Merge remote-tracking branches 'regulator/topic/supply', 'regulator/topic/tps6105x...
[firefly-linux-kernel-4.4.55.git] / mm / bootmem.c
1 /*
2  *  bootmem - A boot-time physical memory allocator and configurator
3  *
4  *  Copyright (C) 1999 Ingo Molnar
5  *                1999 Kanoj Sarcar, SGI
6  *                2008 Johannes Weiner
7  *
8  * Access to this subsystem has to be serialized externally (which is true
9  * for the boot process anyway).
10  */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/export.h>
16 #include <linux/kmemleak.h>
17 #include <linux/range.h>
18 #include <linux/memblock.h>
19 #include <linux/bug.h>
20 #include <linux/io.h>
21
22 #include <asm/processor.h>
23
24 #include "internal.h"
25
26 #ifndef CONFIG_NEED_MULTIPLE_NODES
27 struct pglist_data __refdata contig_page_data = {
28         .bdata = &bootmem_node_data[0]
29 };
30 EXPORT_SYMBOL(contig_page_data);
31 #endif
32
33 unsigned long max_low_pfn;
34 unsigned long min_low_pfn;
35 unsigned long max_pfn;
36
37 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38
39 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40
41 static int bootmem_debug;
42
43 static int __init bootmem_debug_setup(char *buf)
44 {
45         bootmem_debug = 1;
46         return 0;
47 }
48 early_param("bootmem_debug", bootmem_debug_setup);
49
50 #define bdebug(fmt, args...) ({                         \
51         if (unlikely(bootmem_debug))                    \
52                 printk(KERN_INFO                        \
53                         "bootmem::%s " fmt,             \
54                         __func__, ## args);             \
55 })
56
57 static unsigned long __init bootmap_bytes(unsigned long pages)
58 {
59         unsigned long bytes = DIV_ROUND_UP(pages, 8);
60
61         return ALIGN(bytes, sizeof(long));
62 }
63
64 /**
65  * bootmem_bootmap_pages - calculate bitmap size in pages
66  * @pages: number of pages the bitmap has to represent
67  */
68 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69 {
70         unsigned long bytes = bootmap_bytes(pages);
71
72         return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73 }
74
75 /*
76  * link bdata in order
77  */
78 static void __init link_bootmem(bootmem_data_t *bdata)
79 {
80         bootmem_data_t *ent;
81
82         list_for_each_entry(ent, &bdata_list, list) {
83                 if (bdata->node_min_pfn < ent->node_min_pfn) {
84                         list_add_tail(&bdata->list, &ent->list);
85                         return;
86                 }
87         }
88
89         list_add_tail(&bdata->list, &bdata_list);
90 }
91
92 /*
93  * Called once to set up the allocator itself.
94  */
95 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96         unsigned long mapstart, unsigned long start, unsigned long end)
97 {
98         unsigned long mapsize;
99
100         mminit_validate_memmodel_limits(&start, &end);
101         bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102         bdata->node_min_pfn = start;
103         bdata->node_low_pfn = end;
104         link_bootmem(bdata);
105
106         /*
107          * Initially all pages are reserved - setup_arch() has to
108          * register free RAM areas explicitly.
109          */
110         mapsize = bootmap_bytes(end - start);
111         memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113         bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114                 bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116         return mapsize;
117 }
118
119 /**
120  * init_bootmem_node - register a node as boot memory
121  * @pgdat: node to register
122  * @freepfn: pfn where the bitmap for this node is to be placed
123  * @startpfn: first pfn on the node
124  * @endpfn: first pfn after the node
125  *
126  * Returns the number of bytes needed to hold the bitmap for this node.
127  */
128 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129                                 unsigned long startpfn, unsigned long endpfn)
130 {
131         return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132 }
133
134 /**
135  * init_bootmem - register boot memory
136  * @start: pfn where the bitmap is to be placed
137  * @pages: number of available physical pages
138  *
139  * Returns the number of bytes needed to hold the bitmap.
