2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
9 * Modified by Nadia Derbey to make it RCU safe.
11 * Small id to pointer translation service.
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/module.h>
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 #include <linux/spinlock.h>
39 static struct kmem_cache *idr_layer_cache;
40 static DEFINE_SPINLOCK(simple_ida_lock);
42 static struct idr_layer *get_from_free_list(struct idr *idp)
47 spin_lock_irqsave(&idp->lock, flags);
48 if ((p = idp->id_free)) {
49 idp->id_free = p->ary[0];
53 spin_unlock_irqrestore(&idp->lock, flags);
57 static void idr_layer_rcu_free(struct rcu_head *head)
59 struct idr_layer *layer;
61 layer = container_of(head, struct idr_layer, rcu_head);
62 kmem_cache_free(idr_layer_cache, layer);
65 static inline void free_layer(struct idr_layer *p)
67 call_rcu(&p->rcu_head, idr_layer_rcu_free);
70 /* only called when idp->lock is held */
71 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
73 p->ary[0] = idp->id_free;
78 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
83 * Depends on the return element being zeroed.
85 spin_lock_irqsave(&idp->lock, flags);
86 __move_to_free_list(idp, p);
87 spin_unlock_irqrestore(&idp->lock, flags);
90 static void idr_mark_full(struct idr_layer **pa, int id)
92 struct idr_layer *p = pa[0];
95 __set_bit(id & IDR_MASK, &p->bitmap);
97 * If this layer is full mark the bit in the layer above to
98 * show that this part of the radix tree is full. This may
99 * complete the layer above and require walking up the radix
102 while (p->bitmap == IDR_FULL) {
106 __set_bit((id & IDR_MASK), &p->bitmap);
111 * idr_pre_get - reserve resources for idr allocation
113 * @gfp_mask: memory allocation flags
115 * This function should be called prior to calling the idr_get_new* functions.
116 * It preallocates enough memory to satisfy the worst possible allocation. The
117 * caller should pass in GFP_KERNEL if possible. This of course requires that
118 * no spinning locks be held.
120 * If the system is REALLY out of memory this function returns %0,
123 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
125 while (idp->id_free_cnt < IDR_FREE_MAX) {
126 struct idr_layer *new;
127 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
130 move_to_free_list(idp, new);
134 EXPORT_SYMBOL(idr_pre_get);
136 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
139 struct idr_layer *p, *new;
150 * We run around this while until we reach the leaf node...
152 n = (id >> (IDR_BITS*l)) & IDR_MASK;
154 m = find_next_bit(&bm, IDR_SIZE, n);
156 /* no space available go back to previous layer. */
159 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
161 /* if already at the top layer, we need to grow */
162 if (id >= 1 << (idp->layers * IDR_BITS)) {
164 return IDR_NEED_TO_GROW;
169 /* If we need to go up one layer, continue the
170 * loop; otherwise, restart from the top.
172 sh = IDR_BITS * (l + 1);
173 if (oid >> sh == id >> sh)
180 id = ((id >> sh) ^ n ^ m) << sh;
182 if ((id >= MAX_ID_BIT) || (id < 0))
183 return IDR_NOMORE_SPACE;
187 * Create the layer below if it is missing.
190 new = get_from_free_list(idp);
194 rcu_assign_pointer(p->ary[m], new);
205 static int idr_get_empty_slot(struct idr *idp, int starting_id,
206 struct idr_layer **pa)
208 struct idr_layer *p, *new;
215 layers = idp->layers;
217 if (!(p = get_from_free_list(idp)))
223 * Add a new layer to the top of the tree if the requested
224 * id is larger than the currently allocated space.
226 while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
229 /* special case: if the tree is currently empty,
230 * then we grow the tree by moving the top node
236 if (!(new = get_from_free_list(idp))) {
238 * The allocation failed. If we built part of
239 * the structure tear it down.
