Merge branch 'sched/urgent' into sched/core, to merge fixes before applying new changes
[firefly-linux-kernel-4.4.55.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_mutex              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_mutex
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_mutex
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
105  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_mutex
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112                                    struct page *page, void *shadow)
113 {
114         struct radix_tree_node *node;
115         unsigned long index;
116         unsigned int offset;
117         unsigned int tag;
118         void **slot;
119
120         VM_BUG_ON(!PageLocked(page));
121
122         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124         if (shadow) {
125                 mapping->nrshadows++;
126                 /*
127                  * Make sure the nrshadows update is committed before
128                  * the nrpages update so that final truncate racing
129                  * with reclaim does not see both counters 0 at the
130                  * same time and miss a shadow entry.
131                  */
132                 smp_wmb();
133         }
134         mapping->nrpages--;
135
136         if (!node) {
137                 /* Clear direct pointer tags in root node */
138                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139                 radix_tree_replace_slot(slot, shadow);
140                 return;
141         }
142
143         /* Clear tree tags for the removed page */
144         index = page->index;
145         offset = index & RADIX_TREE_MAP_MASK;
146         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147                 if (test_bit(offset, node->tags[tag]))
148                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
149         }
150
151         /* Delete page, swap shadow entry */
152         radix_tree_replace_slot(slot, shadow);
153         workingset_node_pages_dec(node);
154         if (shadow)
155                 workingset_node_shadows_inc(node);
156         else
157                 if (__radix_tree_delete_node(&mapping->page_tree, node))
158                         return;
159
160         /*
161          * Track node that only contains shadow entries.
162          *
163          * Avoid acquiring the list_lru lock if already tracked.  The
164          * list_empty() test is safe as node->private_list is
165          * protected by mapping->tree_lock.
166          */
167         if (!workingset_node_pages(node) &&
168             list_empty(&node->private_list)) {
169                 node->private_data = mapping;
170                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171         }
172 }
173
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181         struct address_space *mapping = page->mapping;
182
183         trace_mm_filemap_delete_from_page_cache(page);
184         /*
185          * if we're uptodate, flush out into the cleancache, otherwise
186          * invalidate any existing cleancache entries.  We can't leave
187          * stale data around in the cleancache once our page is gone
188          */
189         if (PageUptodate(page) && PageMappedToDisk(page))
190                 cleancache_put_page(page);
191         else
192                 cleancache_invalidate_page(mapping, page);
193
194         page_cache_tree_delete(mapping, page, shadow);
195
196         page->mapping = NULL;
197         /* Leave page->index set: truncation lookup relies upon it */
198
199         __dec_zone_page_state(page, NR_FILE_PAGES);
200         if (PageSwapBacked(page))
201                 __dec_zone_page_state(page, NR_SHMEM);
202         BUG_ON(page_mapped(page));
203
204         /*
205          * Some filesystems seem to re-dirty the page even after
206          * the VM has canceled the dirty bit (eg ext3 journaling).
207          *
208          * Fix it up by doing a final dirty accounting check after
209          * having removed the page entirely.
210          */
211         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212                 dec_zone_page_state(page, NR_FILE_DIRTY);
213                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214         }
215 }
216
217 /**
218  * delete_from_page_cache - delete page from page cache
219  * @page: the page which the kernel is trying to remove from page cache
220  *
221  * This must be called only on pages that have been verified to be in the page
222  * cache and locked.  It will never put the page into the free list, the caller
223  * has a reference on the page.
224  */
225 void delete_from_page_cache(struct page *page)
226 {
227         struct address_space *mapping = page->mapping;
228         void (*freepage)(struct page *);
229
230         BUG_ON(!PageLocked(page));
231
232         freepage = mapping->a_ops->freepage;
233         spin_lock_irq(&mapping->tree_lock);
234         __delete_from_page_cache(page, NULL);
235         spin_unlock_irq(&mapping->tree_lock);
236         mem_cgroup_uncharge_cache_page(page);
237
238         if (freepage)
239                 freepage(page);
240         page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int filemap_check_errors(struct address_space *mapping)
245 {
246         int ret = 0;
247         /* Check for outstanding write errors */
248         if (test_bit(AS_ENOSPC, &mapping->flags) &&
249             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250                 ret = -ENOSPC;
251         if (test_bit(AS_EIO, &mapping->flags) &&
252             test_and_clear_bit(AS_EIO, &mapping->flags))
253                 ret = -EIO;
254         return ret;
255 }
256
257 /**
258  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259  * @mapping:    address space structure to write
260  * @start:      offset in bytes where the range starts
261  * @end:        offset in bytes where the range ends (inclusive)
262  * @sync_mode:  enable synchronous operation
263  *
264  * Start writeback against all of a mapping's dirty pages that lie
265  * within the byte offsets <start, end> inclusive.
266  *
267  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268  * opposed to a regular memory cleansing writeback.  The difference between
269  * these two operations is that if a dirty page/buffer is encountered, it must
270  * be waited upon, and not just skipped over.
271  */
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273                                 loff_t end, int sync_mode)
274 {
275         int ret;
276         struct writeback_control wbc = {
277                 .sync_mode = sync_mode,
278                 .nr_to_write = LONG_MAX,
279                 .range_start = start,
280                 .range_end = end,
281         };
282
283         if (!mapping_cap_writeback_dirty(mapping))
284                 return 0;
285
286         ret = do_writepages(mapping, &wbc);
287         return ret;
288 }
289
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291         int sync_mode)
292 {
293         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
294 }
295
296 int filemap_fdatawrite(struct address_space *mapping)
297 {
298         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299 }
300 EXPORT_SYMBOL(filemap_fdatawrite);
301
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303                                 loff_t end)
304 {
305         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306 }
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
308
309 /**
310  * filemap_flush - mostly a non-blocking flush
311  * @mapping:    target address_space
312  *
313  * This is a mostly non-blocking flush.  Not suitable for data-integrity
314  * purposes - I/O may not be started against all dirty pages.
315  */
316 int filemap_flush(struct address_space *mapping)
317 {
318         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319 }
320 EXPORT_SYMBOL(filemap_flush);
321
322 /**
323  * filemap_fdatawait_range - wait for writeback to complete
324  * @mapping:            address space structure to wait for
325  * @start_byte:         offset in bytes where the range starts
326  * @end_byte:           offset in bytes where the range ends (inclusive)
327  *
328  * Walk the list of under-writeback pages of the given address space
329  * in the given range and wait for all of them.
330  */
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332                             loff_t end_byte)
333 {
334         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336         struct pagevec pvec;
337         int nr_pages;
338         int ret2, ret = 0;
339
340         if (end_byte < start_byte)
341                 goto out;
342
343         pagevec_init(&pvec, 0);
344         while ((index <= end) &&
345                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346                         PAGECACHE_TAG_WRITEBACK,
347                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348                 unsigned i;
349
350                 for (i = 0; i < nr_pages; i++) {
351                         struct page *page = pvec.pages[i];
352
353                         /* until radix tree lookup accepts end_index */
354                         if (page->index > end)
355                                 continue;
356
357                         wait_on_page_writeback(page);
358                         if (TestClearPageError(page))
359                                 ret = -EIO;
360                 }
361                 pagevec_release(&pvec);
362                 cond_resched();
363         }
364 out:
365         ret2 = filemap_check_errors(mapping);
366         if (!ret)
367                 ret = ret2;
368
369         return ret;
370 }
371 EXPORT_SYMBOL(filemap_fdatawait_range);
372
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382         loff_t i_size = i_size_read(mapping->host);
383
384         if (i_size == 0)
385                 return 0;
386
387         return filemap_fdatawait_range(mapping, 0, i_size - 1);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393         int err = 0;
394
395         if (mapping->nrpages) {
396                 err = filemap_fdatawrite(mapping);
397                 /*
398                  * Even if the above returned error, the pages may be
399                  * written partially (e.g. -ENOSPC), so we wait for it.
400                  * But the -EIO is special case, it may indicate the worst
401                  * thing (e.g. bug) happened, so we avoid waiting for it.
402                  */
403                 if (err != -EIO) {
404                         int err2 = filemap_fdatawait(mapping);
405                         if (!err)
406                                 err = err2;
407                 }
408         } else {
409                 err = filemap_check_errors(mapping);
410         }
411         return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:    the address_space for the pages
418  * @lstart:     offset in bytes where the range starts
419  * @lend:       offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427                                  loff_t lstart, loff_t lend)
428 {
429         int err = 0;
430
431         if (mapping->nrpages) {
432                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433                                                  WB_SYNC_ALL);
434                 /* See comment of filemap_write_and_wait() */
435                 if (err != -EIO) {
436                         int err2 = filemap_fdatawait_range(mapping,
437                                                 lstart, lend);
438                         if (!err)
439                                 err = err2;
440                 }
441         } else {
442                 err = filemap_check_errors(mapping);
443         }
444         return err;
445 }
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
447
448 /**
449  * replace_page_cache_page - replace a pagecache page with a new one
450  * @old:        page to be replaced
451  * @new:        page to replace with
452  * @gfp_mask:   allocation mode
453  *
454  * This function replaces a page in the pagecache with a new one.  On
455  * success it acquires the pagecache reference for the new page and
456  * drops it for the old page.  Both the old and new pages must be
457  * locked.  This function does not add the new page to the LRU, the
458  * caller must do that.
459  *
460  * The remove + add is atomic.  The only way this function can fail is
461  * memory allocation failure.