140  */
141 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142 {
143         max_low_pfn = pages;
144         min_low_pfn = start;
145         return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146 }
147
148 /*
149  * free_bootmem_late - free bootmem pages directly to page allocator
150  * @addr: starting physical address of the range
151  * @size: size of the range in bytes
152  *
153  * This is only useful when the bootmem allocator has already been torn
154  * down, but we are still initializing the system.  Pages are given directly
155  * to the page allocator, no bootmem metadata is updated because it is gone.
156  */
157 void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
158 {
159         unsigned long cursor, end;
160
161         kmemleak_free_part(__va(physaddr), size);
162
163         cursor = PFN_UP(physaddr);
164         end = PFN_DOWN(physaddr + size);
165
166         for (; cursor < end; cursor++) {
167                 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
168                 totalram_pages++;
169         }
170 }
171
172 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173 {
174         struct page *page;
175         unsigned long *map, start, end, pages, cur, count = 0;
176
177         if (!bdata->node_bootmem_map)
178                 return 0;
179
180         map = bdata->node_bootmem_map;
181         start = bdata->node_min_pfn;
182         end = bdata->node_low_pfn;
183
184         bdebug("nid=%td start=%lx end=%lx\n",
185                 bdata - bootmem_node_data, start, end);
186
187         while (start < end) {
188                 unsigned long idx, vec;
189                 unsigned shift;
190
191                 idx = start - bdata->node_min_pfn;
192                 shift = idx & (BITS_PER_LONG - 1);
193                 /*
194                  * vec holds at most BITS_PER_LONG map bits,
195                  * bit 0 corresponds to start.
196                  */
197                 vec = ~map[idx / BITS_PER_LONG];
198
199                 if (shift) {
200                         vec >>= shift;
201                         if (end - start >= BITS_PER_LONG)
202                                 vec |= ~map[idx / BITS_PER_LONG + 1] <<
203                                         (BITS_PER_LONG - shift);
204                 }
205                 /*
206                  * If we have a properly aligned and fully unreserved
207                  * BITS_PER_LONG block of pages in front of us, free
208                  * it in one go.
209                  */
210                 if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
211                         int order = ilog2(BITS_PER_LONG);
212
213                         __free_pages_bootmem(pfn_to_page(start), start, order);
214                         count += BITS_PER_LONG;
215                         start += BITS_PER_LONG;
216                 } else {
217                         cur = start;
218
219                         start = ALIGN(start + 1, BITS_PER_LONG);
220                         while (vec && cur != start) {
221                                 if (vec & 1) {
222                                         page = pfn_to_page(cur);
223                                         __free_pages_bootmem(page, cur, 0);
224                                         count++;
225                                 }
226                                 vec >>= 1;
227                                 ++cur;
228                         }
229                 }
230         }
231
232         cur = bdata->node_min_pfn;
233         page = virt_to_page(bdata->node_bootmem_map);
234         pages = bdata->node_low_pfn - bdata->node_min_pfn;
235         pages = bootmem_bootmap_pages(pages);
236         count += pages;
237         while (pages--)
238                 __free_pages_bootmem(page++, cur++, 0);
239         bdata->node_bootmem_map = NULL;
240
241         bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
242
243         return count;
244 }
245
246 static int reset_managed_pages_done __initdata;
247
248 void reset_node_managed_pages(pg_data_t *pgdat)
249 {
250         struct zone *z;
251
252         for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
253                 z->managed_pages = 0;
254 }
255
256 void __init reset_all_zones_managed_pages(void)
257 {
258         struct pglist_data *pgdat;
259
260         if (reset_managed_pages_done)
261                 return;
262
263         for_each_online_pgdat(pgdat)
264                 reset_node_managed_pages(pgdat);
265
266         reset_managed_pages_done = 1;
267 }
268
269 /**
270  * free_all_bootmem - release free pages to the buddy allocator
271  *
272  * Returns the number of pages actually released.
