mm, compaction: encapsulate resetting cached scanner positions
[firefly-linux-kernel-4.4.55.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25         count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30         count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40         "deferred",
41         "skipped",
42         "continue",
43         "partial",
44         "complete",
45         "no_suitable_page",
46         "not_suitable_zone",
47 };
48 #endif
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55         struct page *page, *next;
56         unsigned long high_pfn = 0;
57
58         list_for_each_entry_safe(page, next, freelist, lru) {
59                 unsigned long pfn = page_to_pfn(page);
60                 list_del(&page->lru);
61                 __free_page(page);
62                 if (pfn > high_pfn)
63                         high_pfn = pfn;
64         }
65
66         return high_pfn;
67 }
68
69 static void map_pages(struct list_head *list)
70 {
71         struct page *page;
72
73         list_for_each_entry(page, list, lru) {
74                 arch_alloc_page(page, 0);
75                 kernel_map_pages(page, 1, 1);
76                 kasan_alloc_pages(page, 0);
77         }
78 }
79
80 static inline bool migrate_async_suitable(int migratetype)
81 {
82         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84
85 /*
86  * Check that the whole (or subset of) a pageblock given by the interval of
87  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88  * with the migration of free compaction scanner. The scanners then need to
89  * use only pfn_valid_within() check for arches that allow holes within
90  * pageblocks.
91  *
92  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93  *
94  * It's possible on some configurations to have a setup like node0 node1 node0
95  * i.e. it's possible that all pages within a zones range of pages do not
96  * belong to a single zone. We assume that a border between node0 and node1
97  * can occur within a single pageblock, but not a node0 node1 node0
98  * interleaving within a single pageblock. It is therefore sufficient to check
99  * the first and last page of a pageblock and avoid checking each individual
100  * page in a pageblock.
101  */
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103                                 unsigned long end_pfn, struct zone *zone)
104 {
105         struct page *start_page;
106         struct page *end_page;
107
108         /* end_pfn is one past the range we are checking */
109         end_pfn--;
110
111         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112                 return NULL;
113
114         start_page = pfn_to_page(start_pfn);
115
116         if (page_zone(start_page) != zone)
117                 return NULL;
118
119         end_page = pfn_to_page(end_pfn);
120
121         /* This gives a shorter code than deriving page_zone(end_page) */
122         if (page_zone_id(start_page) != page_zone_id(end_page))
123                 return NULL;
124
125         return start_page;
126 }
127
128 #ifdef CONFIG_COMPACTION
129
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132
133 /*
134  * Compaction is deferred when compaction fails to result in a page
135  * allocation success. 1 << compact_defer_limit compactions are skipped up
136  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137  */
138 void defer_compaction(struct zone *zone, int order)
139 {
140         zone->compact_considered = 0;
141         zone->compact_defer_shift++;
142
143         if (order < zone->compact_order_failed)
144                 zone->compact_order_failed = order;
145
146         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148
149         trace_mm_compaction_defer_compaction(zone, order);
150 }
151
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
154 {
155         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156
157         if (order < zone->compact_order_failed)
158                 return false;
159
160         /* Avoid possible overflow */
161         if (++zone->compact_considered > defer_limit)
162                 zone->compact_considered = defer_limit;
163
164         if (zone->compact_considered >= defer_limit)
165                 return false;
166
167         trace_mm_compaction_deferred(zone, order);
168
169         return true;
170 }
171
172 /*
173  * Update defer tracking counters after successful compaction of given order,
174  * which means an allocation either succeeded (alloc_success == true) or is
175  * expected to succeed.
176  */
177 void compaction_defer_reset(struct zone *zone, int order,
178                 bool alloc_success)
179 {
180         if (alloc_success) {
181                 zone->compact_considered = 0;
182                 zone->compact_defer_shift = 0;
183         }
184         if (order >= zone->compact_order_failed)
185                 zone->compact_order_failed = order + 1;
186
187         trace_mm_compaction_defer_reset(zone, order);
188 }
189
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
192 {
193         if (order < zone->compact_order_failed)
194                 return false;
195
196         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202                                         struct page *page)
203 {
204         if (cc->ignore_skip_hint)
205                 return true;
206
207         return !get_pageblock_skip(page);
208 }
209
210 static void reset_cached_positions(struct zone *zone)
211 {
212         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
213         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
214         zone->compact_cached_free_pfn = zone_end_pfn(zone);
215 }
216
217 /*
218  * This function is called to clear all cached information on pageblocks that
219  * should be skipped for page isolation when the migrate and free page scanner
220  * meet.
221  */
222 static void __reset_isolation_suitable(struct zone *zone)
223 {
224         unsigned long start_pfn = zone->zone_start_pfn;
225         unsigned long end_pfn = zone_end_pfn(zone);
226         unsigned long pfn;
227
228         zone->compact_blockskip_flush = false;
229
230         /* Walk the zone and mark every pageblock as suitable for isolation */
231         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
232                 struct page *page;
233
234                 cond_resched();
235
236                 if (!pfn_valid(pfn))
237                         continue;
238
239                 page = pfn_to_page(pfn);
240                 if (zone != page_zone(page))
241                         continue;
242
243                 clear_pageblock_skip(page);
244         }
245
246         reset_cached_positions(zone);
247 }
248
249 void reset_isolation_suitable(pg_data_t *pgdat)
250 {
251         int zoneid;
252
253         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
254                 struct zone *zone = &pgdat->node_zones[zoneid];
255                 if (!populated_zone(zone))
256                         continue;
257
258                 /* Only flush if a full compaction finished recently */
259                 if (zone->compact_blockskip_flush)
260                         __reset_isolation_suitable(zone);
261         }
262 }
263
264 /*
265  * If no pages were isolated then mark this pageblock to be skipped in the
266  * future. The information is later cleared by __reset_isolation_suitable().
267  */
268 static void update_pageblock_skip(struct compact_control *cc,
269                         struct page *page, unsigned long nr_isolated,
270                         bool migrate_scanner)
271 {
272         struct zone *zone = cc->zone;
273         unsigned long pfn;
274
275         if (cc->ignore_skip_hint)
276                 return;
277
278         if (!page)
279                 return;
280
281         if (nr_isolated)
282                 return;
283
284         set_pageblock_skip(page);
285
286         pfn = page_to_pfn(page);
287
288         /* Update where async and sync compaction should restart */
289         if (migrate_scanner) {
290                 if (pfn > zone->compact_cached_migrate_pfn[0])
291                         zone->compact_cached_migrate_pfn[0] = pfn;
292                 if (cc->mode != MIGRATE_ASYNC &&
293                     pfn > zone->compact_cached_migrate_pfn[1])
294                         zone->compact_cached_migrate_pfn[1] = pfn;
295         } else {
296                 if (pfn < zone->compact_cached_free_pfn)
297                         zone->compact_cached_free_pfn = pfn;
298         }
299 }
300 #else
301 static inline bool isolation_suitable(struct compact_control *cc,
302                                         struct page *page)
303 {
304         return true;
305 }
306
307 static void update_pageblock_skip(struct compact_control *cc,
308                         struct page *page, unsigned long nr_isolated,
309                         bool migrate_scanner)
310 {
311 }
312 #endif /* CONFIG_COMPACTION */
313
314 /*
315  * Compaction requires the taking of some coarse locks that are potentially
316  * very heavily contended. For async compaction, back out if the lock cannot
317  * be taken immediately. For sync compaction, spin on the lock if needed.
