hwmon: (applesmc) Simplify feature sysfs handling
[firefly-linux-kernel-4.4.55.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock               (truncate_pagecache)
62  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock             (exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
72  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page               (access_process_vm)
76  *
77  *  ->i_mutex                   (generic_file_buffered_write)
78  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock                 (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (zap_pte_range->set_page_dirty)
103  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  (code doesn't rely on that order, so you could switch it around)
106  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
107  *    ->i_mmap_lock
108  */
109
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         radix_tree_delete(&mapping->page_tree, page->index);
120         page->mapping = NULL;
121         mapping->nrpages--;
122         __dec_zone_page_state(page, NR_FILE_PAGES);
123         if (PageSwapBacked(page))
124                 __dec_zone_page_state(page, NR_SHMEM);
125         BUG_ON(page_mapped(page));
126
127         /*
128          * Some filesystems seem to re-dirty the page even after
129          * the VM has canceled the dirty bit (eg ext3 journaling).
130          *
131          * Fix it up by doing a final dirty accounting check after
132          * having removed the page entirely.
133          */
134         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135                 dec_zone_page_state(page, NR_FILE_DIRTY);
136                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137         }
138 }
139
140 void remove_from_page_cache(struct page *page)
141 {
142         struct address_space *mapping = page->mapping;
143         void (*freepage)(struct page *);
144
145         BUG_ON(!PageLocked(page));
146
147         freepage = mapping->a_ops->freepage;
148         spin_lock_irq(&mapping->tree_lock);
149         __remove_from_page_cache(page);
150         spin_unlock_irq(&mapping->tree_lock);
151         mem_cgroup_uncharge_cache_page(page);
152
153         if (freepage)
154                 freepage(page);
155 }
156 EXPORT_SYMBOL(remove_from_page_cache);
157
158 static int sync_page(void *word)
159 {
160         struct address_space *mapping;
161         struct page *page;
162
163         page = container_of((unsigned long *)word, struct page, flags);
164
165         /*
166          * page_mapping() is being called without PG_locked held.
167          * Some knowledge of the state and use of the page is used to
168          * reduce the requirements down to a memory barrier.
169          * The danger here is of a stale page_mapping() return value
170          * indicating a struct address_space different from the one it's
171          * associated with when it is associated with one.
172          * After smp_mb(), it's either the correct page_mapping() for
173          * the page, or an old page_mapping() and the page's own
174          * page_mapping() has gone NULL.
175          * The ->sync_page() address_space operation must tolerate
176          * page_mapping() going NULL. By an amazing coincidence,
177          * this comes about because none of the users of the page
178          * in the ->sync_page() methods make essential use of the
179          * page_mapping(), merely passing the page down to the backing
180          * device's unplug functions when it's non-NULL, which in turn
181          * ignore it for all cases but swap, where only page_private(page) is
182          * of interest. When page_mapping() does go NULL, the entire
183          * call stack gracefully ignores the page and returns.
184          * -- wli
185          */
186         smp_mb();
187         mapping = page_mapping(page);
188         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
189                 mapping->a_ops->sync_page(page);
190         io_schedule();
191         return 0;
192 }
193
194 static int sync_page_killable(void *word)
195 {
196         sync_page(word);
197         return fatal_signal_pending(current) ? -EINTR : 0;
198 }
199
200 /**
201  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
202  * @mapping:    address space structure to write
203  * @start:      offset in bytes where the range starts
204  * @end:        offset in bytes where the range ends (inclusive)
205  * @sync_mode:  enable synchronous operation
206  *
207  * Start writeback against all of a mapping's dirty pages that lie
208  * within the byte offsets <start, end> inclusive.
209  *
210  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
211  * opposed to a regular memory cleansing writeback.  The difference between
212  * these two operations is that if a dirty page/buffer is encountered, it must
213  * be waited upon, and not just skipped over.
214  */
215 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
216                                 loff_t end, int sync_mode)
217 {
218         int ret;
219         struct writeback_control wbc = {
220                 .sync_mode = sync_mode,
221                 .nr_to_write = LONG_MAX,
222                 .range_start = start,
223                 .range_end = end,
224         };
225
226         if (!mapping_cap_writeback_dirty(mapping))
227                 return 0;
228
229         ret = do_writepages(mapping, &wbc);
230         return ret;
231 }
232
233 static inline int __filemap_fdatawrite(struct address_space *mapping,
234         int sync_mode)
235 {
236         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
237 }
238
239 int filemap_fdatawrite(struct address_space *mapping)
240 {
241         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
242 }
243 EXPORT_SYMBOL(filemap_fdatawrite);
244
245 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
246                                 loff_t end)
247 {
248         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
249 }
250 EXPORT_SYMBOL(filemap_fdatawrite_range);
251
252 /**
253  * filemap_flush - mostly a non-blocking flush
254  * @mapping:    target address_space
255  *
256  * This is a mostly non-blocking flush.  Not suitable for data-integrity
257  * purposes - I/O may not be started against all dirty pages.
258  */
259 int filemap_flush(struct address_space *mapping)
260 {
261         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
262 }
263 EXPORT_SYMBOL(filemap_flush);
264
265 /**
266  * filemap_fdatawait_range - wait for writeback to complete
267  * @mapping:            address space structure to wait for
268  * @start_byte:         offset in bytes where the range starts
269  * @end_byte:           offset in bytes where the range ends (inclusive)
270  *
271  * Walk the list of under-writeback pages of the given address space
272  * in the given range and wait for all of them.
273  */
274 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
275                             loff_t end_byte)
276 {
277         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
278         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
279         struct pagevec pvec;
280         int nr_pages;
281         int ret = 0;
282
283         if (end_byte < start_byte)
284                 return 0;
285
286         pagevec_init(&pvec, 0);
287         while ((index <= end) &&
288                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
289                         PAGECACHE_TAG_WRITEBACK,
290                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
291                 unsigned i;
292
293                 for (i = 0; i < nr_pages; i++) {
294                         struct page *page = pvec.pages[i];
295
296                         /* until radix tree lookup accepts end_index */
297                         if (page->index > end)
298                                 continue;
299
300                         wait_on_page_writeback(page);
301                         if (PageError(page))
302                                 ret = -EIO;
303                 }
304                 pagevec_release(&pvec);
305                 cond_resched();
306         }
307
308         /* Check for outstanding write errors */
309         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
310                 ret = -ENOSPC;
311         if (test_and_clear_bit(AS_EIO, &mapping->flags))
312                 ret = -EIO;
313
314         return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317
318 /**
319  * filemap_fdatawait - wait for all under-writeback pages to complete
320  * @mapping: address space structure to wait for
321  *
322  * Walk the list of under-writeback pages of the given address space
323  * and wait for all of them.
324  */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327         loff_t i_size = i_size_read(mapping->host);
328
329         if (i_size == 0)
330                 return 0;
331
332         return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338         int err = 0;
339
340         if (mapping->nrpages) {
341                 err = filemap_fdatawrite(mapping);
342                 /*
343                  * Even if the above returned error, the pages may be
344                  * written partially (e.g. -ENOSPC), so we wait for it.
345                  * But the -EIO is special case, it may indicate the worst
346                  * thing (e.g. bug) happened, so we avoid waiting for it.
347                  */
348                 if (err != -EIO) {
349                         int err2 = filemap_fdatawait(mapping);
350                         if (!err)
351                                 err = err2;
352                 }
353         }
354         return err;
355 }
356 EXPORT_SYMBOL(filemap_write_and_wait);
357
358 /**
359  * filemap_write_and_wait_range - write out & wait on a file range
360  * @mapping:    the address_space for the pages
361  * @lstart:     offset in bytes where the range starts
362  * @lend:       offset in bytes where the range ends (inclusive)
363  *
364  * Write out and wait upon file offsets lstart->lend, inclusive.
365  *
366  * Note that `lend' is inclusive (describes the last byte to be written) so
367  * that this function can be used to write to the very end-of-file (end = -1).
368  */
369 int filemap_write_and_wait_range(struct address_space *mapping,
370                                  loff_t lstart, loff_t lend)
371 {
372         int err = 0;
373
374         if (mapping->nrpages) {
375                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
376                                                  WB_SYNC_ALL);
377                 /* See comment of filemap_write_and_wait() */
378                 if (err != -EIO) {
379                         int err2 = filemap_fdatawait_range(mapping,
380                                                 lstart, lend);
381                         if (!err)
382                                 err = err2;
383                 }
384         }
385         return err;
386 }
387 EXPORT_SYMBOL(filemap_write_and_wait_range);
388
389 /**
390  * add_to_page_cache_locked - add a locked page to the pagecache
391  * @page:       page to add
392  * @mapping:    the page's address_space
393  * @offset:     page index
394  * @gfp_mask:   page allocation mode
395  *
396  * This function is used to add a page to the pagecache. It must be locked.
397  * This function does not add the page to the LRU.  The caller must do that.
