1 //===-- ConstantsContext.h - Constants-related Context Interals -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines various helper methods and classes used by
11 // LLVMContextImpl for creating and managing constants.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CONSTANTSCONTEXT_H
16 #define LLVM_CONSTANTSCONTEXT_H
18 #include "llvm/Instructions.h"
19 #include "llvm/Operator.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
26 template<class ValType>
27 struct ConstantTraits;
29 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
30 /// behind the scenes to implement unary constant exprs.
31 class UnaryConstantExpr : public ConstantExpr {
32 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
34 // allocate space for exactly one operand
35 void *operator new(size_t s) {
36 return User::operator new(s, 1);
38 UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
39 : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
42 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
45 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
46 /// behind the scenes to implement binary constant exprs.
47 class BinaryConstantExpr : public ConstantExpr {
48 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
50 // allocate space for exactly two operands
51 void *operator new(size_t s) {
52 return User::operator new(s, 2);
54 BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
56 : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
59 SubclassOptionalData = Flags;
61 /// Transparently provide more efficient getOperand methods.
62 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
65 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
66 /// behind the scenes to implement select constant exprs.
67 class SelectConstantExpr : public ConstantExpr {
68 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
70 // allocate space for exactly three operands
71 void *operator new(size_t s) {
72 return User::operator new(s, 3);
74 SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
75 : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
80 /// Transparently provide more efficient getOperand methods.
81 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
84 /// ExtractElementConstantExpr - This class is private to
85 /// Constants.cpp, and is used behind the scenes to implement
86 /// extractelement constant exprs.
87 class ExtractElementConstantExpr : public ConstantExpr {
88 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
90 // allocate space for exactly two operands
91 void *operator new(size_t s) {
92 return User::operator new(s, 2);
94 ExtractElementConstantExpr(Constant *C1, Constant *C2)
95 : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
96 Instruction::ExtractElement, &Op<0>(), 2) {
100 /// Transparently provide more efficient getOperand methods.
101 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
104 /// InsertElementConstantExpr - This class is private to
105 /// Constants.cpp, and is used behind the scenes to implement
106 /// insertelement constant exprs.
107 class InsertElementConstantExpr : public ConstantExpr {
108 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
110 // allocate space for exactly three operands
111 void *operator new(size_t s) {
112 return User::operator new(s, 3);
114 InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
115 : ConstantExpr(C1->getType(), Instruction::InsertElement,
121 /// Transparently provide more efficient getOperand methods.
122 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
125 /// ShuffleVectorConstantExpr - This class is private to
126 /// Constants.cpp, and is used behind the scenes to implement
127 /// shufflevector constant exprs.
128 class ShuffleVectorConstantExpr : public ConstantExpr {
129 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
131 // allocate space for exactly three operands
132 void *operator new(size_t s) {
133 return User::operator new(s, 3);
135 ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
136 : ConstantExpr(VectorType::get(
137 cast<VectorType>(C1->getType())->getElementType(),
138 cast<VectorType>(C3->getType())->getNumElements()),
139 Instruction::ShuffleVector,
145 /// Transparently provide more efficient getOperand methods.
146 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
149 /// ExtractValueConstantExpr - This class is private to
150 /// Constants.cpp, and is used behind the scenes to implement
151 /// extractvalue constant exprs.
152 class ExtractValueConstantExpr : public ConstantExpr {
153 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
155 // allocate space for exactly one operand
156 void *operator new(size_t s) {
157 return User::operator new(s, 1);
159 ExtractValueConstantExpr(Constant *Agg,
160 const SmallVector<unsigned, 4> &IdxList,
162 : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
167 /// Indices - These identify which value to extract.
168 const SmallVector<unsigned, 4> Indices;
170 /// Transparently provide more efficient getOperand methods.
171 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
174 /// InsertValueConstantExpr - This class is private to
175 /// Constants.cpp, and is used behind the scenes to implement
176 /// insertvalue constant exprs.
177 class InsertValueConstantExpr : public ConstantExpr {
178 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
180 // allocate space for exactly one operand
181 void *operator new(size_t s) {
182 return User::operator new(s, 2);
184 InsertValueConstantExpr(Constant *Agg, Constant *Val,
185 const SmallVector<unsigned, 4> &IdxList,
187 : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
193 /// Indices - These identify the position for the insertion.
