swap: cond_resched in swap_cgroup_prepare()
[firefly-linux-kernel-4.4.55.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/dax.h>
20 #include <linux/kthread.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/migrate.h>
26 #include <linux/hashtable.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/page_idle.h>
29
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32 #include "internal.h"
33
34 /*
35  * By default transparent hugepage support is disabled in order that avoid
36  * to risk increase the memory footprint of applications without a guaranteed
37  * benefit. When transparent hugepage support is enabled, is for all mappings,
38  * and khugepaged scans all mappings.
39  * Defrag is invoked by khugepaged hugepage allocations and by page faults
40  * for all hugepage allocations.
41  */
42 unsigned long transparent_hugepage_flags __read_mostly =
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
44         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
45 #endif
46 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
47         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
48 #endif
49         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
50         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
51         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
52
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
55 static unsigned int khugepaged_pages_collapsed;
56 static unsigned int khugepaged_full_scans;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60 static struct task_struct *khugepaged_thread __read_mostly;
61 static DEFINE_MUTEX(khugepaged_mutex);
62 static DEFINE_SPINLOCK(khugepaged_mm_lock);
63 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
64 /*
65  * default collapse hugepages if there is at least one pte mapped like
66  * it would have happened if the vma was large enough during page
67  * fault.
68  */
69 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
70
71 static int khugepaged(void *none);
72 static int khugepaged_slab_init(void);
73 static void khugepaged_slab_exit(void);
74
75 #define MM_SLOTS_HASH_BITS 10
76 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
77
78 static struct kmem_cache *mm_slot_cache __read_mostly;
79
80 /**
81  * struct mm_slot - hash lookup from mm to mm_slot
82  * @hash: hash collision list
83  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
84  * @mm: the mm that this information is valid for
85  */
86 struct mm_slot {
87         struct hlist_node hash;
88         struct list_head mm_node;
89         struct mm_struct *mm;
90 };
91
92 /**
93  * struct khugepaged_scan - cursor for scanning
94  * @mm_head: the head of the mm list to scan
95  * @mm_slot: the current mm_slot we are scanning
96  * @address: the next address inside that to be scanned
97  *
98  * There is only the one khugepaged_scan instance of this cursor structure.
99  */
100 struct khugepaged_scan {
101         struct list_head mm_head;
102         struct mm_slot *mm_slot;
103         unsigned long address;
104 };
105 static struct khugepaged_scan khugepaged_scan = {
106         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
107 };
108
109
110 static void set_recommended_min_free_kbytes(void)
111 {
112         struct zone *zone;
113         int nr_zones = 0;
114         unsigned long recommended_min;
115
116         for_each_populated_zone(zone)
117                 nr_zones++;
118
119         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
120         recommended_min = pageblock_nr_pages * nr_zones * 2;
121
122         /*
123          * Make sure that on average at least two pageblocks are almost free
124          * of another type, one for a migratetype to fall back to and a
125          * second to avoid subsequent fallbacks of other types There are 3
126          * MIGRATE_TYPES we care about.
127          */
128         recommended_min += pageblock_nr_pages * nr_zones *
129                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
130
131         /* don't ever allow to reserve more than 5% of the lowmem */
132         recommended_min = min(recommended_min,
133                               (unsigned long) nr_free_buffer_pages() / 20);
134         recommended_min <<= (PAGE_SHIFT-10);
135
136         if (recommended_min > min_free_kbytes) {
137                 if (user_min_free_kbytes >= 0)
138                         pr_info("raising min_free_kbytes from %d to %lu "
139                                 "to help transparent hugepage allocations\n",
140                                 min_free_kbytes, recommended_min);
141
142                 min_free_kbytes = recommended_min;
143         }
144         setup_per_zone_wmarks();
145 }
146
147 static int start_stop_khugepaged(void)
148 {
149         int err = 0;
150         if (khugepaged_enabled()) {
151                 if (!khugepaged_thread)
152                         khugepaged_thread = kthread_run(khugepaged, NULL,
153                                                         "khugepaged");
154                 if (IS_ERR(khugepaged_thread)) {
155                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
156                         err = PTR_ERR(khugepaged_thread);
157                         khugepaged_thread = NULL;
158                         goto fail;
159                 }
160
161                 if (!list_empty(&khugepaged_scan.mm_head))
162                         wake_up_interruptible(&khugepaged_wait);
163
164                 set_recommended_min_free_kbytes();
165         } else if (khugepaged_thread) {
166                 kthread_stop(khugepaged_thread);
167                 khugepaged_thread = NULL;
168         }
169 fail:
170         return err;
171 }
172
173 static atomic_t huge_zero_refcount;
174 struct page *huge_zero_page __read_mostly;
175
176 struct page *get_huge_zero_page(void)
177 {
178         struct page *zero_page;
179 retry:
180         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
181                 return READ_ONCE(huge_zero_page);
182
183         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
184                         HPAGE_PMD_ORDER);
185         if (!zero_page) {
186                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
187                 return NULL;
188         }
189         count_vm_event(THP_ZERO_PAGE_ALLOC);
190         preempt_disable();
191         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
192                 preempt_enable();
193                 __free_pages(zero_page, compound_order(zero_page));
194                 goto retry;
195         }
196
197         /* We take additional reference here. It will be put back by shrinker */
198         atomic_set(&huge_zero_refcount, 2);
199         preempt_enable();
200         return READ_ONCE(huge_zero_page);
201 }
202
203 static void put_huge_zero_page(void)
204 {
205         /*
206          * Counter should never go to zero here. Only shrinker can put
207          * last reference.
208          */
209         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
210 }
211
212 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
213                                         struct shrink_control *sc)
214 {
215         /* we can free zero page only if last reference remains */
216         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
217 }
218
219 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
220                                        struct shrink_control *sc)
221 {
222         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223                 struct page *zero_page = xchg(&huge_zero_page, NULL);
224                 BUG_ON(zero_page == NULL);
225                 __free_pages(zero_page, compound_order(zero_page));
226                 return HPAGE_PMD_NR;
227         }
228
229         return 0;
230 }
231
232 static struct shrinker huge_zero_page_shrinker = {
233         .count_objects = shrink_huge_zero_page_count,
234         .scan_objects = shrink_huge_zero_page_scan,
235         .seeks = DEFAULT_SEEKS,
236 };
237
238 #ifdef CONFIG_SYSFS
239
240 static ssize_t double_flag_show(struct kobject *kobj,
241                                 struct kobj_attribute *attr, char *buf,
242                                 enum transparent_hugepage_flag enabled,
243                                 enum transparent_hugepage_flag req_madv)
244 {
245         if (test_bit(enabled, &transparent_hugepage_flags)) {
246                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
247                 return sprintf(buf, "[always] madvise never\n");
248         } else if (test_bit(req_madv, &transparent_hugepage_flags))
249                 return sprintf(buf, "always [madvise] never\n");
250         else
251                 return sprintf(buf, "always madvise [never]\n");
252 }
253 static ssize_t double_flag_store(struct kobject *kobj,
254                                  struct kobj_attribute *attr,
255                                  const char *buf, size_t count,
256                                  enum transparent_hugepage_flag enabled,
257                                  enum transparent_hugepage_flag req_madv)
258 {
259         if (!memcmp("always", buf,
260                     min(sizeof("always")-1, count))) {
261                 set_bit(enabled, &transparent_hugepage_flags);
262                 clear_bit(req_madv, &transparent_hugepage_flags);
263         } else if (!memcmp("madvise", buf,
264                            min(sizeof("madvise")-1, count))) {
265                 clear_bit(enabled, &transparent_hugepage_flags);
266                 set_bit(req_madv, &transparent_hugepage_flags);
267         } else if (!memcmp("never", buf,
268                            min(sizeof("never")-1, count))) {
269                 clear_bit(enabled, &transparent_hugepage_flags);
270                 clear_bit(req_madv, &transparent_hugepage_flags);
271         } else
272                 return -EINVAL;
273
274         return count;
275 }
276
277 static ssize_t enabled_show(struct kobject *kobj,
278                             struct kobj_attribute *attr, char *buf)
279 {
280         return double_flag_show(kobj, attr, buf,
281                                 TRANSPARENT_HUGEPAGE_FLAG,
282                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
283 }
284 static ssize_t enabled_store(struct kobject *kobj,
285                              struct kobj_attribute *attr,
286                              const char *buf, size_t count)
287 {
288         ssize_t ret;
289
290         ret = double_flag_store(kobj, attr, buf, count,
291                                 TRANSPARENT_HUGEPAGE_FLAG,
292                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
293
294         if (ret > 0) {
295                 int err;
296
297                 mutex_lock(&khugepaged_mutex);
298                 err = start_stop_khugepaged();
299                 mutex_unlock(&khugepaged_mutex);
300
301                 if (err)
302                         ret = err;
303         }
304
305         return ret;
306 }
307 static struct kobj_attribute enabled_attr =
308         __ATTR(enabled, 0644, enabled_show, enabled_store);
309
310 static ssize_t single_flag_show(struct kobject *kobj,
311                                 struct kobj_attribute *attr, char *buf,
312                                 enum transparent_hugepage_flag flag)
313 {
314         return sprintf(buf, "%d\n",
315                        !!test_bit(flag, &transparent_hugepage_flags));
316 }
317
318 static ssize_t single_flag_store(struct kobject *kobj,
319                                  struct kobj_attribute *attr,
320                                  const char *buf, size_t count,
321                                  enum transparent_hugepage_flag flag)
322 {
323         unsigned long value;
324         int ret;
325
326         ret = kstrtoul(buf, 10, &value);
327         if (ret < 0)
328                 return ret;
329         if (value > 1)
330                 return -EINVAL;
331
332         if (value)
333                 set_bit(flag, &transparent_hugepage_flags);
334         else
335                 clear_bit(flag, &transparent_hugepage_flags);
336
337         return count;
338 }
339
340 /*
341  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
342  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
343  * memory just to allocate one more hugepage.
