1 //===-- SlotCalculator.cpp - Calculate what slots values land in ------------=//
3 // This file implements a useful analysis step to figure out what numbered
4 // slots values in a program will land in (keeping track of per plane
5 // information as required.
7 // This is used primarily for when writing a file to disk, either in bytecode
10 //===----------------------------------------------------------------------===//
12 #include "llvm/SlotCalculator.h"
13 #include "llvm/Analysis/ConstantsScanner.h"
14 #include "llvm/Module.h"
15 #include "llvm/iOther.h"
16 #include "llvm/Constant.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/SymbolTable.h"
19 #include "Support/DepthFirstIterator.h"
20 #include "Support/STLExtras.h"
24 #define SC_DEBUG(X) cerr << X
29 SlotCalculator::SlotCalculator(const Module *M, bool IgnoreNamed) {
30 IgnoreNamedNodes = IgnoreNamed;
33 // Preload table... Make sure that all of the primitive types are in the table
34 // and that their Primitive ID is equal to their slot #
36 for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
37 assert(Type::getPrimitiveType((Type::PrimitiveID)i));
38 insertVal(Type::getPrimitiveType((Type::PrimitiveID)i), true);
41 if (M == 0) return; // Empty table...
45 SlotCalculator::SlotCalculator(const Function *M, bool IgnoreNamed) {
46 IgnoreNamedNodes = IgnoreNamed;
47 TheModule = M ? M->getParent() : 0;
49 // Preload table... Make sure that all of the primitive types are in the table
50 // and that their Primitive ID is equal to their slot #
52 for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
53 assert(Type::getPrimitiveType((Type::PrimitiveID)i));
54 insertVal(Type::getPrimitiveType((Type::PrimitiveID)i), true);
57 if (TheModule == 0) return; // Empty table...
59 processModule(); // Process module level stuff
60 incorporateFunction(M); // Start out in incorporated state
64 // processModule - Process all of the module level function declarations and
65 // types that are available.
67 void SlotCalculator::processModule() {
68 SC_DEBUG("begin processModule!\n");
70 // Add all of the constants that the global variables might refer to first.
72 for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
74 if (I->hasInitializer())
75 insertValue(I->getInitializer());
78 // Add all of the global variables to the value table...
80 for(Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
84 // Scavenge the types out of the functions, then add the functions themselves
85 // to the value table...
87 for(Module::const_iterator I = TheModule->begin(), E = TheModule->end();
91 // Insert constants that are named at module level into the slot pool so that
92 // the module symbol table can refer to them...
94 if (TheModule->hasSymbolTable() && !IgnoreNamedNodes) {
95 SC_DEBUG("Inserting SymbolTable values:\n");
96 processSymbolTable(TheModule->getSymbolTable());
99 SC_DEBUG("end processModule!\n");
102 // processSymbolTable - Insert all of the values in the specified symbol table
103 // into the values table...
105 void SlotCalculator::processSymbolTable(const SymbolTable *ST) {
106 for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I)
107 for (SymbolTable::type_const_iterator TI = I->second.begin(),
108 TE = I->second.end(); TI != TE; ++TI)
109 insertValue(TI->second);
112 void SlotCalculator::processSymbolTableConstants(const SymbolTable *ST) {
113 for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I)
114 for (SymbolTable::type_const_iterator TI = I->second.begin(),
115 TE = I->second.end(); TI != TE; ++TI)
116 if (isa<Constant>(TI->second))
117 insertValue(TI->second);
121 void SlotCalculator::incorporateFunction(const Function *M) {
122 assert(ModuleLevel.size() == 0 && "Module already incorporated!");
124 SC_DEBUG("begin processFunction!\n");
126 // Save the Table state before we process the function...
127 for (unsigned i = 0; i < Table.size(); ++i)
128 ModuleLevel.push_back(Table[i].size());
130 SC_DEBUG("Inserting function arguments\n");
132 // Iterate over function arguments, adding them to the value table...