318  *
319  * Returns true if the lock is held
320  * Returns false if the lock is not held and compaction should abort
321  */
322 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
323                                                 struct compact_control *cc)
324 {
325         if (cc->mode == MIGRATE_ASYNC) {
326                 if (!spin_trylock_irqsave(lock, *flags)) {
327                         cc->contended = COMPACT_CONTENDED_LOCK;
328                         return false;
329                 }
330         } else {
331                 spin_lock_irqsave(lock, *flags);
332         }
333
334         return true;
335 }
336
337 /*
338  * Compaction requires the taking of some coarse locks that are potentially
339  * very heavily contended. The lock should be periodically unlocked to avoid
340  * having disabled IRQs for a long time, even when there is nobody waiting on
341  * the lock. It might also be that allowing the IRQs will result in
342  * need_resched() becoming true. If scheduling is needed, async compaction
343  * aborts. Sync compaction schedules.
344  * Either compaction type will also abort if a fatal signal is pending.
345  * In either case if the lock was locked, it is dropped and not regained.
346  *
347  * Returns true if compaction should abort due to fatal signal pending, or
348  *              async compaction due to need_resched()
349  * Returns false when compaction can continue (sync compaction might have
350  *              scheduled)
351  */
352 static bool compact_unlock_should_abort(spinlock_t *lock,
353                 unsigned long flags, bool *locked, struct compact_control *cc)
354 {
355         if (*locked) {
356                 spin_unlock_irqrestore(lock, flags);
357                 *locked = false;
358         }
359
360         if (fatal_signal_pending(current)) {
361                 cc->contended = COMPACT_CONTENDED_SCHED;
362                 return true;
363         }
364
365         if (need_resched()) {
366                 if (cc->mode == MIGRATE_ASYNC) {
367                         cc->contended = COMPACT_CONTENDED_SCHED;
368                         return true;
369                 }
370                 cond_resched();
371         }
372
373         return false;
374 }
375
376 /*
377  * Aside from avoiding lock contention, compaction also periodically checks
378  * need_resched() and either schedules in sync compaction or aborts async
379  * compaction. This is similar to what compact_unlock_should_abort() does, but
380  * is used where no lock is concerned.
381  *
382  * Returns false when no scheduling was needed, or sync compaction scheduled.
383  * Returns true when async compaction should abort.
384  */
385 static inline bool compact_should_abort(struct compact_control *cc)
386 {
387         /* async compaction aborts if contended */
388         if (need_resched()) {
389                 if (cc->mode == MIGRATE_ASYNC) {
390                         cc->contended = COMPACT_CONTENDED_SCHED;
391                         return true;
392                 }
393
394                 cond_resched();
395         }
396
397         return false;
398 }
399
400 /*
401  * Isolate free pages onto a private freelist. If @strict is true, will abort
402  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
403  * (even though it may still end up isolating some pages).
404  */
405 static unsigned long isolate_freepages_block(struct compact_control *cc,
406                                 unsigned long *start_pfn,
407                                 unsigned long end_pfn,
408                                 struct list_head *freelist,
409                                 bool strict)
410 {
411         int nr_scanned = 0, total_isolated = 0;
412         struct page *cursor, *valid_page = NULL;
413         unsigned long flags = 0;
414         bool locked = false;
415         unsigned long blockpfn = *start_pfn;
416
417         cursor = pfn_to_page(blockpfn);
418
419         /* Isolate free pages. */
420         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
421                 int isolated, i;
422                 struct page *page = cursor;
423
424                 /*
425                  * Periodically drop the lock (if held) regardless of its
426                  * contention, to give chance to IRQs. Abort if fatal signal
427                  * pending or async compaction detects need_resched()
428                  */
429                 if (!(blockpfn % SWAP_CLUSTER_MAX)
430                     && compact_unlock_should_abort(&cc->zone->lock, flags,
431                                                                 &locked, cc))
432                         break;
433
434                 nr_scanned++;
435                 if (!pfn_valid_within(blockpfn))
436                         goto isolate_fail;
437
438                 if (!valid_page)
439                         valid_page = page;
440                 if (!PageBuddy(page))
441                         goto isolate_fail;
442
443                 /*
444                  * If we already hold the lock, we can skip some rechecking.
445                  * Note that if we hold the lock now, checked_pageblock was
446                  * already set in some previous iteration (or strict is true),
447                  * so it is correct to skip the suitable migration target
448                  * recheck as well.
449                  */
450                 if (!locked) {
451                         /*
452                          * The zone lock must be held to isolate freepages.
453                          * Unfortunately this is a very coarse lock and can be
454                          * heavily contended if there are parallel allocations
455                          * or parallel compactions. For async compaction do not
456                          * spin on the lock and we acquire the lock as late as
457                          * possible.
458                          */
459                         locked = compact_trylock_irqsave(&cc->zone->lock,
460                                                                 &flags, cc);
461                         if (!locked)
462                                 break;
463
464                         /* Recheck this is a buddy page under lock */
465                         if (!PageBuddy(page))
466                                 goto isolate_fail;
467                 }
468
469                 /* Found a free page, break it into order-0 pages */
470                 isolated = split_free_page(page);
471                 total_isolated += isolated;
472                 for (i = 0; i < isolated; i++) {
473                         list_add(&page->lru, freelist);
474                         page++;
475                 }
476
477                 /* If a page was split, advance to the end of it */
478                 if (isolated) {
479                         cc->nr_freepages += isolated;
480                         if (!strict &&
481                                 cc->nr_migratepages <= cc->nr_freepages) {
482                                 blockpfn += isolated;
483                                 break;
484                         }
485
486                         blockpfn += isolated - 1;
487                         cursor += isolated - 1;
488                         continue;
489                 }
490
491 isolate_fail:
492                 if (strict)
493                         break;
494                 else
495                         continue;
496
497         }
498
499         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
500                                         nr_scanned, total_isolated);
501
502         /* Record how far we have got within the block */
503         *start_pfn = blockpfn;
504
505         /*
506          * If strict isolation is requested by CMA then check that all the
507          * pages requested were isolated. If there were any failures, 0 is
508          * returned and CMA will fail.