241 spin_lock_irqsave(&idp->lock, flags);
242 for (new = p; p && p != idp->top; new = p) {
245 new->bitmap = new->count = 0;
246 __move_to_free_list(idp, new);
248 spin_unlock_irqrestore(&idp->lock, flags);
253 new->layer = layers-1;
254 if (p->bitmap == IDR_FULL)
255 __set_bit(0, &new->bitmap);
258 rcu_assign_pointer(idp->top, p);
259 idp->layers = layers;
260 v = sub_alloc(idp, &id, pa);
261 if (v == IDR_NEED_TO_GROW)
266 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
268 struct idr_layer *pa[MAX_LEVEL];
271 id = idr_get_empty_slot(idp, starting_id, pa);
274 * Successfully found an empty slot. Install the user
275 * pointer and mark the slot full.
277 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
278 (struct idr_layer *)ptr);
280 idr_mark_full(pa, id);
287 * idr_get_new_above - allocate new idr entry above or equal to a start id
289 * @ptr: pointer you want associated with the id
290 * @starting_id: id to start search at
291 * @id: pointer to the allocated handle
293 * This is the allocate id function. It should be called with any
296 * If allocation from IDR's private freelist fails, idr_get_new_above() will
297 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
298 * IDR's preallocation and then retry the idr_get_new_above() call.
300 * If the idr is full idr_get_new_above() will return %-ENOSPC.
302 * @id returns a value in the range @starting_id ... %0x7fffffff
304 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
308 rv = idr_get_new_above_int(idp, ptr, starting_id);
310 * This is a cheap hack until the IDR code can be fixed to
311 * return proper error values.
314 return _idr_rc_to_errno(rv);
318 EXPORT_SYMBOL(idr_get_new_above);
321 * idr_get_new - allocate new idr entry
323 * @ptr: pointer you want associated with the id
324 * @id: pointer to the allocated handle
326 * If allocation from IDR's private freelist fails, idr_get_new_above() will
327 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
328 * IDR's preallocation and then retry the idr_get_new_above() call.
330 * If the idr is full idr_get_new_above() will return %-ENOSPC.
332 * @id returns a value in the range %0 ... %0x7fffffff
334 int idr_get_new(struct idr *idp, void *ptr, int *id)
338 rv = idr_get_new_above_int(idp, ptr, 0);
340 * This is a cheap hack until the IDR code can be fixed to
341 * return proper error values.
344 return _idr_rc_to_errno(rv);
348 EXPORT_SYMBOL(idr_get_new);
350 static void idr_remove_warning(int id)
353 "idr_remove called for id=%d which is not allocated.\n", id);
357 static void sub_remove(struct idr *idp, int shift, int id)
359 struct idr_layer *p = idp->top;
360 struct idr_layer **pa[MAX_LEVEL];
361 struct idr_layer ***paa = &pa[0];
362 struct idr_layer *to_free;
368 while ((shift > 0) && p) {
369 n = (id >> shift) & IDR_MASK;
370 __clear_bit(n, &p->bitmap);
376 if (likely(p != NULL && test_bit(n, &p->bitmap))){
377 __clear_bit(n, &p->bitmap);
378 rcu_assign_pointer(p->ary[n], NULL);
380 while(*paa && ! --((**paa)->count)){
391 idr_remove_warning(id);
395 * idr_remove - remove the given id and free its slot
399 void idr_remove(struct idr *idp, int id)
402 struct idr_layer *to_free;
404 /* Mask off upper bits we don't use for the search. */
407 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
408 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
411 * Single child at leftmost slot: we can shrink the tree.