133 for(Function::const_aiterator I = M->abegin(), E = M->aend(); I != E; ++I)
136 // Iterate over all of the instructions in the function, looking for constant
137 // values that are referenced. Add these to the value pools before any
138 // nonconstant values. This will be turned into the constant pool for the
141 if (!IgnoreNamedNodes) { // Assembly writer does not need this!
142 SC_DEBUG("Inserting function constants:\n";
143 for (constant_iterator I = constant_begin(M), E = constant_end(M);
145 cerr << " " << *I->getType()
146 << " " << *I << "\n";
149 // Emit all of the constants that are being used by the instructions in the
151 for_each(constant_begin(M), constant_end(M),
152 bind_obj(this, &SlotCalculator::insertValue));
154 // If there is a symbol table, it is possible that the user has names for
155 // constants that are not being used. In this case, we will have problems
156 // if we don't emit the constants now, because otherwise we will get
157 // symboltable references to constants not in the output. Scan for these
160 if (M->hasSymbolTable())
161 processSymbolTableConstants(M->getSymbolTable());
164 SC_DEBUG("Inserting Labels:\n");
166 // Iterate over basic blocks, adding them to the value table...
167 for (Function::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
169 /* for_each(M->begin(), M->end(),
170 bind_obj(this, &SlotCalculator::insertValue));*/
172 SC_DEBUG("Inserting Instructions:\n");
174 // Add all of the instructions to the type planes...
175 for_each(inst_begin(M), inst_end(M),
176 bind_obj(this, &SlotCalculator::insertValue));
178 if (M->hasSymbolTable() && !IgnoreNamedNodes) {
179 SC_DEBUG("Inserting SymbolTable values:\n");
180 processSymbolTable(M->getSymbolTable());
183 SC_DEBUG("end processFunction!\n");
186 void SlotCalculator::purgeFunction() {
187 assert(ModuleLevel.size() != 0 && "Module not incorporated!");
188 unsigned NumModuleTypes = ModuleLevel.size();
190 SC_DEBUG("begin purgeFunction!\n");
192 // First, remove values from existing type planes
193 for (unsigned i = 0; i < NumModuleTypes; ++i) {
194 unsigned ModuleSize = ModuleLevel[i]; // Size of plane before function came
195 TypePlane &CurPlane = Table[i];
196 //SC_DEBUG("Processing Plane " <<i<< " of size " << CurPlane.size() <<endl);
198 while (CurPlane.size() != ModuleSize) {
199 //SC_DEBUG(" Removing [" << i << "] Value=" << CurPlane.back() << "\n");
200 std::map<const Value *, unsigned>::iterator NI =
201 NodeMap.find(CurPlane.back());
202 assert(NI != NodeMap.end() && "Node not in nodemap?");
203 NodeMap.erase(NI); // Erase from nodemap
204 CurPlane.pop_back(); // Shrink plane
208 // We don't need this state anymore, free it up.
211 // Next, remove any type planes defined by the function...
212 while (NumModuleTypes != Table.size()) {
213 TypePlane &Plane = Table.back();
214 SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size "
215 << Plane.size() << endl);
216 while (Plane.size()) {
217 NodeMap.erase(NodeMap.find(Plane.back())); // Erase from nodemap
218 Plane.pop_back(); // Shrink plane
221 Table.pop_back(); // Nuke the plane, we don't like it.
224 SC_DEBUG("end purgeFunction!\n");
227 int SlotCalculator::getValSlot(const Value *D) const {
228 std::map<const Value*, unsigned>::const_iterator I = NodeMap.find(D);
229 if (I == NodeMap.end()) return -1;
231 return (int)I->second;
235 int SlotCalculator::insertValue(const Value *D) {
236 if (isa<Constant>(D) || isa<GlobalVariable>(D)) {
237 const User *U = cast<const User>(D);
238 // This makes sure that if a constant has uses (for example an array
239 // of const ints), that they are inserted also. Same for global variable
242 for(User::const_op_iterator I = U->op_begin(), E = U->op_end(); I != E; ++I)
243 if (!isa<GlobalValue>(*I)) // Don't chain insert global values
247 int SlotNo = getValSlot(D); // Check to see if it's already in!