509          */
510         if (strict && blockpfn < end_pfn)
511                 total_isolated = 0;
512
513         if (locked)
514                 spin_unlock_irqrestore(&cc->zone->lock, flags);
515
516         /* Update the pageblock-skip if the whole pageblock was scanned */
517         if (blockpfn == end_pfn)
518                 update_pageblock_skip(cc, valid_page, total_isolated, false);
519
520         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
521         if (total_isolated)
522                 count_compact_events(COMPACTISOLATED, total_isolated);
523         return total_isolated;
524 }
525
526 /**
527  * isolate_freepages_range() - isolate free pages.
528  * @start_pfn: The first PFN to start isolating.
529  * @end_pfn:   The one-past-last PFN.
530  *
531  * Non-free pages, invalid PFNs, or zone boundaries within the
532  * [start_pfn, end_pfn) range are considered errors, cause function to
533  * undo its actions and return zero.
534  *
535  * Otherwise, function returns one-past-the-last PFN of isolated page
536  * (which may be greater then end_pfn if end fell in a middle of
537  * a free page).
538  */
539 unsigned long
540 isolate_freepages_range(struct compact_control *cc,
541                         unsigned long start_pfn, unsigned long end_pfn)
542 {
543         unsigned long isolated, pfn, block_end_pfn;
544         LIST_HEAD(freelist);
545
546         pfn = start_pfn;
547         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
548
549         for (; pfn < end_pfn; pfn += isolated,
550                                 block_end_pfn += pageblock_nr_pages) {
551                 /* Protect pfn from changing by isolate_freepages_block */
552                 unsigned long isolate_start_pfn = pfn;
553
554                 block_end_pfn = min(block_end_pfn, end_pfn);
555
556                 /*
557                  * pfn could pass the block_end_pfn if isolated freepage
558                  * is more than pageblock order. In this case, we adjust
559                  * scanning range to right one.
560                  */
561                 if (pfn >= block_end_pfn) {
562                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
563                         block_end_pfn = min(block_end_pfn, end_pfn);
564                 }
565
566                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
567                         break;
568
569                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
570                                                 block_end_pfn, &freelist, true);
571
572                 /*
573                  * In strict mode, isolate_freepages_block() returns 0 if
574                  * there are any holes in the block (ie. invalid PFNs or
575                  * non-free pages).
576                  */
577                 if (!isolated)
578                         break;
579
580                 /*
581                  * If we managed to isolate pages, it is always (1 << n) *
582                  * pageblock_nr_pages for some non-negative n.  (Max order
583                  * page may span two pageblocks).
584                  */
585         }
586
587         /* split_free_page does not map the pages */
588         map_pages(&freelist);
589
590         if (pfn < end_pfn) {
591                 /* Loop terminated early, cleanup. */
592                 release_freepages(&freelist);
593                 return 0;
594         }
595
596         /* We don't use freelists for anything. */
597         return pfn;
598 }
599
600 /* Update the number of anon and file isolated pages in the zone */
601 static void acct_isolated(struct zone *zone, struct compact_control *cc)
602 {
603         struct page *page;
604         unsigned int count[2] = { 0, };
605
606         if (list_empty(&cc->migratepages))
607                 return;
608
609         list_for_each_entry(page, &cc->migratepages, lru)
610                 count[!!page_is_file_cache(page)]++;
611
612         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
613         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
614 }
615
616 /* Similar to reclaim, but different enough that they don't share logic */
617 static bool too_many_isolated(struct zone *zone)
618 {
619         unsigned long active, inactive, isolated;
620
621         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
622                                         zone_page_state(zone, NR_INACTIVE_ANON);
623         active = zone_page_state(zone, NR_ACTIVE_FILE) +
624                                         zone_page_state(zone, NR_ACTIVE_ANON);
625         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
626                                         zone_page_state(zone, NR_ISOLATED_ANON);
627
628         return isolated > (inactive + active) / 2;
629 }
630
631 /**
632  * isolate_migratepages_block() - isolate all migrate-able pages within
633  *                                a single pageblock
634  * @cc:         Compaction control structure.
635  * @low_pfn:    The first PFN to isolate
636  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
637  * @isolate_mode: Isolation mode to be used.
638  *
639  * Isolate all pages that can be migrated from the range specified by
640  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
641  * Returns zero if there is a fatal signal pending, otherwise PFN of the
642  * first page that was not scanned (which may be both less, equal to or more
643  * than end_pfn).
644  *
645  * The pages are isolated on cc->migratepages list (not required to be empty),
646  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
647  * is neither read nor updated.
648  */
649 static unsigned long
650 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
651                         unsigned long end_pfn, isolate_mode_t isolate_mode)
652 {
653         struct zone *zone = cc->zone;
654         unsigned long nr_scanned = 0, nr_isolated = 0;
655         struct list_head *migratelist = &cc->migratepages;
656         struct lruvec *lruvec;
657         unsigned long flags = 0;
658         bool locked = false;
659         struct page *page = NULL, *valid_page = NULL;
660         unsigned long start_pfn = low_pfn;
661
662         /*
663          * Ensure that there are not too many pages isolated from the LRU
664          * list by either parallel reclaimers or compaction. If there are,
665          * delay for some time until fewer pages are isolated
666          */
667         while (unlikely(too_many_isolated(zone))) {
668                 /* async migration should just abort */
669                 if (cc->mode == MIGRATE_ASYNC)
670                         return 0;
671
672                 congestion_wait(BLK_RW_ASYNC, HZ/10);
673
674                 if (fatal_signal_pending(current))
675                         return 0;
676         }
677
678         if (compact_should_abort(cc))
679                 return 0;
680
681         /* Time to isolate some pages for migration */
682         for (; low_pfn < end_pfn; low_pfn++) {
683                 /*
684                  * Periodically drop the lock (if held) regardless of its
685                  * contention, to give chance to IRQs. Abort async compaction
686                  * if contended.
687                  */
688                 if (!(low_pfn % SWAP_CLUSTER_MAX)
689                     && compact_unlock_should_abort(&zone->lru_lock, flags,
690                                                                 &locked, cc))
691                         break;
692
693                 if (!pfn_valid_within(low_pfn))
694                         continue;
695                 nr_scanned++;
696
697                 page = pfn_to_page(low_pfn);
698
699                 if (!valid_page)
700                         valid_page = page;
701
702                 /*
703                  * Skip if free. We read page order here without zone lock
704                  * which is generally unsafe, but the race window is small and
705                  * the worst thing that can happen is that we skip some
706                  * potential isolation targets.