412 * This level is not needed anymore since when layers are
413 * inserted, they are inserted at the top of the existing
417 p = idp->top->ary[0];
418 rcu_assign_pointer(idp->top, p);
420 to_free->bitmap = to_free->count = 0;
423 while (idp->id_free_cnt >= IDR_FREE_MAX) {
424 p = get_from_free_list(idp);
426 * Note: we don't call the rcu callback here, since the only
427 * layers that fall into the freelist are those that have been
430 kmem_cache_free(idr_layer_cache, p);
434 EXPORT_SYMBOL(idr_remove);
437 * idr_remove_all - remove all ids from the given idr tree
440 * idr_destroy() only frees up unused, cached idp_layers, but this
441 * function will remove all id mappings and leave all idp_layers
444 * A typical clean-up sequence for objects stored in an idr tree will
445 * use idr_for_each() to free all objects, if necessay, then
446 * idr_remove_all() to remove all ids, and idr_destroy() to free
447 * up the cached idr_layers.
449 void idr_remove_all(struct idr *idp)
454 struct idr_layer *pa[MAX_LEVEL];
455 struct idr_layer **paa = &pa[0];
457 n = idp->layers * IDR_BITS;
459 rcu_assign_pointer(idp->top, NULL);
464 while (n > IDR_BITS && p) {
467 p = p->ary[(id >> n) & IDR_MASK];
472 /* Get the highest bit that the above add changed from 0->1. */
473 while (n < fls(id ^ bt_mask)) {
482 EXPORT_SYMBOL(idr_remove_all);
485 * idr_destroy - release all cached layers within an idr tree
488 void idr_destroy(struct idr *idp)
490 while (idp->id_free_cnt) {
491 struct idr_layer *p = get_from_free_list(idp);
492 kmem_cache_free(idr_layer_cache, p);
495 EXPORT_SYMBOL(idr_destroy);
498 * idr_find - return pointer for given id
502 * Return the pointer given the id it has been registered with. A %NULL
503 * return indicates that @id is not valid or you passed %NULL in
506 * This function can be called under rcu_read_lock(), given that the leaf
507 * pointers lifetimes are correctly managed.
509 void *idr_find(struct idr *idp, int id)
514 p = rcu_dereference_raw(idp->top);
517 n = (p->layer+1) * IDR_BITS;
519 /* Mask off upper bits we don't use for the search. */
528 BUG_ON(n != p->layer*IDR_BITS);
529 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
533 EXPORT_SYMBOL(idr_find);
536 * idr_for_each - iterate through all stored pointers
538 * @fn: function to be called for each pointer
539 * @data: data passed back to callback function
541 * Iterate over the pointers registered with the given idr. The
542 * callback function will be called for each pointer currently
543 * registered, passing the id, the pointer and the data pointer passed
544 * to this function. It is not safe to modify the idr tree while in
545 * the callback, so functions such as idr_get_new and idr_remove are
548 * We check the return of @fn each time. If it returns anything other
549 * than %0, we break out and return that value.
551 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
553 int idr_for_each(struct idr *idp,
554 int (*fn)(int id, void *p, void *data), void *data)
556 int n, id, max, error = 0;
558 struct idr_layer *pa[MAX_LEVEL];
559 struct idr_layer **paa = &pa[0];
561 n = idp->layers * IDR_BITS;
562 p = rcu_dereference_raw(idp->top);
570 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
574 error = fn(id, (void *)p, data);
580 while (n < fls(id)) {
588 EXPORT_SYMBOL(idr_for_each);
591 * idr_get_next - lookup next object of id to given id.
593 * @nextidp: pointer to lookup key
595 * Returns pointer to registered object with id, which is next number to
596 * given id. After being looked up, *@nextidp will be updated for the next
600 void *idr_get_next(struct idr *idp, int *nextidp)
602 struct idr_layer *p, *pa[MAX_LEVEL];
603 struct idr_layer **paa = &pa[0];
608 n = idp->layers * IDR_BITS;
610 p = rcu_dereference_raw(idp->top);
618 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
627 while (n < fls(id)) {
634 EXPORT_SYMBOL(idr_get_next);
638 * idr_replace - replace pointer for given id
640 * @ptr: pointer you want associated with the id
643 * Replace the pointer registered with an id and return the old value.
644 * A %-ENOENT return indicates that @id was not found.
645 * A %-EINVAL return indicates that @id was not within valid constraints.
647 * The caller must serialize with writers.
