rhashtable: Allow GFP_ATOMIC bucket table allocation
[firefly-linux-kernel-4.4.55.git] / lib / rhashtable.c
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/jhash.h>
25 #include <linux/random.h>
26 #include <linux/rhashtable.h>
27 #include <linux/err.h>
28
29 #define HASH_DEFAULT_SIZE       64UL
30 #define HASH_MIN_SIZE           4U
31 #define BUCKET_LOCKS_PER_CPU   128UL
32
33 static u32 head_hashfn(struct rhashtable *ht,
34                        const struct bucket_table *tbl,
35                        const struct rhash_head *he)
36 {
37         return rht_head_hashfn(ht, tbl, he, ht->p);
38 }
39
40 #ifdef CONFIG_PROVE_LOCKING
41 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
42
43 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
44 {
45         return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
46 }
47 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
48
49 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
50 {
51         spinlock_t *lock = rht_bucket_lock(tbl, hash);
52
53         return (debug_locks) ? lockdep_is_held(lock) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
56 #else
57 #define ASSERT_RHT_MUTEX(HT)
58 #endif
59
60
61 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
62                               gfp_t gfp)
63 {
64         unsigned int i, size;
65 #if defined(CONFIG_PROVE_LOCKING)
66         unsigned int nr_pcpus = 2;
67 #else
68         unsigned int nr_pcpus = num_possible_cpus();
69 #endif
70
71         nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
72         size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
73
74         /* Never allocate more than 0.5 locks per bucket */
75         size = min_t(unsigned int, size, tbl->size >> 1);
76
77         if (sizeof(spinlock_t) != 0) {
78 #ifdef CONFIG_NUMA
79                 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
80                     gfp == GFP_KERNEL)
81                         tbl->locks = vmalloc(size * sizeof(spinlock_t));
82                 else
83 #endif
84                 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
85                                            gfp);
86                 if (!tbl->locks)
87                         return -ENOMEM;
88                 for (i = 0; i < size; i++)
89                         spin_lock_init(&tbl->locks[i]);
90         }
91         tbl->locks_mask = size - 1;
92
93         return 0;
94 }
95
96 static void bucket_table_free(const struct bucket_table *tbl)
97 {
98         if (tbl)
99                 kvfree(tbl->locks);
100
101         kvfree(tbl);
102 }
103
104 static void bucket_table_free_rcu(struct rcu_head *head)
105 {
106         bucket_table_free(container_of(head, struct bucket_table, rcu));
107 }
108
109 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
110                                                size_t nbuckets,
111                                                gfp_t gfp)
112 {
113         struct bucket_table *tbl = NULL;
114         size_t size;
115         int i;
116
117         size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
118         if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
119             gfp != GFP_KERNEL)
120                 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
121         if (tbl == NULL && gfp == GFP_KERNEL)
122                 tbl = vzalloc(size);
123         if (tbl == NULL)
124                 return NULL;
125
126         tbl->size = nbuckets;
127
128         if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
129                 bucket_table_free(tbl);
130                 return NULL;
131         }
132
133         INIT_LIST_HEAD(&tbl->walkers);
134
135         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
136
137         for (i = 0; i < nbuckets; i++)
138                 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
139
140         return tbl;
141 }
142
143 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
144                                                   struct bucket_table *tbl)
145 {
146         struct bucket_table *new_tbl;
147
148         do {
149                 new_tbl = tbl;
150                 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
151         } while (tbl);
152
153         return new_tbl;
154 }
155
156 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned old_hash)
157 {
158         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
159         struct bucket_table *new_tbl = rhashtable_last_table(ht,
160                 rht_dereference_rcu(old_tbl->future_tbl, ht));
161         struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
162         int err = -ENOENT;
163         struct rhash_head *head, *next, *entry;
164         spinlock_t *new_bucket_lock;
165         unsigned new_hash;
166
167         rht_for_each(entry, old_tbl, old_hash) {
168                 err = 0;
169                 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
170