462  */
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464 {
465         int error;
466
467         VM_BUG_ON_PAGE(!PageLocked(old), old);
468         VM_BUG_ON_PAGE(!PageLocked(new), new);
469         VM_BUG_ON_PAGE(new->mapping, new);
470
471         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472         if (!error) {
473                 struct address_space *mapping = old->mapping;
474                 void (*freepage)(struct page *);
475
476                 pgoff_t offset = old->index;
477                 freepage = mapping->a_ops->freepage;
478
479                 page_cache_get(new);
480                 new->mapping = mapping;
481                 new->index = offset;
482
483                 spin_lock_irq(&mapping->tree_lock);
484                 __delete_from_page_cache(old, NULL);
485                 error = radix_tree_insert(&mapping->page_tree, offset, new);
486                 BUG_ON(error);
487                 mapping->nrpages++;
488                 __inc_zone_page_state(new, NR_FILE_PAGES);
489                 if (PageSwapBacked(new))
490                         __inc_zone_page_state(new, NR_SHMEM);
491                 spin_unlock_irq(&mapping->tree_lock);
492                 /* mem_cgroup codes must not be called under tree_lock */
493                 mem_cgroup_replace_page_cache(old, new);
494                 radix_tree_preload_end();
495                 if (freepage)
496                         freepage(old);
497                 page_cache_release(old);
498         }
499
500         return error;
501 }
502 EXPORT_SYMBOL_GPL(replace_page_cache_page);
503
504 static int page_cache_tree_insert(struct address_space *mapping,
505                                   struct page *page, void **shadowp)
506 {
507         struct radix_tree_node *node;
508         void **slot;
509         int error;
510
511         error = __radix_tree_create(&mapping->page_tree, page->index,
512                                     &node, &slot);
513         if (error)
514                 return error;
515         if (*slot) {
516                 void *p;
517
518                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
519                 if (!radix_tree_exceptional_entry(p))
520                         return -EEXIST;
521                 if (shadowp)
522                         *shadowp = p;
523                 mapping->nrshadows--;
524                 if (node)
525                         workingset_node_shadows_dec(node);
526         }
527         radix_tree_replace_slot(slot, page);
528         mapping->nrpages++;
529         if (node) {
530                 workingset_node_pages_inc(node);
531                 /*
532                  * Don't track node that contains actual pages.
533                  *
534                  * Avoid acquiring the list_lru lock if already
535                  * untracked.  The list_empty() test is safe as
536                  * node->private_list is protected by
537                  * mapping->tree_lock.
538                  */
539                 if (!list_empty(&node->private_list))
540                         list_lru_del(&workingset_shadow_nodes,
541                                      &node->private_list);
542         }
543         return 0;
544 }
545
546 static int __add_to_page_cache_locked(struct page *page,
547                                       struct address_space *mapping,
548                                       pgoff_t offset, gfp_t gfp_mask,
549                                       void **shadowp)
550 {
551         int error;
552
553         VM_BUG_ON_PAGE(!PageLocked(page), page);
554         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
555
556         error = mem_cgroup_charge_file(page, current->mm,
557                                         gfp_mask & GFP_RECLAIM_MASK);
558         if (error)
559                 return error;
560
561         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
562         if (error) {
563                 mem_cgroup_uncharge_cache_page(page);
564                 return error;
565         }
566
567         page_cache_get(page);
568         page->mapping = mapping;
569         page->index = offset;
570
571         spin_lock_irq(&mapping->tree_lock);
572         error = page_cache_tree_insert(mapping, page, shadowp);
573         radix_tree_preload_end();
574         if (unlikely(error))
575                 goto err_insert;
576         __inc_zone_page_state(page, NR_FILE_PAGES);
577         spin_unlock_irq(&mapping->tree_lock);
578         trace_mm_filemap_add_to_page_cache(page);
579         return 0;
580 err_insert:
581         page->mapping = NULL;
582         /* Leave page->index set: truncation relies upon it */
583         spin_unlock_irq(&mapping->tree_lock);
584         mem_cgroup_uncharge_cache_page(page);
585         page_cache_release(page);
586         return error;
587 }
588
589 /**
590  * add_to_page_cache_locked - add a locked page to the pagecache
591  * @page:       page to add
592  * @mapping:    the page's address_space
593  * @offset:     page index
594  * @gfp_mask:   page allocation mode
595  *
596  * This function is used to add a page to the pagecache. It must be locked.
597  * This function does not add the page to the LRU.  The caller must do that.
598  */
599 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
600                 pgoff_t offset, gfp_t gfp_mask)
601 {
602         return __add_to_page_cache_locked(page, mapping, offset,
603                                           gfp_mask, NULL);
604 }
605 EXPORT_SYMBOL(add_to_page_cache_locked);
606
607 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
608                                 pgoff_t offset, gfp_t gfp_mask)
609 {
610         void *shadow = NULL;
611         int ret;
612
613         __set_page_locked(page);
614         ret = __add_to_page_cache_locked(page, mapping, offset,
615                                          gfp_mask, &shadow);
616         if (unlikely(ret))
617                 __clear_page_locked(page);
618         else {
619                 /*
620                  * The page might have been evicted from cache only
621                  * recently, in which case it should be activated like
622                  * any other repeatedly accessed page.
623                  */
624                 if (shadow && workingset_refault(shadow)) {
625                         SetPageActive(page);
626                         workingset_activation(page);
627                 } else
628                         ClearPageActive(page);
629                 lru_cache_add(page);
630         }
631         return ret;
632 }
633 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
634
635 #ifdef CONFIG_NUMA
636 struct page *__page_cache_alloc(gfp_t gfp)
637 {
638         int n;
639         struct page *page;
640
641         if (cpuset_do_page_mem_spread()) {
642                 unsigned int cpuset_mems_cookie;
643                 do {
644                         cpuset_mems_cookie = read_mems_allowed_begin();
645                         n = cpuset_mem_spread_node();
646                         page = alloc_pages_exact_node(n, gfp, 0);
647                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
648
649                 return page;
650         }
651         return alloc_pages(gfp, 0);
652 }
653 EXPORT_SYMBOL(__page_cache_alloc);
654 #endif
655
656 /*
657  * In order to wait for pages to become available there must be
658  * waitqueues associated with pages. By using a hash table of
659  * waitqueues where the bucket discipline is to maintain all
660  * waiters on the same queue and wake all when any of the pages
661  * become available, and for the woken contexts to check to be
662  * sure the appropriate page became available, this saves space
663  * at a cost of "thundering herd" phenomena during rare hash
664  * collisions.
665  */
666 static wait_queue_head_t *page_waitqueue(struct page *page)
667 {
668         const struct zone *zone = page_zone(page);
669
670         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
671 }
672
673 static inline void wake_up_page(struct page *page, int bit)
674 {
675         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
676 }
677
678 void wait_on_page_bit(struct page *page, int bit_nr)
679 {
680         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
681
682         if (test_bit(bit_nr, &page->flags))
683                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
684                                                         TASK_UNINTERRUPTIBLE);
685 }
686 EXPORT_SYMBOL(wait_on_page_bit);
687
688 int wait_on_page_bit_killable(struct page *page, int bit_nr)
689 {
690         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
691
692         if (!test_bit(bit_nr, &page->flags))
693                 return 0;
694
695         return __wait_on_bit(page_waitqueue(page), &wait,
696                              bit_wait_io, TASK_KILLABLE);
697 }
698
699 /**
700  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
701  * @page: Page defining the wait queue of interest
702  * @waiter: Waiter to add to the queue
703  *
704  * Add an arbitrary @waiter to the wait queue for the nominated @page.
705  */
706 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
707 {
708         wait_queue_head_t *q = page_waitqueue(page);
709         unsigned long flags;
710
711         spin_lock_irqsave(&q->lock, flags);
712         __add_wait_queue(q, waiter);
713         spin_unlock_irqrestore(&q->lock, flags);
714 }
715 EXPORT_SYMBOL_GPL(add_page_wait_queue);
716
717 /**
718  * unlock_page - unlock a locked page
719  * @page: the page
720  *
721  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
722  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
723  * mechananism between PageLocked pages and PageWriteback pages is shared.
724  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
725  *
726  * The mb is necessary to enforce ordering between the clear_bit and the read
727  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
728  */
729 void unlock_page(struct page *page)
730 {
731         VM_BUG_ON_PAGE(!PageLocked(page), page);
732         clear_bit_unlock(PG_locked, &page->flags);
733         smp_mb__after_atomic();
734         wake_up_page(page, PG_locked);
735 }
736 EXPORT_SYMBOL(unlock_page);
737
738 /**
739  * end_page_writeback - end writeback against a page
740  * @page: the page
741  */
742 void end_page_writeback(struct page *page)
743 {
744         /*
745          * TestClearPageReclaim could be used here but it is an atomic
746          * operation and overkill in this particular case. Failing to
747          * shuffle a page marked for immediate reclaim is too mild to
748          * justify taking an atomic operation penalty at the end of
749          * ever page writeback.
750          */
751         if (PageReclaim(page)) {
752                 ClearPageReclaim(page);
753                 rotate_reclaimable_page(page);
754         }
755
756         if (!test_clear_page_writeback(page))
757                 BUG();
758
759         smp_mb__after_atomic();
760         wake_up_page(page, PG_writeback);
761 }
762 EXPORT_SYMBOL(end_page_writeback);
763
764 /*
765  * After completing I/O on a page, call this routine to update the page
766  * flags appropriately
767  */
768 void page_endio(struct page *page, int rw, int err)
769 {
770         if (rw == READ) {
771                 if (!err) {
772                         SetPageUptodate(page);
773                 } else {
774                         ClearPageUptodate(page);
775                         SetPageError(page);
776                 }
777                 unlock_page(page);
778         } else { /* rw == WRITE */
779                 if (err) {
780                         SetPageError(page);
781                         if (page->mapping)
782                                 mapping_set_error(page->mapping, err);
783                 }
784                 end_page_writeback(page);
785         }
786 }
787 EXPORT_SYMBOL_GPL(page_endio);
788
789 /**
790  * __lock_page - get a lock on the page, assuming we need to sleep to get it
791  * @page: the page to lock
792  */
793 void __lock_page(struct page *page)
794 {
795         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
796
797         __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
798                                                         TASK_UNINTERRUPTIBLE);
799 }
800 EXPORT_SYMBOL(__lock_page);
801
802 int __lock_page_killable(struct page *page)
803 {
804         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
805
806         return __wait_on_bit_lock(page_waitqueue(page), &wait,
807                                         bit_wait_io, TASK_KILLABLE);
808 }
809 EXPORT_SYMBOL_GPL(__lock_page_killable);
810
811 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
812                          unsigned int flags)
813 {
814         if (flags & FAULT_FLAG_ALLOW_RETRY) {
815                 /*
816                  * CAUTION! In this case, mmap_sem is not released
817                  * even though return 0.