398  */
399 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
400                 pgoff_t offset, gfp_t gfp_mask)
401 {
402         int error;
403
404         VM_BUG_ON(!PageLocked(page));
405
406         error = mem_cgroup_cache_charge(page, current->mm,
407                                         gfp_mask & GFP_RECLAIM_MASK);
408         if (error)
409                 goto out;
410
411         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
412         if (error == 0) {
413                 page_cache_get(page);
414                 page->mapping = mapping;
415                 page->index = offset;
416
417                 spin_lock_irq(&mapping->tree_lock);
418                 error = radix_tree_insert(&mapping->page_tree, offset, page);
419                 if (likely(!error)) {
420                         mapping->nrpages++;
421                         __inc_zone_page_state(page, NR_FILE_PAGES);
422                         if (PageSwapBacked(page))
423                                 __inc_zone_page_state(page, NR_SHMEM);
424                         spin_unlock_irq(&mapping->tree_lock);
425                 } else {
426                         page->mapping = NULL;
427                         spin_unlock_irq(&mapping->tree_lock);
428                         mem_cgroup_uncharge_cache_page(page);
429                         page_cache_release(page);
430                 }
431                 radix_tree_preload_end();
432         } else
433                 mem_cgroup_uncharge_cache_page(page);
434 out:
435         return error;
436 }
437 EXPORT_SYMBOL(add_to_page_cache_locked);
438
439 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
440                                 pgoff_t offset, gfp_t gfp_mask)
441 {
442         int ret;
443
444         /*
445          * Splice_read and readahead add shmem/tmpfs pages into the page cache
446          * before shmem_readpage has a chance to mark them as SwapBacked: they
447          * need to go on the anon lru below, and mem_cgroup_cache_charge
448          * (called in add_to_page_cache) needs to know where they're going too.
449          */
450         if (mapping_cap_swap_backed(mapping))
451                 SetPageSwapBacked(page);
452
453         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
454         if (ret == 0) {
455                 if (page_is_file_cache(page))
456                         lru_cache_add_file(page);
457                 else
458                         lru_cache_add_anon(page);
459         }
460         return ret;
461 }
462 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
463
464 #ifdef CONFIG_NUMA
465 struct page *__page_cache_alloc(gfp_t gfp)
466 {
467         int n;
468         struct page *page;
469
470         if (cpuset_do_page_mem_spread()) {
471                 get_mems_allowed();
472                 n = cpuset_mem_spread_node();
473                 page = alloc_pages_exact_node(n, gfp, 0);
474                 put_mems_allowed();
475                 return page;
476         }
477         return alloc_pages(gfp, 0);
478 }
479 EXPORT_SYMBOL(__page_cache_alloc);
480 #endif
481
482 static int __sleep_on_page_lock(void *word)
483 {
484         io_schedule();
485         return 0;
486 }
487
488 /*
489  * In order to wait for pages to become available there must be
490  * waitqueues associated with pages. By using a hash table of
491  * waitqueues where the bucket discipline is to maintain all
492  * waiters on the same queue and wake all when any of the pages
493  * become available, and for the woken contexts to check to be
494  * sure the appropriate page became available, this saves space
495  * at a cost of "thundering herd" phenomena during rare hash
496  * collisions.
497  */
498 static wait_queue_head_t *page_waitqueue(struct page *page)
499 {
500         const struct zone *zone = page_zone(page);
501
502         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503 }
504
505 static inline void wake_up_page(struct page *page, int bit)
506 {
507         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
508 }
509
510 void wait_on_page_bit(struct page *page, int bit_nr)
511 {
512         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513
514         if (test_bit(bit_nr, &page->flags))
515                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516                                                         TASK_UNINTERRUPTIBLE);
517 }
518 EXPORT_SYMBOL(wait_on_page_bit);
519
520 /**
521  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
522  * @page: Page defining the wait queue of interest
523  * @waiter: Waiter to add to the queue
524  *
525  * Add an arbitrary @waiter to the wait queue for the nominated @page.
526  */
527 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
528 {
529         wait_queue_head_t *q = page_waitqueue(page);
530         unsigned long flags;
531
532         spin_lock_irqsave(&q->lock, flags);
533         __add_wait_queue(q, waiter);
534         spin_unlock_irqrestore(&q->lock, flags);
535 }
536 EXPORT_SYMBOL_GPL(add_page_wait_queue);
537
538 /**
539  * unlock_page - unlock a locked page
540  * @page: the page
541  *
542  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
543  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
544  * mechananism between PageLocked pages and PageWriteback pages is shared.
545  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
546  *
547  * The mb is necessary to enforce ordering between the clear_bit and the read
548  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
549  */
550 void unlock_page(struct page *page)
551 {
552         VM_BUG_ON(!PageLocked(page));
553         clear_bit_unlock(PG_locked, &page->flags);
554         smp_mb__after_clear_bit();
555         wake_up_page(page, PG_locked);
556 }
557 EXPORT_SYMBOL(unlock_page);
558
559 /**
560  * end_page_writeback - end writeback against a page
561  * @page: the page
562  */
563 void end_page_writeback(struct page *page)
564 {
565         if (TestClearPageReclaim(page))
566                 rotate_reclaimable_page(page);
567
568         if (!test_clear_page_writeback(page))
569                 BUG();
570
571         smp_mb__after_clear_bit();
572         wake_up_page(page, PG_writeback);
573 }
574 EXPORT_SYMBOL(end_page_writeback);
575
576 /**
577  * __lock_page - get a lock on the page, assuming we need to sleep to get it
578  * @page: the page to lock
579  *
580  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
581  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
582  * chances are that on the second loop, the block layer's plug list is empty,
583  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
584  */
585 void __lock_page(struct page *page)
586 {
587         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
588
589         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
590                                                         TASK_UNINTERRUPTIBLE);
591 }
592 EXPORT_SYMBOL(__lock_page);
593
594 int __lock_page_killable(struct page *page)
595 {
596         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
597
598         return __wait_on_bit_lock(page_waitqueue(page), &wait,
599                                         sync_page_killable, TASK_KILLABLE);
600 }
601 EXPORT_SYMBOL_GPL(__lock_page_killable);
602
603 /**
604  * __lock_page_nosync - get a lock on the page, without calling sync_page()
605  * @page: the page to lock
606  *
607  * Variant of lock_page that does not require the caller to hold a reference
608  * on the page's mapping.
609  */
610 void __lock_page_nosync(struct page *page)
611 {
612         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
613         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
614                                                         TASK_UNINTERRUPTIBLE);
615 }
616
617 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
618                          unsigned int flags)
619 {
620         if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
621                 __lock_page(page);
622                 return 1;
623         } else {
624                 up_read(&mm->mmap_sem);
625                 wait_on_page_locked(page);
626                 return 0;
627         }
628 }
629
630 /**
631  * find_get_page - find and get a page reference
632  * @mapping: the address_space to search
633  * @offset: the page index
634  *
635  * Is there a pagecache struct page at the given (mapping, offset) tuple?
636  * If yes, increment its refcount and return it; if no, return NULL.
637  */
638 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
639 {
640         void **pagep;
641         struct page *page;
642
643         rcu_read_lock();
644 repeat:
645         page = NULL;
646         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
647         if (pagep) {
648                 page = radix_tree_deref_slot(pagep);
649                 if (unlikely(!page))
650                         goto out;
651                 if (radix_tree_deref_retry(page))
652                         goto repeat;
653
654                 if (!page_cache_get_speculative(page))
655                         goto repeat;
656
657                 /*
658                  * Has the page moved?
659                  * This is part of the lockless pagecache protocol. See
660                  * include/linux/pagemap.h for details.
661                  */
662                 if (unlikely(page != *pagep)) {
663                         page_cache_release(page);
664                         goto repeat;
665                 }
666         }
667 out:
668         rcu_read_unlock();
669
670         return page;
671 }
672 EXPORT_SYMBOL(find_get_page);
673
674 /**
675  * find_lock_page - locate, pin and lock a pagecache page
676  * @mapping: the address_space to search
677  * @offset: the page index
678  *
679  * Locates the desired pagecache page, locks it, increments its reference
680  * count and returns its address.
681  *
682  * Returns zero if the page was not present. find_lock_page() may sleep.
683  */
684 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
685 {
686         struct page *page;
687
688 repeat:
689         page = find_get_page(mapping, offset);
690         if (page) {
691                 lock_page(page);
692                 /* Has the page been truncated? */
693                 if (unlikely(page->mapping != mapping)) {
694                         unlock_page(page);
695                         page_cache_release(page);
696                         goto repeat;
697                 }
698                 VM_BUG_ON(page->index != offset);
699         }
700         return page;
701 }
702 EXPORT_SYMBOL(find_lock_page);
703
704 /**
705  * find_or_create_page - locate or add a pagecache page
706  * @mapping: the page's address_space
707  * @index: the page's index into the mapping
708  * @gfp_mask: page allocation mode
709  *
710  * Locates a page in the pagecache.  If the page is not present, a new page
711  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
712  * LRU list.  The returned page is locked and has its reference count
713  * incremented.
714  *
715  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
716  * allocation!
717  *
718  * find_or_create_page() returns the desired page's address, or zero on
719  * memory exhaustion.
720  */
721 struct page *find_or_create_page(struct address_space *mapping,
722                 pgoff_t index, gfp_t gfp_mask)
723 {
724         struct page *page;
725         int err;
726 repeat:
727         page = find_lock_page(mapping, index);
728         if (!page) {
729                 page = __page_cache_alloc(gfp_mask);
730                 if (!page)
731                         return NULL;
732                 /*
733                  * We want a regular kernel memory (not highmem or DMA etc)
734                  * allocation for the radix tree nodes, but we need to honour
735                  * the context-specific requirements the caller has asked for.
736                  * GFP_RECLAIM_MASK collects those requirements.