707                  */
708                 if (PageBuddy(page)) {
709                         unsigned long freepage_order = page_order_unsafe(page);
710
711                         /*
712                          * Without lock, we cannot be sure that what we got is
713                          * a valid page order. Consider only values in the
714                          * valid order range to prevent low_pfn overflow.
715                          */
716                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
717                                 low_pfn += (1UL << freepage_order) - 1;
718                         continue;
719                 }
720
721                 /*
722                  * Check may be lockless but that's ok as we recheck later.
723                  * It's possible to migrate LRU pages and balloon pages
724                  * Skip any other type of page
725                  */
726                 if (!PageLRU(page)) {
727                         if (unlikely(balloon_page_movable(page))) {
728                                 if (balloon_page_isolate(page)) {
729                                         /* Successfully isolated */
730                                         goto isolate_success;
731                                 }
732                         }
733                         continue;
734                 }
735
736                 /*
737                  * PageLRU is set. lru_lock normally excludes isolation
738                  * splitting and collapsing (collapsing has already happened
739                  * if PageLRU is set) but the lock is not necessarily taken
740                  * here and it is wasteful to take it just to check transhuge.
741                  * Check TransHuge without lock and skip the whole pageblock if
742                  * it's either a transhuge or hugetlbfs page, as calling
743                  * compound_order() without preventing THP from splitting the
744                  * page underneath us may return surprising results.
745                  */
746                 if (PageTransHuge(page)) {
747                         if (!locked)
748                                 low_pfn = ALIGN(low_pfn + 1,
749                                                 pageblock_nr_pages) - 1;
750                         else
751                                 low_pfn += (1 << compound_order(page)) - 1;
752
753                         continue;
754                 }
755
756                 /*
757                  * Migration will fail if an anonymous page is pinned in memory,
758                  * so avoid taking lru_lock and isolating it unnecessarily in an
759                  * admittedly racy check.
760                  */
761                 if (!page_mapping(page) &&
762                     page_count(page) > page_mapcount(page))
763                         continue;
764
765                 /* If we already hold the lock, we can skip some rechecking */
766                 if (!locked) {
767                         locked = compact_trylock_irqsave(&zone->lru_lock,
768                                                                 &flags, cc);
769                         if (!locked)
770                                 break;
771
772                         /* Recheck PageLRU and PageTransHuge under lock */
773                         if (!PageLRU(page))
774                                 continue;
775                         if (PageTransHuge(page)) {
776                                 low_pfn += (1 << compound_order(page)) - 1;
777                                 continue;
778                         }
779                 }
780
781                 lruvec = mem_cgroup_page_lruvec(page, zone);
782
783                 /* Try isolate the page */
784                 if (__isolate_lru_page(page, isolate_mode) != 0)
785                         continue;
786
787                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
788
789                 /* Successfully isolated */
790                 del_page_from_lru_list(page, lruvec, page_lru(page));
791
792 isolate_success:
793                 list_add(&page->lru, migratelist);
794                 cc->nr_migratepages++;
795                 nr_isolated++;
796
797                 /* Avoid isolating too much */
798                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
799                         ++low_pfn;
800                         break;
801                 }
802         }
803
804         /*
805          * The PageBuddy() check could have potentially brought us outside
806          * the range to be scanned.
807          */
808         if (unlikely(low_pfn > end_pfn))
809                 low_pfn = end_pfn;
810
811         if (locked)
812                 spin_unlock_irqrestore(&zone->lru_lock, flags);
813
814         /*
815          * Update the pageblock-skip information and cached scanner pfn,
816          * if the whole pageblock was scanned without isolating any page.
817          */
818         if (low_pfn == end_pfn)
819                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
820
821         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
822                                                 nr_scanned, nr_isolated);
823
824         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
825         if (nr_isolated)
826                 count_compact_events(COMPACTISOLATED, nr_isolated);
827
828         return low_pfn;
829 }
830
831 /**
832  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
833  * @cc:        Compaction control structure.
834  * @start_pfn: The first PFN to start isolating.
835  * @end_pfn:   The one-past-last PFN.
836  *
837  * Returns zero if isolation fails fatally due to e.g. pending signal.
838  * Otherwise, function returns one-past-the-last PFN of isolated page
839  * (which may be greater than end_pfn if end fell in a middle of a THP page).
840  */
841 unsigned long
842 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
843                                                         unsigned long end_pfn)
844 {
845         unsigned long pfn, block_end_pfn;
846
847         /* Scan block by block. First and last block may be incomplete */
848         pfn = start_pfn;
849         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
850
851         for (; pfn < end_pfn; pfn = block_end_pfn,
852                                 block_end_pfn += pageblock_nr_pages) {
853
854                 block_end_pfn = min(block_end_pfn, end_pfn);
855
856                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
857                         continue;
858
859                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
860                                                         ISOLATE_UNEVICTABLE);
861
862                 /*
863                  * In case of fatal failure, release everything that might
864                  * have been isolated in the previous iteration, and signal
865                  * the failure back to caller.
866                  */
867                 if (!pfn) {
868                         putback_movable_pages(&cc->migratepages);
869                         cc->nr_migratepages = 0;
870                         break;
871                 }
872
873                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
874                         break;
875         }
876         acct_isolated(cc->zone, cc);
877
878         return pfn;
879 }
880
881 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
882 #ifdef CONFIG_COMPACTION
883
884 /* Returns true if the page is within a block suitable for migration to */
885 static bool suitable_migration_target(struct page *page)
886 {
887         /* If the page is a large free page, then disallow migration */
888         if (PageBuddy(page)) {
889                 /*
890                  * We are checking page_order without zone->lock taken. But
891                  * the only small danger is that we skip a potentially suitable
892                  * pageblock, so it's not worth to check order for valid range.
893                  */
894                 if (page_order_unsafe(page) >= pageblock_order)
895                         return false;
896         }
897
898         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
899         if (migrate_async_suitable(get_pageblock_migratetype(page)))
900                 return true;
901
902         /* Otherwise skip the block */
903         return false;
904 }
905
906 /*
907  * Test whether the free scanner has reached the same or lower pageblock than
908  * the migration scanner, and compaction should thus terminate.
909  */
910 static inline bool compact_scanners_met(struct compact_control *cc)
911 {
912         return (cc->free_pfn >> pageblock_order)
913                 <= (cc->migrate_pfn >> pageblock_order);
914 }
915
916 /*
917  * Based on information in the current compact_control, find blocks
918  * suitable for isolating free pages from and then isolate them.