818                  */
819                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
820                         return 0;
821
822                 up_read(&mm->mmap_sem);
823                 if (flags & FAULT_FLAG_KILLABLE)
824                         wait_on_page_locked_killable(page);
825                 else
826                         wait_on_page_locked(page);
827                 return 0;
828         } else {
829                 if (flags & FAULT_FLAG_KILLABLE) {
830                         int ret;
831
832                         ret = __lock_page_killable(page);
833                         if (ret) {
834                                 up_read(&mm->mmap_sem);
835                                 return 0;
836                         }
837                 } else
838                         __lock_page(page);
839                 return 1;
840         }
841 }
842
843 /**
844  * page_cache_next_hole - find the next hole (not-present entry)
845  * @mapping: mapping
846  * @index: index
847  * @max_scan: maximum range to search
848  *
849  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
850  * lowest indexed hole.
851  *
852  * Returns: the index of the hole if found, otherwise returns an index
853  * outside of the set specified (in which case 'return - index >=
854  * max_scan' will be true). In rare cases of index wrap-around, 0 will
855  * be returned.
856  *
857  * page_cache_next_hole may be called under rcu_read_lock. However,
858  * like radix_tree_gang_lookup, this will not atomically search a
859  * snapshot of the tree at a single point in time. For example, if a
860  * hole is created at index 5, then subsequently a hole is created at
861  * index 10, page_cache_next_hole covering both indexes may return 10
862  * if called under rcu_read_lock.
863  */
864 pgoff_t page_cache_next_hole(struct address_space *mapping,
865                              pgoff_t index, unsigned long max_scan)
866 {
867         unsigned long i;
868
869         for (i = 0; i < max_scan; i++) {
870                 struct page *page;
871
872                 page = radix_tree_lookup(&mapping->page_tree, index);
873                 if (!page || radix_tree_exceptional_entry(page))
874                         break;
875                 index++;
876                 if (index == 0)
877                         break;
878         }
879
880         return index;
881 }
882 EXPORT_SYMBOL(page_cache_next_hole);
883
884 /**
885  * page_cache_prev_hole - find the prev hole (not-present entry)
886  * @mapping: mapping
887  * @index: index
888  * @max_scan: maximum range to search
889  *
890  * Search backwards in the range [max(index-max_scan+1, 0), index] for
891  * the first hole.
892  *
893  * Returns: the index of the hole if found, otherwise returns an index
894  * outside of the set specified (in which case 'index - return >=
895  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
896  * will be returned.
897  *
898  * page_cache_prev_hole may be called under rcu_read_lock. However,
899  * like radix_tree_gang_lookup, this will not atomically search a
900  * snapshot of the tree at a single point in time. For example, if a
901  * hole is created at index 10, then subsequently a hole is created at
902  * index 5, page_cache_prev_hole covering both indexes may return 5 if
903  * called under rcu_read_lock.
904  */
905 pgoff_t page_cache_prev_hole(struct address_space *mapping,
906                              pgoff_t index, unsigned long max_scan)
907 {
908         unsigned long i;
909
910         for (i = 0; i < max_scan; i++) {
911                 struct page *page;
912
913                 page = radix_tree_lookup(&mapping->page_tree, index);
914                 if (!page || radix_tree_exceptional_entry(page))
915                         break;
916                 index--;
917                 if (index == ULONG_MAX)
918                         break;
919         }
920
921         return index;
922 }
923 EXPORT_SYMBOL(page_cache_prev_hole);
924
925 /**
926  * find_get_entry - find and get a page cache entry
927  * @mapping: the address_space to search
928  * @offset: the page cache index
929  *
930  * Looks up the page cache slot at @mapping & @offset.  If there is a
931  * page cache page, it is returned with an increased refcount.
932  *
933  * If the slot holds a shadow entry of a previously evicted page, or a
934  * swap entry from shmem/tmpfs, it is returned.
935  *
936  * Otherwise, %NULL is returned.
937  */
938 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
939 {
940         void **pagep;
941         struct page *page;
942
943         rcu_read_lock();
944 repeat:
945         page = NULL;
946         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
947         if (pagep) {
948                 page = radix_tree_deref_slot(pagep);
949                 if (unlikely(!page))
950                         goto out;
951                 if (radix_tree_exception(page)) {
952                         if (radix_tree_deref_retry(page))
953                                 goto repeat;
954                         /*
955                          * A shadow entry of a recently evicted page,
956                          * or a swap entry from shmem/tmpfs.  Return
957                          * it without attempting to raise page count.
958                          */
959                         goto out;
960                 }
961                 if (!page_cache_get_speculative(page))
962                         goto repeat;
963
964                 /*
965                  * Has the page moved?
966                  * This is part of the lockless pagecache protocol. See
967                  * include/linux/pagemap.h for details.
968                  */
969                 if (unlikely(page != *pagep)) {
970                         page_cache_release(page);
971                         goto repeat;
972                 }
973         }
974 out:
975         rcu_read_unlock();
976
977         return page;
978 }
979 EXPORT_SYMBOL(find_get_entry);
980
981 /**
982  * find_lock_entry - locate, pin and lock a page cache entry
983  * @mapping: the address_space to search
984  * @offset: the page cache index
985  *
986  * Looks up the page cache slot at @mapping & @offset.  If there is a
987  * page cache page, it is returned locked and with an increased
988  * refcount.
989  *
990  * If the slot holds a shadow entry of a previously evicted page, or a
991  * swap entry from shmem/tmpfs, it is returned.
992  *
993  * Otherwise, %NULL is returned.
994  *
995  * find_lock_entry() may sleep.
996  */
997 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
998 {
999         struct page *page;
1000
1001 repeat:
1002         page = find_get_entry(mapping, offset);
1003         if (page && !radix_tree_exception(page)) {
1004                 lock_page(page);
1005                 /* Has the page been truncated? */
1006                 if (unlikely(page->mapping != mapping)) {
1007                         unlock_page(page);
1008                         page_cache_release(page);
1009                         goto repeat;
1010                 }
1011                 VM_BUG_ON_PAGE(page->index != offset, page);
1012         }
1013         return page;
1014 }
1015 EXPORT_SYMBOL(find_lock_entry);
1016
1017 /**
1018  * pagecache_get_page - find and get a page reference
1019  * @mapping: the address_space to search
1020  * @offset: the page index
1021  * @fgp_flags: PCG flags
1022  * @gfp_mask: gfp mask to use if a page is to be allocated
1023  *
1024  * Looks up the page cache slot at @mapping & @offset.
1025  *
1026  * PCG flags modify how the page is returned
1027  *
1028  * FGP_ACCESSED: the page will be marked accessed
1029  * FGP_LOCK: Page is return locked
1030  * FGP_CREAT: If page is not present then a new page is allocated using
1031  *              @gfp_mask and added to the page cache and the VM's LRU
1032  *              list. The page is returned locked and with an increased
1033  *              refcount. Otherwise, %NULL is returned.
1034  *
1035  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1036  * if the GFP flags specified for FGP_CREAT are atomic.
1037  *
1038  * If there is a page cache page, it is returned with an increased refcount.
1039  */
1040 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1041         int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1042 {
1043         struct page *page;
1044
1045 repeat:
1046         page = find_get_entry(mapping, offset);
1047         if (radix_tree_exceptional_entry(page))
1048                 page = NULL;
1049         if (!page)
1050                 goto no_page;
1051
1052         if (fgp_flags & FGP_LOCK) {
1053                 if (fgp_flags & FGP_NOWAIT) {
1054                         if (!trylock_page(page)) {
1055                                 page_cache_release(page);
1056                                 return NULL;
1057                         }
1058                 } else {
1059                         lock_page(page);
1060                 }
1061
1062                 /* Has the page been truncated? */
1063                 if (unlikely(page->mapping != mapping)) {
1064                         unlock_page(page);
1065                         page_cache_release(page);
1066                         goto repeat;
1067                 }
1068                 VM_BUG_ON_PAGE(page->index != offset, page);
1069         }
1070
1071         if (page && (fgp_flags & FGP_ACCESSED))
1072                 mark_page_accessed(page);
1073
1074 no_page:
1075         if (!page && (fgp_flags & FGP_CREAT)) {
1076                 int err;
1077                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1078                         cache_gfp_mask |= __GFP_WRITE;
1079                 if (fgp_flags & FGP_NOFS) {
1080                         cache_gfp_mask &= ~__GFP_FS;
1081                         radix_gfp_mask &= ~__GFP_FS;
1082                 }
1083
1084                 page = __page_cache_alloc(cache_gfp_mask);
1085                 if (!page)
1086                         return NULL;
1087
1088                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1089                         fgp_flags |= FGP_LOCK;
1090
1091                 /* Init accessed so avoit atomic mark_page_accessed later */
1092                 if (fgp_flags & FGP_ACCESSED)
1093                         init_page_accessed(page);
1094
1095                 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1096                 if (unlikely(err)) {
1097                         page_cache_release(page);
1098                         page = NULL;
1099                         if (err == -EEXIST)
1100                                 goto repeat;
1101                 }
1102         }
1103
1104         return page;
1105 }
1106 EXPORT_SYMBOL(pagecache_get_page);
1107
1108 /**
1109  * find_get_entries - gang pagecache lookup
1110  * @mapping:    The address_space to search
1111  * @start:      The starting page cache index
1112  * @nr_entries: The maximum number of entries
1113  * @entries:    Where the resulting entries are placed
1114  * @indices:    The cache indices corresponding to the entries in @entries
1115  *
1116  * find_get_entries() will search for and return a group of up to
1117  * @nr_entries entries in the mapping.  The entries are placed at
1118  * @entries.  find_get_entries() takes a reference against any actual
1119  * pages it returns.