737                  */
738                 err = add_to_page_cache_lru(page, mapping, index,
739                         (gfp_mask & GFP_RECLAIM_MASK));
740                 if (unlikely(err)) {
741                         page_cache_release(page);
742                         page = NULL;
743                         if (err == -EEXIST)
744                                 goto repeat;
745                 }
746         }
747         return page;
748 }
749 EXPORT_SYMBOL(find_or_create_page);
750
751 /**
752  * find_get_pages - gang pagecache lookup
753  * @mapping:    The address_space to search
754  * @start:      The starting page index
755  * @nr_pages:   The maximum number of pages
756  * @pages:      Where the resulting pages are placed
757  *
758  * find_get_pages() will search for and return a group of up to
759  * @nr_pages pages in the mapping.  The pages are placed at @pages.
760  * find_get_pages() takes a reference against the returned pages.
761  *
762  * The search returns a group of mapping-contiguous pages with ascending
763  * indexes.  There may be holes in the indices due to not-present pages.
764  *
765  * find_get_pages() returns the number of pages which were found.
766  */
767 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
768                             unsigned int nr_pages, struct page **pages)
769 {
770         unsigned int i;
771         unsigned int ret;
772         unsigned int nr_found;
773
774         rcu_read_lock();
775 restart:
776         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
777                                 (void ***)pages, start, nr_pages);
778         ret = 0;
779         for (i = 0; i < nr_found; i++) {
780                 struct page *page;
781 repeat:
782                 page = radix_tree_deref_slot((void **)pages[i]);
783                 if (unlikely(!page))
784                         continue;
785                 if (radix_tree_deref_retry(page)) {
786                         if (ret)
787                                 start = pages[ret-1]->index;
788                         goto restart;
789                 }
790
791                 if (!page_cache_get_speculative(page))
792                         goto repeat;
793
794                 /* Has the page moved? */
795                 if (unlikely(page != *((void **)pages[i]))) {
796                         page_cache_release(page);
797                         goto repeat;
798                 }
799
800                 pages[ret] = page;
801                 ret++;
802         }
803         rcu_read_unlock();
804         return ret;
805 }
806
807 /**
808  * find_get_pages_contig - gang contiguous pagecache lookup
809  * @mapping:    The address_space to search
810  * @index:      The starting page index
811  * @nr_pages:   The maximum number of pages
812  * @pages:      Where the resulting pages are placed
813  *
814  * find_get_pages_contig() works exactly like find_get_pages(), except
815  * that the returned number of pages are guaranteed to be contiguous.
816  *
817  * find_get_pages_contig() returns the number of pages which were found.
818  */
819 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
820                                unsigned int nr_pages, struct page **pages)
821 {
822         unsigned int i;
823         unsigned int ret;
824         unsigned int nr_found;
825
826         rcu_read_lock();
827 restart:
828         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
829                                 (void ***)pages, index, nr_pages);
830         ret = 0;
831         for (i = 0; i < nr_found; i++) {
832                 struct page *page;
833 repeat:
834                 page = radix_tree_deref_slot((void **)pages[i]);
835                 if (unlikely(!page))
836                         continue;
837                 if (radix_tree_deref_retry(page))
838                         goto restart;
839
840                 if (page->mapping == NULL || page->index != index)
841                         break;
842
843                 if (!page_cache_get_speculative(page))
844                         goto repeat;
845
846                 /* Has the page moved? */
847                 if (unlikely(page != *((void **)pages[i]))) {
848                         page_cache_release(page);
849                         goto repeat;
850                 }
851
852                 pages[ret] = page;
853                 ret++;
854                 index++;
855         }
856         rcu_read_unlock();
857         return ret;
858 }
859 EXPORT_SYMBOL(find_get_pages_contig);
860
861 /**
862  * find_get_pages_tag - find and return pages that match @tag
863  * @mapping:    the address_space to search
864  * @index:      the starting page index
865  * @tag:        the tag index
866  * @nr_pages:   the maximum number of pages
867  * @pages:      where the resulting pages are placed
868  *
869  * Like find_get_pages, except we only return pages which are tagged with
870  * @tag.   We update @index to index the next page for the traversal.
871  */
872 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
873                         int tag, unsigned int nr_pages, struct page **pages)
874 {
875         unsigned int i;
876         unsigned int ret;
877         unsigned int nr_found;
878
879         rcu_read_lock();
880 restart:
881         nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
882                                 (void ***)pages, *index, nr_pages, tag);
883         ret = 0;
884         for (i = 0; i < nr_found; i++) {
885                 struct page *page;
886 repeat:
887                 page = radix_tree_deref_slot((void **)pages[i]);
888                 if (unlikely(!page))
889                         continue;
890                 if (radix_tree_deref_retry(page))
891                         goto restart;
892
893                 if (!page_cache_get_speculative(page))
894                         goto repeat;
895
896                 /* Has the page moved? */
897                 if (unlikely(page != *((void **)pages[i]))) {
898                         page_cache_release(page);
899                         goto repeat;
900                 }
901
902                 pages[ret] = page;
903                 ret++;
904         }
905         rcu_read_unlock();
906
907         if (ret)
908                 *index = pages[ret - 1]->index + 1;
909
910         return ret;
911 }
912 EXPORT_SYMBOL(find_get_pages_tag);
913
914 /**
915  * grab_cache_page_nowait - returns locked page at given index in given cache
916  * @mapping: target address_space
917  * @index: the page index
918  *
919  * Same as grab_cache_page(), but do not wait if the page is unavailable.
920  * This is intended for speculative data generators, where the data can
921  * be regenerated if the page couldn't be grabbed.  This routine should
922  * be safe to call while holding the lock for another page.
923  *
924  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
925  * and deadlock against the caller's locked page.
926  */
927 struct page *
928 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
929 {
930         struct page *page = find_get_page(mapping, index);
931
932         if (page) {
933                 if (trylock_page(page))
934                         return page;
935                 page_cache_release(page);
936                 return NULL;
937         }
938         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
939         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
940                 page_cache_release(page);
941                 page = NULL;
942         }
943         return page;
944 }
945 EXPORT_SYMBOL(grab_cache_page_nowait);
946
947 /*
948  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
949  * a _large_ part of the i/o request. Imagine the worst scenario:
950  *
951  *      ---R__________________________________________B__________
952  *         ^ reading here                             ^ bad block(assume 4k)
953  *
954  * read(R) => miss => readahead(R...B) => media error => frustrating retries
955  * => failing the whole request => read(R) => read(R+1) =>
956  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
957  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
958  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
959  *
960  * It is going insane. Fix it by quickly scaling down the readahead size.
961  */
962 static void shrink_readahead_size_eio(struct file *filp,
963                                         struct file_ra_state *ra)
964 {
965         ra->ra_pages /= 4;
966 }
967
968 /**
969  * do_generic_file_read - generic file read routine
970  * @filp:       the file to read
971  * @ppos:       current file position
972  * @desc:       read_descriptor
973  * @actor:      read method
974  *
975  * This is a generic file read routine, and uses the
976  * mapping->a_ops->readpage() function for the actual low-level stuff.
977  *
978  * This is really ugly. But the goto's actually try to clarify some
979  * of the logic when it comes to error handling etc.
980  */
981 static void do_generic_file_read(struct file *filp, loff_t *ppos,
982                 read_descriptor_t *desc, read_actor_t actor)
983 {
984         struct address_space *mapping = filp->f_mapping;
985         struct inode *inode = mapping->host;
986         struct file_ra_state *ra = &filp->f_ra;
987         pgoff_t index;
988         pgoff_t last_index;
989         pgoff_t prev_index;
990         unsigned long offset;      /* offset into pagecache page */
991         unsigned int prev_offset;
992         int error;
993
994         index = *ppos >> PAGE_CACHE_SHIFT;
995         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
996         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
997         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
998         offset = *ppos & ~PAGE_CACHE_MASK;
999
1000         for (;;) {
1001                 struct page *page;
1002                 pgoff_t end_index;
1003                 loff_t isize;
1004                 unsigned long nr, ret;
1005
1006                 cond_resched();
1007 find_page:
1008                 page = find_get_page(mapping, index);
1009                 if (!page) {
1010                         page_cache_sync_readahead(mapping,
1011                                         ra, filp,
1012                                         index, last_index - index);
1013                         page = find_get_page(mapping, index);
1014                         if (unlikely(page == NULL))
1015                                 goto no_cached_page;
1016                 }
1017                 if (PageReadahead(page)) {
1018                         page_cache_async_readahead(mapping,
1019                                         ra, filp, page,
1020                                         index, last_index - index);
1021                 }
1022                 if (!PageUptodate(page)) {
1023                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1024                                         !mapping->a_ops->is_partially_uptodate)
1025                                 goto page_not_up_to_date;
1026                         if (!trylock_page(page))
1027                                 goto page_not_up_to_date;
1028                         /* Did it get truncated before we got the lock? */
1029                         if (!page->mapping)
1030                                 goto page_not_up_to_date_locked;
1031                         if (!mapping->a_ops->is_partially_uptodate(page,
1032                                                                 desc, offset))
1033                                 goto page_not_up_to_date_locked;
1034                         unlock_page(page);
1035                 }
1036 page_ok:
1037                 /*
1038                  * i_size must be checked after we know the page is Uptodate.
1039                  *
1040                  * Checking i_size after the check allows us to calculate
1041                  * the correct value for "nr", which means the zero-filled
1042                  * part of the page is not copied back to userspace (unless
1043                  * another truncate extends the file - this is desired though).