344  */
345 static ssize_t defrag_show(struct kobject *kobj,
346                            struct kobj_attribute *attr, char *buf)
347 {
348         return double_flag_show(kobj, attr, buf,
349                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
350                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
351 }
352 static ssize_t defrag_store(struct kobject *kobj,
353                             struct kobj_attribute *attr,
354                             const char *buf, size_t count)
355 {
356         return double_flag_store(kobj, attr, buf, count,
357                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
358                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
359 }
360 static struct kobj_attribute defrag_attr =
361         __ATTR(defrag, 0644, defrag_show, defrag_store);
362
363 static ssize_t use_zero_page_show(struct kobject *kobj,
364                 struct kobj_attribute *attr, char *buf)
365 {
366         return single_flag_show(kobj, attr, buf,
367                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
368 }
369 static ssize_t use_zero_page_store(struct kobject *kobj,
370                 struct kobj_attribute *attr, const char *buf, size_t count)
371 {
372         return single_flag_store(kobj, attr, buf, count,
373                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
374 }
375 static struct kobj_attribute use_zero_page_attr =
376         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
377 #ifdef CONFIG_DEBUG_VM
378 static ssize_t debug_cow_show(struct kobject *kobj,
379                                 struct kobj_attribute *attr, char *buf)
380 {
381         return single_flag_show(kobj, attr, buf,
382                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
383 }
384 static ssize_t debug_cow_store(struct kobject *kobj,
385                                struct kobj_attribute *attr,
386                                const char *buf, size_t count)
387 {
388         return single_flag_store(kobj, attr, buf, count,
389                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
390 }
391 static struct kobj_attribute debug_cow_attr =
392         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
393 #endif /* CONFIG_DEBUG_VM */
394
395 static struct attribute *hugepage_attr[] = {
396         &enabled_attr.attr,
397         &defrag_attr.attr,
398         &use_zero_page_attr.attr,
399 #ifdef CONFIG_DEBUG_VM
400         &debug_cow_attr.attr,
401 #endif
402         NULL,
403 };
404
405 static struct attribute_group hugepage_attr_group = {
406         .attrs = hugepage_attr,
407 };
408
409 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
410                                          struct kobj_attribute *attr,
411                                          char *buf)
412 {
413         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
414 }
415
416 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
417                                           struct kobj_attribute *attr,
418                                           const char *buf, size_t count)
419 {
420         unsigned long msecs;
421         int err;
422
423         err = kstrtoul(buf, 10, &msecs);
424         if (err || msecs > UINT_MAX)
425                 return -EINVAL;
426
427         khugepaged_scan_sleep_millisecs = msecs;
428         wake_up_interruptible(&khugepaged_wait);
429
430         return count;
431 }
432 static struct kobj_attribute scan_sleep_millisecs_attr =
433         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
434                scan_sleep_millisecs_store);
435
436 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
437                                           struct kobj_attribute *attr,
438                                           char *buf)
439 {
440         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
441 }
442
443 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
444                                            struct kobj_attribute *attr,
445                                            const char *buf, size_t count)
446 {
447         unsigned long msecs;
448         int err;
449
450         err = kstrtoul(buf, 10, &msecs);
451         if (err || msecs > UINT_MAX)
452                 return -EINVAL;
453
454         khugepaged_alloc_sleep_millisecs = msecs;
455         wake_up_interruptible(&khugepaged_wait);
456
457         return count;
458 }
459 static struct kobj_attribute alloc_sleep_millisecs_attr =
460         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
461                alloc_sleep_millisecs_store);
462
463 static ssize_t pages_to_scan_show(struct kobject *kobj,
464                                   struct kobj_attribute *attr,
465                                   char *buf)
466 {
467         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
468 }
469 static ssize_t pages_to_scan_store(struct kobject *kobj,
470                                    struct kobj_attribute *attr,
471                                    const char *buf, size_t count)
472 {
473         int err;
474         unsigned long pages;
475
476         err = kstrtoul(buf, 10, &pages);
477         if (err || !pages || pages > UINT_MAX)
478                 return -EINVAL;
479
480         khugepaged_pages_to_scan = pages;
481
482         return count;
483 }
484 static struct kobj_attribute pages_to_scan_attr =
485         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
486                pages_to_scan_store);
487
488 static ssize_t pages_collapsed_show(struct kobject *kobj,
489                                     struct kobj_attribute *attr,
490                                     char *buf)
491 {
492         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
493 }
494 static struct kobj_attribute pages_collapsed_attr =
495         __ATTR_RO(pages_collapsed);
496
497 static ssize_t full_scans_show(struct kobject *kobj,
498                                struct kobj_attribute *attr,
499                                char *buf)
500 {
501         return sprintf(buf, "%u\n", khugepaged_full_scans);
502 }
503 static struct kobj_attribute full_scans_attr =
504         __ATTR_RO(full_scans);
505
506 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
507                                       struct kobj_attribute *attr, char *buf)
508 {
509         return single_flag_show(kobj, attr, buf,
510                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
511 }
512 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
513                                        struct kobj_attribute *attr,
514                                        const char *buf, size_t count)
515 {
516         return single_flag_store(kobj, attr, buf, count,
517                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
518 }
519 static struct kobj_attribute khugepaged_defrag_attr =
520         __ATTR(defrag, 0644, khugepaged_defrag_show,
521                khugepaged_defrag_store);
522
523 /*
524  * max_ptes_none controls if khugepaged should collapse hugepages over
525  * any unmapped ptes in turn potentially increasing the memory
526  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
527  * reduce the available free memory in the system as it
528  * runs. Increasing max_ptes_none will instead potentially reduce the
529  * free memory in the system during the khugepaged scan.
530  */
531 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
532                                              struct kobj_attribute *attr,
533                                              char *buf)
534 {
535         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
536 }
537 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
538                                               struct kobj_attribute *attr,
539                                               const char *buf, size_t count)
540 {
541         int err;
542         unsigned long max_ptes_none;
543
544         err = kstrtoul(buf, 10, &max_ptes_none);
545         if (err || max_ptes_none > HPAGE_PMD_NR-1)
546                 return -EINVAL;
547
548         khugepaged_max_ptes_none = max_ptes_none;
549
550         return count;
551 }
552 static struct kobj_attribute khugepaged_max_ptes_none_attr =
553         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
554                khugepaged_max_ptes_none_store);
555
556 static struct attribute *khugepaged_attr[] = {
557         &khugepaged_defrag_attr.attr,
558         &khugepaged_max_ptes_none_attr.attr,
559         &pages_to_scan_attr.attr,
560         &pages_collapsed_attr.attr,
561         &full_scans_attr.attr,
562         &scan_sleep_millisecs_attr.attr,
563         &alloc_sleep_millisecs_attr.attr,
564         NULL,
565 };
566
567 static struct attribute_group khugepaged_attr_group = {
568         .attrs = khugepaged_attr,
569         .name = "khugepaged",
570 };
571
572 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
573 {
574         int err;
575
576         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
577         if (unlikely(!*hugepage_kobj)) {
578                 pr_err("failed to create transparent hugepage kobject\n");
579                 return -ENOMEM;
580         }
581
582         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
583         if (err) {
584                 pr_err("failed to register transparent hugepage group\n");
585                 goto delete_obj;
586         }
587
588         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
589         if (err) {
590                 pr_err("failed to register transparent hugepage group\n");
591                 goto remove_hp_group;
592         }
593
594         return 0;
595
596 remove_hp_group:
597         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
598 delete_obj:
599         kobject_put(*hugepage_kobj);
600         return err;
601 }
602
603 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
604 {
605         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
606         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
607         kobject_put(hugepage_kobj);
608 }
609 #else
610 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
611 {
612         return 0;
613 }
614
615 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
616 {
617 }
618 #endif /* CONFIG_SYSFS */
619
620 static int __init hugepage_init(void)
621 {
622         int err;
623         struct kobject *hugepage_kobj;
624
625         if (!has_transparent_hugepage()) {
626                 transparent_hugepage_flags = 0;
627                 return -EINVAL;
628         }
629
630         err = hugepage_init_sysfs(&hugepage_kobj);
631         if (err)
632                 goto err_sysfs;
633
634         err = khugepaged_slab_init();
635         if (err)
636                 goto err_slab;
637
638         err = register_shrinker(&huge_zero_page_shrinker);
639         if (err)
640                 goto err_hzp_shrinker;
641
642         /*
643          * By default disable transparent hugepages on smaller systems,
644          * where the extra memory used could hurt more than TLB overhead
645          * is likely to save.  The admin can still enable it through /sys.
646          */
647         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
648                 transparent_hugepage_flags = 0;
649                 return 0;
650         }
651
652         err = start_stop_khugepaged();
653         if (err)
654                 goto err_khugepaged;
655
656         return 0;
657 err_khugepaged:
658         unregister_shrinker(&huge_zero_page_shrinker);
659 err_hzp_shrinker:
660         khugepaged_slab_exit();
661 err_slab:
662         hugepage_exit_sysfs(hugepage_kobj);
663 err_sysfs:
664         return err;
665 }
666 subsys_initcall(hugepage_init);
667
668 static int __init setup_transparent_hugepage(char *str)
669 {
670         int ret = 0;
671         if (!str)
672                 goto out;
673         if (!strcmp(str, "always")) {
674                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
675                         &transparent_hugepage_flags);
676                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677                           &transparent_hugepage_flags);
678                 ret = 1;
679         } else if (!strcmp(str, "madvise")) {
680                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681                           &transparent_hugepage_flags);
682                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683                         &transparent_hugepage_flags);
684                 ret = 1;
685         } else if (!strcmp(str, "never")) {
686                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
687                           &transparent_hugepage_flags);
688                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
689                           &transparent_hugepage_flags);
690                 ret = 1;
691         }
692 out:
693         if (!ret)
694                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
695         return ret;
696 }
697 __setup("transparent_hugepage=", setup_transparent_hugepage);
698
699 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
700 {
701         if (likely(vma->vm_flags & VM_WRITE))
702                 pmd = pmd_mkwrite(pmd);
703         return pmd;
704 }
705
706 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
707 {
708         pmd_t entry;
709         entry = mk_pmd(page, prot);
710         entry = pmd_mkhuge(entry);
711         return entry;
712 }
713
714 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
715                                         struct vm_area_struct *vma,
716                                         unsigned long address, pmd_t *pmd,
717                                         struct page *page, gfp_t gfp,
718                                         unsigned int flags)
719 {
720         struct mem_cgroup *memcg;
721         pgtable_t pgtable;
722         spinlock_t *ptl;
723         unsigned long haddr = address & HPAGE_PMD_MASK;
724
725         VM_BUG_ON_PAGE(!PageCompound(page), page);
726
727         if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
728                 put_page(page);
729                 count_vm_event(THP_FAULT_FALLBACK);
730                 return VM_FAULT_FALLBACK;
731         }
732
733         pgtable = pte_alloc_one(mm, haddr);
734         if (unlikely(!pgtable)) {
735                 mem_cgroup_cancel_charge(page, memcg);
736                 put_page(page);
737                 return VM_FAULT_OOM;
738         }
739
740         clear_huge_page(page, haddr, HPAGE_PMD_NR);
741         /*
742          * The memory barrier inside __SetPageUptodate makes sure that
743          * clear_huge_page writes become visible before the set_pmd_at()
744          * write.