649 void *idr_replace(struct idr *idp, void *ptr, int id)
652 struct idr_layer *p, *old_p;
656 return ERR_PTR(-EINVAL);
658 n = (p->layer+1) * IDR_BITS;
663 return ERR_PTR(-EINVAL);
666 while ((n > 0) && p) {
667 p = p->ary[(id >> n) & IDR_MASK];
672 if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
673 return ERR_PTR(-ENOENT);
676 rcu_assign_pointer(p->ary[n], ptr);
680 EXPORT_SYMBOL(idr_replace);
682 void __init idr_init_cache(void)
684 idr_layer_cache = kmem_cache_create("idr_layer_cache",
685 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
689 * idr_init - initialize idr handle
692 * This function is use to set up the handle (@idp) that you will pass
693 * to the rest of the functions.
695 void idr_init(struct idr *idp)
697 memset(idp, 0, sizeof(struct idr));
698 spin_lock_init(&idp->lock);
700 EXPORT_SYMBOL(idr_init);
704 * DOC: IDA description
705 * IDA - IDR based ID allocator
707 * This is id allocator without id -> pointer translation. Memory
708 * usage is much lower than full blown idr because each id only
709 * occupies a bit. ida uses a custom leaf node which contains
710 * IDA_BITMAP_BITS slots.
712 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
715 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
719 if (!ida->free_bitmap) {
720 spin_lock_irqsave(&ida->idr.lock, flags);
721 if (!ida->free_bitmap) {
722 ida->free_bitmap = bitmap;
725 spin_unlock_irqrestore(&ida->idr.lock, flags);
732 * ida_pre_get - reserve resources for ida allocation
734 * @gfp_mask: memory allocation flag
736 * This function should be called prior to locking and calling the
737 * following function. It preallocates enough memory to satisfy the
738 * worst possible allocation.
740 * If the system is REALLY out of memory this function returns %0,
743 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
745 /* allocate idr_layers */
746 if (!idr_pre_get(&ida->idr, gfp_mask))
749 /* allocate free_bitmap */
750 if (!ida->free_bitmap) {
751 struct ida_bitmap *bitmap;
753 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
757 free_bitmap(ida, bitmap);
762 EXPORT_SYMBOL(ida_pre_get);
765 * ida_get_new_above - allocate new ID above or equal to a start id
767 * @starting_id: id to start search at
768 * @p_id: pointer to the allocated handle
770 * Allocate new ID above or equal to @starting_id. It should be called
771 * with any required locks.
773 * If memory is required, it will return %-EAGAIN, you should unlock
774 * and go back to the ida_pre_get() call. If the ida is full, it will
777 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
779 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
781 struct idr_layer *pa[MAX_LEVEL];
782 struct ida_bitmap *bitmap;
784 int idr_id = starting_id / IDA_BITMAP_BITS;
785 int offset = starting_id % IDA_BITMAP_BITS;
789 /* get vacant slot */
790 t = idr_get_empty_slot(&ida->idr, idr_id, pa);
792 return _idr_rc_to_errno(t);
794 if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
801 /* if bitmap isn't there, create a new one */
802 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
804 spin_lock_irqsave(&ida->idr.lock, flags);
805 bitmap = ida->free_bitmap;
806 ida->free_bitmap = NULL;
807 spin_unlock_irqrestore(&ida->idr.lock, flags);
812 memset(bitmap, 0, sizeof(struct ida_bitmap));
813 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
818 /* lookup for empty slot */
819 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
820 if (t == IDA_BITMAP_BITS) {
821 /* no empty slot after offset, continue to the next chunk */
827 id = idr_id * IDA_BITMAP_BITS + t;
828 if (id >= MAX_ID_BIT)
831 __set_bit(t, bitmap->bitmap);
832 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
833 idr_mark_full(pa, idr_id);
837 /* Each leaf node can handle nearly a thousand slots and the
838 * whole idea of ida is to have small memory foot print.