273  */
274 unsigned long __init free_all_bootmem(void)
275 {
276         unsigned long total_pages = 0;
277         bootmem_data_t *bdata;
278
279         reset_all_zones_managed_pages();
280
281         list_for_each_entry(bdata, &bdata_list, list)
282                 total_pages += free_all_bootmem_core(bdata);
283
284         totalram_pages += total_pages;
285
286         return total_pages;
287 }
288
289 static void __init __free(bootmem_data_t *bdata,
290                         unsigned long sidx, unsigned long eidx)
291 {
292         unsigned long idx;
293
294         bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
295                 sidx + bdata->node_min_pfn,
296                 eidx + bdata->node_min_pfn);
297
298         if (WARN_ON(bdata->node_bootmem_map == NULL))
299                 return;
300
301         if (bdata->hint_idx > sidx)
302                 bdata->hint_idx = sidx;
303
304         for (idx = sidx; idx < eidx; idx++)
305                 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
306                         BUG();
307 }
308
309 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
310                         unsigned long eidx, int flags)
311 {
312         unsigned long idx;
313         int exclusive = flags & BOOTMEM_EXCLUSIVE;
314
315         bdebug("nid=%td start=%lx end=%lx flags=%x\n",
316                 bdata - bootmem_node_data,
317                 sidx + bdata->node_min_pfn,
318                 eidx + bdata->node_min_pfn,
319                 flags);
320
321         if (WARN_ON(bdata->node_bootmem_map == NULL))
322                 return 0;
323
324         for (idx = sidx; idx < eidx; idx++)
325                 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
326                         if (exclusive) {
327                                 __free(bdata, sidx, idx);
328                                 return -EBUSY;
329                         }
330                         bdebug("silent double reserve of PFN %lx\n",
331                                 idx + bdata->node_min_pfn);
332                 }
333         return 0;
334 }
335
336 static int __init mark_bootmem_node(bootmem_data_t *bdata,
337                                 unsigned long start, unsigned long end,
338                                 int reserve, int flags)
339 {
340         unsigned long sidx, eidx;
341
342         bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
343                 bdata - bootmem_node_data, start, end, reserve, flags);
344
345         BUG_ON(start < bdata->node_min_pfn);
346         BUG_ON(end > bdata->node_low_pfn);
347
348         sidx = start - bdata->node_min_pfn;
349         eidx = end - bdata->node_min_pfn;
350
351         if (reserve)
352                 return __reserve(bdata, sidx, eidx, flags);
353         else
354                 __free(bdata, sidx, eidx);
355         return 0;
356 }
357
358 static int __init mark_bootmem(unsigned long start, unsigned long end,
359                                 int reserve, int flags)
360 {
361         unsigned long pos;
362         bootmem_data_t *bdata;
363
364         pos = start;
365         list_for_each_entry(bdata, &bdata_list, list) {
366                 int err;
367                 unsigned long max;
368
369                 if (pos < bdata->node_min_pfn ||
370                     pos >= bdata->node_low_pfn) {
371                         BUG_ON(pos != start);
372                         continue;
373                 }
374
375                 max = min(bdata->node_low_pfn, end);
376
377                 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
378                 if (reserve && err) {
379                         mark_bootmem(start, pos, 0, 0);
380                         return err;
381                 }
382
383                 if (max == end)
384                         return 0;
385                 pos = bdata->node_low_pfn;
386         }
387         BUG();
388 }
389
390 /**
391  * free_bootmem_node - mark a page range as usable
392  * @pgdat: node the range resides on
393  * @physaddr: starting address of the range
394  * @size: size of the range in bytes
395  *
396  * Partial pages will be considered reserved and left as they are.
397  *
398  * The range must reside completely on the specified node.
399  */
400 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
401                               unsigned long size)
402 {
403         unsigned long start, end;
404
405         kmemleak_free_part(__va(physaddr), size);
406
407         start = PFN_UP(physaddr);
408         end = PFN_DOWN(physaddr + size);
409
410         mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
411 }
412
413 /**
414  * free_bootmem - mark a page range as usable
415  * @addr: starting physical address of the range
416  * @size: size of the range in bytes
417  *
418  * Partial pages will be considered reserved and left as they are.
419  *
420  * The range must be contiguous but may span node boundaries.