745          */
746         __SetPageUptodate(page);
747
748         ptl = pmd_lock(mm, pmd);
749         if (unlikely(!pmd_none(*pmd))) {
750                 spin_unlock(ptl);
751                 mem_cgroup_cancel_charge(page, memcg);
752                 put_page(page);
753                 pte_free(mm, pgtable);
754         } else {
755                 pmd_t entry;
756
757                 /* Deliver the page fault to userland */
758                 if (userfaultfd_missing(vma)) {
759                         int ret;
760
761                         spin_unlock(ptl);
762                         mem_cgroup_cancel_charge(page, memcg);
763                         put_page(page);
764                         pte_free(mm, pgtable);
765                         ret = handle_userfault(vma, address, flags,
766                                                VM_UFFD_MISSING);
767                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
768                         return ret;
769                 }
770
771                 entry = mk_huge_pmd(page, vma->vm_page_prot);
772                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
773                 page_add_new_anon_rmap(page, vma, haddr);
774                 mem_cgroup_commit_charge(page, memcg, false);
775                 lru_cache_add_active_or_unevictable(page, vma);
776                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
777                 set_pmd_at(mm, haddr, pmd, entry);
778                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
779                 atomic_long_inc(&mm->nr_ptes);
780                 spin_unlock(ptl);
781                 count_vm_event(THP_FAULT_ALLOC);
782         }
783
784         return 0;
785 }
786
787 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
788 {
789         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
790 }
791
792 /* Caller must hold page table lock. */
793 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
794                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
795                 struct page *zero_page)
796 {
797         pmd_t entry;
798         if (!pmd_none(*pmd))
799                 return false;
800         entry = mk_pmd(zero_page, vma->vm_page_prot);
801         entry = pmd_mkhuge(entry);
802         pgtable_trans_huge_deposit(mm, pmd, pgtable);
803         set_pmd_at(mm, haddr, pmd, entry);
804         atomic_long_inc(&mm->nr_ptes);
805         return true;
806 }
807
808 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
809                                unsigned long address, pmd_t *pmd,
810                                unsigned int flags)
811 {
812         gfp_t gfp;
813         struct page *page;
814         unsigned long haddr = address & HPAGE_PMD_MASK;
815
816         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
817                 return VM_FAULT_FALLBACK;
818         if (unlikely(anon_vma_prepare(vma)))
819                 return VM_FAULT_OOM;
820         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
821                 return VM_FAULT_OOM;
822         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
823                         transparent_hugepage_use_zero_page()) {
824                 spinlock_t *ptl;
825                 pgtable_t pgtable;
826                 struct page *zero_page;
827                 bool set;
828                 int ret;
829                 pgtable = pte_alloc_one(mm, haddr);
830                 if (unlikely(!pgtable))
831                         return VM_FAULT_OOM;
832                 zero_page = get_huge_zero_page();
833                 if (unlikely(!zero_page)) {
834                         pte_free(mm, pgtable);
835                         count_vm_event(THP_FAULT_FALLBACK);
836                         return VM_FAULT_FALLBACK;
837                 }
838                 ptl = pmd_lock(mm, pmd);
839                 ret = 0;
840                 set = false;
841                 if (pmd_none(*pmd)) {
842                         if (userfaultfd_missing(vma)) {
843                                 spin_unlock(ptl);
844                                 ret = handle_userfault(vma, address, flags,
845                                                        VM_UFFD_MISSING);
846                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847                         } else {
848                                 set_huge_zero_page(pgtable, mm, vma,
849                                                    haddr, pmd,
850                                                    zero_page);
851                                 spin_unlock(ptl);
852                                 set = true;
853                         }
854                 } else
855                         spin_unlock(ptl);
856                 if (!set) {
857                         pte_free(mm, pgtable);
858                         put_huge_zero_page();
859                 }
860                 return ret;
861         }
862         gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
863         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
864         if (unlikely(!page)) {
865                 count_vm_event(THP_FAULT_FALLBACK);
866                 return VM_FAULT_FALLBACK;
867         }
868         return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
869                                             flags);
870 }
871
872 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
873                 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
874 {
875         struct mm_struct *mm = vma->vm_mm;
876         pmd_t entry;
877         spinlock_t *ptl;
878
879         ptl = pmd_lock(mm, pmd);
880         if (pmd_none(*pmd)) {
881                 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
882                 if (write) {
883                         entry = pmd_mkyoung(pmd_mkdirty(entry));
884                         entry = maybe_pmd_mkwrite(entry, vma);
885                 }
886                 set_pmd_at(mm, addr, pmd, entry);
887                 update_mmu_cache_pmd(vma, addr, pmd);
888         }
889         spin_unlock(ptl);
890 }
891
892 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
893                         pmd_t *pmd, unsigned long pfn, bool write)
894 {
895         pgprot_t pgprot = vma->vm_page_prot;
896         /*
897          * If we had pmd_special, we could avoid all these restrictions,
898          * but we need to be consistent with PTEs and architectures that
899          * can't support a 'special' bit.
900          */
901         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
902         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
903                                                 (VM_PFNMAP|VM_MIXEDMAP));
904         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
905         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
906
907         if (addr < vma->vm_start || addr >= vma->vm_end)
908                 return VM_FAULT_SIGBUS;
909         if (track_pfn_insert(vma, &pgprot, pfn))
910                 return VM_FAULT_SIGBUS;
911         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
912         return VM_FAULT_NOPAGE;
913 }
914
915 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
917                   struct vm_area_struct *vma)
918 {
919         spinlock_t *dst_ptl, *src_ptl;
920         struct page *src_page;
921         pmd_t pmd;
922         pgtable_t pgtable;
923         int ret;
924
925         ret = -ENOMEM;
926         pgtable = pte_alloc_one(dst_mm, addr);
927         if (unlikely(!pgtable))
928                 goto out;
929
930         dst_ptl = pmd_lock(dst_mm, dst_pmd);
931         src_ptl = pmd_lockptr(src_mm, src_pmd);
932         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
933
934         ret = -EAGAIN;
935         pmd = *src_pmd;
936         if (unlikely(!pmd_trans_huge(pmd))) {
937                 pte_free(dst_mm, pgtable);
938                 goto out_unlock;
939         }
940         /*
941          * When page table lock is held, the huge zero pmd should not be
942          * under splitting since we don't split the page itself, only pmd to
943          * a page table.
944          */
945         if (is_huge_zero_pmd(pmd)) {
946                 struct page *zero_page;
947                 /*
948                  * get_huge_zero_page() will never allocate a new page here,
949                  * since we already have a zero page to copy. It just takes a
950                  * reference.
951                  */
952                 zero_page = get_huge_zero_page();
953                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
954                                 zero_page);
955                 ret = 0;
956                 goto out_unlock;
957         }
958
959         if (unlikely(pmd_trans_splitting(pmd))) {
960                 /* split huge page running from under us */
961                 spin_unlock(src_ptl);
962                 spin_unlock(dst_ptl);
963                 pte_free(dst_mm, pgtable);
964
965                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
966                 goto out;
967         }
968         src_page = pmd_page(pmd);
969         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
970         get_page(src_page);
971         page_dup_rmap(src_page);
972         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
973
974         pmdp_set_wrprotect(src_mm, addr, src_pmd);
975         pmd = pmd_mkold(pmd_wrprotect(pmd));
976         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
977         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
978         atomic_long_inc(&dst_mm->nr_ptes);
979
980         ret = 0;
981 out_unlock:
982         spin_unlock(src_ptl);
983         spin_unlock(dst_ptl);
984 out:
985         return ret;
986 }
987
988 void huge_pmd_set_accessed(struct mm_struct *mm,
989                            struct vm_area_struct *vma,
990                            unsigned long address,
991                            pmd_t *pmd, pmd_t orig_pmd,
992                            int dirty)
993 {
994         spinlock_t *ptl;
995         pmd_t entry;
996         unsigned long haddr;
997
998         ptl = pmd_lock(mm, pmd);
999         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000                 goto unlock;
1001
1002         entry = pmd_mkyoung(orig_pmd);
1003         haddr = address & HPAGE_PMD_MASK;
1004         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1005                 update_mmu_cache_pmd(vma, address, pmd);
1006
1007 unlock:
1008         spin_unlock(ptl);
1009 }
1010
1011 /*
1012  * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
1013  * during copy_user_huge_page()'s copy_page_rep(): in the case when
1014  * the source page gets split and a tail freed before copy completes.
1015  * Called under pmd_lock of checked pmd, so safe from splitting itself.