1044                  */
1045
1046                 isize = i_size_read(inode);
1047                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1048                 if (unlikely(!isize || index > end_index)) {
1049                         page_cache_release(page);
1050                         goto out;
1051                 }
1052
1053                 /* nr is the maximum number of bytes to copy from this page */
1054                 nr = PAGE_CACHE_SIZE;
1055                 if (index == end_index) {
1056                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1057                         if (nr <= offset) {
1058                                 page_cache_release(page);
1059                                 goto out;
1060                         }
1061                 }
1062                 nr = nr - offset;
1063
1064                 /* If users can be writing to this page using arbitrary
1065                  * virtual addresses, take care about potential aliasing
1066                  * before reading the page on the kernel side.
1067                  */
1068                 if (mapping_writably_mapped(mapping))
1069                         flush_dcache_page(page);
1070
1071                 /*
1072                  * When a sequential read accesses a page several times,
1073                  * only mark it as accessed the first time.
1074                  */
1075                 if (prev_index != index || offset != prev_offset)
1076                         mark_page_accessed(page);
1077                 prev_index = index;
1078
1079                 /*
1080                  * Ok, we have the page, and it's up-to-date, so
1081                  * now we can copy it to user space...
1082                  *
1083                  * The actor routine returns how many bytes were actually used..
1084                  * NOTE! This may not be the same as how much of a user buffer
1085                  * we filled up (we may be padding etc), so we can only update
1086                  * "pos" here (the actor routine has to update the user buffer
1087                  * pointers and the remaining count).
1088                  */
1089                 ret = actor(desc, page, offset, nr);
1090                 offset += ret;
1091                 index += offset >> PAGE_CACHE_SHIFT;
1092                 offset &= ~PAGE_CACHE_MASK;
1093                 prev_offset = offset;
1094
1095                 page_cache_release(page);
1096                 if (ret == nr && desc->count)
1097                         continue;
1098                 goto out;
1099
1100 page_not_up_to_date:
1101                 /* Get exclusive access to the page ... */
1102                 error = lock_page_killable(page);
1103                 if (unlikely(error))
1104                         goto readpage_error;
1105
1106 page_not_up_to_date_locked:
1107                 /* Did it get truncated before we got the lock? */
1108                 if (!page->mapping) {
1109                         unlock_page(page);
1110                         page_cache_release(page);
1111                         continue;
1112                 }
1113
1114                 /* Did somebody else fill it already? */
1115                 if (PageUptodate(page)) {
1116                         unlock_page(page);
1117                         goto page_ok;
1118                 }
1119
1120 readpage:
1121                 /*
1122                  * A previous I/O error may have been due to temporary
1123                  * failures, eg. multipath errors.
1124                  * PG_error will be set again if readpage fails.
1125                  */
1126                 ClearPageError(page);
1127                 /* Start the actual read. The read will unlock the page. */
1128                 error = mapping->a_ops->readpage(filp, page);
1129
1130                 if (unlikely(error)) {
1131                         if (error == AOP_TRUNCATED_PAGE) {
1132                                 page_cache_release(page);
1133                                 goto find_page;
1134                         }
1135                         goto readpage_error;
1136                 }
1137
1138                 if (!PageUptodate(page)) {
1139                         error = lock_page_killable(page);
1140                         if (unlikely(error))
1141                                 goto readpage_error;
1142                         if (!PageUptodate(page)) {
1143                                 if (page->mapping == NULL) {
1144                                         /*
1145                                          * invalidate_mapping_pages got it
1146                                          */
1147                                         unlock_page(page);
1148                                         page_cache_release(page);
1149                                         goto find_page;
1150                                 }
1151                                 unlock_page(page);
1152                                 shrink_readahead_size_eio(filp, ra);
1153                                 error = -EIO;
1154                                 goto readpage_error;
1155                         }
1156                         unlock_page(page);
1157                 }
1158
1159                 goto page_ok;
1160
1161 readpage_error:
1162                 /* UHHUH! A synchronous read error occurred. Report it */
1163                 desc->error = error;
1164                 page_cache_release(page);
1165                 goto out;
1166
1167 no_cached_page:
1168                 /*
1169                  * Ok, it wasn't cached, so we need to create a new
1170                  * page..
1171                  */
1172                 page = page_cache_alloc_cold(mapping);
1173                 if (!page) {
1174                         desc->error = -ENOMEM;
1175                         goto out;
1176                 }
1177                 error = add_to_page_cache_lru(page, mapping,
1178                                                 index, GFP_KERNEL);
1179                 if (error) {
1180                         page_cache_release(page);
1181                         if (error == -EEXIST)
1182                                 goto find_page;
1183                         desc->error = error;
1184                         goto out;
1185                 }
1186                 goto readpage;
1187         }
1188
1189 out:
1190         ra->prev_pos = prev_index;
1191         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1192         ra->prev_pos |= prev_offset;
1193
1194         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1195         file_accessed(filp);
1196 }
1197
1198 int file_read_actor(read_descriptor_t *desc, struct page *page,
1199                         unsigned long offset, unsigned long size)
1200 {
1201         char *kaddr;
1202         unsigned long left, count = desc->count;
1203
1204         if (size > count)
1205                 size = count;
1206
1207         /*
1208          * Faults on the destination of a read are common, so do it before
1209          * taking the kmap.
1210          */
1211         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1212                 kaddr = kmap_atomic(page, KM_USER0);
1213                 left = __copy_to_user_inatomic(desc->arg.buf,
1214                                                 kaddr + offset, size);
1215                 kunmap_atomic(kaddr, KM_USER0);
1216                 if (left == 0)
1217                         goto success;
1218         }
1219
1220         /* Do it the slow way */
1221         kaddr = kmap(page);
1222         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1223         kunmap(page);
1224
1225         if (left) {
1226                 size -= left;
1227                 desc->error = -EFAULT;
1228         }
1229 success:
1230         desc->count = count - size;
1231         desc->written += size;
1232         desc->arg.buf += size;
1233         return size;
1234 }
1235
1236 /*
1237  * Performs necessary checks before doing a write
1238  * @iov:        io vector request
1239  * @nr_segs:    number of segments in the iovec
1240  * @count:      number of bytes to write
1241  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1242  *
1243  * Adjust number of segments and amount of bytes to write (nr_segs should be
1244  * properly initialized first). Returns appropriate error code that caller
1245  * should return or zero in case that write should be allowed.
1246  */
1247 int generic_segment_checks(const struct iovec *iov,
1248                         unsigned long *nr_segs, size_t *count, int access_flags)
1249 {
1250         unsigned long   seg;
1251         size_t cnt = 0;
1252         for (seg = 0; seg < *nr_segs; seg++) {
1253                 const struct iovec *iv = &iov[seg];
1254
1255                 /*
1256                  * If any segment has a negative length, or the cumulative
1257                  * length ever wraps negative then return -EINVAL.
1258                  */
1259                 cnt += iv->iov_len;
1260                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1261                         return -EINVAL;
1262                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1263                         continue;
1264                 if (seg == 0)
1265                         return -EFAULT;
1266                 *nr_segs = seg;
1267                 cnt -= iv->iov_len;     /* This segment is no good */
1268                 break;
1269         }
1270         *count = cnt;
1271         return 0;
1272 }
1273 EXPORT_SYMBOL(generic_segment_checks);
1274
1275 /**
1276  * generic_file_aio_read - generic filesystem read routine
1277  * @iocb:       kernel I/O control block
1278  * @iov:        io vector request
1279  * @nr_segs:    number of segments in the iovec
1280  * @pos:        current file position
1281  *
1282  * This is the "read()" routine for all filesystems
1283  * that can use the page cache directly.
1284  */
1285 ssize_t
1286 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1287                 unsigned long nr_segs, loff_t pos)
1288 {
1289         struct file *filp = iocb->ki_filp;
1290         ssize_t retval;
1291         unsigned long seg = 0;
1292         size_t count;
1293         loff_t *ppos = &iocb->ki_pos;
1294
1295         count = 0;
1296         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1297         if (retval)
1298                 return retval;
1299
1300         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1301         if (filp->f_flags & O_DIRECT) {
1302                 loff_t size;
1303                 struct address_space *mapping;
1304                 struct inode *inode;
1305
1306                 mapping = filp->f_mapping;
1307                 inode = mapping->host;
1308                 if (!count)
1309                         goto out; /* skip atime */
1310                 size = i_size_read(inode);
1311                 if (pos < size) {
1312                         retval = filemap_write_and_wait_range(mapping, pos,
1313                                         pos + iov_length(iov, nr_segs) - 1);
1314                         if (!retval) {
1315                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1316                                                         iov, pos, nr_segs);
1317                         }
1318                         if (retval > 0) {
1319                                 *ppos = pos + retval;
1320                                 count -= retval;
1321                         }
1322
1323                         /*
1324                          * Btrfs can have a short DIO read if we encounter
1325                          * compressed extents, so if there was an error, or if
1326                          * we've already read everything we wanted to, or if
1327                          * there was a short read because we hit EOF, go ahead
1328                          * and return.  Otherwise fallthrough to buffered io for
1329                          * the rest of the read.