919  */
920 static void isolate_freepages(struct compact_control *cc)
921 {
922         struct zone *zone = cc->zone;
923         struct page *page;
924         unsigned long block_start_pfn;  /* start of current pageblock */
925         unsigned long isolate_start_pfn; /* exact pfn we start at */
926         unsigned long block_end_pfn;    /* end of current pageblock */
927         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
928         struct list_head *freelist = &cc->freepages;
929
930         /*
931          * Initialise the free scanner. The starting point is where we last
932          * successfully isolated from, zone-cached value, or the end of the
933          * zone when isolating for the first time. For looping we also need
934          * this pfn aligned down to the pageblock boundary, because we do
935          * block_start_pfn -= pageblock_nr_pages in the for loop.
936          * For ending point, take care when isolating in last pageblock of a
937          * a zone which ends in the middle of a pageblock.
938          * The low boundary is the end of the pageblock the migration scanner
939          * is using.
940          */
941         isolate_start_pfn = cc->free_pfn;
942         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
943         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
944                                                 zone_end_pfn(zone));
945         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
946
947         /*
948          * Isolate free pages until enough are available to migrate the
949          * pages on cc->migratepages. We stop searching if the migrate
950          * and free page scanners meet or enough free pages are isolated.
951          */
952         for (; block_start_pfn >= low_pfn;
953                                 block_end_pfn = block_start_pfn,
954                                 block_start_pfn -= pageblock_nr_pages,
955                                 isolate_start_pfn = block_start_pfn) {
956
957                 /*
958                  * This can iterate a massively long zone without finding any
959                  * suitable migration targets, so periodically check if we need
960                  * to schedule, or even abort async compaction.
961                  */
962                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
963                                                 && compact_should_abort(cc))
964                         break;
965
966                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
967                                                                         zone);
968                 if (!page)
969                         continue;
970
971                 /* Check the block is suitable for migration */
972                 if (!suitable_migration_target(page))
973                         continue;
974
975                 /* If isolation recently failed, do not retry */
976                 if (!isolation_suitable(cc, page))
977                         continue;
978
979                 /* Found a block suitable for isolating free pages from. */
980                 isolate_freepages_block(cc, &isolate_start_pfn,
981                                         block_end_pfn, freelist, false);
982
983                 /*
984                  * If we isolated enough freepages, or aborted due to async
985                  * compaction being contended, terminate the loop.
986                  * Remember where the free scanner should restart next time,
987                  * which is where isolate_freepages_block() left off.
988                  * But if it scanned the whole pageblock, isolate_start_pfn
989                  * now points at block_end_pfn, which is the start of the next
990                  * pageblock.
991                  * In that case we will however want to restart at the start
992                  * of the previous pageblock.
993                  */
994                 if ((cc->nr_freepages >= cc->nr_migratepages)
995                                                         || cc->contended) {
996                         if (isolate_start_pfn >= block_end_pfn)
997                                 isolate_start_pfn =
998                                         block_start_pfn - pageblock_nr_pages;
999                         break;
1000                 } else {
1001                         /*
1002                          * isolate_freepages_block() should not terminate
1003                          * prematurely unless contended, or isolated enough
1004                          */
1005                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1006                 }
1007         }
1008
1009         /* split_free_page does not map the pages */
1010         map_pages(freelist);
1011
1012         /*
1013          * Record where the free scanner will restart next time. Either we
1014          * broke from the loop and set isolate_start_pfn based on the last
1015          * call to isolate_freepages_block(), or we met the migration scanner
1016          * and the loop terminated due to isolate_start_pfn < low_pfn
1017          */
1018         cc->free_pfn = isolate_start_pfn;
1019 }
1020
1021 /*
1022  * This is a migrate-callback that "allocates" freepages by taking pages
1023  * from the isolated freelists in the block we are migrating to.
1024  */
1025 static struct page *compaction_alloc(struct page *migratepage,
1026                                         unsigned long data,
1027                                         int **result)
1028 {
1029         struct compact_control *cc = (struct compact_control *)data;
1030         struct page *freepage;
1031
1032         /*
1033          * Isolate free pages if necessary, and if we are not aborting due to
1034          * contention.
1035          */
1036         if (list_empty(&cc->freepages)) {
1037                 if (!cc->contended)
1038                         isolate_freepages(cc);
1039
1040                 if (list_empty(&cc->freepages))
1041                         return NULL;
1042         }
1043
1044         freepage = list_entry(cc->freepages.next, struct page, lru);
1045         list_del(&freepage->lru);
1046         cc->nr_freepages--;
1047
1048         return freepage;
1049 }
1050
1051 /*
1052  * This is a migrate-callback that "frees" freepages back to the isolated
1053  * freelist.  All pages on the freelist are from the same zone, so there is no
1054  * special handling needed for NUMA.
1055  */
1056 static void compaction_free(struct page *page, unsigned long data)
1057 {
1058         struct compact_control *cc = (struct compact_control *)data;
1059
1060         list_add(&page->lru, &cc->freepages);
1061         cc->nr_freepages++;
1062 }
1063
1064 /* possible outcome of isolate_migratepages */
1065 typedef enum {
1066         ISOLATE_ABORT,          /* Abort compaction now */
1067         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1068         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1069 } isolate_migrate_t;
1070
1071 /*
1072  * Allow userspace to control policy on scanning the unevictable LRU for
1073  * compactable pages.
1074  */
1075 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1076
1077 /*
1078  * Isolate all pages that can be migrated from the first suitable block,
1079  * starting at the block pointed to by the migrate scanner pfn within
1080  * compact_control.
1081  */
1082 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1083                                         struct compact_control *cc)
1084 {
1085         unsigned long low_pfn, end_pfn;
1086         struct page *page;
1087         const isolate_mode_t isolate_mode =
1088                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1089                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1090
1091         /*
1092          * Start at where we last stopped, or beginning of the zone as
1093          * initialized by compact_zone()
1094          */
1095         low_pfn = cc->migrate_pfn;
1096
1097         /* Only scan within a pageblock boundary */
1098         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1099
1100         /*
1101          * Iterate over whole pageblocks until we find the first suitable.
1102          * Do not cross the free scanner.
1103          */
1104         for (; end_pfn <= cc->free_pfn;
1105                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1106
1107                 /*
1108                  * This can potentially iterate a massively long zone with
1109                  * many pageblocks unsuitable, so periodically check if we
1110                  * need to schedule, or even abort async compaction.