194 const SmallVector<unsigned, 4> Indices;
196 /// Transparently provide more efficient getOperand methods.
197 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
201 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
202 /// used behind the scenes to implement getelementpr constant exprs.
203 class GetElementPtrConstantExpr : public ConstantExpr {
204 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
207 static GetElementPtrConstantExpr *Create(Constant *C,
208 const std::vector<Constant*>&IdxList,
211 GetElementPtrConstantExpr *Result =
212 new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
213 Result->SubclassOptionalData = Flags;
216 /// Transparently provide more efficient getOperand methods.
217 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
220 // CompareConstantExpr - This class is private to Constants.cpp, and is used
221 // behind the scenes to implement ICmp and FCmp constant expressions. This is
222 // needed in order to store the predicate value for these instructions.
223 struct CompareConstantExpr : public ConstantExpr {
224 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
225 // allocate space for exactly two operands
226 void *operator new(size_t s) {
227 return User::operator new(s, 2);
229 unsigned short predicate;
230 CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
231 unsigned short pred, Constant* LHS, Constant* RHS)
232 : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
236 /// Transparently provide more efficient getOperand methods.
237 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
241 struct OperandTraits<UnaryConstantExpr> : public FixedNumOperandTraits<1> {
243 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
246 struct OperandTraits<BinaryConstantExpr> : public FixedNumOperandTraits<2> {
248 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
251 struct OperandTraits<SelectConstantExpr> : public FixedNumOperandTraits<3> {
253 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
256 struct OperandTraits<ExtractElementConstantExpr> : public FixedNumOperandTraits<2> {
258 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
261 struct OperandTraits<InsertElementConstantExpr> : public FixedNumOperandTraits<3> {
263 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
266 struct OperandTraits<ShuffleVectorConstantExpr> : public FixedNumOperandTraits<3> {
268 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
271 struct OperandTraits<ExtractValueConstantExpr> : public FixedNumOperandTraits<1> {
273 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
276 struct OperandTraits<InsertValueConstantExpr> : public FixedNumOperandTraits<2> {
278 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
281 struct OperandTraits<GetElementPtrConstantExpr> : public VariadicOperandTraits<1> {
284 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
288 struct OperandTraits<CompareConstantExpr> : public FixedNumOperandTraits<2> {
290 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
292 struct ExprMapKeyType {
293 typedef SmallVector<unsigned, 4> IndexList;
295 ExprMapKeyType(unsigned opc,
296 const std::vector<Constant*> &ops,
297 unsigned short flags = 0,
298 unsigned short optionalflags = 0,
299 const IndexList &inds = IndexList())
300 : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
301 operands(ops), indices(inds) {}
303 uint8_t subclassoptionaldata;
304 uint16_t subclassdata;
305 std::vector<Constant*> operands;
307 bool operator==(const ExprMapKeyType& that) const {
308 return this->opcode == that.opcode &&
309 this->subclassdata == that.subclassdata &&
310 this->subclassoptionaldata == that.subclassoptionaldata &&
311 this->operands == that.operands &&
312 this->indices == that.indices;
314 bool operator<(const ExprMapKeyType & that) const {
315 if (this->opcode != that.opcode) return this->opcode < that.opcode;
316 if (this->operands != that.operands) return this->operands < that.operands;
317 if (this->subclassdata != that.subclassdata)
318 return this->subclassdata < that.subclassdata;
319 if (this->subclassoptionaldata != that.subclassoptionaldata)
320 return this->subclassoptionaldata < that.subclassoptionaldata;
321 if (this->indices != that.indices) return this->indices < that.indices;
325 bool operator!=(const ExprMapKeyType& that) const {
326 return !(*this == that);
330 // The number of operands for each ConstantCreator::create method is
331 // determined by the ConstantTraits template.