171                 if (rht_is_a_nulls(next))
172                         break;
173
174                 pprev = &entry->next;
175         }
176
177         if (err)
178                 goto out;
179
180         new_hash = head_hashfn(ht, new_tbl, entry);
181
182         new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
183
184         spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
185         head = rht_dereference_bucket(new_tbl->buckets[new_hash],
186                                       new_tbl, new_hash);
187
188         if (rht_is_a_nulls(head))
189                 INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
190         else
191                 RCU_INIT_POINTER(entry->next, head);
192
193         rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
194         spin_unlock(new_bucket_lock);
195
196         rcu_assign_pointer(*pprev, next);
197
198 out:
199         return err;
200 }
201
202 static void rhashtable_rehash_chain(struct rhashtable *ht, unsigned old_hash)
203 {
204         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
205         spinlock_t *old_bucket_lock;
206
207         old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
208
209         spin_lock_bh(old_bucket_lock);
210         while (!rhashtable_rehash_one(ht, old_hash))
211                 ;
212         old_tbl->rehash++;
213         spin_unlock_bh(old_bucket_lock);
214 }
215
216 static int rhashtable_rehash_attach(struct rhashtable *ht,
217                                     struct bucket_table *old_tbl,
218                                     struct bucket_table *new_tbl)
219 {
220         /* Protect future_tbl using the first bucket lock. */
221         spin_lock_bh(old_tbl->locks);
222
223         /* Did somebody beat us to it? */
224         if (rcu_access_pointer(old_tbl->future_tbl)) {
225                 spin_unlock_bh(old_tbl->locks);
226                 return -EEXIST;
227         }
228
229         /* Make insertions go into the new, empty table right away. Deletions
230          * and lookups will be attempted in both tables until we synchronize.
231          */
232         rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
233
234         /* Ensure the new table is visible to readers. */
235         smp_wmb();
236
237         spin_unlock_bh(old_tbl->locks);
238
239         return 0;
240 }
241
242 static int rhashtable_rehash_table(struct rhashtable *ht)
243 {
244         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
245         struct bucket_table *new_tbl;
246         struct rhashtable_walker *walker;
247         unsigned old_hash;
248
249         new_tbl = rht_dereference(old_tbl->future_tbl, ht);
250         if (!new_tbl)
251                 return 0;
252
253         for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
254                 rhashtable_rehash_chain(ht, old_hash);
255
256         /* Publish the new table pointer. */
257         rcu_assign_pointer(ht->tbl, new_tbl);
258
259         list_for_each_entry(walker, &old_tbl->walkers, list)
260                 walker->tbl = NULL;
261
262         /* Wait for readers. All new readers will see the new
263          * table, and thus no references to the old table will
264          * remain.
265          */
266         call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
267
268         return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
269 }
270
271 /**
272  * rhashtable_expand - Expand hash table while allowing concurrent lookups
273  * @ht:         the hash table to expand
274  *
275  * A secondary bucket array is allocated and the hash entries are migrated.
276  *
277  * This function may only be called in a context where it is safe to call
278  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
279  *
280  * The caller must ensure that no concurrent resizing occurs by holding
281  * ht->mutex.
282  *
283  * It is valid to have concurrent insertions and deletions protected by per
284  * bucket locks or concurrent RCU protected lookups and traversals.
285  */
286 static int rhashtable_expand(struct rhashtable *ht)
287 {
288         struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
289         int err;
290
291         ASSERT_RHT_MUTEX(ht);
292
293         old_tbl = rhashtable_last_table(ht, old_tbl);
294
295         new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
296         if (new_tbl == NULL)
297                 return -ENOMEM;
298
299         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
300         if (err)
301                 bucket_table_free(new_tbl);
302
303         return err;
304 }
305
306 /**
307  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
308  * @ht:         the hash table to shrink
309  *
310  * This function shrinks the hash table to fit, i.e., the smallest
311  * size would not cause it to expand right away automatically.
312  *
313  * The caller must ensure that no concurrent resizing occurs by holding
314  * ht->mutex.