1016  */
1017 static void get_user_huge_page(struct page *page)
1018 {
1019         if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1020                 struct page *endpage = page + HPAGE_PMD_NR;
1021
1022                 atomic_add(HPAGE_PMD_NR, &page->_count);
1023                 while (++page < endpage)
1024                         get_huge_page_tail(page);
1025         } else {
1026                 get_page(page);
1027         }
1028 }
1029
1030 static void put_user_huge_page(struct page *page)
1031 {
1032         if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1033                 struct page *endpage = page + HPAGE_PMD_NR;
1034
1035                 while (page < endpage)
1036                         put_page(page++);
1037         } else {
1038                 put_page(page);
1039         }
1040 }
1041
1042 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1043                                         struct vm_area_struct *vma,
1044                                         unsigned long address,
1045                                         pmd_t *pmd, pmd_t orig_pmd,
1046                                         struct page *page,
1047                                         unsigned long haddr)
1048 {
1049         struct mem_cgroup *memcg;
1050         spinlock_t *ptl;
1051         pgtable_t pgtable;
1052         pmd_t _pmd;
1053         int ret = 0, i;
1054         struct page **pages;
1055         unsigned long mmun_start;       /* For mmu_notifiers */
1056         unsigned long mmun_end;         /* For mmu_notifiers */
1057
1058         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1059                         GFP_KERNEL);
1060         if (unlikely(!pages)) {
1061                 ret |= VM_FAULT_OOM;
1062                 goto out;
1063         }
1064
1065         for (i = 0; i < HPAGE_PMD_NR; i++) {
1066                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1067                                                __GFP_OTHER_NODE,
1068                                                vma, address, page_to_nid(page));
1069                 if (unlikely(!pages[i] ||
1070                              mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1071                                                    &memcg))) {
1072                         if (pages[i])
1073                                 put_page(pages[i]);
1074                         while (--i >= 0) {
1075                                 memcg = (void *)page_private(pages[i]);
1076                                 set_page_private(pages[i], 0);
1077                                 mem_cgroup_cancel_charge(pages[i], memcg);
1078                                 put_page(pages[i]);
1079                         }
1080                         kfree(pages);
1081                         ret |= VM_FAULT_OOM;
1082                         goto out;
1083                 }
1084                 set_page_private(pages[i], (unsigned long)memcg);
1085         }
1086
1087         for (i = 0; i < HPAGE_PMD_NR; i++) {
1088                 copy_user_highpage(pages[i], page + i,
1089                                    haddr + PAGE_SIZE * i, vma);
1090                 __SetPageUptodate(pages[i]);
1091                 cond_resched();
1092         }
1093
1094         mmun_start = haddr;
1095         mmun_end   = haddr + HPAGE_PMD_SIZE;
1096         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1097
1098         ptl = pmd_lock(mm, pmd);
1099         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1100                 goto out_free_pages;
1101         VM_BUG_ON_PAGE(!PageHead(page), page);
1102
1103         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1104         /* leave pmd empty until pte is filled */
1105
1106         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1107         pmd_populate(mm, &_pmd, pgtable);
1108
1109         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1110                 pte_t *pte, entry;
1111                 entry = mk_pte(pages[i], vma->vm_page_prot);
1112                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1113                 memcg = (void *)page_private(pages[i]);
1114                 set_page_private(pages[i], 0);
1115                 page_add_new_anon_rmap(pages[i], vma, haddr);
1116                 mem_cgroup_commit_charge(pages[i], memcg, false);
1117                 lru_cache_add_active_or_unevictable(pages[i], vma);
1118                 pte = pte_offset_map(&_pmd, haddr);
1119                 VM_BUG_ON(!pte_none(*pte));
1120                 set_pte_at(mm, haddr, pte, entry);
1121                 pte_unmap(pte);
1122         }
1123         kfree(pages);
1124
1125         smp_wmb(); /* make pte visible before pmd */
1126         pmd_populate(mm, pmd, pgtable);
1127         page_remove_rmap(page);
1128         spin_unlock(ptl);
1129
1130         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1131
1132         ret |= VM_FAULT_WRITE;
1133         put_page(page);
1134
1135 out:
1136         return ret;
1137
1138 out_free_pages:
1139         spin_unlock(ptl);
1140         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1141         for (i = 0; i < HPAGE_PMD_NR; i++) {
1142                 memcg = (void *)page_private(pages[i]);
1143                 set_page_private(pages[i], 0);
1144                 mem_cgroup_cancel_charge(pages[i], memcg);
1145                 put_page(pages[i]);
1146         }
1147         kfree(pages);
1148         goto out;
1149 }
1150
1151 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1152                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1153 {
1154         spinlock_t *ptl;
1155         int ret = 0;
1156         struct page *page = NULL, *new_page;
1157         struct mem_cgroup *memcg;
1158         unsigned long haddr;
1159         unsigned long mmun_start;       /* For mmu_notifiers */
1160         unsigned long mmun_end;         /* For mmu_notifiers */
1161         gfp_t huge_gfp;                 /* for allocation and charge */
1162
1163         ptl = pmd_lockptr(mm, pmd);
1164         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1165         haddr = address & HPAGE_PMD_MASK;
1166         if (is_huge_zero_pmd(orig_pmd))
1167                 goto alloc;
1168         spin_lock(ptl);
1169         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1170                 goto out_unlock;
1171
1172         page = pmd_page(orig_pmd);
1173         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1174         if (page_mapcount(page) == 1) {
1175                 pmd_t entry;
1176                 entry = pmd_mkyoung(orig_pmd);
1177                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1178                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1179                         update_mmu_cache_pmd(vma, address, pmd);
1180                 ret |= VM_FAULT_WRITE;
1181                 goto out_unlock;
1182         }
1183         get_user_huge_page(page);
1184         spin_unlock(ptl);
1185 alloc:
1186         if (transparent_hugepage_enabled(vma) &&
1187             !transparent_hugepage_debug_cow()) {
1188                 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1189                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1190         } else
1191                 new_page = NULL;
1192
1193         if (unlikely(!new_page)) {
1194                 if (!page) {
1195                         split_huge_page_pmd(vma, address, pmd);
1196                         ret |= VM_FAULT_FALLBACK;
1197                 } else {
1198                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1199                                         pmd, orig_pmd, page, haddr);
1200                         if (ret & VM_FAULT_OOM) {
1201                                 split_huge_page(page);
1202                                 ret |= VM_FAULT_FALLBACK;
1203                         }
1204                         put_user_huge_page(page);
1205                 }
1206                 count_vm_event(THP_FAULT_FALLBACK);
1207                 goto out;
1208         }
1209
1210         if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
1211                 put_page(new_page);
1212                 if (page) {
1213                         split_huge_page(page);
1214                         put_user_huge_page(page);
1215                 } else
1216                         split_huge_page_pmd(vma, address, pmd);
1217                 ret |= VM_FAULT_FALLBACK;
1218                 count_vm_event(THP_FAULT_FALLBACK);
1219                 goto out;
1220         }
1221
1222         count_vm_event(THP_FAULT_ALLOC);
1223
1224         if (!page)
1225                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1226         else
1227                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1228         __SetPageUptodate(new_page);
1229
1230         mmun_start = haddr;
1231         mmun_end   = haddr + HPAGE_PMD_SIZE;
1232         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1233
1234         spin_lock(ptl);
1235         if (page)
1236                 put_user_huge_page(page);
1237         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1238                 spin_unlock(ptl);
1239                 mem_cgroup_cancel_charge(new_page, memcg);
1240                 put_page(new_page);
1241                 goto out_mn;
1242         } else {
1243                 pmd_t entry;
1244                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1245                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1246                 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1247                 page_add_new_anon_rmap(new_page, vma, haddr);
1248                 mem_cgroup_commit_charge(new_page, memcg, false);
1249                 lru_cache_add_active_or_unevictable(new_page, vma);
1250                 set_pmd_at(mm, haddr, pmd, entry);
1251                 update_mmu_cache_pmd(vma, address, pmd);
1252                 if (!page) {
1253                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1254                         put_huge_zero_page();
1255                 } else {
1256                         VM_BUG_ON_PAGE(!PageHead(page), page);
1257                         page_remove_rmap(page);
1258                         put_page(page);
1259                 }
1260                 ret |= VM_FAULT_WRITE;
1261         }
1262         spin_unlock(ptl);
1263 out_mn:
1264         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1265 out:
1266         return ret;
1267 out_unlock:
1268         spin_unlock(ptl);
1269         return ret;
1270 }
1271
1272 /*
1273  * FOLL_FORCE can write to even unwritable pmd's, but only
1274  * after we've gone through a COW cycle and they are dirty.
1275  */
1276 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1277 {
1278         return pmd_write(pmd) ||
1279                ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1280 }
1281
1282 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1283                                    unsigned long addr,
1284                                    pmd_t *pmd,
1285                                    unsigned int flags)
1286 {
1287         struct mm_struct *mm = vma->vm_mm;
1288         struct page *page = NULL;
1289
1290         assert_spin_locked(pmd_lockptr(mm, pmd));
1291
1292         if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1293                 goto out;
1294
1295         /* Avoid dumping huge zero page */
1296         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1297                 return ERR_PTR(-EFAULT);
1298
1299         /* Full NUMA hinting faults to serialise migration in fault paths */
1300         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1301                 goto out;
1302
1303         page = pmd_page(*pmd);
1304         VM_BUG_ON_PAGE(!PageHead(page), page);
1305         if (flags & FOLL_TOUCH) {
1306                 pmd_t _pmd;
1307                 /*
1308                  * We should set the dirty bit only for FOLL_WRITE but
1309                  * for now the dirty bit in the pmd is meaningless.
1310                  * And if the dirty bit will become meaningful and
1311                  * we'll only set it with FOLL_WRITE, an atomic
1312                  * set_bit will be required on the pmd to set the
1313                  * young bit, instead of the current set_pmd_at.