1330                          */
1331                         if (retval < 0 || !count || *ppos >= size) {
1332                                 file_accessed(filp);
1333                                 goto out;
1334                         }
1335                 }
1336         }
1337
1338         count = retval;
1339         for (seg = 0; seg < nr_segs; seg++) {
1340                 read_descriptor_t desc;
1341                 loff_t offset = 0;
1342
1343                 /*
1344                  * If we did a short DIO read we need to skip the section of the
1345                  * iov that we've already read data into.
1346                  */
1347                 if (count) {
1348                         if (count > iov[seg].iov_len) {
1349                                 count -= iov[seg].iov_len;
1350                                 continue;
1351                         }
1352                         offset = count;
1353                         count = 0;
1354                 }
1355
1356                 desc.written = 0;
1357                 desc.arg.buf = iov[seg].iov_base + offset;
1358                 desc.count = iov[seg].iov_len - offset;
1359                 if (desc.count == 0)
1360                         continue;
1361                 desc.error = 0;
1362                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1363                 retval += desc.written;
1364                 if (desc.error) {
1365                         retval = retval ?: desc.error;
1366                         break;
1367                 }
1368                 if (desc.count > 0)
1369                         break;
1370         }
1371 out:
1372         return retval;
1373 }
1374 EXPORT_SYMBOL(generic_file_aio_read);
1375
1376 static ssize_t
1377 do_readahead(struct address_space *mapping, struct file *filp,
1378              pgoff_t index, unsigned long nr)
1379 {
1380         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1381                 return -EINVAL;
1382
1383         force_page_cache_readahead(mapping, filp, index, nr);
1384         return 0;
1385 }
1386
1387 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1388 {
1389         ssize_t ret;
1390         struct file *file;
1391
1392         ret = -EBADF;
1393         file = fget(fd);
1394         if (file) {
1395                 if (file->f_mode & FMODE_READ) {
1396                         struct address_space *mapping = file->f_mapping;
1397                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1398                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1399                         unsigned long len = end - start + 1;
1400                         ret = do_readahead(mapping, file, start, len);
1401                 }
1402                 fput(file);
1403         }
1404         return ret;
1405 }
1406 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1407 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1408 {
1409         return SYSC_readahead((int) fd, offset, (size_t) count);
1410 }
1411 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1412 #endif
1413
1414 #ifdef CONFIG_MMU
1415 /**
1416  * page_cache_read - adds requested page to the page cache if not already there
1417  * @file:       file to read
1418  * @offset:     page index
1419  *
1420  * This adds the requested page to the page cache if it isn't already there,
1421  * and schedules an I/O to read in its contents from disk.
1422  */
1423 static int page_cache_read(struct file *file, pgoff_t offset)
1424 {
1425         struct address_space *mapping = file->f_mapping;
1426         struct page *page; 
1427         int ret;
1428
1429         do {
1430                 page = page_cache_alloc_cold(mapping);
1431                 if (!page)
1432                         return -ENOMEM;
1433
1434                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1435                 if (ret == 0)
1436                         ret = mapping->a_ops->readpage(file, page);
1437                 else if (ret == -EEXIST)
1438                         ret = 0; /* losing race to add is OK */
1439
1440                 page_cache_release(page);
1441
1442         } while (ret == AOP_TRUNCATED_PAGE);
1443                 
1444         return ret;
1445 }
1446
1447 #define MMAP_LOTSAMISS  (100)
1448
1449 /*
1450  * Synchronous readahead happens when we don't even find
1451  * a page in the page cache at all.
1452  */
1453 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1454                                    struct file_ra_state *ra,
1455                                    struct file *file,
1456                                    pgoff_t offset)
1457 {
1458         unsigned long ra_pages;
1459         struct address_space *mapping = file->f_mapping;
1460
1461         /* If we don't want any read-ahead, don't bother */
1462         if (VM_RandomReadHint(vma))
1463                 return;
1464
1465         if (VM_SequentialReadHint(vma) ||
1466                         offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1467                 page_cache_sync_readahead(mapping, ra, file, offset,
1468                                           ra->ra_pages);
1469                 return;
1470         }
1471
1472         if (ra->mmap_miss < INT_MAX)
1473                 ra->mmap_miss++;
1474
1475         /*
1476          * Do we miss much more than hit in this file? If so,
1477          * stop bothering with read-ahead. It will only hurt.
1478          */
1479         if (ra->mmap_miss > MMAP_LOTSAMISS)
1480                 return;
1481
1482         /*
1483          * mmap read-around
1484          */
1485         ra_pages = max_sane_readahead(ra->ra_pages);
1486         if (ra_pages) {
1487                 ra->start = max_t(long, 0, offset - ra_pages/2);
1488                 ra->size = ra_pages;
1489                 ra->async_size = 0;
1490                 ra_submit(ra, mapping, file);
1491         }
1492 }
1493
1494 /*
1495  * Asynchronous readahead happens when we find the page and PG_readahead,
1496  * so we want to possibly extend the readahead further..
1497  */
1498 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1499                                     struct file_ra_state *ra,
1500                                     struct file *file,
1501                                     struct page *page,
1502                                     pgoff_t offset)
1503 {
1504         struct address_space *mapping = file->f_mapping;
1505
1506         /* If we don't want any read-ahead, don't bother */
1507         if (VM_RandomReadHint(vma))
1508                 return;
1509         if (ra->mmap_miss > 0)
1510                 ra->mmap_miss--;
1511         if (PageReadahead(page))
1512                 page_cache_async_readahead(mapping, ra, file,
1513                                            page, offset, ra->ra_pages);
1514 }
1515
1516 /**
1517  * filemap_fault - read in file data for page fault handling
1518  * @vma:        vma in which the fault was taken
1519  * @vmf:        struct vm_fault containing details of the fault
1520  *
1521  * filemap_fault() is invoked via the vma operations vector for a
1522  * mapped memory region to read in file data during a page fault.
1523  *
1524  * The goto's are kind of ugly, but this streamlines the normal case of having
1525  * it in the page cache, and handles the special cases reasonably without
1526  * having a lot of duplicated code.
1527  */
1528 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1529 {
1530         int error;
1531         struct file *file = vma->vm_file;
1532         struct address_space *mapping = file->f_mapping;
1533         struct file_ra_state *ra = &file->f_ra;
1534         struct inode *inode = mapping->host;
1535         pgoff_t offset = vmf->pgoff;
1536         struct page *page;
1537         pgoff_t size;
1538         int ret = 0;
1539
1540         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1541         if (offset >= size)
1542                 return VM_FAULT_SIGBUS;
1543
1544         /*
1545          * Do we have something in the page cache already?
1546          */
1547         page = find_get_page(mapping, offset);
1548         if (likely(page)) {
1549                 /*
1550                  * We found the page, so try async readahead before
1551                  * waiting for the lock.
1552                  */
1553                 do_async_mmap_readahead(vma, ra, file, page, offset);
1554         } else {
1555                 /* No page in the page cache at all */
1556                 do_sync_mmap_readahead(vma, ra, file, offset);
1557                 count_vm_event(PGMAJFAULT);
1558                 ret = VM_FAULT_MAJOR;
1559 retry_find:
1560                 page = find_get_page(mapping, offset);
1561                 if (!page)
1562                         goto no_cached_page;
1563         }
1564
1565         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1566                 page_cache_release(page);
1567                 return ret | VM_FAULT_RETRY;
1568         }
1569
1570         /* Did it get truncated? */
1571         if (unlikely(page->mapping != mapping)) {
1572                 unlock_page(page);
1573                 put_page(page);
1574                 goto retry_find;
1575         }
1576         VM_BUG_ON(page->index != offset);
1577
1578         /*
1579          * We have a locked page in the page cache, now we need to check
1580          * that it's up-to-date. If not, it is going to be due to an error.
1581          */
1582         if (unlikely(!PageUptodate(page)))
1583                 goto page_not_uptodate;
1584
1585         /*
1586          * Found the page and have a reference on it.
1587          * We must recheck i_size under page lock.
1588          */
1589         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1590         if (unlikely(offset >= size)) {
1591                 unlock_page(page);
1592                 page_cache_release(page);
1593                 return VM_FAULT_SIGBUS;
1594         }
1595
1596         ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1597         vmf->page = page;
1598         return ret | VM_FAULT_LOCKED;
1599
1600 no_cached_page:
1601         /*
1602          * We're only likely to ever get here if MADV_RANDOM is in
1603          * effect.
1604          */
1605         error = page_cache_read(file, offset);
1606
1607         /*
1608          * The page we want has now been added to the page cache.
1609          * In the unlikely event that someone removed it in the
1610          * meantime, we'll just come back here and read it again.
1611          */
1612         if (error >= 0)
1613                 goto retry_find;
1614
1615         /*
1616          * An error return from page_cache_read can result if the
1617          * system is low on memory, or a problem occurs while trying
1618          * to schedule I/O.
1619          */
1620         if (error == -ENOMEM)
1621                 return VM_FAULT_OOM;
1622         return VM_FAULT_SIGBUS;
1623
1624 page_not_uptodate:
1625         /*
1626          * Umm, take care of errors if the page isn't up-to-date.
1627          * Try to re-read it _once_. We do this synchronously,
1628          * because there really aren't any performance issues here
1629          * and we need to check for errors.