1120  *
1121  * The search returns a group of mapping-contiguous page cache entries
1122  * with ascending indexes.  There may be holes in the indices due to
1123  * not-present pages.
1124  *
1125  * Any shadow entries of evicted pages, or swap entries from
1126  * shmem/tmpfs, are included in the returned array.
1127  *
1128  * find_get_entries() returns the number of pages and shadow entries
1129  * which were found.
1130  */
1131 unsigned find_get_entries(struct address_space *mapping,
1132                           pgoff_t start, unsigned int nr_entries,
1133                           struct page **entries, pgoff_t *indices)
1134 {
1135         void **slot;
1136         unsigned int ret = 0;
1137         struct radix_tree_iter iter;
1138
1139         if (!nr_entries)
1140                 return 0;
1141
1142         rcu_read_lock();
1143 restart:
1144         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1145                 struct page *page;
1146 repeat:
1147                 page = radix_tree_deref_slot(slot);
1148                 if (unlikely(!page))
1149                         continue;
1150                 if (radix_tree_exception(page)) {
1151                         if (radix_tree_deref_retry(page))
1152                                 goto restart;
1153                         /*
1154                          * A shadow entry of a recently evicted page,
1155                          * or a swap entry from shmem/tmpfs.  Return
1156                          * it without attempting to raise page count.
1157                          */
1158                         goto export;
1159                 }
1160                 if (!page_cache_get_speculative(page))
1161                         goto repeat;
1162
1163                 /* Has the page moved? */
1164                 if (unlikely(page != *slot)) {
1165                         page_cache_release(page);
1166                         goto repeat;
1167                 }
1168 export:
1169                 indices[ret] = iter.index;
1170                 entries[ret] = page;
1171                 if (++ret == nr_entries)
1172                         break;
1173         }
1174         rcu_read_unlock();
1175         return ret;
1176 }
1177
1178 /**
1179  * find_get_pages - gang pagecache lookup
1180  * @mapping:    The address_space to search
1181  * @start:      The starting page index
1182  * @nr_pages:   The maximum number of pages
1183  * @pages:      Where the resulting pages are placed
1184  *
1185  * find_get_pages() will search for and return a group of up to
1186  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1187  * find_get_pages() takes a reference against the returned pages.
1188  *
1189  * The search returns a group of mapping-contiguous pages with ascending
1190  * indexes.  There may be holes in the indices due to not-present pages.
1191  *
1192  * find_get_pages() returns the number of pages which were found.
1193  */
1194 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1195                             unsigned int nr_pages, struct page **pages)
1196 {
1197         struct radix_tree_iter iter;
1198         void **slot;
1199         unsigned ret = 0;
1200
1201         if (unlikely(!nr_pages))
1202                 return 0;
1203
1204         rcu_read_lock();
1205 restart:
1206         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1207                 struct page *page;
1208 repeat:
1209                 page = radix_tree_deref_slot(slot);
1210                 if (unlikely(!page))
1211                         continue;
1212
1213                 if (radix_tree_exception(page)) {
1214                         if (radix_tree_deref_retry(page)) {
1215                                 /*
1216                                  * Transient condition which can only trigger
1217                                  * when entry at index 0 moves out of or back
1218                                  * to root: none yet gotten, safe to restart.
1219                                  */
1220                                 WARN_ON(iter.index);
1221                                 goto restart;
1222                         }
1223                         /*
1224                          * A shadow entry of a recently evicted page,
1225                          * or a swap entry from shmem/tmpfs.  Skip
1226                          * over it.
1227                          */
1228                         continue;
1229                 }
1230
1231                 if (!page_cache_get_speculative(page))
1232                         goto repeat;
1233
1234                 /* Has the page moved? */
1235                 if (unlikely(page != *slot)) {
1236                         page_cache_release(page);
1237                         goto repeat;
1238                 }
1239
1240                 pages[ret] = page;
1241                 if (++ret == nr_pages)
1242                         break;
1243         }
1244
1245         rcu_read_unlock();
1246         return ret;
1247 }
1248
1249 /**
1250  * find_get_pages_contig - gang contiguous pagecache lookup
1251  * @mapping:    The address_space to search
1252  * @index:      The starting page index
1253  * @nr_pages:   The maximum number of pages
1254  * @pages:      Where the resulting pages are placed
1255  *
1256  * find_get_pages_contig() works exactly like find_get_pages(), except
1257  * that the returned number of pages are guaranteed to be contiguous.
1258  *
1259  * find_get_pages_contig() returns the number of pages which were found.
1260  */
1261 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1262                                unsigned int nr_pages, struct page **pages)
1263 {
1264         struct radix_tree_iter iter;
1265         void **slot;
1266         unsigned int ret = 0;
1267
1268         if (unlikely(!nr_pages))
1269                 return 0;
1270
1271         rcu_read_lock();
1272 restart:
1273         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1274                 struct page *page;
1275 repeat:
1276                 page = radix_tree_deref_slot(slot);
1277                 /* The hole, there no reason to continue */
1278                 if (unlikely(!page))
1279                         break;
1280
1281                 if (radix_tree_exception(page)) {
1282                         if (radix_tree_deref_retry(page)) {
1283                                 /*
1284                                  * Transient condition which can only trigger
1285                                  * when entry at index 0 moves out of or back
1286                                  * to root: none yet gotten, safe to restart.
1287                                  */
1288                                 goto restart;
1289                         }
1290                         /*
1291                          * A shadow entry of a recently evicted page,
1292                          * or a swap entry from shmem/tmpfs.  Stop
1293                          * looking for contiguous pages.
1294                          */
1295                         break;
1296                 }
1297
1298                 if (!page_cache_get_speculative(page))
1299                         goto repeat;
1300
1301                 /* Has the page moved? */
1302                 if (unlikely(page != *slot)) {
1303                         page_cache_release(page);
1304                         goto repeat;
1305                 }
1306
1307                 /*
1308                  * must check mapping and index after taking the ref.
1309                  * otherwise we can get both false positives and false
1310                  * negatives, which is just confusing to the caller.
1311                  */
1312                 if (page->mapping == NULL || page->index != iter.index) {
1313                         page_cache_release(page);
1314                         break;
1315                 }
1316
1317                 pages[ret] = page;
1318                 if (++ret == nr_pages)
1319                         break;
1320         }
1321         rcu_read_unlock();
1322         return ret;
1323 }
1324 EXPORT_SYMBOL(find_get_pages_contig);
1325
1326 /**
1327  * find_get_pages_tag - find and return pages that match @tag
1328  * @mapping:    the address_space to search
1329  * @index:      the starting page index
1330  * @tag:        the tag index
1331  * @nr_pages:   the maximum number of pages
1332  * @pages:      where the resulting pages are placed
1333  *
1334  * Like find_get_pages, except we only return pages which are tagged with
1335  * @tag.   We update @index to index the next page for the traversal.
1336  */
1337 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1338                         int tag, unsigned int nr_pages, struct page **pages)
1339 {
1340         struct radix_tree_iter iter;
1341         void **slot;
1342         unsigned ret = 0;
1343
1344         if (unlikely(!nr_pages))
1345                 return 0;
1346
1347         rcu_read_lock();
1348 restart:
1349         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1350                                    &iter, *index, tag) {
1351                 struct page *page;
1352 repeat:
1353                 page = radix_tree_deref_slot(slot);
1354                 if (unlikely(!page))
1355                         continue;
1356
1357                 if (radix_tree_exception(page)) {
1358                         if (radix_tree_deref_retry(page)) {
1359                                 /*
1360                                  * Transient condition which can only trigger
1361                                  * when entry at index 0 moves out of or back
1362                                  * to root: none yet gotten, safe to restart.
1363                                  */
1364                                 goto restart;
1365                         }
1366                         /*
1367                          * A shadow entry of a recently evicted page.
1368                          *
1369                          * Those entries should never be tagged, but
1370                          * this tree walk is lockless and the tags are
1371                          * looked up in bulk, one radix tree node at a
1372                          * time, so there is a sizable window for page
1373                          * reclaim to evict a page we saw tagged.
1374                          *
1375                          * Skip over it.
1376                          */
1377                         continue;
1378                 }
1379
1380                 if (!page_cache_get_speculative(page))
1381                         goto repeat;
1382
1383                 /* Has the page moved? */
1384                 if (unlikely(page != *slot)) {
1385                         page_cache_release(page);
1386                         goto repeat;
1387                 }
1388
1389                 pages[ret] = page;
1390                 if (++ret == nr_pages)
1391                         break;
1392         }
1393
1394         rcu_read_unlock();
1395
1396         if (ret)
1397                 *index = pages[ret - 1]->index + 1;
1398
1399         return ret;
1400 }
1401 EXPORT_SYMBOL(find_get_pages_tag);
1402
1403 /*
1404  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1405  * a _large_ part of the i/o request. Imagine the worst scenario:
1406  *
1407  *      ---R__________________________________________B__________
1408  *         ^ reading here                             ^ bad block(assume 4k)
1409  *
1410  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1411  * => failing the whole request => read(R) => read(R+1) =>
1412  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1413  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1414  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1415  *
1416  * It is going insane. Fix it by quickly scaling down the readahead size.
1417  */
1418 static void shrink_readahead_size_eio(struct file *filp,
1419                                         struct file_ra_state *ra)
1420 {
1421         ra->ra_pages /= 4;
1422 }
1423
1424 /**
1425  * do_generic_file_read - generic file read routine
1426  * @filp:       the file to read
1427  * @ppos:       current file position
1428  * @iter:       data destination
1429  * @written:    already copied
1430  *
1431  * This is a generic file read routine, and uses the
1432  * mapping->a_ops->readpage() function for the actual low-level stuff.