315  *
316  * The caller must ensure that no concurrent table mutations take place.
317  * It is however valid to have concurrent lookups if they are RCU protected.
318  *
319  * It is valid to have concurrent insertions and deletions protected by per
320  * bucket locks or concurrent RCU protected lookups and traversals.
321  */
322 static int rhashtable_shrink(struct rhashtable *ht)
323 {
324         struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
325         unsigned size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
326         int err;
327
328         ASSERT_RHT_MUTEX(ht);
329
330         if (size < ht->p.min_size)
331                 size = ht->p.min_size;
332
333         if (old_tbl->size <= size)
334                 return 0;
335
336         if (rht_dereference(old_tbl->future_tbl, ht))
337                 return -EEXIST;
338
339         new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
340         if (new_tbl == NULL)
341                 return -ENOMEM;
342
343         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
344         if (err)
345                 bucket_table_free(new_tbl);
346
347         return err;
348 }
349
350 static void rht_deferred_worker(struct work_struct *work)
351 {
352         struct rhashtable *ht;
353         struct bucket_table *tbl;
354         int err = 0;
355
356         ht = container_of(work, struct rhashtable, run_work);
357         mutex_lock(&ht->mutex);
358         if (ht->being_destroyed)
359                 goto unlock;
360
361         tbl = rht_dereference(ht->tbl, ht);
362         tbl = rhashtable_last_table(ht, tbl);
363
364         if (rht_grow_above_75(ht, tbl))
365                 rhashtable_expand(ht);
366         else if (rht_shrink_below_30(ht, tbl))
367                 rhashtable_shrink(ht);
368
369         err = rhashtable_rehash_table(ht);
370
371 unlock:
372         mutex_unlock(&ht->mutex);
373
374         if (err)
375                 schedule_work(&ht->run_work);
376 }
377
378 int rhashtable_insert_slow(struct rhashtable *ht, const void *key,
379                            struct rhash_head *obj,
380                            struct bucket_table *tbl)
381 {
382         struct rhash_head *head;
383         unsigned hash;
384         int err = -EEXIST;
385
386         tbl = rhashtable_last_table(ht, tbl);
387         hash = head_hashfn(ht, tbl, obj);
388         spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
389
390         if (key && rhashtable_lookup_fast(ht, key, ht->p))
391                 goto exit;
392
393         err = 0;
394
395         head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
396
397         RCU_INIT_POINTER(obj->next, head);
398
399         rcu_assign_pointer(tbl->buckets[hash], obj);
400
401         atomic_inc(&ht->nelems);
402
403 exit:
404         spin_unlock(rht_bucket_lock(tbl, hash));
405
406         return err;
407 }
408 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
409
410 /**
411  * rhashtable_walk_init - Initialise an iterator
412  * @ht:         Table to walk over
413  * @iter:       Hash table Iterator
414  *
415  * This function prepares a hash table walk.
416  *
417  * Note that if you restart a walk after rhashtable_walk_stop you
418  * may see the same object twice.  Also, you may miss objects if
419  * there are removals in between rhashtable_walk_stop and the next
420  * call to rhashtable_walk_start.
421  *
422  * For a completely stable walk you should construct your own data
423  * structure outside the hash table.
424  *
425  * This function may sleep so you must not call it from interrupt
426  * context or with spin locks held.
427  *
428  * You must call rhashtable_walk_exit if this function returns
429  * successfully.
430  */
431 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
432 {
433         iter->ht = ht;
434         iter->p = NULL;
435         iter->slot = 0;
436         iter->skip = 0;
437
438         iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
439         if (!iter->walker)
440                 return -ENOMEM;
441
442         mutex_lock(&ht->mutex);
443         iter->walker->tbl = rht_dereference(ht->tbl, ht);
444         list_add(&iter->walker->list, &iter->walker->tbl->walkers);
445         mutex_unlock(&ht->mutex);
446
447         return 0;
448 }
449 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
450
451 /**
452  * rhashtable_walk_exit - Free an iterator
453  * @iter:       Hash table Iterator
454  *
455  * This function frees resources allocated by rhashtable_walk_init.