1630          */
1631         ClearPageError(page);
1632         error = mapping->a_ops->readpage(file, page);
1633         if (!error) {
1634                 wait_on_page_locked(page);
1635                 if (!PageUptodate(page))
1636                         error = -EIO;
1637         }
1638         page_cache_release(page);
1639
1640         if (!error || error == AOP_TRUNCATED_PAGE)
1641                 goto retry_find;
1642
1643         /* Things didn't work out. Return zero to tell the mm layer so. */
1644         shrink_readahead_size_eio(file, ra);
1645         return VM_FAULT_SIGBUS;
1646 }
1647 EXPORT_SYMBOL(filemap_fault);
1648
1649 const struct vm_operations_struct generic_file_vm_ops = {
1650         .fault          = filemap_fault,
1651 };
1652
1653 /* This is used for a general mmap of a disk file */
1654
1655 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1656 {
1657         struct address_space *mapping = file->f_mapping;
1658
1659         if (!mapping->a_ops->readpage)
1660                 return -ENOEXEC;
1661         file_accessed(file);
1662         vma->vm_ops = &generic_file_vm_ops;
1663         vma->vm_flags |= VM_CAN_NONLINEAR;
1664         return 0;
1665 }
1666
1667 /*
1668  * This is for filesystems which do not implement ->writepage.
1669  */
1670 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1671 {
1672         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1673                 return -EINVAL;
1674         return generic_file_mmap(file, vma);
1675 }
1676 #else
1677 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1678 {
1679         return -ENOSYS;
1680 }
1681 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1682 {
1683         return -ENOSYS;
1684 }
1685 #endif /* CONFIG_MMU */
1686
1687 EXPORT_SYMBOL(generic_file_mmap);
1688 EXPORT_SYMBOL(generic_file_readonly_mmap);
1689
1690 static struct page *__read_cache_page(struct address_space *mapping,
1691                                 pgoff_t index,
1692                                 int (*filler)(void *,struct page*),
1693                                 void *data,
1694                                 gfp_t gfp)
1695 {
1696         struct page *page;
1697         int err;
1698 repeat:
1699         page = find_get_page(mapping, index);
1700         if (!page) {
1701                 page = __page_cache_alloc(gfp | __GFP_COLD);
1702                 if (!page)
1703                         return ERR_PTR(-ENOMEM);
1704                 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1705                 if (unlikely(err)) {
1706                         page_cache_release(page);
1707                         if (err == -EEXIST)
1708                                 goto repeat;
1709                         /* Presumably ENOMEM for radix tree node */
1710                         return ERR_PTR(err);
1711                 }
1712                 err = filler(data, page);
1713                 if (err < 0) {
1714                         page_cache_release(page);
1715                         page = ERR_PTR(err);
1716                 }
1717         }
1718         return page;
1719 }
1720
1721 static struct page *do_read_cache_page(struct address_space *mapping,
1722                                 pgoff_t index,
1723                                 int (*filler)(void *,struct page*),
1724                                 void *data,
1725                                 gfp_t gfp)
1726
1727 {
1728         struct page *page;
1729         int err;
1730
1731 retry:
1732         page = __read_cache_page(mapping, index, filler, data, gfp);
1733         if (IS_ERR(page))
1734                 return page;
1735         if (PageUptodate(page))
1736                 goto out;
1737
1738         lock_page(page);
1739         if (!page->mapping) {
1740                 unlock_page(page);
1741                 page_cache_release(page);
1742                 goto retry;
1743         }
1744         if (PageUptodate(page)) {
1745                 unlock_page(page);
1746                 goto out;
1747         }
1748         err = filler(data, page);
1749         if (err < 0) {
1750                 page_cache_release(page);
1751                 return ERR_PTR(err);
1752         }
1753 out:
1754         mark_page_accessed(page);
1755         return page;
1756 }
1757
1758 /**
1759  * read_cache_page_async - read into page cache, fill it if needed
1760  * @mapping:    the page's address_space
1761  * @index:      the page index
1762  * @filler:     function to perform the read
1763  * @data:       destination for read data
1764  *
1765  * Same as read_cache_page, but don't wait for page to become unlocked
1766  * after submitting it to the filler.
1767  *
1768  * Read into the page cache. If a page already exists, and PageUptodate() is
1769  * not set, try to fill the page but don't wait for it to become unlocked.
1770  *
1771  * If the page does not get brought uptodate, return -EIO.
1772  */
1773 struct page *read_cache_page_async(struct address_space *mapping,
1774                                 pgoff_t index,
1775                                 int (*filler)(void *,struct page*),
1776                                 void *data)
1777 {
1778         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1779 }
1780 EXPORT_SYMBOL(read_cache_page_async);
1781
1782 static struct page *wait_on_page_read(struct page *page)
1783 {
1784         if (!IS_ERR(page)) {
1785                 wait_on_page_locked(page);
1786                 if (!PageUptodate(page)) {
1787                         page_cache_release(page);
1788                         page = ERR_PTR(-EIO);
1789                 }
1790         }
1791         return page;
1792 }
1793
1794 /**
1795  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1796  * @mapping:    the page's address_space
1797  * @index:      the page index
1798  * @gfp:        the page allocator flags to use if allocating
1799  *
1800  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1801  * any new page allocations done using the specified allocation flags. Note
1802  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1803  * expect to do this atomically or anything like that - but you can pass in
1804  * other page requirements.
1805  *
1806  * If the page does not get brought uptodate, return -EIO.
1807  */
1808 struct page *read_cache_page_gfp(struct address_space *mapping,
1809                                 pgoff_t index,
1810                                 gfp_t gfp)
1811 {
1812         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1813
1814         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1815 }
1816 EXPORT_SYMBOL(read_cache_page_gfp);
1817
1818 /**
1819  * read_cache_page - read into page cache, fill it if needed
1820  * @mapping:    the page's address_space
1821  * @index:      the page index
1822  * @filler:     function to perform the read
1823  * @data:       destination for read data
1824  *
1825  * Read into the page cache. If a page already exists, and PageUptodate() is
1826  * not set, try to fill the page then wait for it to become unlocked.
1827  *
1828  * If the page does not get brought uptodate, return -EIO.
1829  */
1830 struct page *read_cache_page(struct address_space *mapping,
1831                                 pgoff_t index,
1832                                 int (*filler)(void *,struct page*),
1833                                 void *data)
1834 {
1835         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1836 }
1837 EXPORT_SYMBOL(read_cache_page);
1838
1839 /*
1840  * The logic we want is
1841  *
1842  *      if suid or (sgid and xgrp)
1843  *              remove privs
1844  */
1845 int should_remove_suid(struct dentry *dentry)
1846 {
1847         mode_t mode = dentry->d_inode->i_mode;
1848         int kill = 0;
1849
1850         /* suid always must be killed */
1851         if (unlikely(mode & S_ISUID))
1852                 kill = ATTR_KILL_SUID;
1853
1854         /*
1855          * sgid without any exec bits is just a mandatory locking mark; leave
1856          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1857          */
1858         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1859                 kill |= ATTR_KILL_SGID;
1860
1861         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1862                 return kill;
1863
1864         return 0;
1865 }
1866 EXPORT_SYMBOL(should_remove_suid);
1867
1868 static int __remove_suid(struct dentry *dentry, int kill)
1869 {
1870         struct iattr newattrs;
1871
1872         newattrs.ia_valid = ATTR_FORCE | kill;
1873         return notify_change(dentry, &newattrs);
1874 }
1875
1876 int file_remove_suid(struct file *file)
1877 {
1878         struct dentry *dentry = file->f_path.dentry;
1879         int killsuid = should_remove_suid(dentry);
1880         int killpriv = security_inode_need_killpriv(dentry);
1881         int error = 0;
1882
1883         if (killpriv < 0)
1884                 return killpriv;
1885         if (killpriv)
1886                 error = security_inode_killpriv(dentry);
1887         if (!error && killsuid)
1888                 error = __remove_suid(dentry, killsuid);
1889
1890         return error;
1891 }
1892 EXPORT_SYMBOL(file_remove_suid);
1893
1894 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1895                         const struct iovec *iov, size_t base, size_t bytes)
1896 {
1897         size_t copied = 0, left = 0;
1898
1899         while (bytes) {
1900                 char __user *buf = iov->iov_base + base;
1901                 int copy = min(bytes, iov->iov_len - base);
1902
1903                 base = 0;
1904                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1905                 copied += copy;
1906                 bytes -= copy;
1907                 vaddr += copy;
1908                 iov++;
1909
1910                 if (unlikely(left))
1911                         break;
1912         }
1913         return copied - left;
1914 }
1915
1916 /*
1917  * Copy as much as we can into the page and return the number of bytes which
1918  * were successfully copied.  If a fault is encountered then return the number of
1919  * bytes which were copied.
1920  */
1921 size_t iov_iter_copy_from_user_atomic(struct page *page,
1922                 struct iov_iter *i, unsigned long offset, size_t bytes)
1923 {
1924         char *kaddr;
1925         size_t copied;
1926
1927         BUG_ON(!in_atomic());
1928         kaddr = kmap_atomic(page, KM_USER0);
1929         if (likely(i->nr_segs == 1)) {
1930                 int left;
1931                 char __user *buf = i->iov->iov_base + i->iov_offset;
1932                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1933                 copied = bytes - left;
1934         } else {
1935                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1936                                                 i->iov, i->iov_offset, bytes);
1937         }
1938         kunmap_atomic(kaddr, KM_USER0);
1939
1940         return copied;
1941 }
1942 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1943
1944 /*
1945  * This has the same sideeffects and return value as
1946  * iov_iter_copy_from_user_atomic().
1947  * The difference is that it attempts to resolve faults.