1433  *
1434  * This is really ugly. But the goto's actually try to clarify some
1435  * of the logic when it comes to error handling etc.
1436  */
1437 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1438                 struct iov_iter *iter, ssize_t written)
1439 {
1440         struct address_space *mapping = filp->f_mapping;
1441         struct inode *inode = mapping->host;
1442         struct file_ra_state *ra = &filp->f_ra;
1443         pgoff_t index;
1444         pgoff_t last_index;
1445         pgoff_t prev_index;
1446         unsigned long offset;      /* offset into pagecache page */
1447         unsigned int prev_offset;
1448         int error = 0;
1449
1450         index = *ppos >> PAGE_CACHE_SHIFT;
1451         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1452         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1453         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1454         offset = *ppos & ~PAGE_CACHE_MASK;
1455
1456         for (;;) {
1457                 struct page *page;
1458                 pgoff_t end_index;
1459                 loff_t isize;
1460                 unsigned long nr, ret;
1461
1462                 cond_resched();
1463 find_page:
1464                 page = find_get_page(mapping, index);
1465                 if (!page) {
1466                         page_cache_sync_readahead(mapping,
1467                                         ra, filp,
1468                                         index, last_index - index);
1469                         page = find_get_page(mapping, index);
1470                         if (unlikely(page == NULL))
1471                                 goto no_cached_page;
1472                 }
1473                 if (PageReadahead(page)) {
1474                         page_cache_async_readahead(mapping,
1475                                         ra, filp, page,
1476                                         index, last_index - index);
1477                 }
1478                 if (!PageUptodate(page)) {
1479                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1480                                         !mapping->a_ops->is_partially_uptodate)
1481                                 goto page_not_up_to_date;
1482                         if (!trylock_page(page))
1483                                 goto page_not_up_to_date;
1484                         /* Did it get truncated before we got the lock? */
1485                         if (!page->mapping)
1486                                 goto page_not_up_to_date_locked;
1487                         if (!mapping->a_ops->is_partially_uptodate(page,
1488                                                         offset, iter->count))
1489                                 goto page_not_up_to_date_locked;
1490                         unlock_page(page);
1491                 }
1492 page_ok:
1493                 /*
1494                  * i_size must be checked after we know the page is Uptodate.
1495                  *
1496                  * Checking i_size after the check allows us to calculate
1497                  * the correct value for "nr", which means the zero-filled
1498                  * part of the page is not copied back to userspace (unless
1499                  * another truncate extends the file - this is desired though).
1500                  */
1501
1502                 isize = i_size_read(inode);
1503                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1504                 if (unlikely(!isize || index > end_index)) {
1505                         page_cache_release(page);
1506                         goto out;
1507                 }
1508
1509                 /* nr is the maximum number of bytes to copy from this page */
1510                 nr = PAGE_CACHE_SIZE;
1511                 if (index == end_index) {
1512                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1513                         if (nr <= offset) {
1514                                 page_cache_release(page);
1515                                 goto out;
1516                         }
1517                 }
1518                 nr = nr - offset;
1519
1520                 /* If users can be writing to this page using arbitrary
1521                  * virtual addresses, take care about potential aliasing
1522                  * before reading the page on the kernel side.
1523                  */
1524                 if (mapping_writably_mapped(mapping))
1525                         flush_dcache_page(page);
1526
1527                 /*
1528                  * When a sequential read accesses a page several times,
1529                  * only mark it as accessed the first time.
1530                  */
1531                 if (prev_index != index || offset != prev_offset)
1532                         mark_page_accessed(page);
1533                 prev_index = index;
1534
1535                 /*
1536                  * Ok, we have the page, and it's up-to-date, so
1537                  * now we can copy it to user space...
1538                  */
1539
1540                 ret = copy_page_to_iter(page, offset, nr, iter);
1541                 offset += ret;
1542                 index += offset >> PAGE_CACHE_SHIFT;
1543                 offset &= ~PAGE_CACHE_MASK;
1544                 prev_offset = offset;
1545
1546                 page_cache_release(page);
1547                 written += ret;
1548                 if (!iov_iter_count(iter))
1549                         goto out;
1550                 if (ret < nr) {
1551                         error = -EFAULT;
1552                         goto out;
1553                 }
1554                 continue;
1555
1556 page_not_up_to_date:
1557                 /* Get exclusive access to the page ... */
1558                 error = lock_page_killable(page);
1559                 if (unlikely(error))
1560                         goto readpage_error;
1561
1562 page_not_up_to_date_locked:
1563                 /* Did it get truncated before we got the lock? */
1564                 if (!page->mapping) {
1565                         unlock_page(page);
1566                         page_cache_release(page);
1567                         continue;
1568                 }
1569
1570                 /* Did somebody else fill it already? */
1571                 if (PageUptodate(page)) {
1572                         unlock_page(page);
1573                         goto page_ok;
1574                 }
1575
1576 readpage:
1577                 /*
1578                  * A previous I/O error may have been due to temporary
1579                  * failures, eg. multipath errors.
1580                  * PG_error will be set again if readpage fails.
1581                  */
1582                 ClearPageError(page);
1583                 /* Start the actual read. The read will unlock the page. */
1584                 error = mapping->a_ops->readpage(filp, page);
1585
1586                 if (unlikely(error)) {
1587                         if (error == AOP_TRUNCATED_PAGE) {
1588                                 page_cache_release(page);
1589                                 error = 0;
1590                                 goto find_page;
1591                         }
1592                         goto readpage_error;
1593                 }
1594
1595                 if (!PageUptodate(page)) {
1596                         error = lock_page_killable(page);
1597                         if (unlikely(error))
1598                                 goto readpage_error;
1599                         if (!PageUptodate(page)) {
1600                                 if (page->mapping == NULL) {
1601                                         /*
1602                                          * invalidate_mapping_pages got it
1603                                          */
1604                                         unlock_page(page);
1605                                         page_cache_release(page);
1606                                         goto find_page;
1607                                 }
1608                                 unlock_page(page);
1609                                 shrink_readahead_size_eio(filp, ra);
1610                                 error = -EIO;
1611                                 goto readpage_error;
1612                         }
1613                         unlock_page(page);
1614                 }
1615
1616                 goto page_ok;
1617
1618 readpage_error:
1619                 /* UHHUH! A synchronous read error occurred. Report it */
1620                 page_cache_release(page);
1621                 goto out;
1622
1623 no_cached_page:
1624                 /*
1625                  * Ok, it wasn't cached, so we need to create a new
1626                  * page..
1627                  */
1628                 page = page_cache_alloc_cold(mapping);
1629                 if (!page) {
1630                         error = -ENOMEM;
1631                         goto out;
1632                 }
1633                 error = add_to_page_cache_lru(page, mapping,
1634                                                 index, GFP_KERNEL);
1635                 if (error) {
1636                         page_cache_release(page);
1637                         if (error == -EEXIST) {
1638                                 error = 0;
1639                                 goto find_page;
1640                         }
1641                         goto out;
1642                 }
1643                 goto readpage;
1644         }
1645
1646 out:
1647         ra->prev_pos = prev_index;
1648         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1649         ra->prev_pos |= prev_offset;
1650
1651         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1652         file_accessed(filp);
1653         return written ? written : error;
1654 }
1655
1656 /**
1657  * generic_file_read_iter - generic filesystem read routine
1658  * @iocb:       kernel I/O control block
1659  * @iter:       destination for the data read
1660  *
1661  * This is the "read_iter()" routine for all filesystems
1662  * that can use the page cache directly.
1663  */
1664 ssize_t
1665 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1666 {
1667         struct file *file = iocb->ki_filp;
1668         ssize_t retval = 0;
1669         loff_t *ppos = &iocb->ki_pos;
1670         loff_t pos = *ppos;
1671
1672         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1673         if (file->f_flags & O_DIRECT) {
1674                 struct address_space *mapping = file->f_mapping;
1675                 struct inode *inode = mapping->host;
1676                 size_t count = iov_iter_count(iter);
1677                 loff_t size;
1678
1679                 if (!count)
1680                         goto out; /* skip atime */
1681                 size = i_size_read(inode);
1682                 retval = filemap_write_and_wait_range(mapping, pos,
1683                                         pos + count - 1);
1684                 if (!retval) {
1685                         struct iov_iter data = *iter;
1686                         retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1687                 }
1688
1689                 if (retval > 0) {
1690                         *ppos = pos + retval;
1691                         iov_iter_advance(iter, retval);
1692                 }
1693
1694                 /*
1695                  * Btrfs can have a short DIO read if we encounter
1696                  * compressed extents, so if there was an error, or if
1697                  * we've already read everything we wanted to, or if
1698                  * there was a short read because we hit EOF, go ahead
1699                  * and return.  Otherwise fallthrough to buffered io for
1700                  * the rest of the read.
1701                  */
1702                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1703                         file_accessed(file);
1704                         goto out;
1705                 }
1706         }
1707
1708         retval = do_generic_file_read(file, ppos, iter, retval);
1709 out:
1710         return retval;
1711 }
1712 EXPORT_SYMBOL(generic_file_read_iter);
1713
1714 #ifdef CONFIG_MMU
1715 /**
1716  * page_cache_read - adds requested page to the page cache if not already there
1717  * @file:       file to read
1718  * @offset:     page index
1719  *
1720  * This adds the requested page to the page cache if it isn't already there,
1721  * and schedules an I/O to read in its contents from disk.
1722  */
1723 static int page_cache_read(struct file *file, pgoff_t offset)
1724 {
1725         struct address_space *mapping = file->f_mapping;
1726         struct page *page; 
1727         int ret;
1728
1729         do {
1730                 page = page_cache_alloc_cold(mapping);
1731                 if (!page)
1732                         return -ENOMEM;
1733
1734                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1735                 if (ret == 0)
1736                         ret = mapping->a_ops->readpage(file, page);
1737                 else if (ret == -EEXIST)
1738                         ret = 0; /* losing race to add is OK */
1739
1740                 page_cache_release(page);
1741
1742         } while (ret == AOP_TRUNCATED_PAGE);
1743                 
1744         return ret;
1745 }
1746
1747 #define MMAP_LOTSAMISS  (100)
1748
1749 /*
1750  * Synchronous readahead happens when we don't even find
1751  * a page in the page cache at all.