332 // ConstantCreator - A class that is used to create constants by
333 // ConstantUniqueMap*. This class should be partially specialized if there is
334 // something strange that needs to be done to interface to the ctor for the
337 template<typename T, typename Alloc>
338 struct ConstantTraits< std::vector<T, Alloc> > {
339 static unsigned uses(const std::vector<T, Alloc>& v) {
344 template<class ConstantClass, class TypeClass, class ValType>
345 struct ConstantCreator {
346 static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
347 return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
351 template<class ConstantClass>
352 struct ConstantKeyData {
353 typedef void ValType;
354 static ValType getValType(ConstantClass *C) {
355 llvm_unreachable("Unknown Constant type!");
360 struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
361 static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
362 unsigned short pred = 0) {
363 if (Instruction::isCast(V.opcode))
364 return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
365 if ((V.opcode >= Instruction::BinaryOpsBegin &&
366 V.opcode < Instruction::BinaryOpsEnd))
367 return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
368 V.subclassoptionaldata);
369 if (V.opcode == Instruction::Select)
370 return new SelectConstantExpr(V.operands[0], V.operands[1],
372 if (V.opcode == Instruction::ExtractElement)
373 return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
374 if (V.opcode == Instruction::InsertElement)
375 return new InsertElementConstantExpr(V.operands[0], V.operands[1],
377 if (V.opcode == Instruction::ShuffleVector)
378 return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
380 if (V.opcode == Instruction::InsertValue)
381 return new InsertValueConstantExpr(V.operands[0], V.operands[1],
383 if (V.opcode == Instruction::ExtractValue)
384 return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
385 if (V.opcode == Instruction::GetElementPtr) {
386 std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
387 return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
388 V.subclassoptionaldata);
391 // The compare instructions are weird. We have to encode the predicate
392 // value and it is combined with the instruction opcode by multiplying
393 // the opcode by one hundred. We must decode this to get the predicate.
394 if (V.opcode == Instruction::ICmp)
395 return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
396 V.operands[0], V.operands[1]);
397 if (V.opcode == Instruction::FCmp)
398 return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
399 V.operands[0], V.operands[1]);
400 llvm_unreachable("Invalid ConstantExpr!");
406 struct ConstantKeyData<ConstantExpr> {
407 typedef ExprMapKeyType ValType;
408 static ValType getValType(ConstantExpr *CE) {
409 std::vector<Constant*> Operands;
410 Operands.reserve(CE->getNumOperands());
411 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
412 Operands.push_back(cast<Constant>(CE->getOperand(i)));
413 return ExprMapKeyType(CE->getOpcode(), Operands,
414 CE->isCompare() ? CE->getPredicate() : 0,
415 CE->getRawSubclassOptionalData(),
417 CE->getIndices() : SmallVector<unsigned, 4>());
421 // ConstantAggregateZero does not take extra "value" argument...
422 template<class ValType>
423 struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
424 static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
425 return new ConstantAggregateZero(Ty);
430 struct ConstantKeyData<ConstantVector> {
431 typedef std::vector<Constant*> ValType;
432 static ValType getValType(ConstantVector *CP) {
433 std::vector<Constant*> Elements;
434 Elements.reserve(CP->getNumOperands());
435 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
436 Elements.push_back(CP->getOperand(i));
442 struct ConstantKeyData<ConstantAggregateZero> {
443 typedef char ValType;
444 static ValType getValType(ConstantAggregateZero *C) {
450 struct ConstantKeyData<ConstantArray> {
451 typedef std::vector<Constant*> ValType;
452 static ValType getValType(ConstantArray *CA) {
453 std::vector<Constant*> Elements;
454 Elements.reserve(CA->getNumOperands());
455 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
456 Elements.push_back(cast<Constant>(CA->getOperand(i)));
462 struct ConstantKeyData<ConstantStruct> {
463 typedef std::vector<Constant*> ValType;
464 static ValType getValType(ConstantStruct *CS) {
465 std::vector<Constant*> Elements;
466 Elements.reserve(CS->getNumOperands());
467 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
468 Elements.push_back(cast<Constant>(CS->getOperand(i)));
473 // ConstantPointerNull does not take extra "value" argument...
474 template<class ValType>
475 struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
476 static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
477 return new ConstantPointerNull(Ty);
482 struct ConstantKeyData<ConstantPointerNull> {
483 typedef char ValType;
484 static ValType getValType(ConstantPointerNull *C) {
489 // UndefValue does not take extra "value" argument...