1948  * Page must not be locked.
1949  */
1950 size_t iov_iter_copy_from_user(struct page *page,
1951                 struct iov_iter *i, unsigned long offset, size_t bytes)
1952 {
1953         char *kaddr;
1954         size_t copied;
1955
1956         kaddr = kmap(page);
1957         if (likely(i->nr_segs == 1)) {
1958                 int left;
1959                 char __user *buf = i->iov->iov_base + i->iov_offset;
1960                 left = __copy_from_user(kaddr + offset, buf, bytes);
1961                 copied = bytes - left;
1962         } else {
1963                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1964                                                 i->iov, i->iov_offset, bytes);
1965         }
1966         kunmap(page);
1967         return copied;
1968 }
1969 EXPORT_SYMBOL(iov_iter_copy_from_user);
1970
1971 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1972 {
1973         BUG_ON(i->count < bytes);
1974
1975         if (likely(i->nr_segs == 1)) {
1976                 i->iov_offset += bytes;
1977                 i->count -= bytes;
1978         } else {
1979                 const struct iovec *iov = i->iov;
1980                 size_t base = i->iov_offset;
1981
1982                 /*
1983                  * The !iov->iov_len check ensures we skip over unlikely
1984                  * zero-length segments (without overruning the iovec).
1985                  */
1986                 while (bytes || unlikely(i->count && !iov->iov_len)) {
1987                         int copy;
1988
1989                         copy = min(bytes, iov->iov_len - base);
1990                         BUG_ON(!i->count || i->count < copy);
1991                         i->count -= copy;
1992                         bytes -= copy;
1993                         base += copy;
1994                         if (iov->iov_len == base) {
1995                                 iov++;
1996                                 base = 0;
1997                         }
1998                 }
1999                 i->iov = iov;
2000                 i->iov_offset = base;
2001         }
2002 }
2003 EXPORT_SYMBOL(iov_iter_advance);
2004
2005 /*
2006  * Fault in the first iovec of the given iov_iter, to a maximum length
2007  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2008  * accessed (ie. because it is an invalid address).
2009  *
2010  * writev-intensive code may want this to prefault several iovecs -- that
2011  * would be possible (callers must not rely on the fact that _only_ the
2012  * first iovec will be faulted with the current implementation).
2013  */
2014 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2015 {
2016         char __user *buf = i->iov->iov_base + i->iov_offset;
2017         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2018         return fault_in_pages_readable(buf, bytes);
2019 }
2020 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2021
2022 /*
2023  * Return the count of just the current iov_iter segment.
2024  */
2025 size_t iov_iter_single_seg_count(struct iov_iter *i)
2026 {
2027         const struct iovec *iov = i->iov;
2028         if (i->nr_segs == 1)
2029                 return i->count;
2030         else
2031                 return min(i->count, iov->iov_len - i->iov_offset);
2032 }
2033 EXPORT_SYMBOL(iov_iter_single_seg_count);
2034
2035 /*
2036  * Performs necessary checks before doing a write
2037  *
2038  * Can adjust writing position or amount of bytes to write.
2039  * Returns appropriate error code that caller should return or
2040  * zero in case that write should be allowed.
2041  */
2042 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2043 {
2044         struct inode *inode = file->f_mapping->host;
2045         unsigned long limit = rlimit(RLIMIT_FSIZE);
2046
2047         if (unlikely(*pos < 0))
2048                 return -EINVAL;
2049
2050         if (!isblk) {
2051                 /* FIXME: this is for backwards compatibility with 2.4 */
2052                 if (file->f_flags & O_APPEND)
2053                         *pos = i_size_read(inode);
2054
2055                 if (limit != RLIM_INFINITY) {
2056                         if (*pos >= limit) {
2057                                 send_sig(SIGXFSZ, current, 0);
2058                                 return -EFBIG;
2059                         }
2060                         if (*count > limit - (typeof(limit))*pos) {
2061                                 *count = limit - (typeof(limit))*pos;
2062                         }
2063                 }
2064         }
2065
2066         /*
2067          * LFS rule
2068          */
2069         if (unlikely(*pos + *count > MAX_NON_LFS &&
2070                                 !(file->f_flags & O_LARGEFILE))) {
2071                 if (*pos >= MAX_NON_LFS) {
2072                         return -EFBIG;
2073                 }
2074                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2075                         *count = MAX_NON_LFS - (unsigned long)*pos;
2076                 }
2077         }
2078
2079         /*
2080          * Are we about to exceed the fs block limit ?
2081          *
2082          * If we have written data it becomes a short write.  If we have
2083          * exceeded without writing data we send a signal and return EFBIG.
2084          * Linus frestrict idea will clean these up nicely..
2085          */
2086         if (likely(!isblk)) {
2087                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2088                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2089                                 return -EFBIG;
2090                         }
2091                         /* zero-length writes at ->s_maxbytes are OK */
2092                 }
2093
2094                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2095                         *count = inode->i_sb->s_maxbytes - *pos;
2096         } else {
2097 #ifdef CONFIG_BLOCK
2098                 loff_t isize;
2099                 if (bdev_read_only(I_BDEV(inode)))
2100                         return -EPERM;
2101                 isize = i_size_read(inode);
2102                 if (*pos >= isize) {
2103                         if (*count || *pos > isize)
2104                                 return -ENOSPC;
2105                 }
2106
2107                 if (*pos + *count > isize)
2108                         *count = isize - *pos;
2109 #else
2110                 return -EPERM;
2111 #endif
2112         }
2113         return 0;
2114 }
2115 EXPORT_SYMBOL(generic_write_checks);
2116
2117 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2118                                 loff_t pos, unsigned len, unsigned flags,
2119                                 struct page **pagep, void **fsdata)
2120 {
2121         const struct address_space_operations *aops = mapping->a_ops;
2122
2123         return aops->write_begin(file, mapping, pos, len, flags,
2124                                                         pagep, fsdata);
2125 }
2126 EXPORT_SYMBOL(pagecache_write_begin);
2127
2128 int pagecache_write_end(struct file *file, struct address_space *mapping,
2129                                 loff_t pos, unsigned len, unsigned copied,
2130                                 struct page *page, void *fsdata)
2131 {
2132         const struct address_space_operations *aops = mapping->a_ops;
2133
2134         mark_page_accessed(page);
2135         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2136 }
2137 EXPORT_SYMBOL(pagecache_write_end);
2138
2139 ssize_t
2140 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2141                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2142                 size_t count, size_t ocount)
2143 {
2144         struct file     *file = iocb->ki_filp;
2145         struct address_space *mapping = file->f_mapping;
2146         struct inode    *inode = mapping->host;
2147         ssize_t         written;
2148         size_t          write_len;
2149         pgoff_t         end;
2150
2151         if (count != ocount)
2152                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2153
2154         write_len = iov_length(iov, *nr_segs);
2155         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2156
2157         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2158         if (written)
2159                 goto out;
2160
2161         /*
2162          * After a write we want buffered reads to be sure to go to disk to get
2163          * the new data.  We invalidate clean cached page from the region we're
2164          * about to write.  We do this *before* the write so that we can return
2165          * without clobbering -EIOCBQUEUED from ->direct_IO().
2166          */
2167         if (mapping->nrpages) {
2168                 written = invalidate_inode_pages2_range(mapping,
2169                                         pos >> PAGE_CACHE_SHIFT, end);
2170                 /*
2171                  * If a page can not be invalidated, return 0 to fall back
2172                  * to buffered write.
2173                  */
2174                 if (written) {
2175                         if (written == -EBUSY)
2176                                 return 0;
2177                         goto out;
2178                 }
2179         }
2180
2181         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2182
2183         /*
2184          * Finally, try again to invalidate clean pages which might have been
2185          * cached by non-direct readahead, or faulted in by get_user_pages()
2186          * if the source of the write was an mmap'ed region of the file
2187          * we're writing.  Either one is a pretty crazy thing to do,
2188          * so we don't support it 100%.  If this invalidation
2189          * fails, tough, the write still worked...
2190          */
2191         if (mapping->nrpages) {
2192                 invalidate_inode_pages2_range(mapping,
2193                                               pos >> PAGE_CACHE_SHIFT, end);
2194         }
2195
2196         if (written > 0) {
2197                 pos += written;
2198                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2199                         i_size_write(inode, pos);
2200                         mark_inode_dirty(inode);
2201                 }
2202                 *ppos = pos;
2203         }
2204 out:
2205         return written;
2206 }
2207 EXPORT_SYMBOL(generic_file_direct_write);
2208
2209 /*
2210  * Find or create a page at the given pagecache position. Return the locked
2211  * page. This function is specifically for buffered writes.
2212  */
2213 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2214                                         pgoff_t index, unsigned flags)
2215 {
2216         int status;
2217         struct page *page;
2218         gfp_t gfp_notmask = 0;
2219         if (flags & AOP_FLAG_NOFS)
2220                 gfp_notmask = __GFP_FS;
2221 repeat:
2222         page = find_lock_page(mapping, index);
2223         if (likely(page))
2224                 return page;
2225
2226         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2227         if (!page)
2228                 return NULL;
2229         status = add_to_page_cache_lru(page, mapping, index,
2230                                                 GFP_KERNEL & ~gfp_notmask);
2231         if (unlikely(status)) {
2232                 page_cache_release(page);
2233                 if (status == -EEXIST)
2234                         goto repeat;
2235                 return NULL;
2236         }
2237         return page;
2238 }
2239 EXPORT_SYMBOL(grab_cache_page_write_begin);
2240
2241 static ssize_t generic_perform_write(struct file *file,
2242                                 struct iov_iter *i, loff_t pos)
2243 {
2244         struct address_space *mapping = file->f_mapping;
2245         const struct address_space_operations *a_ops = mapping->a_ops;
2246         long status = 0;
2247         ssize_t written = 0;
2248         unsigned int flags = 0;
2249
2250         /*
2251          * Copies from kernel address space cannot fail (NFSD is a big user).