1314                  */
1315                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1316                 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1317                                           pmd, _pmd,  1))
1318                         update_mmu_cache_pmd(vma, addr, pmd);
1319         }
1320         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1321                 if (page->mapping && trylock_page(page)) {
1322                         lru_add_drain();
1323                         if (page->mapping)
1324                                 mlock_vma_page(page);
1325                         unlock_page(page);
1326                 }
1327         }
1328         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1329         VM_BUG_ON_PAGE(!PageCompound(page), page);
1330         if (flags & FOLL_GET)
1331                 get_page_foll(page);
1332
1333 out:
1334         return page;
1335 }
1336
1337 /* NUMA hinting page fault entry point for trans huge pmds */
1338 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1339                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1340 {
1341         spinlock_t *ptl;
1342         struct anon_vma *anon_vma = NULL;
1343         struct page *page;
1344         unsigned long haddr = addr & HPAGE_PMD_MASK;
1345         int page_nid = -1, this_nid = numa_node_id();
1346         int target_nid, last_cpupid = -1;
1347         bool page_locked;
1348         bool migrated = false;
1349         bool was_writable;
1350         int flags = 0;
1351
1352         /* A PROT_NONE fault should not end up here */
1353         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1354
1355         ptl = pmd_lock(mm, pmdp);
1356         if (unlikely(!pmd_same(pmd, *pmdp)))
1357                 goto out_unlock;
1358
1359         /*
1360          * If there are potential migrations, wait for completion and retry
1361          * without disrupting NUMA hinting information. Do not relock and
1362          * check_same as the page may no longer be mapped.
1363          */
1364         if (unlikely(pmd_trans_migrating(*pmdp))) {
1365                 page = pmd_page(*pmdp);
1366                 spin_unlock(ptl);
1367                 wait_on_page_locked(page);
1368                 goto out;
1369         }
1370
1371         page = pmd_page(pmd);
1372         BUG_ON(is_huge_zero_page(page));
1373         page_nid = page_to_nid(page);
1374         last_cpupid = page_cpupid_last(page);
1375         count_vm_numa_event(NUMA_HINT_FAULTS);
1376         if (page_nid == this_nid) {
1377                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1378                 flags |= TNF_FAULT_LOCAL;
1379         }
1380
1381         /* See similar comment in do_numa_page for explanation */
1382         if (!(vma->vm_flags & VM_WRITE))
1383                 flags |= TNF_NO_GROUP;
1384
1385         /*
1386          * Acquire the page lock to serialise THP migrations but avoid dropping
1387          * page_table_lock if at all possible
1388          */
1389         page_locked = trylock_page(page);
1390         target_nid = mpol_misplaced(page, vma, haddr);
1391         if (target_nid == -1) {
1392                 /* If the page was locked, there are no parallel migrations */
1393                 if (page_locked)
1394                         goto clear_pmdnuma;
1395         }
1396
1397         /* Migration could have started since the pmd_trans_migrating check */
1398         if (!page_locked) {
1399                 spin_unlock(ptl);
1400                 wait_on_page_locked(page);
1401                 page_nid = -1;
1402                 goto out;
1403         }
1404
1405         /*
1406          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1407          * to serialises splits
1408          */
1409         get_page(page);
1410         spin_unlock(ptl);
1411         anon_vma = page_lock_anon_vma_read(page);
1412
1413         /* Confirm the PMD did not change while page_table_lock was released */
1414         spin_lock(ptl);
1415         if (unlikely(!pmd_same(pmd, *pmdp))) {
1416                 unlock_page(page);
1417                 put_page(page);
1418                 page_nid = -1;
1419                 goto out_unlock;
1420         }
1421
1422         /* Bail if we fail to protect against THP splits for any reason */
1423         if (unlikely(!anon_vma)) {
1424                 put_page(page);
1425                 page_nid = -1;
1426                 goto clear_pmdnuma;
1427         }
1428
1429         /*
1430          * Migrate the THP to the requested node, returns with page unlocked
1431          * and access rights restored.
1432          */
1433         spin_unlock(ptl);
1434         migrated = migrate_misplaced_transhuge_page(mm, vma,
1435                                 pmdp, pmd, addr, page, target_nid);
1436         if (migrated) {
1437                 flags |= TNF_MIGRATED;
1438                 page_nid = target_nid;
1439         } else
1440                 flags |= TNF_MIGRATE_FAIL;
1441
1442         goto out;
1443 clear_pmdnuma:
1444         BUG_ON(!PageLocked(page));
1445         was_writable = pmd_write(pmd);
1446         pmd = pmd_modify(pmd, vma->vm_page_prot);
1447         pmd = pmd_mkyoung(pmd);
1448         if (was_writable)
1449                 pmd = pmd_mkwrite(pmd);
1450         set_pmd_at(mm, haddr, pmdp, pmd);
1451         update_mmu_cache_pmd(vma, addr, pmdp);
1452         unlock_page(page);
1453 out_unlock:
1454         spin_unlock(ptl);
1455
1456 out:
1457         if (anon_vma)
1458                 page_unlock_anon_vma_read(anon_vma);
1459
1460         if (page_nid != -1)
1461                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1462
1463         return 0;
1464 }
1465
1466 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1467                  pmd_t *pmd, unsigned long addr)
1468 {
1469         pmd_t orig_pmd;
1470         spinlock_t *ptl;
1471
1472         if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1473                 return 0;
1474         /*
1475          * For architectures like ppc64 we look at deposited pgtable
1476          * when calling pmdp_huge_get_and_clear. So do the
1477          * pgtable_trans_huge_withdraw after finishing pmdp related
1478          * operations.
1479          */
1480         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1481                         tlb->fullmm);
1482         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1483         if (vma_is_dax(vma)) {
1484                 spin_unlock(ptl);
1485                 if (is_huge_zero_pmd(orig_pmd))
1486                         put_huge_zero_page();
1487         } else if (is_huge_zero_pmd(orig_pmd)) {
1488                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1489                 atomic_long_dec(&tlb->mm->nr_ptes);
1490                 spin_unlock(ptl);
1491                 put_huge_zero_page();
1492         } else {
1493                 struct page *page = pmd_page(orig_pmd);
1494                 page_remove_rmap(page);
1495                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1496                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1497                 VM_BUG_ON_PAGE(!PageHead(page), page);
1498                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1499                 atomic_long_dec(&tlb->mm->nr_ptes);
1500                 spin_unlock(ptl);
1501                 tlb_remove_page(tlb, page);
1502         }
1503         return 1;
1504 }
1505
1506 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1507                   unsigned long old_addr,
1508                   unsigned long new_addr, unsigned long old_end,
1509                   pmd_t *old_pmd, pmd_t *new_pmd)
1510 {
1511         spinlock_t *old_ptl, *new_ptl;
1512         int ret = 0;
1513         pmd_t pmd;
1514
1515         struct mm_struct *mm = vma->vm_mm;
1516
1517         if ((old_addr & ~HPAGE_PMD_MASK) ||
1518             (new_addr & ~HPAGE_PMD_MASK) ||
1519             old_end - old_addr < HPAGE_PMD_SIZE ||
1520             (new_vma->vm_flags & VM_NOHUGEPAGE))
1521                 goto out;
1522
1523         /*
1524          * The destination pmd shouldn't be established, free_pgtables()
1525          * should have release it.
1526          */
1527         if (WARN_ON(!pmd_none(*new_pmd))) {
1528                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1529                 goto out;
1530         }
1531
1532         /*
1533          * We don't have to worry about the ordering of src and dst
1534          * ptlocks because exclusive mmap_sem prevents deadlock.
1535          */
1536         ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1537         if (ret == 1) {
1538                 new_ptl = pmd_lockptr(mm, new_pmd);
1539                 if (new_ptl != old_ptl)
1540                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1541                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1542                 VM_BUG_ON(!pmd_none(*new_pmd));
1543
1544                 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1545                         pgtable_t pgtable;
1546                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1547                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1548                 }
1549                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1550                 if (new_ptl != old_ptl)
1551                         spin_unlock(new_ptl);
1552                 spin_unlock(old_ptl);
1553         }
1554 out:
1555         return ret;
1556 }
1557
1558 /*
1559  * Returns
1560  *  - 0 if PMD could not be locked
1561  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1562  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1563  */
1564 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1565                 unsigned long addr, pgprot_t newprot, int prot_numa)
1566 {
1567         struct mm_struct *mm = vma->vm_mm;
1568         spinlock_t *ptl;
1569         int ret = 0;
1570
1571         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1572                 pmd_t entry;
1573                 bool preserve_write = prot_numa && pmd_write(*pmd);
1574                 ret = 1;
1575
1576                 /*
1577                  * Avoid trapping faults against the zero page. The read-only
1578                  * data is likely to be read-cached on the local CPU and
1579                  * local/remote hits to the zero page are not interesting.
1580                  */
1581                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1582                         spin_unlock(ptl);
1583                         return ret;
1584                 }
1585
1586                 if (!prot_numa || !pmd_protnone(*pmd)) {
1587                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1588                         entry = pmd_modify(entry, newprot);
1589                         if (preserve_write)
1590                                 entry = pmd_mkwrite(entry);
1591                         ret = HPAGE_PMD_NR;
1592                         set_pmd_at(mm, addr, pmd, entry);
1593                         BUG_ON(!preserve_write && pmd_write(entry));
1594                 }
1595                 spin_unlock(ptl);
1596         }
1597
1598         return ret;
1599 }
1600
1601 /*
1602  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1603  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1604  *
1605  * Note that if it returns 1, this routine returns without unlocking page
1606  * table locks. So callers must unlock them.
1607  */
1608 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1609                 spinlock_t **ptl)
1610 {
1611         *ptl = pmd_lock(vma->vm_mm, pmd);
1612         if (likely(pmd_trans_huge(*pmd))) {
1613                 if (unlikely(pmd_trans_splitting(*pmd))) {
1614                         spin_unlock(*ptl);
1615                         wait_split_huge_page(vma->anon_vma, pmd);
1616                         return -1;
1617                 } else {
1618                         /* Thp mapped by 'pmd' is stable, so we can
1619                          * handle it as it is. */
1620                         return 1;
1621                 }
1622         }
1623         spin_unlock(*ptl);
1624         return 0;
1625 }
1626
1627 /*
1628  * This function returns whether a given @page is mapped onto the @address
1629  * in the virtual space of @mm.