490 template<class ValType>
491 struct ConstantCreator<UndefValue, Type, ValType> {
492 static UndefValue *create(const Type *Ty, const ValType &V) {
493 return new UndefValue(Ty);
498 struct ConstantKeyData<UndefValue> {
499 typedef char ValType;
500 static ValType getValType(UndefValue *C) {
505 template<class ValType, class TypeClass, class ConstantClass,
506 bool HasLargeKey = false /*true for arrays and structs*/ >
507 class ConstantUniqueMap : public AbstractTypeUser {
509 typedef std::pair<const TypeClass*, ValType> MapKey;
510 typedef std::map<MapKey, ConstantClass *> MapTy;
511 typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
512 typedef std::map<const DerivedType*, typename MapTy::iterator>
515 /// Map - This is the main map from the element descriptor to the Constants.
516 /// This is the primary way we avoid creating two of the same shape
520 /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
521 /// from the constants to their element in Map. This is important for
522 /// removal of constants from the array, which would otherwise have to scan
523 /// through the map with very large keys.
524 InverseMapTy InverseMap;
526 /// AbstractTypeMap - Map for abstract type constants.
528 AbstractTypeMapTy AbstractTypeMap;
531 typename MapTy::iterator map_begin() { return Map.begin(); }
532 typename MapTy::iterator map_end() { return Map.end(); }
534 void freeConstants() {
535 for (typename MapTy::iterator I=Map.begin(), E=Map.end();
537 if (I->second->use_empty())
542 /// InsertOrGetItem - Return an iterator for the specified element.
543 /// If the element exists in the map, the returned iterator points to the
544 /// entry and Exists=true. If not, the iterator points to the newly
545 /// inserted entry and returns Exists=false. Newly inserted entries have
546 /// I->second == 0, and should be filled in.
547 typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
550 std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
556 typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
558 typename InverseMapTy::iterator IMI = InverseMap.find(CP);
559 assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
560 IMI->second->second == CP &&
561 "InverseMap corrupt!");
565 typename MapTy::iterator I =
566 Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
567 ConstantKeyData<ConstantClass>::getValType(CP)));
568 if (I == Map.end() || I->second != CP) {
569 // FIXME: This should not use a linear scan. If this gets to be a
570 // performance problem, someone should look at this.
571 for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
577 void AddAbstractTypeUser(const Type *Ty, typename MapTy::iterator I) {
578 // If the type of the constant is abstract, make sure that an entry
579 // exists for it in the AbstractTypeMap.
580 if (Ty->isAbstract()) {
581 const DerivedType *DTy = static_cast<const DerivedType *>(Ty);
582 typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(DTy);
584 if (TI == AbstractTypeMap.end()) {
585 // Add ourselves to the ATU list of the type.
586 cast<DerivedType>(DTy)->addAbstractTypeUser(this);
588 AbstractTypeMap.insert(TI, std::make_pair(DTy, I));
593 ConstantClass* Create(const TypeClass *Ty, const ValType &V,
594 typename MapTy::iterator I) {
595 ConstantClass* Result =
596 ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
598 assert(Result->getType() == Ty && "Type specified is not correct!");
599 I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
601 if (HasLargeKey) // Remember the reverse mapping if needed.
602 InverseMap.insert(std::make_pair(Result, I));
604 AddAbstractTypeUser(Ty, I);
610 /// getOrCreate - Return the specified constant from the map, creating it if
612 ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
613 MapKey Lookup(Ty, V);
614 ConstantClass* Result = 0;
616 typename MapTy::iterator I = Map.find(Lookup);
622 // If no preexisting value, create one now...
623 Result = Create(Ty, V, I);
629 void UpdateAbstractTypeMap(const DerivedType *Ty,
630 typename MapTy::iterator I) {
631 assert(AbstractTypeMap.count(Ty) &&
632 "Abstract type not in AbstractTypeMap?");
633 typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
634 if (ATMEntryIt == I) {
635 // Yes, we are removing the representative entry for this type.
636 // See if there are any other entries of the same type.
