second;
2006 // Okay, the new shape doesn't exist in the system yet. Instead of
2007 // creating a new constant array, inserting it, replaceallusesof'ing the
2008 // old with the new, then deleting the old... just update the current one
2010 pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
2012 // Update to the new value. Optimize for the case when we have a single
2013 // operand that we're changing, but handle bulk updates efficiently.
2014 if (NumUpdated == 1) {
2015 unsigned OperandToUpdate = U - OperandList;
2016 assert(getOperand(OperandToUpdate) == From &&
2017 "ReplaceAllUsesWith broken!");
2018 setOperand(OperandToUpdate, ToC);
2020 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2021 if (getOperand(i) == From)
2028 // Otherwise, I do need to replace this with an existing value.
2029 assert(Replacement != this && "I didn't contain From!");
2031 // Everyone using this now uses the replacement.
2032 uncheckedReplaceAllUsesWith(Replacement);
2034 // Delete the old constant!
2038 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2040 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2041 Constant *ToC = cast<Constant>(To);
2043 unsigned OperandToUpdate = U-OperandList;
2044 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2046 std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
2047 Lookup.first.first = cast<StructType>(getRawType());
2048 Lookup.second = this;
2049 std::vector<Constant*> &Values = Lookup.first.second;
2050 Values.reserve(getNumOperands()); // Build replacement struct.
2053 // Fill values with the modified operands of the constant struct. Also,
2054 // compute whether this turns into an all-zeros struct.
2055 bool isAllZeros = false;
2056 if (!ToC->isNullValue()) {
2057 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2058 Values.push_back(cast<Constant>(O->get()));
2061 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2062 Constant *Val = cast<Constant>(O->get());
2063 Values.push_back(Val);
2064 if (isAllZeros) isAllZeros = Val->isNullValue();
2067 Values[OperandToUpdate] = ToC;
2069 LLVMContextImpl *pImpl = getRawType()->getContext().pImpl;
2071 Constant *Replacement = 0;
2073 Replacement = ConstantAggregateZero::get(getRawType());
2075 // Check to see if we have this struct type already.
2077 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2078 pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
2081 Replacement = I->second;
2083 // Okay, the new shape doesn't exist in the system yet. Instead of
2084 // creating a new constant struct, inserting it, replaceallusesof'ing the
2085 // old with the new, then deleting the old... just update the current one
2087 pImpl->StructConstants.MoveConstantToNewSlot(this, I);
2089 // Update to the new value.
2090 setOperand(OperandToUpdate, ToC);
2095 assert(Replacement != this && "I didn't contain From!");
2097 // Everyone using this now uses the replacement.
2098 uncheckedReplaceAllUsesWith(Replacement);
2100 // Delete the old constant!
2104 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2106 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2108 std::vector<Constant*> Values;
2109 Values.reserve(getNumOperands()); // Build replacement array...
2110 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2111 Constant *Val = getOperand(i);
2112 if (Val == From) Val = cast<Constant>(To);
2113 Values.push_back(Val);
2116 Constant *Replacement = get(cast<VectorType>(getRawType()), Values);
2117 assert(Replacement != this && "I didn't contain From!");
2119 // Everyone using this now uses the replacement.
2120 uncheckedReplaceAllUsesWith(Replacement);
2122 // Delete the old constant!
2126 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2128 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2129 Constant *To = cast<Constant>(ToV);
2131 Constant *Replacement = 0;
2132 if (getOpcode() == Instruction::GetElementPtr) {
2133 SmallVector<Constant*, 8> Indices;
2134 Constant *Pointer = getOperand(0);
2135 Indices.reserve(getNumOperands()-1);
2136 if (Pointer == From) Pointer = To;
2138 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
2139 Constant *Val = getOperand(i);
2140 if (Val == From) Val = To;
2141 Indices.push_back(Val);
2143 Replacement = ConstantExpr::getGetElementPtr(Pointer,
2144 &Indices[0], Indices.size());
2145 } else if (getOpcode() == Instruction::ExtractValue) {
2146 Constant *Agg = getOperand(0);
2147 if (Agg == From) Agg = To;
2149 const SmallVector<unsigned, 4> &Indices = getIndices();
2150 Replacement = ConstantExpr::getExtractValue(Agg,
2151 &Indices[0], Indices.size());
2152 } else if (getOpcode() == Instruction::InsertValue) {
2153 Constant *Agg = getOperand(0);
2154 Constant *Val = getOperand(1);
2155 if (Agg == From) Agg = To;
2156 if (Val == From) Val = To;
2158 const SmallVector<unsigned, 4> &Indices = getIndices();
2159 Replacement = ConstantExpr::getInsertValue(Agg, Val,
2160 &Indices[0], Indices.size());
2161 } else if (isCast()) {
2162 assert(getOperand(0) == From && "Cast only has one use!");
2163 Replacement = ConstantExpr::getCast(getOpcode(), To, getRawType());
2164 } else if (getOpcode() == Instruction::Select) {
2165 Constant *C1 = getOperand(0);
2166 Constant *C2 = getOperand(1);
2167 Constant *C3 = getOperand(2);
2168 if (C1 == From) C1 = To;
2169 if (C2 == From) C2 = To;
2170 if (C3 == From) C3 = To;
2171 Replacement = ConstantExpr::getSelect(C1, C2, C3);
2172 } else if (getOpcode() == Instruction::ExtractElement) {
2173 Constant *C1 = getOperand(0);
2174 Constant *C2 = getOperand(1);
2175 if (C1 == From) C1 = To;
2176 if (C2 == From) C2 = To;
2177 Replacement = ConstantExpr::getExtractElement(C1, C2);
2178 } else if (getOpcode() == Instruction::InsertElement) {
2179 Constant *C1 = getOperand(0);
2180 Constant *C2 = getOperand(1);
2181 Constant *C3 = getOperand(1);
2182 if (C1 == From) C1 = To;
2183 if (C2 == From) C2 = To;
2184 if (C3 == From) C3 = To;
2185 Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
2186 } else if (getOpcode() == Instruction::ShuffleVector) {
2187 Constant *C1 = getOperand(0);
2188 Constant *C2 = getOperand(1);
2189 Constant *C3 = getOperand(2);
2190 if (C1 == From) C1 = To;
2191 if (C2 == From) C2 = To;
2192 if (C3 == From) C3 = To;
2193 Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
2194 } else if (isCompare()) {
2195 Constant *C1 = getOperand(0);
2196 Constant *C2 = getOperand(1);
2197 if (C1 == From) C1 = To;
2198 if (C2 == From) C2 = To;
2199 if (getOpcode() == Instruction::ICmp)
2200 Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
2202 assert(getOpcode() == Instruction::FCmp);
2203 Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
2205 } else if (getNumOperands() == 2) {
2206 Constant *C1 = getOperand(0);
2207 Constant *C2 = getOperand(1);
2208 if (C1 == From) C1 = To;
2209 if (C2 == From) C2 = To;
2210 Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData);
2212 llvm_unreachable("Unknown ConstantExpr type!");
2216 assert(Replacement != this && "I didn't contain From!");
2218 // Everyone using this now uses the replacement.
2219 uncheckedReplaceAllUsesWith(Replacement);
2221 // Delete the old constant!