1752  */
1753 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1754                                    struct file_ra_state *ra,
1755                                    struct file *file,
1756                                    pgoff_t offset)
1757 {
1758         unsigned long ra_pages;
1759         struct address_space *mapping = file->f_mapping;
1760
1761         /* If we don't want any read-ahead, don't bother */
1762         if (vma->vm_flags & VM_RAND_READ)
1763                 return;
1764         if (!ra->ra_pages)
1765                 return;
1766
1767         if (vma->vm_flags & VM_SEQ_READ) {
1768                 page_cache_sync_readahead(mapping, ra, file, offset,
1769                                           ra->ra_pages);
1770                 return;
1771         }
1772
1773         /* Avoid banging the cache line if not needed */
1774         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1775                 ra->mmap_miss++;
1776
1777         /*
1778          * Do we miss much more than hit in this file? If so,
1779          * stop bothering with read-ahead. It will only hurt.
1780          */
1781         if (ra->mmap_miss > MMAP_LOTSAMISS)
1782                 return;
1783
1784         /*
1785          * mmap read-around
1786          */
1787         ra_pages = max_sane_readahead(ra->ra_pages);
1788         ra->start = max_t(long, 0, offset - ra_pages / 2);
1789         ra->size = ra_pages;
1790         ra->async_size = ra_pages / 4;
1791         ra_submit(ra, mapping, file);
1792 }
1793
1794 /*
1795  * Asynchronous readahead happens when we find the page and PG_readahead,
1796  * so we want to possibly extend the readahead further..
1797  */
1798 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1799                                     struct file_ra_state *ra,
1800                                     struct file *file,
1801                                     struct page *page,
1802                                     pgoff_t offset)
1803 {
1804         struct address_space *mapping = file->f_mapping;
1805
1806         /* If we don't want any read-ahead, don't bother */
1807         if (vma->vm_flags & VM_RAND_READ)
1808                 return;
1809         if (ra->mmap_miss > 0)
1810                 ra->mmap_miss--;
1811         if (PageReadahead(page))
1812                 page_cache_async_readahead(mapping, ra, file,
1813                                            page, offset, ra->ra_pages);
1814 }
1815
1816 /**
1817  * filemap_fault - read in file data for page fault handling
1818  * @vma:        vma in which the fault was taken
1819  * @vmf:        struct vm_fault containing details of the fault
1820  *
1821  * filemap_fault() is invoked via the vma operations vector for a
1822  * mapped memory region to read in file data during a page fault.
1823  *
1824  * The goto's are kind of ugly, but this streamlines the normal case of having
1825  * it in the page cache, and handles the special cases reasonably without
1826  * having a lot of duplicated code.
1827  */
1828 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1829 {
1830         int error;
1831         struct file *file = vma->vm_file;
1832         struct address_space *mapping = file->f_mapping;
1833         struct file_ra_state *ra = &file->f_ra;
1834         struct inode *inode = mapping->host;
1835         pgoff_t offset = vmf->pgoff;
1836         struct page *page;
1837         loff_t size;
1838         int ret = 0;
1839
1840         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1841         if (offset >= size >> PAGE_CACHE_SHIFT)
1842                 return VM_FAULT_SIGBUS;
1843
1844         /*
1845          * Do we have something in the page cache already?
1846          */
1847         page = find_get_page(mapping, offset);
1848         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1849                 /*
1850                  * We found the page, so try async readahead before
1851                  * waiting for the lock.
1852                  */
1853                 do_async_mmap_readahead(vma, ra, file, page, offset);
1854         } else if (!page) {
1855                 /* No page in the page cache at all */
1856                 do_sync_mmap_readahead(vma, ra, file, offset);
1857                 count_vm_event(PGMAJFAULT);
1858                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1859                 ret = VM_FAULT_MAJOR;
1860 retry_find:
1861                 page = find_get_page(mapping, offset);
1862                 if (!page)
1863                         goto no_cached_page;
1864         }
1865
1866         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1867                 page_cache_release(page);
1868                 return ret | VM_FAULT_RETRY;
1869         }
1870
1871         /* Did it get truncated? */
1872         if (unlikely(page->mapping != mapping)) {
1873                 unlock_page(page);
1874                 put_page(page);
1875                 goto retry_find;
1876         }
1877         VM_BUG_ON_PAGE(page->index != offset, page);
1878
1879         /*
1880          * We have a locked page in the page cache, now we need to check
1881          * that it's up-to-date. If not, it is going to be due to an error.
1882          */
1883         if (unlikely(!PageUptodate(page)))
1884                 goto page_not_uptodate;
1885
1886         /*
1887          * Found the page and have a reference on it.
1888          * We must recheck i_size under page lock.
1889          */
1890         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1891         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1892                 unlock_page(page);
1893                 page_cache_release(page);
1894                 return VM_FAULT_SIGBUS;
1895         }
1896
1897         vmf->page = page;
1898         return ret | VM_FAULT_LOCKED;
1899
1900 no_cached_page:
1901         /*
1902          * We're only likely to ever get here if MADV_RANDOM is in
1903          * effect.
1904          */
1905         error = page_cache_read(file, offset);
1906
1907         /*
1908          * The page we want has now been added to the page cache.
1909          * In the unlikely event that someone removed it in the
1910          * meantime, we'll just come back here and read it again.
1911          */
1912         if (error >= 0)
1913                 goto retry_find;
1914
1915         /*
1916          * An error return from page_cache_read can result if the
1917          * system is low on memory, or a problem occurs while trying
1918          * to schedule I/O.
1919          */
1920         if (error == -ENOMEM)
1921                 return VM_FAULT_OOM;
1922         return VM_FAULT_SIGBUS;
1923
1924 page_not_uptodate:
1925         /*
1926          * Umm, take care of errors if the page isn't up-to-date.
1927          * Try to re-read it _once_. We do this synchronously,
1928          * because there really aren't any performance issues here
1929          * and we need to check for errors.
1930          */
1931         ClearPageError(page);
1932         error = mapping->a_ops->readpage(file, page);
1933         if (!error) {
1934                 wait_on_page_locked(page);
1935                 if (!PageUptodate(page))
1936                         error = -EIO;
1937         }
1938         page_cache_release(page);
1939
1940         if (!error || error == AOP_TRUNCATED_PAGE)
1941                 goto retry_find;
1942
1943         /* Things didn't work out. Return zero to tell the mm layer so. */
1944         shrink_readahead_size_eio(file, ra);
1945         return VM_FAULT_SIGBUS;
1946 }
1947 EXPORT_SYMBOL(filemap_fault);
1948
1949 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1950 {
1951         struct radix_tree_iter iter;
1952         void **slot;
1953         struct file *file = vma->vm_file;
1954         struct address_space *mapping = file->f_mapping;
1955         loff_t size;
1956         struct page *page;
1957         unsigned long address = (unsigned long) vmf->virtual_address;
1958         unsigned long addr;
1959         pte_t *pte;
1960
1961         rcu_read_lock();
1962         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1963                 if (iter.index > vmf->max_pgoff)
1964                         break;
1965 repeat:
1966                 page = radix_tree_deref_slot(slot);
1967                 if (unlikely(!page))
1968                         goto next;
1969                 if (radix_tree_exception(page)) {
1970                         if (radix_tree_deref_retry(page))
1971                                 break;
1972                         else
1973                                 goto next;
1974                 }
1975
1976                 if (!page_cache_get_speculative(page))
1977                         goto repeat;
1978
1979                 /* Has the page moved? */
1980                 if (unlikely(page != *slot)) {
1981                         page_cache_release(page);
1982                         goto repeat;
1983                 }
1984
1985                 if (!PageUptodate(page) ||
1986                                 PageReadahead(page) ||
1987                                 PageHWPoison(page))
1988                         goto skip;
1989                 if (!trylock_page(page))
1990                         goto skip;
1991
1992                 if (page->mapping != mapping || !PageUptodate(page))
1993                         goto unlock;
1994
1995                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
1996                 if (page->index >= size >> PAGE_CACHE_SHIFT)
1997                         goto unlock;
1998
1999                 pte = vmf->pte + page->index - vmf->pgoff;
2000                 if (!pte_none(*pte))
2001                         goto unlock;
2002
2003                 if (file->f_ra.mmap_miss > 0)
2004                         file->f_ra.mmap_miss--;
2005                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2006                 do_set_pte(vma, addr, page, pte, false, false);
2007                 unlock_page(page);
2008                 goto next;
2009 unlock:
2010                 unlock_page(page);
2011 skip:
2012                 page_cache_release(page);
2013 next:
2014                 if (iter.index == vmf->max_pgoff)
2015                         break;
2016         }
2017         rcu_read_unlock();
2018 }
2019 EXPORT_SYMBOL(filemap_map_pages);
2020
2021 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2022 {
2023         struct page *page = vmf->page;
2024         struct inode *inode = file_inode(vma->vm_file);
2025         int ret = VM_FAULT_LOCKED;
2026
2027         sb_start_pagefault(inode->i_sb);
2028         file_update_time(vma->vm_file);
2029         lock_page(page);
2030         if (page->mapping != inode->i_mapping) {
2031                 unlock_page(page);
2032                 ret = VM_FAULT_NOPAGE;
2033                 goto out;
2034         }
2035         /*
2036          * We mark the page dirty already here so that when freeze is in
2037          * progress, we are guaranteed that writeback during freezing will
2038          * see the dirty page and writeprotect it again.