1630  *
1631  * When it's true, this function returns *pmd with holding the page table lock
1632  * and passing it back to the caller via @ptl.
1633  * If it's false, returns NULL without holding the page table lock.
1634  */
1635 pmd_t *page_check_address_pmd(struct page *page,
1636                               struct mm_struct *mm,
1637                               unsigned long address,
1638                               enum page_check_address_pmd_flag flag,
1639                               spinlock_t **ptl)
1640 {
1641         pgd_t *pgd;
1642         pud_t *pud;
1643         pmd_t *pmd;
1644
1645         if (address & ~HPAGE_PMD_MASK)
1646                 return NULL;
1647
1648         pgd = pgd_offset(mm, address);
1649         if (!pgd_present(*pgd))
1650                 return NULL;
1651         pud = pud_offset(pgd, address);
1652         if (!pud_present(*pud))
1653                 return NULL;
1654         pmd = pmd_offset(pud, address);
1655
1656         *ptl = pmd_lock(mm, pmd);
1657         if (!pmd_present(*pmd))
1658                 goto unlock;
1659         if (pmd_page(*pmd) != page)
1660                 goto unlock;
1661         /*
1662          * split_vma() may create temporary aliased mappings. There is
1663          * no risk as long as all huge pmd are found and have their
1664          * splitting bit set before __split_huge_page_refcount
1665          * runs. Finding the same huge pmd more than once during the
1666          * same rmap walk is not a problem.
1667          */
1668         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1669             pmd_trans_splitting(*pmd))
1670                 goto unlock;
1671         if (pmd_trans_huge(*pmd)) {
1672                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1673                           !pmd_trans_splitting(*pmd));
1674                 return pmd;
1675         }
1676 unlock:
1677         spin_unlock(*ptl);
1678         return NULL;
1679 }
1680
1681 static int __split_huge_page_splitting(struct page *page,
1682                                        struct vm_area_struct *vma,
1683                                        unsigned long address)
1684 {
1685         struct mm_struct *mm = vma->vm_mm;
1686         spinlock_t *ptl;
1687         pmd_t *pmd;
1688         int ret = 0;
1689         /* For mmu_notifiers */
1690         const unsigned long mmun_start = address;
1691         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1692
1693         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1694         pmd = page_check_address_pmd(page, mm, address,
1695                         PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1696         if (pmd) {
1697                 /*
1698                  * We can't temporarily set the pmd to null in order
1699                  * to split it, the pmd must remain marked huge at all
1700                  * times or the VM won't take the pmd_trans_huge paths
1701                  * and it won't wait on the anon_vma->root->rwsem to
1702                  * serialize against split_huge_page*.
1703                  */
1704                 pmdp_splitting_flush(vma, address, pmd);
1705
1706                 ret = 1;
1707                 spin_unlock(ptl);
1708         }
1709         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1710
1711         return ret;
1712 }
1713
1714 static void __split_huge_page_refcount(struct page *page,
1715                                        struct list_head *list)
1716 {
1717         int i;
1718         struct zone *zone = page_zone(page);
1719         struct lruvec *lruvec;
1720         int tail_count = 0;
1721
1722         /* prevent PageLRU to go away from under us, and freeze lru stats */
1723         spin_lock_irq(&zone->lru_lock);
1724         lruvec = mem_cgroup_page_lruvec(page, zone);
1725
1726         compound_lock(page);
1727         /* complete memcg works before add pages to LRU */
1728         mem_cgroup_split_huge_fixup(page);
1729
1730         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1731                 struct page *page_tail = page + i;
1732
1733                 /* tail_page->_mapcount cannot change */
1734                 BUG_ON(page_mapcount(page_tail) < 0);
1735                 tail_count += page_mapcount(page_tail);
1736                 /* check for overflow */
1737                 BUG_ON(tail_count < 0);
1738                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1739                 /*
1740                  * tail_page->_count is zero and not changing from
1741                  * under us. But get_page_unless_zero() may be running
1742                  * from under us on the tail_page. If we used
1743                  * atomic_set() below instead of atomic_add(), we
1744                  * would then run atomic_set() concurrently with
1745                  * get_page_unless_zero(), and atomic_set() is
1746                  * implemented in C not using locked ops. spin_unlock
1747                  * on x86 sometime uses locked ops because of PPro
1748                  * errata 66, 92, so unless somebody can guarantee
1749                  * atomic_set() here would be safe on all archs (and
1750                  * not only on x86), it's safer to use atomic_add().
1751                  */
1752                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1753                            &page_tail->_count);
1754
1755                 /* after clearing PageTail the gup refcount can be released */
1756                 smp_mb__after_atomic();
1757
1758                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1759                 page_tail->flags |= (page->flags &
1760                                      ((1L << PG_referenced) |
1761                                       (1L << PG_swapbacked) |
1762                                       (1L << PG_mlocked) |
1763                                       (1L << PG_uptodate) |
1764                                       (1L << PG_active) |
1765                                       (1L << PG_unevictable)));
1766                 page_tail->flags |= (1L << PG_dirty);
1767
1768                 clear_compound_head(page_tail);
1769
1770                 if (page_is_young(page))
1771                         set_page_young(page_tail);
1772                 if (page_is_idle(page))
1773                         set_page_idle(page_tail);
1774
1775                 /*
1776                  * __split_huge_page_splitting() already set the
1777                  * splitting bit in all pmd that could map this
1778                  * hugepage, that will ensure no CPU can alter the
1779                  * mapcount on the head page. The mapcount is only
1780                  * accounted in the head page and it has to be
1781                  * transferred to all tail pages in the below code. So
1782                  * for this code to be safe, the split the mapcount
1783                  * can't change. But that doesn't mean userland can't
1784                  * keep changing and reading the page contents while
1785                  * we transfer the mapcount, so the pmd splitting
1786                  * status is achieved setting a reserved bit in the
1787                  * pmd, not by clearing the present bit.
1788                 */
1789                 page_tail->_mapcount = page->_mapcount;
1790
1791                 BUG_ON(page_tail->mapping);
1792                 page_tail->mapping = page->mapping;
1793
1794                 page_tail->index = page->index + i;
1795                 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1796
1797                 BUG_ON(!PageAnon(page_tail));
1798                 BUG_ON(!PageUptodate(page_tail));
1799                 BUG_ON(!PageDirty(page_tail));
1800                 BUG_ON(!PageSwapBacked(page_tail));
1801
1802                 lru_add_page_tail(page, page_tail, lruvec, list);
1803         }
1804         atomic_sub(tail_count, &page->_count);
1805         BUG_ON(atomic_read(&page->_count) <= 0);
1806
1807         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1808
1809         ClearPageCompound(page);
1810         compound_unlock(page);
1811         spin_unlock_irq(&zone->lru_lock);
1812
1813         for (i = 1; i < HPAGE_PMD_NR; i++) {
1814                 struct page *page_tail = page + i;
1815                 BUG_ON(page_count(page_tail) <= 0);
1816                 /*
1817                  * Tail pages may be freed if there wasn't any mapping
1818                  * like if add_to_swap() is running on a lru page that
1819                  * had its mapping zapped. And freeing these pages
1820                  * requires taking the lru_lock so we do the put_page
1821                  * of the tail pages after the split is complete.
1822                  */
1823                 put_page(page_tail);
1824         }
1825
1826         /*
1827          * Only the head page (now become a regular page) is required
1828          * to be pinned by the caller.
1829          */
1830         BUG_ON(page_count(page) <= 0);
1831 }
1832
1833 static int __split_huge_page_map(struct page *page,
1834                                  struct vm_area_struct *vma,
1835                                  unsigned long address)
1836 {
1837         struct mm_struct *mm = vma->vm_mm;
1838         spinlock_t *ptl;
1839         pmd_t *pmd, _pmd;
1840         int ret = 0, i;
1841         pgtable_t pgtable;
1842         unsigned long haddr;
1843
1844         pmd = page_check_address_pmd(page, mm, address,
1845                         PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1846         if (pmd) {
1847                 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1848                 pmd_populate(mm, &_pmd, pgtable);
1849                 if (pmd_write(*pmd))
1850                         BUG_ON(page_mapcount(page) != 1);
1851
1852                 haddr = address;
1853                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1854                         pte_t *pte, entry;
1855                         BUG_ON(PageCompound(page+i));
1856                         /*
1857                          * Note that NUMA hinting access restrictions are not
1858                          * transferred to avoid any possibility of altering
1859                          * permissions across VMAs.
1860                          */
1861                         entry = mk_pte(page + i, vma->vm_page_prot);
1862                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1863                         if (!pmd_write(*pmd))
1864                                 entry = pte_wrprotect(entry);
1865                         if (!pmd_young(*pmd))
1866                                 entry = pte_mkold(entry);
1867                         pte = pte_offset_map(&_pmd, haddr);
1868                         BUG_ON(!pte_none(*pte));
1869                         set_pte_at(mm, haddr, pte, entry);
1870                         pte_unmap(pte);
1871                 }
1872
1873                 smp_wmb(); /* make pte visible before pmd */
1874                 /*
1875                  * Up to this point the pmd is present and huge and
1876                  * userland has the whole access to the hugepage
1877                  * during the split (which happens in place). If we
1878                  * overwrite the pmd with the not-huge version
1879                  * pointing to the pte here (which of course we could
1880                  * if all CPUs were bug free), userland could trigger
1881                  * a small page size TLB miss on the small sized TLB
1882                  * while the hugepage TLB entry is still established
1883                  * in the huge TLB. Some CPU doesn't like that. See
1884                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1885                  * Erratum 383 on page 93. Intel should be safe but is
1886                  * also warns that it's only safe if the permission
1887                  * and cache attributes of the two entries loaded in
1888                  * the two TLB is identical (which should be the case
1889                  * here). But it is generally safer to never allow
1890                  * small and huge TLB entries for the same virtual
1891                  * address to be loaded simultaneously. So instead of
1892                  * doing "pmd_populate(); flush_pmd_tlb_range();" we first
1893                  * mark the current pmd notpresent (atomically because
1894                  * here the pmd_trans_huge and pmd_trans_splitting
1895                  * must remain set at all times on the pmd until the
1896                  * split is complete for this pmd), then we flush the
1897                  * SMP TLB and finally we write the non-huge version
1898                  * of the pmd entry with pmd_populate.