1111                  */
1112                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1113                                                 && compact_should_abort(cc))
1114                         break;
1115
1116                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1117                 if (!page)
1118                         continue;
1119
1120                 /* If isolation recently failed, do not retry */
1121                 if (!isolation_suitable(cc, page))
1122                         continue;
1123
1124                 /*
1125                  * For async compaction, also only scan in MOVABLE blocks.
1126                  * Async compaction is optimistic to see if the minimum amount
1127                  * of work satisfies the allocation.
1128                  */
1129                 if (cc->mode == MIGRATE_ASYNC &&
1130                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1131                         continue;
1132
1133                 /* Perform the isolation */
1134                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1135                                                                 isolate_mode);
1136
1137                 if (!low_pfn || cc->contended) {
1138                         acct_isolated(zone, cc);
1139                         return ISOLATE_ABORT;
1140                 }
1141
1142                 /*
1143                  * Either we isolated something and proceed with migration. Or
1144                  * we failed and compact_zone should decide if we should
1145                  * continue or not.
1146                  */
1147                 break;
1148         }
1149
1150         acct_isolated(zone, cc);
1151         /* Record where migration scanner will be restarted. */
1152         cc->migrate_pfn = low_pfn;
1153
1154         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1155 }
1156
1157 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1158                             const int migratetype)
1159 {
1160         unsigned int order;
1161         unsigned long watermark;
1162
1163         if (cc->contended || fatal_signal_pending(current))
1164                 return COMPACT_PARTIAL;
1165
1166         /* Compaction run completes if the migrate and free scanner meet */
1167         if (compact_scanners_met(cc)) {
1168                 /* Let the next compaction start anew. */
1169                 reset_cached_positions(zone);
1170
1171                 /*
1172                  * Mark that the PG_migrate_skip information should be cleared
1173                  * by kswapd when it goes to sleep. kswapd does not set the
1174                  * flag itself as the decision to be clear should be directly
1175                  * based on an allocation request.
1176                  */
1177                 if (!current_is_kswapd())
1178                         zone->compact_blockskip_flush = true;
1179
1180                 return COMPACT_COMPLETE;
1181         }
1182
1183         /*
1184          * order == -1 is expected when compacting via
1185          * /proc/sys/vm/compact_memory
1186          */
1187         if (cc->order == -1)
1188                 return COMPACT_CONTINUE;
1189
1190         /* Compaction run is not finished if the watermark is not met */
1191         watermark = low_wmark_pages(zone);
1192
1193         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1194                                                         cc->alloc_flags))
1195                 return COMPACT_CONTINUE;
1196
1197         /* Direct compactor: Is a suitable page free? */
1198         for (order = cc->order; order < MAX_ORDER; order++) {
1199                 struct free_area *area = &zone->free_area[order];
1200                 bool can_steal;
1201
1202                 /* Job done if page is free of the right migratetype */
1203                 if (!list_empty(&area->free_list[migratetype]))
1204                         return COMPACT_PARTIAL;
1205
1206 #ifdef CONFIG_CMA
1207                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1208                 if (migratetype == MIGRATE_MOVABLE &&
1209                         !list_empty(&area->free_list[MIGRATE_CMA]))
1210                         return COMPACT_PARTIAL;
1211 #endif
1212                 /*
1213                  * Job done if allocation would steal freepages from
1214                  * other migratetype buddy lists.
1215                  */
1216                 if (find_suitable_fallback(area, order, migratetype,
1217                                                 true, &can_steal) != -1)
1218                         return COMPACT_PARTIAL;
1219         }
1220
1221         return COMPACT_NO_SUITABLE_PAGE;
1222 }
1223
1224 static int compact_finished(struct zone *zone, struct compact_control *cc,
1225                             const int migratetype)
1226 {
1227         int ret;
1228
1229         ret = __compact_finished(zone, cc, migratetype);
1230         trace_mm_compaction_finished(zone, cc->order, ret);
1231         if (ret == COMPACT_NO_SUITABLE_PAGE)
1232                 ret = COMPACT_CONTINUE;
1233
1234         return ret;
1235 }
1236
1237 /*
1238  * compaction_suitable: Is this suitable to run compaction on this zone now?
1239  * Returns
1240  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1241  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1242  *   COMPACT_CONTINUE - If compaction should run now
1243  */
1244 static unsigned long __compaction_suitable(struct zone *zone, int order,
1245                                         int alloc_flags, int classzone_idx)
1246 {
1247         int fragindex;
1248         unsigned long watermark;
1249
1250         /*
1251          * order == -1 is expected when compacting via
1252          * /proc/sys/vm/compact_memory
1253          */
1254         if (order == -1)
1255                 return COMPACT_CONTINUE;
1256
1257         watermark = low_wmark_pages(zone);
1258         /*
1259          * If watermarks for high-order allocation are already met, there
1260          * should be no need for compaction at all.
1261          */
1262         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1263                                                                 alloc_flags))
1264                 return COMPACT_PARTIAL;
1265
1266         /*
1267          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1268          * This is because during migration, copies of pages need to be
1269          * allocated and for a short time, the footprint is higher
1270          */
1271         watermark += (2UL << order);
1272         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1273                 return COMPACT_SKIPPED;
1274
1275         /*
1276          * fragmentation index determines if allocation failures are due to
1277          * low memory or external fragmentation
1278          *
1279          * index of -1000 would imply allocations might succeed depending on
1280          * watermarks, but we already failed the high-order watermark check
1281          * index towards 0 implies failure is due to lack of memory
1282          * index towards 1000 implies failure is due to fragmentation
1283          *
1284          * Only compact if a failure would be due to fragmentation.
1285          */
1286         fragindex = fragmentation_index(zone, order);
1287         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1288                 return COMPACT_NOT_SUITABLE_ZONE;
1289
1290         return COMPACT_CONTINUE;
1291 }
1292
1293 unsigned long compaction_suitable(struct zone *zone, int order,
1294                                         int alloc_flags, int classzone_idx)
1295 {
1296         unsigned long ret;
1297
1298         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1299         trace_mm_compaction_suitable(zone, order, ret);
1300         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1301                 ret = COMPACT_SKIPPED;
1302
1303         return ret;
1304 }
1305
1306 static int compact_zone(struct zone *zone, struct compact_control *cc)
1307 {
1308         int ret;
1309         unsigned long start_pfn = zone->zone_start_pfn;
1310         unsigned long end_pfn = zone_end_pfn(zone);
1311         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1312         const bool sync = cc->mode != MIGRATE_ASYNC;
1313         unsigned long last_migrated_pfn = 0;
1314
1315         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1316                                                         cc->classzone_idx);
1317         switch (ret) {
1318         case COMPACT_PARTIAL:
1319         case COMPACT_SKIPPED:
1320                 /* Compaction is likely to fail */
1321                 return ret;
1322         case COMPACT_CONTINUE:
1323                 /* Fall through to compaction */
1324                 ;
1325         }
1326
1327         /*
1328          * Clear pageblock skip if there were failures recently and compaction
1329          * is about to be retried after being deferred. kswapd does not do
1330          * this reset as it'll reset the cached information when going to sleep.