456  */
457 void rhashtable_walk_exit(struct rhashtable_iter *iter)
458 {
459         mutex_lock(&iter->ht->mutex);
460         if (iter->walker->tbl)
461                 list_del(&iter->walker->list);
462         mutex_unlock(&iter->ht->mutex);
463         kfree(iter->walker);
464 }
465 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
466
467 /**
468  * rhashtable_walk_start - Start a hash table walk
469  * @iter:       Hash table iterator
470  *
471  * Start a hash table walk.  Note that we take the RCU lock in all
472  * cases including when we return an error.  So you must always call
473  * rhashtable_walk_stop to clean up.
474  *
475  * Returns zero if successful.
476  *
477  * Returns -EAGAIN if resize event occured.  Note that the iterator
478  * will rewind back to the beginning and you may use it immediately
479  * by calling rhashtable_walk_next.
480  */
481 int rhashtable_walk_start(struct rhashtable_iter *iter)
482         __acquires(RCU)
483 {
484         struct rhashtable *ht = iter->ht;
485
486         mutex_lock(&ht->mutex);
487
488         if (iter->walker->tbl)
489                 list_del(&iter->walker->list);
490
491         rcu_read_lock();
492
493         mutex_unlock(&ht->mutex);
494
495         if (!iter->walker->tbl) {
496                 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
497                 return -EAGAIN;
498         }
499
500         return 0;
501 }
502 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
503
504 /**
505  * rhashtable_walk_next - Return the next object and advance the iterator
506  * @iter:       Hash table iterator
507  *
508  * Note that you must call rhashtable_walk_stop when you are finished
509  * with the walk.
510  *
511  * Returns the next object or NULL when the end of the table is reached.
512  *
513  * Returns -EAGAIN if resize event occured.  Note that the iterator
514  * will rewind back to the beginning and you may continue to use it.
515  */
516 void *rhashtable_walk_next(struct rhashtable_iter *iter)
517 {
518         struct bucket_table *tbl = iter->walker->tbl;
519         struct rhashtable *ht = iter->ht;
520         struct rhash_head *p = iter->p;
521         void *obj = NULL;
522
523         if (p) {
524                 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
525                 goto next;
526         }
527
528         for (; iter->slot < tbl->size; iter->slot++) {
529                 int skip = iter->skip;
530
531                 rht_for_each_rcu(p, tbl, iter->slot) {
532                         if (!skip)
533                                 break;
534                         skip--;
535                 }
536
537 next:
538                 if (!rht_is_a_nulls(p)) {
539                         iter->skip++;
540                         iter->p = p;
541                         obj = rht_obj(ht, p);
542                         goto out;
543                 }
544
545                 iter->skip = 0;
546         }
547
548         /* Ensure we see any new tables. */
549         smp_rmb();
550
551         iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
552         if (iter->walker->tbl) {
553                 iter->slot = 0;
554                 iter->skip = 0;
555                 return ERR_PTR(-EAGAIN);
556         }
557
558         iter->p = NULL;
559
560 out:
561
562         return obj;
563 }
564 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
565
566 /**
567  * rhashtable_walk_stop - Finish a hash table walk
568  * @iter:       Hash table iterator
569  *
570  * Finish a hash table walk.