1899                  */
1900                 pmdp_invalidate(vma, address, pmd);
1901                 pmd_populate(mm, pmd, pgtable);
1902                 ret = 1;
1903                 spin_unlock(ptl);
1904         }
1905
1906         return ret;
1907 }
1908
1909 /* must be called with anon_vma->root->rwsem held */
1910 static void __split_huge_page(struct page *page,
1911                               struct anon_vma *anon_vma,
1912                               struct list_head *list)
1913 {
1914         int mapcount, mapcount2;
1915         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1916         struct anon_vma_chain *avc;
1917
1918         BUG_ON(!PageHead(page));
1919         BUG_ON(PageTail(page));
1920
1921         mapcount = 0;
1922         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1923                 struct vm_area_struct *vma = avc->vma;
1924                 unsigned long addr = vma_address(page, vma);
1925                 BUG_ON(is_vma_temporary_stack(vma));
1926                 mapcount += __split_huge_page_splitting(page, vma, addr);
1927         }
1928         /*
1929          * It is critical that new vmas are added to the tail of the
1930          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1931          * and establishes a child pmd before
1932          * __split_huge_page_splitting() freezes the parent pmd (so if
1933          * we fail to prevent copy_huge_pmd() from running until the
1934          * whole __split_huge_page() is complete), we will still see
1935          * the newly established pmd of the child later during the
1936          * walk, to be able to set it as pmd_trans_splitting too.
1937          */
1938         if (mapcount != page_mapcount(page)) {
1939                 pr_err("mapcount %d page_mapcount %d\n",
1940                         mapcount, page_mapcount(page));
1941                 BUG();
1942         }
1943
1944         __split_huge_page_refcount(page, list);
1945
1946         mapcount2 = 0;
1947         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1948                 struct vm_area_struct *vma = avc->vma;
1949                 unsigned long addr = vma_address(page, vma);
1950                 BUG_ON(is_vma_temporary_stack(vma));
1951                 mapcount2 += __split_huge_page_map(page, vma, addr);
1952         }
1953         if (mapcount != mapcount2) {
1954                 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1955                         mapcount, mapcount2, page_mapcount(page));
1956                 BUG();
1957         }
1958 }
1959
1960 /*
1961  * Split a hugepage into normal pages. This doesn't change the position of head
1962  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1963  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1964  * from the hugepage.
1965  * Return 0 if the hugepage is split successfully otherwise return 1.
1966  */
1967 int split_huge_page_to_list(struct page *page, struct list_head *list)
1968 {
1969         struct anon_vma *anon_vma;
1970         int ret = 1;
1971
1972         BUG_ON(is_huge_zero_page(page));
1973         BUG_ON(!PageAnon(page));
1974
1975         /*
1976          * The caller does not necessarily hold an mmap_sem that would prevent
1977          * the anon_vma disappearing so we first we take a reference to it
1978          * and then lock the anon_vma for write. This is similar to
1979          * page_lock_anon_vma_read except the write lock is taken to serialise
1980          * against parallel split or collapse operations.
1981          */
1982         anon_vma = page_get_anon_vma(page);
1983         if (!anon_vma)
1984                 goto out;
1985         anon_vma_lock_write(anon_vma);
1986
1987         ret = 0;
1988         if (!PageCompound(page))
1989                 goto out_unlock;
1990
1991         BUG_ON(!PageSwapBacked(page));
1992         __split_huge_page(page, anon_vma, list);
1993         count_vm_event(THP_SPLIT);
1994
1995         BUG_ON(PageCompound(page));
1996 out_unlock:
1997         anon_vma_unlock_write(anon_vma);
1998         put_anon_vma(anon_vma);
1999 out:
2000         return ret;
2001 }
2002
2003 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
2004
2005 int hugepage_madvise(struct vm_area_struct *vma,
2006                      unsigned long *vm_flags, int advice)
2007 {
2008         switch (advice) {
2009         case MADV_HUGEPAGE:
2010 #ifdef CONFIG_S390
2011                 /*
2012                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
2013                  * can't handle this properly after s390_enable_sie, so we simply
2014                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
2015                  */
2016                 if (mm_has_pgste(vma->vm_mm))
2017                         return 0;
2018 #endif
2019                 /*
2020                  * Be somewhat over-protective like KSM for now!
2021                  */
2022                 if (*vm_flags & VM_NO_THP)
2023                         return -EINVAL;
2024                 *vm_flags &= ~VM_NOHUGEPAGE;
2025                 *vm_flags |= VM_HUGEPAGE;
2026                 /*
2027                  * If the vma become good for khugepaged to scan,
2028                  * register it here without waiting a page fault that
2029                  * may not happen any time soon.
2030                  */
2031                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
2032                         return -ENOMEM;
2033                 break;
2034         case MADV_NOHUGEPAGE:
2035                 /*
2036                  * Be somewhat over-protective like KSM for now!
2037                  */
2038                 if (*vm_flags & VM_NO_THP)
2039                         return -EINVAL;
2040                 *vm_flags &= ~VM_HUGEPAGE;
2041                 *vm_flags |= VM_NOHUGEPAGE;
2042                 /*
2043                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2044                  * this vma even if we leave the mm registered in khugepaged if
2045                  * it got registered before VM_NOHUGEPAGE was set.
2046                  */
2047                 break;
2048         }
2049
2050         return 0;
2051 }
2052
2053 static int __init khugepaged_slab_init(void)
2054 {
2055         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2056                                           sizeof(struct mm_slot),
2057                                           __alignof__(struct mm_slot), 0, NULL);
2058         if (!mm_slot_cache)
2059                 return -ENOMEM;
2060
2061         return 0;
2062 }
2063
2064 static void __init khugepaged_slab_exit(void)
2065 {
2066         kmem_cache_destroy(mm_slot_cache);
2067 }
2068
2069 static inline struct mm_slot *alloc_mm_slot(void)
2070 {
2071         if (!mm_slot_cache)     /* initialization failed */
2072                 return NULL;
2073         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2074 }
2075
2076 static inline void free_mm_slot(struct mm_slot *mm_slot)
2077 {
2078         kmem_cache_free(mm_slot_cache, mm_slot);
2079 }
2080
2081 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2082 {
2083         struct mm_slot *mm_slot;
2084
2085         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2086                 if (mm == mm_slot->mm)
2087                         return mm_slot;
2088
2089         return NULL;
2090 }
2091
2092 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2093                                     struct mm_slot *mm_slot)
2094 {
2095         mm_slot->mm = mm;
2096         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2097 }
2098
2099 static inline int khugepaged_test_exit(struct mm_struct *mm)
2100 {
2101         return atomic_read(&mm->mm_users) == 0;
2102 }
2103
2104 int __khugepaged_enter(struct mm_struct *mm)
2105 {
2106         struct mm_slot *mm_slot;
2107         int wakeup;
2108
2109         mm_slot = alloc_mm_slot();
2110         if (!mm_slot)
2111                 return -ENOMEM;
2112
2113         /* __khugepaged_exit() must not run from under us */
2114         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2115         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2116                 free_mm_slot(mm_slot);
2117                 return 0;
2118         }
2119
2120         spin_lock(&khugepaged_mm_lock);
2121         insert_to_mm_slots_hash(mm, mm_slot);
2122         /*
2123          * Insert just behind the scanning cursor, to let the area settle
2124          * down a little.
2125          */
2126         wakeup = list_empty(&khugepaged_scan.mm_head);
2127         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2128         spin_unlock(&khugepaged_mm_lock);
2129
2130         atomic_inc(&mm->mm_count);
2131         if (wakeup)
2132                 wake_up_interruptible(&khugepaged_wait);
2133
2134         return 0;
2135 }
2136
2137 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2138                                unsigned long vm_flags)
2139 {
2140         unsigned long hstart, hend;
2141         if (!vma->anon_vma)
2142                 /*
2143                  * Not yet faulted in so we will register later in the
2144                  * page fault if needed.
2145                  */
2146                 return 0;
2147         if (vma->vm_ops || (vm_flags & VM_NO_THP))
2148                 /* khugepaged not yet working on file or special mappings */
2149                 return 0;
2150         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2151         hend = vma->vm_end & HPAGE_PMD_MASK;
2152         if (hstart < hend)
2153                 return khugepaged_enter(vma, vm_flags);
2154         return 0;
2155 }
2156
2157 void __khugepaged_exit(struct mm_struct *mm)
2158 {
2159         struct mm_slot *mm_slot;
2160         int free = 0;
2161
2162         spin_lock(&khugepaged_mm_lock);
2163         mm_slot = get_mm_slot(mm);
2164         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2165                 hash_del(&mm_slot->hash);
2166                 list_del(&mm_slot->mm_node);
2167                 free = 1;
2168         }
2169         spin_unlock(&khugepaged_mm_lock);
2170
2171         if (free) {
2172                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2173                 free_mm_slot(mm_slot);
2174                 mmdrop(mm);
2175         } else if (mm_slot) {
2176                 /*
2177                  * This is required to serialize against
2178                  * khugepaged_test_exit() (which is guaranteed to run
2179                  * under mmap sem read mode). Stop here (after we
2180                  * return all pagetables will be destroyed) until
2181                  * khugepaged has finished working on the pagetables
2182                  * under the mmap_sem.