1331          */
1332         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1333                 __reset_isolation_suitable(zone);
1334
1335         /*
1336          * Setup to move all movable pages to the end of the zone. Used cached
1337          * information on where the scanners should start but check that it
1338          * is initialised by ensuring the values are within zone boundaries.
1339          */
1340         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1341         cc->free_pfn = zone->compact_cached_free_pfn;
1342         if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1343                 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1344                 zone->compact_cached_free_pfn = cc->free_pfn;
1345         }
1346         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1347                 cc->migrate_pfn = start_pfn;
1348                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1349                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1350         }
1351
1352         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1353                                 cc->free_pfn, end_pfn, sync);
1354
1355         migrate_prep_local();
1356
1357         while ((ret = compact_finished(zone, cc, migratetype)) ==
1358                                                 COMPACT_CONTINUE) {
1359                 int err;
1360                 unsigned long isolate_start_pfn = cc->migrate_pfn;
1361
1362                 switch (isolate_migratepages(zone, cc)) {
1363                 case ISOLATE_ABORT:
1364                         ret = COMPACT_PARTIAL;
1365                         putback_movable_pages(&cc->migratepages);
1366                         cc->nr_migratepages = 0;
1367                         goto out;
1368                 case ISOLATE_NONE:
1369                         /*
1370                          * We haven't isolated and migrated anything, but
1371                          * there might still be unflushed migrations from
1372                          * previous cc->order aligned block.
1373                          */
1374                         goto check_drain;
1375                 case ISOLATE_SUCCESS:
1376                         ;
1377                 }
1378
1379                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1380                                 compaction_free, (unsigned long)cc, cc->mode,
1381                                 MR_COMPACTION);
1382
1383                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1384                                                         &cc->migratepages);
1385
1386                 /* All pages were either migrated or will be released */
1387                 cc->nr_migratepages = 0;
1388                 if (err) {
1389                         putback_movable_pages(&cc->migratepages);
1390                         /*
1391                          * migrate_pages() may return -ENOMEM when scanners meet
1392                          * and we want compact_finished() to detect it
1393                          */
1394                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1395                                 ret = COMPACT_PARTIAL;
1396                                 goto out;
1397                         }
1398                 }
1399
1400                 /*
1401                  * Record where we could have freed pages by migration and not
1402                  * yet flushed them to buddy allocator. We use the pfn that
1403                  * isolate_migratepages() started from in this loop iteration
1404                  * - this is the lowest page that could have been isolated and
1405                  * then freed by migration.
1406                  */
1407                 if (!last_migrated_pfn)
1408                         last_migrated_pfn = isolate_start_pfn;
1409
1410 check_drain:
1411                 /*
1412                  * Has the migration scanner moved away from the previous
1413                  * cc->order aligned block where we migrated from? If yes,
1414                  * flush the pages that were freed, so that they can merge and
1415                  * compact_finished() can detect immediately if allocation
1416                  * would succeed.
1417                  */
1418                 if (cc->order > 0 && last_migrated_pfn) {
1419                         int cpu;
1420                         unsigned long current_block_start =
1421                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1422
1423                         if (last_migrated_pfn < current_block_start) {
1424                                 cpu = get_cpu();
1425                                 lru_add_drain_cpu(cpu);
1426                                 drain_local_pages(zone);
1427                                 put_cpu();
1428                                 /* No more flushing until we migrate again */
1429                                 last_migrated_pfn = 0;
1430                         }
1431                 }
1432
1433         }
1434
1435 out:
1436         /*
1437          * Release free pages and update where the free scanner should restart,
1438          * so we don't leave any returned pages behind in the next attempt.
1439          */
1440         if (cc->nr_freepages > 0) {
1441                 unsigned long free_pfn = release_freepages(&cc->freepages);
1442
1443                 cc->nr_freepages = 0;
1444                 VM_BUG_ON(free_pfn == 0);
1445                 /* The cached pfn is always the first in a pageblock */
1446                 free_pfn &= ~(pageblock_nr_pages-1);
1447                 /*
1448                  * Only go back, not forward. The cached pfn might have been
1449                  * already reset to zone end in compact_finished()
1450                  */
1451                 if (free_pfn > zone->compact_cached_free_pfn)
1452                         zone->compact_cached_free_pfn = free_pfn;
1453         }
1454
1455         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1456                                 cc->free_pfn, end_pfn, sync, ret);
1457
1458         return ret;
1459 }
1460
1461 static unsigned long compact_zone_order(struct zone *zone, int order,
1462                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1463                 int alloc_flags, int classzone_idx)
1464 {
1465         unsigned long ret;
1466         struct compact_control cc = {
1467                 .nr_freepages = 0,
1468                 .nr_migratepages = 0,
1469                 .order = order,
1470                 .gfp_mask = gfp_mask,
1471                 .zone = zone,
1472                 .mode = mode,
1473                 .alloc_flags = alloc_flags,
1474                 .classzone_idx = classzone_idx,
1475         };
1476         INIT_LIST_HEAD(&cc.freepages);
1477         INIT_LIST_HEAD(&cc.migratepages);
1478
1479         ret = compact_zone(zone, &cc);
1480
1481         VM_BUG_ON(!list_empty(&cc.freepages));
1482         VM_BUG_ON(!list_empty(&cc.migratepages));
1483
1484         *contended = cc.contended;
1485         return ret;
1486 }
1487
1488 int sysctl_extfrag_threshold = 500;
1489
1490 /**
1491  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1492  * @gfp_mask: The GFP mask of the current allocation
1493  * @order: The order of the current allocation
1494  * @alloc_flags: The allocation flags of the current allocation
1495  * @ac: The context of current allocation
1496  * @mode: The migration mode for async, sync light, or sync migration
1497  * @contended: Return value that determines if compaction was aborted due to
1498  *             need_resched() or lock contention
1499  *
1500  * This is the main entry point for direct page compaction.