2252          */
2253         if (segment_eq(get_fs(), KERNEL_DS))
2254                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2255
2256         do {
2257                 struct page *page;
2258                 unsigned long offset;   /* Offset into pagecache page */
2259                 unsigned long bytes;    /* Bytes to write to page */
2260                 size_t copied;          /* Bytes copied from user */
2261                 void *fsdata;
2262
2263                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2264                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2265                                                 iov_iter_count(i));
2266
2267 again:
2268
2269                 /*
2270                  * Bring in the user page that we will copy from _first_.
2271                  * Otherwise there's a nasty deadlock on copying from the
2272                  * same page as we're writing to, without it being marked
2273                  * up-to-date.
2274                  *
2275                  * Not only is this an optimisation, but it is also required
2276                  * to check that the address is actually valid, when atomic
2277                  * usercopies are used, below.
2278                  */
2279                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2280                         status = -EFAULT;
2281                         break;
2282                 }
2283
2284                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2285                                                 &page, &fsdata);
2286                 if (unlikely(status))
2287                         break;
2288
2289                 if (mapping_writably_mapped(mapping))
2290                         flush_dcache_page(page);
2291
2292                 pagefault_disable();
2293                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2294                 pagefault_enable();
2295                 flush_dcache_page(page);
2296
2297                 mark_page_accessed(page);
2298                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2299                                                 page, fsdata);
2300                 if (unlikely(status < 0))
2301                         break;
2302                 copied = status;
2303
2304                 cond_resched();
2305
2306                 iov_iter_advance(i, copied);
2307                 if (unlikely(copied == 0)) {
2308                         /*
2309                          * If we were unable to copy any data at all, we must
2310                          * fall back to a single segment length write.
2311                          *
2312                          * If we didn't fallback here, we could livelock
2313                          * because not all segments in the iov can be copied at
2314                          * once without a pagefault.
2315                          */
2316                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2317                                                 iov_iter_single_seg_count(i));
2318                         goto again;
2319                 }
2320                 pos += copied;
2321                 written += copied;
2322
2323                 balance_dirty_pages_ratelimited(mapping);
2324
2325         } while (iov_iter_count(i));
2326
2327         return written ? written : status;
2328 }
2329
2330 ssize_t
2331 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2332                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2333                 size_t count, ssize_t written)
2334 {
2335         struct file *file = iocb->ki_filp;
2336         ssize_t status;
2337         struct iov_iter i;
2338
2339         iov_iter_init(&i, iov, nr_segs, count, written);
2340         status = generic_perform_write(file, &i, pos);
2341
2342         if (likely(status >= 0)) {
2343                 written += status;
2344                 *ppos = pos + status;
2345         }
2346         
2347         return written ? written : status;
2348 }
2349 EXPORT_SYMBOL(generic_file_buffered_write);
2350
2351 /**
2352  * __generic_file_aio_write - write data to a file
2353  * @iocb:       IO state structure (file, offset, etc.)
2354  * @iov:        vector with data to write
2355  * @nr_segs:    number of segments in the vector
2356  * @ppos:       position where to write
2357  *
2358  * This function does all the work needed for actually writing data to a
2359  * file. It does all basic checks, removes SUID from the file, updates
2360  * modification times and calls proper subroutines depending on whether we
2361  * do direct IO or a standard buffered write.
2362  *
2363  * It expects i_mutex to be grabbed unless we work on a block device or similar
2364  * object which does not need locking at all.
2365  *
2366  * This function does *not* take care of syncing data in case of O_SYNC write.
2367  * A caller has to handle it. This is mainly due to the fact that we want to
2368  * avoid syncing under i_mutex.
2369  */
2370 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2371                                  unsigned long nr_segs, loff_t *ppos)
2372 {
2373         struct file *file = iocb->ki_filp;
2374         struct address_space * mapping = file->f_mapping;
2375         size_t ocount;          /* original count */
2376         size_t count;           /* after file limit checks */
2377         struct inode    *inode = mapping->host;
2378         loff_t          pos;
2379         ssize_t         written;
2380         ssize_t         err;
2381
2382         ocount = 0;
2383         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2384         if (err)
2385                 return err;
2386
2387         count = ocount;
2388         pos = *ppos;
2389
2390         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2391
2392         /* We can write back this queue in page reclaim */
2393         current->backing_dev_info = mapping->backing_dev_info;
2394         written = 0;
2395
2396         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2397         if (err)
2398                 goto out;
2399
2400         if (count == 0)
2401                 goto out;
2402
2403         err = file_remove_suid(file);
2404         if (err)
2405                 goto out;
2406
2407         file_update_time(file);
2408
2409         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2410         if (unlikely(file->f_flags & O_DIRECT)) {
2411                 loff_t endbyte;
2412                 ssize_t written_buffered;
2413
2414                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2415                                                         ppos, count, ocount);
2416                 if (written < 0 || written == count)
2417                         goto out;
2418                 /*
2419                  * direct-io write to a hole: fall through to buffered I/O
2420                  * for completing the rest of the request.
2421                  */
2422                 pos += written;
2423                 count -= written;
2424                 written_buffered = generic_file_buffered_write(iocb, iov,
2425                                                 nr_segs, pos, ppos, count,
2426                                                 written);
2427                 /*
2428                  * If generic_file_buffered_write() retuned a synchronous error
2429                  * then we want to return the number of bytes which were
2430                  * direct-written, or the error code if that was zero.  Note
2431                  * that this differs from normal direct-io semantics, which
2432                  * will return -EFOO even if some bytes were written.
2433                  */
2434                 if (written_buffered < 0) {
2435                         err = written_buffered;
2436                         goto out;
2437                 }
2438
2439                 /*
2440                  * We need to ensure that the page cache pages are written to
2441                  * disk and invalidated to preserve the expected O_DIRECT
2442                  * semantics.
2443                  */
2444                 endbyte = pos + written_buffered - written - 1;
2445                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2446                 if (err == 0) {
2447                         written = written_buffered;
2448                         invalidate_mapping_pages(mapping,
2449                                                  pos >> PAGE_CACHE_SHIFT,
2450                                                  endbyte >> PAGE_CACHE_SHIFT);
2451                 } else {
2452                         /*
2453                          * We don't know how much we wrote, so just return
2454                          * the number of bytes which were direct-written
2455                          */
2456                 }
2457         } else {
2458                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2459                                 pos, ppos, count, written);
2460         }
2461 out:
2462         current->backing_dev_info = NULL;
2463         return written ? written : err;
2464 }
2465 EXPORT_SYMBOL(__generic_file_aio_write);
2466
2467 /**
2468  * generic_file_aio_write - write data to a file
2469  * @iocb:       IO state structure
2470  * @iov:        vector with data to write
2471  * @nr_segs:    number of segments in the vector
2472  * @pos:        position in file where to write
2473  *
2474  * This is a wrapper around __generic_file_aio_write() to be used by most
2475  * filesystems. It takes care of syncing the file in case of O_SYNC file
2476  * and acquires i_mutex as needed.
2477  */
2478 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2479                 unsigned long nr_segs, loff_t pos)
2480 {
2481         struct file *file = iocb->ki_filp;
2482         struct inode *inode = file->f_mapping->host;
2483         ssize_t ret;
2484
2485         BUG_ON(iocb->ki_pos != pos);
2486
2487         mutex_lock(&inode->i_mutex);
2488         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2489         mutex_unlock(&inode->i_mutex);
2490
2491         if (ret > 0 || ret == -EIOCBQUEUED) {
2492                 ssize_t err;
2493
2494                 err = generic_write_sync(file, pos, ret);
2495                 if (err < 0 && ret > 0)
2496                         ret = err;
2497         }
2498         return ret;
2499 }
2500 EXPORT_SYMBOL(generic_file_aio_write);
2501
2502 /**
2503  * try_to_release_page() - release old fs-specific metadata on a page
2504  *
2505  * @page: the page which the kernel is trying to free
2506  * @gfp_mask: memory allocation flags (and I/O mode)
2507  *
2508  * The address_space is to try to release any data against the page
2509  * (presumably at page->private).  If the release was successful, return `1'.
2510  * Otherwise return zero.
2511  *
2512  * This may also be called if PG_fscache is set on a page, indicating that the
2513  * page is known to the local caching routines.
2514  *
2515  * The @gfp_mask argument specifies whether I/O may be performed to release
2516  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2517  *
2518  */
2519 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2520 {
2521         struct address_space * const mapping = page->mapping;
2522
2523         BUG_ON(!PageLocked(page));
2524         if (PageWriteback(page))
2525                 return 0;
2526
2527         if (mapping && mapping->a_ops->releasepage)
2528                 return mapping->a_ops->releasepage(page, gfp_mask);
2529         return try_to_free_buffers(page);
2530 }
2531
2532 EXPORT_SYMBOL(try_to_release_page);