248 if (SlotNo != -1) return SlotNo;
253 int SlotCalculator::insertVal(const Value *D, bool dontIgnore) {
254 assert(D && "Can't insert a null value!");
255 assert(getValSlot(D) == -1 && "Value is already in the table!");
257 // If this node does not contribute to a plane, or if the node has a
258 // name and we don't want names, then ignore the silly node... Note that types
259 // do need slot numbers so that we can keep track of where other values land.
261 if (!dontIgnore) // Don't ignore nonignorables!
262 if (D->getType() == Type::VoidTy || // Ignore void type nodes
263 (IgnoreNamedNodes && // Ignore named and constants
264 (D->hasName() || isa<Constant>(D)) && !isa<Type>(D))) {
265 SC_DEBUG("ignored value " << D << endl);
266 return -1; // We do need types unconditionally though
269 // If it's a type, make sure that all subtypes of the type are included...
270 if (const Type *TheTy = dyn_cast<const Type>(D)) {
272 // Insert the current type before any subtypes. This is important because
273 // recursive types elements are inserted in a bottom up order. Changing
274 // this here can break things. For example:
276 // global { \2 * } { { \2 }* null }
279 if ((ResultSlot = getValSlot(TheTy)) == -1) {
280 ResultSlot = doInsertVal(TheTy);
281 SC_DEBUG(" Inserted type: " << TheTy->getDescription() << " slot=" <<
285 // Loop over any contained types in the definition... in reverse depth first
286 // order. This assures that all of the leafs of a type are output before
287 // the type itself is. This also assures us that we will not hit infinite
288 // recursion on recursive types...
290 for (df_iterator<const Type*> I = df_begin(TheTy, true),
291 E = df_end(TheTy); I != E; ++I)
293 // If we haven't seen this sub type before, add it to our type table!
294 const Type *SubTy = *I;
295 if (getValSlot(SubTy) == -1) {
296 SC_DEBUG(" Inserting subtype: " << SubTy->getDescription() << endl);
297 int Slot = doInsertVal(SubTy);
298 SC_DEBUG(" Inserted subtype: " << SubTy->getDescription() <<
299 " slot=" << Slot << endl);
305 // Okay, everything is happy, actually insert the silly value now...
306 return doInsertVal(D);
310 // doInsertVal - This is a small helper function to be called only be insertVal.
312 int SlotCalculator::doInsertVal(const Value *D) {
313 const Type *Typ = D->getType();
316 // Used for debugging DefSlot=-1 assertion...
317 //if (Typ == Type::TypeTy)
318 // cerr << "Inserting type '" << cast<Type>(D)->getDescription() << "'!\n";
320 if (Typ->isDerivedType()) {
321 int DefSlot = getValSlot(Typ);
322 if (DefSlot == -1) { // Have we already entered this type?
323 // Nope, this is the first we have seen the type, process it.
324 DefSlot = insertVal(Typ, true);
325 assert(DefSlot != -1 && "ProcessType returned -1 for a type?");
327 Ty = (unsigned)DefSlot;
329 Ty = Typ->getPrimitiveID();
332 if (Table.size() <= Ty) // Make sure we have the type plane allocated...
333 Table.resize(Ty+1, TypePlane());
335 // Insert node into table and NodeMap...
336 unsigned DestSlot = NodeMap[D] = Table[Ty].size();
337 Table[Ty].push_back(D);
339 SC_DEBUG(" Inserting value [" << Ty << "] = " << D << " slot=" <<
341 // G = Global, C = Constant, T = Type, F = Function, o = other
342 SC_DEBUG((isa<GlobalVariable>(D) ? "G" : (isa<Constant>(D) ? "C" :
343 (isa<Type>(D) ? "T" : (isa<Function>(D) ? "F" : "o")))));
345 return (int)DestSlot;