1501  */
1502 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1503                         int alloc_flags, const struct alloc_context *ac,
1504                         enum migrate_mode mode, int *contended)
1505 {
1506         int may_enter_fs = gfp_mask & __GFP_FS;
1507         int may_perform_io = gfp_mask & __GFP_IO;
1508         struct zoneref *z;
1509         struct zone *zone;
1510         int rc = COMPACT_DEFERRED;
1511         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1512
1513         *contended = COMPACT_CONTENDED_NONE;
1514
1515         /* Check if the GFP flags allow compaction */
1516         if (!order || !may_enter_fs || !may_perform_io)
1517                 return COMPACT_SKIPPED;
1518
1519         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1520
1521         /* Compact each zone in the list */
1522         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1523                                                                 ac->nodemask) {
1524                 int status;
1525                 int zone_contended;
1526
1527                 if (compaction_deferred(zone, order))
1528                         continue;
1529
1530                 status = compact_zone_order(zone, order, gfp_mask, mode,
1531                                 &zone_contended, alloc_flags,
1532                                 ac->classzone_idx);
1533                 rc = max(status, rc);
1534                 /*
1535                  * It takes at least one zone that wasn't lock contended
1536                  * to clear all_zones_contended.
1537                  */
1538                 all_zones_contended &= zone_contended;
1539
1540                 /* If a normal allocation would succeed, stop compacting */
1541                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1542                                         ac->classzone_idx, alloc_flags)) {
1543                         /*
1544                          * We think the allocation will succeed in this zone,
1545                          * but it is not certain, hence the false. The caller
1546                          * will repeat this with true if allocation indeed
1547                          * succeeds in this zone.
1548                          */
1549                         compaction_defer_reset(zone, order, false);
1550                         /*
1551                          * It is possible that async compaction aborted due to
1552                          * need_resched() and the watermarks were ok thanks to
1553                          * somebody else freeing memory. The allocation can
1554                          * however still fail so we better signal the
1555                          * need_resched() contention anyway (this will not
1556                          * prevent the allocation attempt).
1557                          */
1558                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1559                                 *contended = COMPACT_CONTENDED_SCHED;
1560
1561                         goto break_loop;
1562                 }
1563
1564                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1565                         /*
1566                          * We think that allocation won't succeed in this zone
1567                          * so we defer compaction there. If it ends up
1568                          * succeeding after all, it will be reset.
1569                          */
1570                         defer_compaction(zone, order);
1571                 }
1572
1573                 /*
1574                  * We might have stopped compacting due to need_resched() in
1575                  * async compaction, or due to a fatal signal detected. In that
1576                  * case do not try further zones and signal need_resched()
1577                  * contention.
1578                  */
1579                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1580                                         || fatal_signal_pending(current)) {
1581                         *contended = COMPACT_CONTENDED_SCHED;
1582                         goto break_loop;
1583                 }
1584
1585                 continue;
1586 break_loop:
1587                 /*
1588                  * We might not have tried all the zones, so  be conservative
1589                  * and assume they are not all lock contended.
1590                  */
1591                 all_zones_contended = 0;
1592                 break;
1593         }
1594
1595         /*
1596          * If at least one zone wasn't deferred or skipped, we report if all
1597          * zones that were tried were lock contended.
1598          */
1599         if (rc > COMPACT_SKIPPED && all_zones_contended)
1600                 *contended = COMPACT_CONTENDED_LOCK;
1601
1602         return rc;
1603 }
1604
1605
1606 /* Compact all zones within a node */
1607 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1608 {
1609         int zoneid;
1610         struct zone *zone;
1611
1612         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1613
1614                 zone = &pgdat->node_zones[zoneid];
1615                 if (!populated_zone(zone))
1616                         continue;
1617
1618                 cc->nr_freepages = 0;
1619                 cc->nr_migratepages = 0;
1620                 cc->zone = zone;
1621                 INIT_LIST_HEAD(&cc->freepages);
1622                 INIT_LIST_HEAD(&cc->migratepages);
1623
1624                 /*
1625                  * When called via /proc/sys/vm/compact_memory
1626                  * this makes sure we compact the whole zone regardless of
1627                  * cached scanner positions.
1628                  */
1629                 if (cc->order == -1)
1630                         __reset_isolation_suitable(zone);
1631
1632                 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1633                         compact_zone(zone, cc);
1634
1635                 if (cc->order > 0) {
1636                         if (zone_watermark_ok(zone, cc->order,
1637                                                 low_wmark_pages(zone), 0, 0))
1638                                 compaction_defer_reset(zone, cc->order, false);
1639                 }
1640
1641                 VM_BUG_ON(!list_empty(&cc->freepages));
1642                 VM_BUG_ON(!list_empty(&cc->migratepages));
1643         }
1644 }
1645
1646 void compact_pgdat(pg_data_t *pgdat, int order)
1647 {
1648         struct compact_control cc = {
1649                 .order = order,
1650                 .mode = MIGRATE_ASYNC,
1651         };
1652
1653         if (!order)
1654                 return;
1655
1656         __compact_pgdat(pgdat, &cc);
1657 }
1658
1659 static void compact_node(int nid)
1660 {
1661         struct compact_control cc = {
1662                 .order = -1,
1663                 .mode = MIGRATE_SYNC,
1664                 .ignore_skip_hint = true,
1665         };
1666
1667         __compact_pgdat(NODE_DATA(nid), &cc);
1668 }
1669
1670 /* Compact all nodes in the system */
1671 static void compact_nodes(void)
1672 {
1673         int nid;
1674
1675         /* Flush pending updates to the LRU lists */
1676         lru_add_drain_all();
1677
1678         for_each_online_node(nid)
1679                 compact_node(nid);
1680 }
1681
1682 /* The written value is actually unused, all memory is compacted */
1683 int sysctl_compact_memory;
1684
1685 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1686 int sysctl_compaction_handler(struct ctl_table *table, int write,
1687                         void __user *buffer, size_t *length, loff_t *ppos)
1688 {
1689         if (write)
1690                 compact_nodes();
1691
1692         return 0;
1693 }
1694
1695 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1696                         void __user *buffer, size_t *length, loff_t *ppos)
1697 {
1698         proc_dointvec_minmax(table, write, buffer, length, ppos);
1699
1700         return 0;
1701 }
1702
1703 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1704 static ssize_t sysfs_compact_node(struct device *dev,
1705                         struct device_attribute *attr,
1706                         const char *buf, size_t count)
1707 {
1708         int nid = dev->id;
1709
1710         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1711                 /* Flush pending updates to the LRU lists */
1712                 lru_add_drain_all();
1713
1714                 compact_node(nid);
1715         }
1716
1717         return count;
1718 }
1719 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1720
1721 int compaction_register_node(struct node *node)
1722 {
1723         return device_create_file(&node->dev, &dev_attr_compact);
1724 }
1725
1726 void compaction_unregister_node(struct node *node)
1727 {
1728         return device_remove_file(&node->dev, &dev_attr_compact);
1729 }
1730 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1731
1732 #endif /* CONFIG_COMPACTION */