571  */
572 void rhashtable_walk_stop(struct rhashtable_iter *iter)
573         __releases(RCU)
574 {
575         struct rhashtable *ht;
576         struct bucket_table *tbl = iter->walker->tbl;
577
578         if (!tbl)
579                 goto out;
580
581         ht = iter->ht;
582
583         mutex_lock(&ht->mutex);
584         if (tbl->rehash < tbl->size)
585                 list_add(&iter->walker->list, &tbl->walkers);
586         else
587                 iter->walker->tbl = NULL;
588         mutex_unlock(&ht->mutex);
589
590         iter->p = NULL;
591
592 out:
593         rcu_read_unlock();
594 }
595 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
596
597 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
598 {
599         return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
600                    (unsigned long)params->min_size);
601 }
602
603 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
604 {
605         return jhash2(key, length, seed);
606 }
607
608 /**
609  * rhashtable_init - initialize a new hash table
610  * @ht:         hash table to be initialized
611  * @params:     configuration parameters
612  *
613  * Initializes a new hash table based on the provided configuration
614  * parameters. A table can be configured either with a variable or
615  * fixed length key:
616  *
617  * Configuration Example 1: Fixed length keys
618  * struct test_obj {
619  *      int                     key;
620  *      void *                  my_member;
621  *      struct rhash_head       node;
622  * };
623  *
624  * struct rhashtable_params params = {
625  *      .head_offset = offsetof(struct test_obj, node),
626  *      .key_offset = offsetof(struct test_obj, key),
627  *      .key_len = sizeof(int),
628  *      .hashfn = jhash,
629  *      .nulls_base = (1U << RHT_BASE_SHIFT),
630  * };
631  *
632  * Configuration Example 2: Variable length keys
633  * struct test_obj {
634  *      [...]
635  *      struct rhash_head       node;
636  * };
637  *
638  * u32 my_hash_fn(const void *data, u32 seed)
639  * {
640  *      struct test_obj *obj = data;
641  *
642  *      return [... hash ...];
643  * }
644  *
645  * struct rhashtable_params params = {
646  *      .head_offset = offsetof(struct test_obj, node),
647  *      .hashfn = jhash,
648  *      .obj_hashfn = my_hash_fn,
649  * };
650  */
651 int rhashtable_init(struct rhashtable *ht,
652                     const struct rhashtable_params *params)
653 {
654         struct bucket_table *tbl;
655         size_t size;
656
657         size = HASH_DEFAULT_SIZE;
658
659         if ((!params->key_len && !params->obj_hashfn) ||
660             (params->obj_hashfn && !params->obj_cmpfn))
661                 return -EINVAL;
662
663         if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
664                 return -EINVAL;
665
666         if (params->nelem_hint)
667                 size = rounded_hashtable_size(params);
668
669         memset(ht, 0, sizeof(*ht));
670         mutex_init(&ht->mutex);
671         memcpy(&ht->p, params, sizeof(*params));
672
673         if (params->min_size)
674                 ht->p.min_size = roundup_pow_of_two(params->min_size);
675
676         if (params->max_size)
677                 ht->p.max_size = rounddown_pow_of_two(params->max_size);
678
679         ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
680
681         if (params->locks_mul)
682                 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
683         else
684                 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
685
686         ht->key_len = ht->p.key_len;
687         if (!params->hashfn) {
688                 ht->p.hashfn = jhash;
689
690                 if (!(ht->key_len & (sizeof(u32) - 1))) {
691                         ht->key_len /= sizeof(u32);
692                         ht->p.hashfn = rhashtable_jhash2;
693                 }
694         }
695
696         tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
697         if (tbl == NULL)
698                 return -ENOMEM;
699
700         atomic_set(&ht->nelems, 0);
701
702         RCU_INIT_POINTER(ht->tbl, tbl);
703
704         INIT_WORK(&ht->run_work, rht_deferred_worker);
705
706         return 0;
707 }
708 EXPORT_SYMBOL_GPL(rhashtable_init);
709
710 /**
711  * rhashtable_destroy - destroy hash table
712  * @ht:         the hash table to destroy
713  *
714  * Frees the bucket array. This function is not rcu safe, therefore the caller
715  * has to make sure that no resizing may happen by unpublishing the hashtable
716  * and waiting for the quiescent cycle before releasing the bucket array.
717  */
718 void rhashtable_destroy(struct rhashtable *ht)
719 {
720         ht->being_destroyed = true;
721
722         cancel_work_sync(&ht->run_work);
723
724         mutex_lock(&ht->mutex);
725         bucket_table_free(rht_dereference(ht->tbl, ht));
726         mutex_unlock(&ht->mutex);
727 }
728 EXPORT_SYMBOL_GPL(rhashtable_destroy);