637 typename MapTy::iterator TmpIt = ATMEntryIt;
639 // First check the entry before this one...
640 if (TmpIt != Map.begin()) {
642 if (TmpIt->first.first != Ty) // Not the same type, move back...
646 // If we didn't find the same type, try to move forward...
647 if (TmpIt == ATMEntryIt) {
649 if (TmpIt == Map.end() || TmpIt->first.first != Ty)
650 --TmpIt; // No entry afterwards with the same type
653 // If there is another entry in the map of the same abstract type,
654 // update the AbstractTypeMap entry now.
655 if (TmpIt != ATMEntryIt) {
658 // Otherwise, we are removing the last instance of this type
659 // from the table. Remove from the ATM, and from user list.
660 cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
661 AbstractTypeMap.erase(Ty);
666 void remove(ConstantClass *CP) {
667 typename MapTy::iterator I = FindExistingElement(CP);
668 assert(I != Map.end() && "Constant not found in constant table!");
669 assert(I->second == CP && "Didn't find correct element?");
671 if (HasLargeKey) // Remember the reverse mapping if needed.
672 InverseMap.erase(CP);
674 // Now that we found the entry, make sure this isn't the entry that
675 // the AbstractTypeMap points to.
676 const TypeClass *Ty = I->first.first;
677 if (Ty->isAbstract())
678 UpdateAbstractTypeMap(static_cast<const DerivedType *>(Ty), I);
683 /// MoveConstantToNewSlot - If we are about to change C to be the element
684 /// specified by I, update our internal data structures to reflect this
686 void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
687 // First, remove the old location of the specified constant in the map.
688 typename MapTy::iterator OldI = FindExistingElement(C);
689 assert(OldI != Map.end() && "Constant not found in constant table!");
690 assert(OldI->second == C && "Didn't find correct element?");
692 // If this constant is the representative element for its abstract type,
693 // update the AbstractTypeMap so that the representative element is I.
694 if (C->getType()->isAbstract()) {
695 typename AbstractTypeMapTy::iterator ATI =
696 AbstractTypeMap.find(C->getType());
697 assert(ATI != AbstractTypeMap.end() &&
698 "Abstract type not in AbstractTypeMap?");
699 if (ATI->second == OldI)
703 // Remove the old entry from the map.
706 // Update the inverse map so that we know that this constant is now
707 // located at descriptor I.
709 assert(I->second == C && "Bad inversemap entry!");
714 void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
715 typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(OldTy);
717 assert(I != AbstractTypeMap.end() &&
718 "Abstract type not in AbstractTypeMap?");
720 // Convert a constant at a time until the last one is gone. The last one
721 // leaving will remove() itself, causing the AbstractTypeMapEntry to be
722 // eliminated eventually.
724 ConstantClass *C = I->second->second;
725 MapKey Key(cast<TypeClass>(NewTy),
726 ConstantKeyData<ConstantClass>::getValType(C));
728 std::pair<typename MapTy::iterator, bool> IP =
729 Map.insert(std::make_pair(Key, C));
731 // The map didn't previously have an appropriate constant in the
734 // Remove the old entry.
735 typename MapTy::iterator OldI =
736 Map.find(MapKey(cast<TypeClass>(OldTy), IP.first->first.second));
737 assert(OldI != Map.end() && "Constant not in map!");
738 UpdateAbstractTypeMap(OldTy, OldI);
741 // Set the constant's type. This is done in place!
744 // Update the inverse map so that we know that this constant is now
745 // located at descriptor I.
747 InverseMap[C] = IP.first;
749 AddAbstractTypeUser(NewTy, IP.first);
751 // The map already had an appropriate constant in the new type, so
752 // there's no longer a need for the old constant.
753 C->uncheckedReplaceAllUsesWith(IP.first->second);
754 C->destroyConstant(); // This constant is now dead, destroy it.
756 I = AbstractTypeMap.find(OldTy);
757 } while (I != AbstractTypeMap.end());
760 // If the type became concrete without being refined to any other existing
761 // type, we just remove ourselves from the ATU list.
762 void typeBecameConcrete(const DerivedType *AbsTy) {
763 AbsTy->removeAbstractTypeUser(this);
767 DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");