2039          */
2040         set_page_dirty(page);
2041         wait_for_stable_page(page);
2042 out:
2043         sb_end_pagefault(inode->i_sb);
2044         return ret;
2045 }
2046 EXPORT_SYMBOL(filemap_page_mkwrite);
2047
2048 const struct vm_operations_struct generic_file_vm_ops = {
2049         .fault          = filemap_fault,
2050         .map_pages      = filemap_map_pages,
2051         .page_mkwrite   = filemap_page_mkwrite,
2052         .remap_pages    = generic_file_remap_pages,
2053 };
2054
2055 /* This is used for a general mmap of a disk file */
2056
2057 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2058 {
2059         struct address_space *mapping = file->f_mapping;
2060
2061         if (!mapping->a_ops->readpage)
2062                 return -ENOEXEC;
2063         file_accessed(file);
2064         vma->vm_ops = &generic_file_vm_ops;
2065         return 0;
2066 }
2067
2068 /*
2069  * This is for filesystems which do not implement ->writepage.
2070  */
2071 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2072 {
2073         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2074                 return -EINVAL;
2075         return generic_file_mmap(file, vma);
2076 }
2077 #else
2078 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2079 {
2080         return -ENOSYS;
2081 }
2082 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2083 {
2084         return -ENOSYS;
2085 }
2086 #endif /* CONFIG_MMU */
2087
2088 EXPORT_SYMBOL(generic_file_mmap);
2089 EXPORT_SYMBOL(generic_file_readonly_mmap);
2090
2091 static struct page *wait_on_page_read(struct page *page)
2092 {
2093         if (!IS_ERR(page)) {
2094                 wait_on_page_locked(page);
2095                 if (!PageUptodate(page)) {
2096                         page_cache_release(page);
2097                         page = ERR_PTR(-EIO);
2098                 }
2099         }
2100         return page;
2101 }
2102
2103 static struct page *__read_cache_page(struct address_space *mapping,
2104                                 pgoff_t index,
2105                                 int (*filler)(void *, struct page *),
2106                                 void *data,
2107                                 gfp_t gfp)
2108 {
2109         struct page *page;
2110         int err;
2111 repeat:
2112         page = find_get_page(mapping, index);
2113         if (!page) {
2114                 page = __page_cache_alloc(gfp | __GFP_COLD);
2115                 if (!page)
2116                         return ERR_PTR(-ENOMEM);
2117                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2118                 if (unlikely(err)) {
2119                         page_cache_release(page);
2120                         if (err == -EEXIST)
2121                                 goto repeat;
2122                         /* Presumably ENOMEM for radix tree node */
2123                         return ERR_PTR(err);
2124                 }
2125                 err = filler(data, page);
2126                 if (err < 0) {
2127                         page_cache_release(page);
2128                         page = ERR_PTR(err);
2129                 } else {
2130                         page = wait_on_page_read(page);
2131                 }
2132         }
2133         return page;
2134 }
2135
2136 static struct page *do_read_cache_page(struct address_space *mapping,
2137                                 pgoff_t index,
2138                                 int (*filler)(void *, struct page *),
2139                                 void *data,
2140                                 gfp_t gfp)
2141
2142 {
2143         struct page *page;
2144         int err;
2145
2146 retry:
2147         page = __read_cache_page(mapping, index, filler, data, gfp);
2148         if (IS_ERR(page))
2149                 return page;
2150         if (PageUptodate(page))
2151                 goto out;
2152
2153         lock_page(page);
2154         if (!page->mapping) {
2155                 unlock_page(page);
2156                 page_cache_release(page);
2157                 goto retry;
2158         }
2159         if (PageUptodate(page)) {
2160                 unlock_page(page);
2161                 goto out;
2162         }
2163         err = filler(data, page);
2164         if (err < 0) {
2165                 page_cache_release(page);
2166                 return ERR_PTR(err);
2167         } else {
2168                 page = wait_on_page_read(page);
2169                 if (IS_ERR(page))
2170                         return page;
2171         }
2172 out:
2173         mark_page_accessed(page);
2174         return page;
2175 }
2176
2177 /**
2178  * read_cache_page - read into page cache, fill it if needed
2179  * @mapping:    the page's address_space
2180  * @index:      the page index
2181  * @filler:     function to perform the read
2182  * @data:       first arg to filler(data, page) function, often left as NULL
2183  *
2184  * Read into the page cache. If a page already exists, and PageUptodate() is
2185  * not set, try to fill the page and wait for it to become unlocked.
2186  *
2187  * If the page does not get brought uptodate, return -EIO.
2188  */
2189 struct page *read_cache_page(struct address_space *mapping,
2190                                 pgoff_t index,
2191                                 int (*filler)(void *, struct page *),
2192                                 void *data)
2193 {
2194         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2195 }
2196 EXPORT_SYMBOL(read_cache_page);
2197
2198 /**
2199  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2200  * @mapping:    the page's address_space
2201  * @index:      the page index
2202  * @gfp:        the page allocator flags to use if allocating
2203  *
2204  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2205  * any new page allocations done using the specified allocation flags.
2206  *
2207  * If the page does not get brought uptodate, return -EIO.
2208  */
2209 struct page *read_cache_page_gfp(struct address_space *mapping,
2210                                 pgoff_t index,
2211                                 gfp_t gfp)
2212 {
2213         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2214
2215         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2216 }
2217 EXPORT_SYMBOL(read_cache_page_gfp);
2218
2219 /*
2220  * Performs necessary checks before doing a write
2221  *
2222  * Can adjust writing position or amount of bytes to write.
2223  * Returns appropriate error code that caller should return or
2224  * zero in case that write should be allowed.
2225  */
2226 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2227 {
2228         struct inode *inode = file->f_mapping->host;
2229         unsigned long limit = rlimit(RLIMIT_FSIZE);
2230
2231         if (unlikely(*pos < 0))
2232                 return -EINVAL;
2233
2234         if (!isblk) {
2235                 /* FIXME: this is for backwards compatibility with 2.4 */
2236                 if (file->f_flags & O_APPEND)
2237                         *pos = i_size_read(inode);
2238
2239                 if (limit != RLIM_INFINITY) {
2240                         if (*pos >= limit) {
2241                                 send_sig(SIGXFSZ, current, 0);
2242                                 return -EFBIG;
2243                         }
2244                         if (*count > limit - (typeof(limit))*pos) {
2245                                 *count = limit - (typeof(limit))*pos;
2246                         }
2247                 }
2248         }
2249
2250         /*
2251          * LFS rule
2252          */
2253         if (unlikely(*pos + *count > MAX_NON_LFS &&
2254                                 !(file->f_flags & O_LARGEFILE))) {
2255                 if (*pos >= MAX_NON_LFS) {
2256                         return -EFBIG;
2257                 }
2258                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2259                         *count = MAX_NON_LFS - (unsigned long)*pos;
2260                 }
2261         }
2262
2263         /*
2264          * Are we about to exceed the fs block limit ?
2265          *
2266          * If we have written data it becomes a short write.  If we have
2267          * exceeded without writing data we send a signal and return EFBIG.
2268          * Linus frestrict idea will clean these up nicely..
2269          */
2270         if (likely(!isblk)) {
2271                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2272                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2273                                 return -EFBIG;
2274                         }
2275                         /* zero-length writes at ->s_maxbytes are OK */
2276                 }
2277
2278                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2279                         *count = inode->i_sb->s_maxbytes - *pos;
2280         } else {
2281 #ifdef CONFIG_BLOCK
2282                 loff_t isize;
2283                 if (bdev_read_only(I_BDEV(inode)))
2284                         return -EPERM;
2285                 isize = i_size_read(inode);
2286                 if (*pos >= isize) {
2287                         if (*count || *pos > isize)
2288                                 return -ENOSPC;
2289                 }
2290
2291                 if (*pos + *count > isize)
2292                         *count = isize - *pos;
2293 #else
2294                 return -EPERM;
2295 #endif
2296         }
2297         return 0;
2298 }
2299 EXPORT_SYMBOL(generic_write_checks);
2300
2301 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2302                                 loff_t pos, unsigned len, unsigned flags,
2303                                 struct page **pagep, void **fsdata)
2304 {
2305         const struct address_space_operations *aops = mapping->a_ops;
2306
2307         return aops->write_begin(file, mapping, pos, len, flags,
2308                                                         pagep, fsdata);
2309 }
2310 EXPORT_SYMBOL(pagecache_write_begin);
2311
2312 int pagecache_write_end(struct file *file, struct address_space *mapping,
2313                                 loff_t pos, unsigned len, unsigned copied,
2314                                 struct page *page, void *fsdata)
2315 {
2316         const struct address_space_operations *aops = mapping->a_ops;
2317
2318         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2319 }
2320 EXPORT_SYMBOL(pagecache_write_end);
2321
2322 ssize_t
2323 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2324 {
2325         struct file     *file = iocb->ki_filp;
2326         struct address_space *mapping = file->f_mapping;
2327         struct inode    *inode = mapping->host;
2328         ssize_t         written;
2329         size_t          write_len;
2330         pgoff_t         end;
2331         struct iov_iter data;
2332
2333         write_len = iov_iter_count(from);
2334         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2335
2336         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2337         if (written)
2338                 goto out;
2339
2340         /*
2341          * After a write we want buffered reads to be sure to go to disk to get
2342          * the new data.  We invalidate clean cached page from the region we're
2343          * about to write.  We do this *before* the write so that we can return
2344          * without clobbering -EIOCBQUEUED from ->direct_IO().
2345          */
2346         if (mapping->nrpages) {
2347                 written = invalidate_inode_pages2_range(mapping,
2348                                         pos >> PAGE_CACHE_SHIFT, end);
2349                 /*
2350                  * If a page can not be invalidated, return 0 to fall back
2351                  * to buffered write.