421  */
422 void __init free_bootmem(unsigned long physaddr, unsigned long size)
423 {
424         unsigned long start, end;
425
426         kmemleak_free_part(__va(physaddr), size);
427
428         start = PFN_UP(physaddr);
429         end = PFN_DOWN(physaddr + size);
430
431         mark_bootmem(start, end, 0, 0);
432 }
433
434 /**
435  * reserve_bootmem_node - mark a page range as reserved
436  * @pgdat: node the range resides on
437  * @physaddr: starting address of the range
438  * @size: size of the range in bytes
439  * @flags: reservation flags (see linux/bootmem.h)
440  *
441  * Partial pages will be reserved.
442  *
443  * The range must reside completely on the specified node.
444  */
445 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
446                                  unsigned long size, int flags)
447 {
448         unsigned long start, end;
449
450         start = PFN_DOWN(physaddr);
451         end = PFN_UP(physaddr + size);
452
453         return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
454 }
455
456 /**
457  * reserve_bootmem - mark a page range as reserved
458  * @addr: starting address of the range
459  * @size: size of the range in bytes
460  * @flags: reservation flags (see linux/bootmem.h)
461  *
462  * Partial pages will be reserved.
463  *
464  * The range must be contiguous but may span node boundaries.
465  */
466 int __init reserve_bootmem(unsigned long addr, unsigned long size,
467                             int flags)
468 {
469         unsigned long start, end;
470
471         start = PFN_DOWN(addr);
472         end = PFN_UP(addr + size);
473
474         return mark_bootmem(start, end, 1, flags);
475 }
476
477 static unsigned long __init align_idx(struct bootmem_data *bdata,
478                                       unsigned long idx, unsigned long step)
479 {
480         unsigned long base = bdata->node_min_pfn;
481
482         /*
483          * Align the index with respect to the node start so that the
484          * combination of both satisfies the requested alignment.
485          */
486
487         return ALIGN(base + idx, step) - base;
488 }
489
490 static unsigned long __init align_off(struct bootmem_data *bdata,
491                                       unsigned long off, unsigned long align)
492 {
493         unsigned long base = PFN_PHYS(bdata->node_min_pfn);
494
495         /* Same as align_idx for byte offsets */
496
497         return ALIGN(base + off, align) - base;
498 }
499
500 static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
501                                         unsigned long size, unsigned long align,
502                                         unsigned long goal, unsigned long limit)
503 {
504         unsigned long fallback = 0;
505         unsigned long min, max, start, sidx, midx, step;
506
507         bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
508                 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
509                 align, goal, limit);
510
511         BUG_ON(!size);
512         BUG_ON(align & (align - 1));
513         BUG_ON(limit && goal + size > limit);
514
515         if (!bdata->node_bootmem_map)
516                 return NULL;
517
518         min = bdata->node_min_pfn;
519         max = bdata->node_low_pfn;
520
521         goal >>= PAGE_SHIFT;
522         limit >>= PAGE_SHIFT;
523
524         if (limit && max > limit)
525                 max = limit;
526         if (max <= min)
527                 return NULL;
528
529         step = max(align >> PAGE_SHIFT, 1UL);
530
531         if (goal && min < goal && goal < max)
532                 start = ALIGN(goal, step);
533         else
534                 start = ALIGN(min, step);
535
536         sidx = start - bdata->node_min_pfn;
537         midx = max - bdata->node_min_pfn;
538
539         if (bdata->hint_idx > sidx) {
540                 /*
541                  * Handle the valid case of sidx being zero and still
542                  * catch the fallback below.