839 * Throw away extra resources one by one after each successful
842 if (ida->idr.id_free_cnt || ida->free_bitmap) {
843 struct idr_layer *p = get_from_free_list(&ida->idr);
845 kmem_cache_free(idr_layer_cache, p);
850 EXPORT_SYMBOL(ida_get_new_above);
853 * ida_get_new - allocate new ID
855 * @p_id: pointer to the allocated handle
857 * Allocate new ID. It should be called with any required locks.
859 * If memory is required, it will return %-EAGAIN, you should unlock
860 * and go back to the idr_pre_get() call. If the idr is full, it will
863 * @p_id returns a value in the range %0 ... %0x7fffffff.
865 int ida_get_new(struct ida *ida, int *p_id)
867 return ida_get_new_above(ida, 0, p_id);
869 EXPORT_SYMBOL(ida_get_new);
872 * ida_remove - remove the given ID
876 void ida_remove(struct ida *ida, int id)
878 struct idr_layer *p = ida->idr.top;
879 int shift = (ida->idr.layers - 1) * IDR_BITS;
880 int idr_id = id / IDA_BITMAP_BITS;
881 int offset = id % IDA_BITMAP_BITS;
883 struct ida_bitmap *bitmap;
885 /* clear full bits while looking up the leaf idr_layer */
886 while ((shift > 0) && p) {
887 n = (idr_id >> shift) & IDR_MASK;
888 __clear_bit(n, &p->bitmap);
896 n = idr_id & IDR_MASK;
897 __clear_bit(n, &p->bitmap);
899 bitmap = (void *)p->ary[n];
900 if (!test_bit(offset, bitmap->bitmap))
903 /* update bitmap and remove it if empty */
904 __clear_bit(offset, bitmap->bitmap);
905 if (--bitmap->nr_busy == 0) {
906 __set_bit(n, &p->bitmap); /* to please idr_remove() */
907 idr_remove(&ida->idr, idr_id);
908 free_bitmap(ida, bitmap);
915 "ida_remove called for id=%d which is not allocated.\n", id);
917 EXPORT_SYMBOL(ida_remove);
920 * ida_destroy - release all cached layers within an ida tree
923 void ida_destroy(struct ida *ida)
925 idr_destroy(&ida->idr);
926 kfree(ida->free_bitmap);
928 EXPORT_SYMBOL(ida_destroy);
931 * ida_simple_get - get a new id.
932 * @ida: the (initialized) ida.
933 * @start: the minimum id (inclusive, < 0x8000000)
934 * @end: the maximum id (exclusive, < 0x8000000 or 0)
935 * @gfp_mask: memory allocation flags
937 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
938 * On memory allocation failure, returns -ENOMEM.
940 * Use ida_simple_remove() to get rid of an id.
942 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
949 BUG_ON((int)start < 0);
950 BUG_ON((int)end < 0);
960 if (!ida_pre_get(ida, gfp_mask))
963 spin_lock_irqsave(&simple_ida_lock, flags);
964 ret = ida_get_new_above(ida, start, &id);
973 spin_unlock_irqrestore(&simple_ida_lock, flags);
975 if (unlikely(ret == -EAGAIN))
980 EXPORT_SYMBOL(ida_simple_get);
983 * ida_simple_remove - remove an allocated id.
984 * @ida: the (initialized) ida.
985 * @id: the id returned by ida_simple_get.
987 void ida_simple_remove(struct ida *ida, unsigned int id)
992 spin_lock_irqsave(&simple_ida_lock, flags);
994 spin_unlock_irqrestore(&simple_ida_lock, flags);
996 EXPORT_SYMBOL(ida_simple_remove);
999 * ida_init - initialize ida handle
1002 * This function is use to set up the handle (@ida) that you will pass
1003 * to the rest of the functions.
1005 void ida_init(struct ida *ida)
1007 memset(ida, 0, sizeof(struct ida));
1008 idr_init(&ida->idr);
1011 EXPORT_SYMBOL(ida_init);