2352                  */
2353                 if (written) {
2354                         if (written == -EBUSY)
2355                                 return 0;
2356                         goto out;
2357                 }
2358         }
2359
2360         data = *from;
2361         written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2362
2363         /*
2364          * Finally, try again to invalidate clean pages which might have been
2365          * cached by non-direct readahead, or faulted in by get_user_pages()
2366          * if the source of the write was an mmap'ed region of the file
2367          * we're writing.  Either one is a pretty crazy thing to do,
2368          * so we don't support it 100%.  If this invalidation
2369          * fails, tough, the write still worked...
2370          */
2371         if (mapping->nrpages) {
2372                 invalidate_inode_pages2_range(mapping,
2373                                               pos >> PAGE_CACHE_SHIFT, end);
2374         }
2375
2376         if (written > 0) {
2377                 pos += written;
2378                 iov_iter_advance(from, written);
2379                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2380                         i_size_write(inode, pos);
2381                         mark_inode_dirty(inode);
2382                 }
2383                 iocb->ki_pos = pos;
2384         }
2385 out:
2386         return written;
2387 }
2388 EXPORT_SYMBOL(generic_file_direct_write);
2389
2390 /*
2391  * Find or create a page at the given pagecache position. Return the locked
2392  * page. This function is specifically for buffered writes.
2393  */
2394 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2395                                         pgoff_t index, unsigned flags)
2396 {
2397         struct page *page;
2398         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2399
2400         if (flags & AOP_FLAG_NOFS)
2401                 fgp_flags |= FGP_NOFS;
2402
2403         page = pagecache_get_page(mapping, index, fgp_flags,
2404                         mapping_gfp_mask(mapping),
2405                         GFP_KERNEL);
2406         if (page)
2407                 wait_for_stable_page(page);
2408
2409         return page;
2410 }
2411 EXPORT_SYMBOL(grab_cache_page_write_begin);
2412
2413 ssize_t generic_perform_write(struct file *file,
2414                                 struct iov_iter *i, loff_t pos)
2415 {
2416         struct address_space *mapping = file->f_mapping;
2417         const struct address_space_operations *a_ops = mapping->a_ops;
2418         long status = 0;
2419         ssize_t written = 0;
2420         unsigned int flags = 0;
2421
2422         /*
2423          * Copies from kernel address space cannot fail (NFSD is a big user).
2424          */
2425         if (segment_eq(get_fs(), KERNEL_DS))
2426                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2427
2428         do {
2429                 struct page *page;
2430                 unsigned long offset;   /* Offset into pagecache page */
2431                 unsigned long bytes;    /* Bytes to write to page */
2432                 size_t copied;          /* Bytes copied from user */
2433                 void *fsdata;
2434
2435                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2436                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2437                                                 iov_iter_count(i));
2438
2439 again:
2440                 /*
2441                  * Bring in the user page that we will copy from _first_.
2442                  * Otherwise there's a nasty deadlock on copying from the
2443                  * same page as we're writing to, without it being marked
2444                  * up-to-date.
2445                  *
2446                  * Not only is this an optimisation, but it is also required
2447                  * to check that the address is actually valid, when atomic
2448                  * usercopies are used, below.
2449                  */
2450                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2451                         status = -EFAULT;
2452                         break;
2453                 }
2454
2455                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2456                                                 &page, &fsdata);
2457                 if (unlikely(status < 0))
2458                         break;
2459
2460                 if (mapping_writably_mapped(mapping))
2461                         flush_dcache_page(page);
2462
2463                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2464                 flush_dcache_page(page);
2465
2466                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2467                                                 page, fsdata);
2468                 if (unlikely(status < 0))
2469                         break;
2470                 copied = status;
2471
2472                 cond_resched();
2473
2474                 iov_iter_advance(i, copied);
2475                 if (unlikely(copied == 0)) {
2476                         /*
2477                          * If we were unable to copy any data at all, we must
2478                          * fall back to a single segment length write.
2479                          *
2480                          * If we didn't fallback here, we could livelock
2481                          * because not all segments in the iov can be copied at
2482                          * once without a pagefault.
2483                          */
2484                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2485                                                 iov_iter_single_seg_count(i));
2486                         goto again;
2487                 }
2488                 pos += copied;
2489                 written += copied;
2490
2491                 balance_dirty_pages_ratelimited(mapping);
2492                 if (fatal_signal_pending(current)) {
2493                         status = -EINTR;
2494                         break;
2495                 }
2496         } while (iov_iter_count(i));
2497
2498         return written ? written : status;
2499 }
2500 EXPORT_SYMBOL(generic_perform_write);
2501
2502 /**
2503  * __generic_file_write_iter - write data to a file
2504  * @iocb:       IO state structure (file, offset, etc.)
2505  * @from:       iov_iter with data to write
2506  *
2507  * This function does all the work needed for actually writing data to a
2508  * file. It does all basic checks, removes SUID from the file, updates
2509  * modification times and calls proper subroutines depending on whether we
2510  * do direct IO or a standard buffered write.
2511  *
2512  * It expects i_mutex to be grabbed unless we work on a block device or similar
2513  * object which does not need locking at all.
2514  *
2515  * This function does *not* take care of syncing data in case of O_SYNC write.
2516  * A caller has to handle it. This is mainly due to the fact that we want to
2517  * avoid syncing under i_mutex.
2518  */
2519 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2520 {
2521         struct file *file = iocb->ki_filp;
2522         struct address_space * mapping = file->f_mapping;
2523         struct inode    *inode = mapping->host;
2524         loff_t          pos = iocb->ki_pos;
2525         ssize_t         written = 0;
2526         ssize_t         err;
2527         ssize_t         status;
2528         size_t          count = iov_iter_count(from);
2529
2530         /* We can write back this queue in page reclaim */
2531         current->backing_dev_info = mapping->backing_dev_info;
2532         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2533         if (err)
2534                 goto out;
2535
2536         if (count == 0)
2537                 goto out;
2538
2539         iov_iter_truncate(from, count);
2540
2541         err = file_remove_suid(file);
2542         if (err)
2543                 goto out;
2544
2545         err = file_update_time(file);
2546         if (err)
2547                 goto out;
2548
2549         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2550         if (unlikely(file->f_flags & O_DIRECT)) {
2551                 loff_t endbyte;
2552
2553                 written = generic_file_direct_write(iocb, from, pos);
2554                 if (written < 0 || written == count)
2555                         goto out;
2556
2557                 /*
2558                  * direct-io write to a hole: fall through to buffered I/O
2559                  * for completing the rest of the request.
2560                  */
2561                 pos += written;
2562                 count -= written;
2563
2564                 status = generic_perform_write(file, from, pos);
2565                 /*
2566                  * If generic_perform_write() returned a synchronous error
2567                  * then we want to return the number of bytes which were
2568                  * direct-written, or the error code if that was zero.  Note
2569                  * that this differs from normal direct-io semantics, which
2570                  * will return -EFOO even if some bytes were written.
2571                  */
2572                 if (unlikely(status < 0) && !written) {
2573                         err = status;
2574                         goto out;
2575                 }
2576                 iocb->ki_pos = pos + status;
2577                 /*
2578                  * We need to ensure that the page cache pages are written to
2579                  * disk and invalidated to preserve the expected O_DIRECT
2580                  * semantics.
2581                  */
2582                 endbyte = pos + status - 1;
2583                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2584                 if (err == 0) {
2585                         written += status;
2586                         invalidate_mapping_pages(mapping,
2587                                                  pos >> PAGE_CACHE_SHIFT,
2588                                                  endbyte >> PAGE_CACHE_SHIFT);
2589                 } else {
2590                         /*
2591                          * We don't know how much we wrote, so just return
2592                          * the number of bytes which were direct-written
2593                          */
2594                 }
2595         } else {
2596                 written = generic_perform_write(file, from, pos);
2597                 if (likely(written >= 0))
2598                         iocb->ki_pos = pos + written;
2599         }
2600 out:
2601         current->backing_dev_info = NULL;
2602         return written ? written : err;
2603 }
2604 EXPORT_SYMBOL(__generic_file_write_iter);
2605
2606 /**
2607  * generic_file_write_iter - write data to a file
2608  * @iocb:       IO state structure
2609  * @from:       iov_iter with data to write
2610  *
2611  * This is a wrapper around __generic_file_write_iter() to be used by most
2612  * filesystems. It takes care of syncing the file in case of O_SYNC file
2613  * and acquires i_mutex as needed.
2614  */
2615 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2616 {
2617         struct file *file = iocb->ki_filp;
2618         struct inode *inode = file->f_mapping->host;
2619         ssize_t ret;
2620
2621         mutex_lock(&inode->i_mutex);
2622         ret = __generic_file_write_iter(iocb, from);
2623         mutex_unlock(&inode->i_mutex);
2624
2625         if (ret > 0) {
2626                 ssize_t err;
2627
2628                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2629                 if (err < 0)
2630                         ret = err;
2631         }
2632         return ret;
2633 }
2634 EXPORT_SYMBOL(generic_file_write_iter);
2635
2636 /**
2637  * try_to_release_page() - release old fs-specific metadata on a page
2638  *
2639  * @page: the page which the kernel is trying to free
2640  * @gfp_mask: memory allocation flags (and I/O mode)
2641  *
2642  * The address_space is to try to release any data against the page
2643  * (presumably at page->private).  If the release was successful, return `1'.
2644  * Otherwise return zero.
2645  *
2646  * This may also be called if PG_fscache is set on a page, indicating that the
2647  * page is known to the local caching routines.
2648  *
2649  * The @gfp_mask argument specifies whether I/O may be performed to release
2650  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2651  *
2652  */
2653 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2654 {
2655         struct address_space * const mapping = page->mapping;
2656
2657         BUG_ON(!PageLocked(page));
2658         if (PageWriteback(page))
2659                 return 0;
2660
2661         if (mapping && mapping->a_ops->releasepage)
2662                 return mapping->a_ops->releasepage(page, gfp_mask);
2663         return try_to_free_buffers(page);
2664 }
2665
2666 EXPORT_SYMBOL(try_to_release_page);