543                  */
544                 fallback = sidx + 1;
545                 sidx = align_idx(bdata, bdata->hint_idx, step);
546         }
547
548         while (1) {
549                 int merge;
550                 void *region;
551                 unsigned long eidx, i, start_off, end_off;
552 find_block:
553                 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
554                 sidx = align_idx(bdata, sidx, step);
555                 eidx = sidx + PFN_UP(size);
556
557                 if (sidx >= midx || eidx > midx)
558                         break;
559
560                 for (i = sidx; i < eidx; i++)
561                         if (test_bit(i, bdata->node_bootmem_map)) {
562                                 sidx = align_idx(bdata, i, step);
563                                 if (sidx == i)
564                                         sidx += step;
565                                 goto find_block;
566                         }
567
568                 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
569                                 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
570                         start_off = align_off(bdata, bdata->last_end_off, align);
571                 else
572                         start_off = PFN_PHYS(sidx);
573
574                 merge = PFN_DOWN(start_off) < sidx;
575                 end_off = start_off + size;
576
577                 bdata->last_end_off = end_off;
578                 bdata->hint_idx = PFN_UP(end_off);
579
580                 /*
581                  * Reserve the area now:
582                  */
583                 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
584                                 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
585                         BUG();
586
587                 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
588                                 start_off);
589                 memset(region, 0, size);
590                 /*
591                  * The min_count is set to 0 so that bootmem allocated blocks
592                  * are never reported as leaks.
593                  */
594                 kmemleak_alloc(region, size, 0, 0);
595                 return region;
596         }
597
598         if (fallback) {
599                 sidx = align_idx(bdata, fallback - 1, step);
600                 fallback = 0;
601                 goto find_block;
602         }
603
604         return NULL;
605 }
606
607 static void * __init alloc_bootmem_core(unsigned long size,
608                                         unsigned long align,
609                                         unsigned long goal,
610                                         unsigned long limit)
611 {
612         bootmem_data_t *bdata;
613         void *region;
614
615         if (WARN_ON_ONCE(slab_is_available()))
616                 return kzalloc(size, GFP_NOWAIT);
617
618         list_for_each_entry(bdata, &bdata_list, list) {
619                 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
620                         continue;
621                 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
622                         break;
623
624                 region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
625                 if (region)
626                         return region;
627         }
628
629         return NULL;
630 }
631
632 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
633                                               unsigned long align,
634                                               unsigned long goal,
635                                               unsigned long limit)
636 {
637         void *ptr;
638
639 restart:
640         ptr = alloc_bootmem_core(size, align, goal, limit);
641         if (ptr)
642                 return ptr;
643         if (goal) {
644                 goal = 0;
645                 goto restart;
646         }
647
648         return NULL;
649 }
650
651 /**
652  * __alloc_bootmem_nopanic - allocate boot memory without panicking
653  * @size: size of the request in bytes
654  * @align: alignment of the region
655  * @goal: preferred starting address of the region
656  *
657  * The goal is dropped if it can not be satisfied and the allocation will
658  * fall back to memory below @goal.
659  *
660  * Allocation may happen on any node in the system.
661  *
662  * Returns NULL on failure.
663  */
664 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
665                                         unsigned long goal)
666 {
667         unsigned long limit = 0;
668
669         return ___alloc_bootmem_nopanic(size, align, goal, limit);
670 }
671
672 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
673                                         unsigned long goal, unsigned long limit)
674 {
675         void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
676
677         if (mem)
678                 return mem;
679         /*
680          * Whoops, we cannot satisfy the allocation request.
681          */
682         printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
683         panic("Out of memory");
684         return NULL;
685 }
686
687 /**
688  * __alloc_bootmem - allocate boot memory
689  * @size: size of the request in bytes
690  * @align: alignment of the region
691  * @goal: preferred starting address of the region
692  *
693  * The goal is dropped if it can not be satisfied and the allocation will
694  * fall back to memory below @goal.
695  *
696  * Allocation may happen on any node in the system.
697  *
698  * The function panics if the request can not be satisfied.
699  */
700 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
701                               unsigned long goal)
702 {
703         unsigned long limit = 0;
704
705         return ___alloc_bootmem(size, align, goal, limit);
706 }
707
708 void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
709                                 unsigned long size, unsigned long align,
710                                 unsigned long goal, unsigned long limit)
711 {
712         void *ptr;
713
714         if (WARN_ON_ONCE(slab_is_available()))
715                 return kzalloc(size, GFP_NOWAIT);
716 again:
717
718         /* do not panic in alloc_bootmem_bdata() */
719         if (limit && goal + size > limit)
720                 limit = 0;
721
722         ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
723         if (ptr)
724                 return ptr;
725
726         ptr = alloc_bootmem_core(size, align, goal, limit);
727         if (ptr)
728                 return ptr;
729
730         if (goal) {
731                 goal = 0;
732                 goto again;
733         }
734
735         return NULL;
736 }
737
738 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
739                                    unsigned long align, unsigned long goal)
740 {
741         if (WARN_ON_ONCE(slab_is_available()))
742                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
743
744         return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
745 }
746
747 void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
748                                     unsigned long align, unsigned long goal,
749                                     unsigned long limit)
750 {
751         void *ptr;
752
753         ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
754         if (ptr)
755                 return ptr;
756
757         printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
758         panic("Out of memory");
759         return NULL;
760 }
761
762 /**
763  * __alloc_bootmem_node - allocate boot memory from a specific node
764  * @pgdat: node to allocate from
765  * @size: size of the request in bytes
766  * @align: alignment of the region
767  * @goal: preferred starting address of the region
768  *
769  * The goal is dropped if it can not be satisfied and the allocation will
770  * fall back to memory below @goal.
771  *
772  * Allocation may fall back to any node in the system if the specified node
773  * can not hold the requested memory.
774  *
775  * The function panics if the request can not be satisfied.
776  */
777 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
778                                    unsigned long align, unsigned long goal)
779 {
780         if (WARN_ON_ONCE(slab_is_available()))
781                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
782
783         return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
784 }
785
786 void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
787                                    unsigned long align, unsigned long goal)
788 {
789 #ifdef MAX_DMA32_PFN
790         unsigned long end_pfn;
791
792         if (WARN_ON_ONCE(slab_is_available()))
793                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
794
795         /* update goal according ...MAX_DMA32_PFN */
796         end_pfn = pgdat_end_pfn(pgdat);
797
798         if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
799             (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
800                 void *ptr;
801                 unsigned long new_goal;
802
803                 new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
804                 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
805                                                  new_goal, 0);
806                 if (ptr)
807                         return ptr;
808         }
809 #endif
810
811         return __alloc_bootmem_node(pgdat, size, align, goal);
812
813 }
814
815 #ifndef ARCH_LOW_ADDRESS_LIMIT
816 #define ARCH_LOW_ADDRESS_LIMIT  0xffffffffUL
817 #endif
818
819 /**
820  * __alloc_bootmem_low - allocate low boot memory
821  * @size: size of the request in bytes
822  * @align: alignment of the region
823  * @goal: preferred starting address of the region
824  *
825  * The goal is dropped if it can not be satisfied and the allocation will
826  * fall back to memory below @goal.
827  *
828  * Allocation may happen on any node in the system.
829  *
830  * The function panics if the request can not be satisfied.
831  */
832 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
833                                   unsigned long goal)
834 {
835         return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
836 }
837
838 void * __init __alloc_bootmem_low_nopanic(unsigned long size,
839                                           unsigned long align,
840                                           unsigned long goal)
841 {
842         return ___alloc_bootmem_nopanic(size, align, goal,
843                                         ARCH_LOW_ADDRESS_LIMIT);
844 }
845
846 /**
847  * __alloc_bootmem_low_node - allocate low boot memory from a specific node
848  * @pgdat: node to allocate from
849  * @size: size of the request in bytes
850  * @align: alignment of the region
851  * @goal: preferred starting address of the region
852  *
853  * The goal is dropped if it can not be satisfied and the allocation will
854  * fall back to memory below @goal.
855  *
856  * Allocation may fall back to any node in the system if the specified node
857  * can not hold the requested memory.
858  *
859  * The function panics if the request can not be satisfied.
860  */
861 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
862                                        unsigned long align, unsigned long goal)
863 {
864         if (WARN_ON_ONCE(slab_is_available()))
865                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
866
867         return ___alloc_bootmem_node(pgdat, size, align,
868                                      goal, ARCH_LOW_ADDRESS_LIMIT);
869 }