2183                  */
2184                 down_write(&mm->mmap_sem);
2185                 up_write(&mm->mmap_sem);
2186         }
2187 }
2188
2189 static void release_pte_page(struct page *page)
2190 {
2191         /* 0 stands for page_is_file_cache(page) == false */
2192         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2193         unlock_page(page);
2194         putback_lru_page(page);
2195 }
2196
2197 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2198 {
2199         while (--_pte >= pte) {
2200                 pte_t pteval = *_pte;
2201                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2202                         release_pte_page(pte_page(pteval));
2203         }
2204 }
2205
2206 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2207                                         unsigned long address,
2208                                         pte_t *pte)
2209 {
2210         struct page *page;
2211         pte_t *_pte;
2212         int none_or_zero = 0;
2213         bool referenced = false, writable = false;
2214         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2215              _pte++, address += PAGE_SIZE) {
2216                 pte_t pteval = *_pte;
2217                 if (pte_none(pteval) || (pte_present(pteval) &&
2218                                 is_zero_pfn(pte_pfn(pteval)))) {
2219                         if (!userfaultfd_armed(vma) &&
2220                             ++none_or_zero <= khugepaged_max_ptes_none)
2221                                 continue;
2222                         else
2223                                 goto out;
2224                 }
2225                 if (!pte_present(pteval))
2226                         goto out;
2227                 page = vm_normal_page(vma, address, pteval);
2228                 if (unlikely(!page))
2229                         goto out;
2230
2231                 VM_BUG_ON_PAGE(PageCompound(page), page);
2232                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2233                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2234
2235                 /*
2236                  * We can do it before isolate_lru_page because the
2237                  * page can't be freed from under us. NOTE: PG_lock
2238                  * is needed to serialize against split_huge_page
2239                  * when invoked from the VM.
2240                  */
2241                 if (!trylock_page(page))
2242                         goto out;
2243
2244                 /*
2245                  * cannot use mapcount: can't collapse if there's a gup pin.
2246                  * The page must only be referenced by the scanned process
2247                  * and page swap cache.
2248                  */
2249                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2250                         unlock_page(page);
2251                         goto out;
2252                 }
2253                 if (pte_write(pteval)) {
2254                         writable = true;
2255                 } else {
2256                         if (PageSwapCache(page) && !reuse_swap_page(page)) {
2257                                 unlock_page(page);
2258                                 goto out;
2259                         }
2260                         /*
2261                          * Page is not in the swap cache. It can be collapsed
2262                          * into a THP.
2263                          */
2264                 }
2265
2266                 /*
2267                  * Isolate the page to avoid collapsing an hugepage
2268                  * currently in use by the VM.
2269                  */
2270                 if (isolate_lru_page(page)) {
2271                         unlock_page(page);
2272                         goto out;
2273                 }
2274                 /* 0 stands for page_is_file_cache(page) == false */
2275                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2276                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2277                 VM_BUG_ON_PAGE(PageLRU(page), page);
2278
2279                 /* If there is no mapped pte young don't collapse the page */
2280                 if (pte_young(pteval) ||
2281                     page_is_young(page) || PageReferenced(page) ||
2282                     mmu_notifier_test_young(vma->vm_mm, address))
2283                         referenced = true;
2284         }
2285         if (likely(referenced && writable))
2286                 return 1;
2287 out:
2288         release_pte_pages(pte, _pte);
2289         return 0;
2290 }
2291
2292 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2293                                       struct vm_area_struct *vma,
2294                                       unsigned long address,
2295                                       spinlock_t *ptl)
2296 {
2297         pte_t *_pte;
2298         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2299                 pte_t pteval = *_pte;
2300                 struct page *src_page;
2301
2302                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2303                         clear_user_highpage(page, address);
2304                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2305                         if (is_zero_pfn(pte_pfn(pteval))) {
2306                                 /*
2307                                  * ptl mostly unnecessary.
2308                                  */
2309                                 spin_lock(ptl);
2310                                 /*
2311                                  * paravirt calls inside pte_clear here are
2312                                  * superfluous.
2313                                  */
2314                                 pte_clear(vma->vm_mm, address, _pte);
2315                                 spin_unlock(ptl);
2316                         }
2317                 } else {
2318                         src_page = pte_page(pteval);
2319                         copy_user_highpage(page, src_page, address, vma);
2320                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2321                         release_pte_page(src_page);
2322                         /*
2323                          * ptl mostly unnecessary, but preempt has to
2324                          * be disabled to update the per-cpu stats
2325                          * inside page_remove_rmap().
2326                          */
2327                         spin_lock(ptl);
2328                         /*
2329                          * paravirt calls inside pte_clear here are
2330                          * superfluous.
2331                          */
2332                         pte_clear(vma->vm_mm, address, _pte);
2333                         page_remove_rmap(src_page);
2334                         spin_unlock(ptl);
2335                         free_page_and_swap_cache(src_page);
2336                 }
2337
2338                 address += PAGE_SIZE;
2339                 page++;
2340         }
2341 }
2342
2343 static void khugepaged_alloc_sleep(void)
2344 {
2345         DEFINE_WAIT(wait);
2346
2347         add_wait_queue(&khugepaged_wait, &wait);
2348         freezable_schedule_timeout_interruptible(
2349                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2350         remove_wait_queue(&khugepaged_wait, &wait);
2351 }
2352
2353 static int khugepaged_node_load[MAX_NUMNODES];
2354
2355 static bool khugepaged_scan_abort(int nid)
2356 {
2357         int i;
2358
2359         /*
2360          * If zone_reclaim_mode is disabled, then no extra effort is made to
2361          * allocate memory locally.
2362          */
2363         if (!zone_reclaim_mode)
2364                 return false;
2365
2366         /* If there is a count for this node already, it must be acceptable */
2367         if (khugepaged_node_load[nid])
2368                 return false;
2369
2370         for (i = 0; i < MAX_NUMNODES; i++) {
2371                 if (!khugepaged_node_load[i])
2372                         continue;
2373                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2374                         return true;
2375         }
2376         return false;
2377 }
2378
2379 #ifdef CONFIG_NUMA
2380 static int khugepaged_find_target_node(void)
2381 {
2382         static int last_khugepaged_target_node = NUMA_NO_NODE;
2383         int nid, target_node = 0, max_value = 0;
2384
2385         /* find first node with max normal pages hit */
2386         for (nid = 0; nid < MAX_NUMNODES; nid++)
2387                 if (khugepaged_node_load[nid] > max_value) {
2388                         max_value = khugepaged_node_load[nid];
2389                         target_node = nid;
2390                 }
2391
2392         /* do some balance if several nodes have the same hit record */
2393         if (target_node <= last_khugepaged_target_node)
2394                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2395                                 nid++)
2396                         if (max_value == khugepaged_node_load[nid]) {
2397                                 target_node = nid;
2398                                 break;
2399                         }
2400
2401         last_khugepaged_target_node = target_node;
2402         return target_node;
2403 }
2404
2405 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2406 {
2407         if (IS_ERR(*hpage)) {
2408                 if (!*wait)
2409                         return false;
2410
2411                 *wait = false;
2412                 *hpage = NULL;
2413                 khugepaged_alloc_sleep();
2414         } else if (*hpage) {
2415                 put_page(*hpage);
2416                 *hpage = NULL;
2417         }
2418
2419         return true;
2420 }
2421
2422 static struct page *
2423 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2424                        unsigned long address, int node)
2425 {
2426         VM_BUG_ON_PAGE(*hpage, *hpage);
2427
2428         /*
2429          * Before allocating the hugepage, release the mmap_sem read lock.
2430          * The allocation can take potentially a long time if it involves
2431          * sync compaction, and we do not need to hold the mmap_sem during
2432          * that. We will recheck the vma after taking it again in write mode.
2433          */
2434         up_read(&mm->mmap_sem);
2435
2436         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2437         if (unlikely(!*hpage)) {
2438                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2439                 *hpage = ERR_PTR(-ENOMEM);
2440                 return NULL;
2441         }
2442
2443         count_vm_event(THP_COLLAPSE_ALLOC);
2444         return *hpage;
2445 }
2446 #else
2447 static int khugepaged_find_target_node(void)
2448 {
2449         return 0;
2450 }
2451
2452 static inline struct page *alloc_hugepage(int defrag)
2453 {
2454         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2455                            HPAGE_PMD_ORDER);
2456 }
2457
2458 static struct page *khugepaged_alloc_hugepage(bool *wait)
2459 {
2460         struct page *hpage;
2461
2462         do {
2463                 hpage = alloc_hugepage(khugepaged_defrag());
2464                 if (!hpage) {
2465                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2466                         if (!*wait)
2467                                 return NULL;
2468
2469                         *wait = false;
2470                         khugepaged_alloc_sleep();
2471                 } else
2472                         count_vm_event(THP_COLLAPSE_ALLOC);
2473         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2474
2475         return hpage;
2476 }
2477
2478 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2479 {
2480         if (!*hpage)
2481                 *hpage = khugepaged_alloc_hugepage(wait);
2482
2483         if (unlikely(!*hpage))
2484                 return false;
2485
2486         return true;
2487 }
2488
2489 static struct page *
2490 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2491                        unsigned long address, int node)
2492 {
2493         up_read(&mm->mmap_sem);
2494         VM_BUG_ON(!*hpage);
2495
2496         return  *hpage;
2497 }
2498 #endif
2499
2500 static bool hugepage_vma_check(struct vm_area_struct *vma)
2501 {
2502         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2503             (vma->vm_flags & VM_NOHUGEPAGE))
2504                 return false;
2505
2506         if (!vma->anon_vma || vma->vm_ops)
2507                 return false;
2508         if (is_vma_temporary_stack(vma))
2509                 return false;
2510         return !(vma->vm_flags & VM_NO_THP);
2511 }
2512
2513 static void collapse_huge_page(struct mm_struct *mm,
2514                                    unsigned long address,
2515                                    struct page **hpage,
2516                                    struct vm_area_struct *vma,
2517                                    int node)
2518 {
2519         pmd_t *pmd, _pmd;
2520         pte_t *pte;
2521         pgtable_t pgtable;
2522         struct page *new_page;
2523         spinlock_t *pmd_ptl, *pte_ptl;
2524         int isolated;
2525         unsigned long hstart, hend;
2526         struct mem_cgroup *memcg;
2527         unsigned long mmun_start;       /* For mmu_notifiers */
2528         unsigned long mmun_end;         /* For mmu_notifiers */
2529         gfp_t gfp;
2530
2531         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2532
2533         /* Only allocate from the target node */
2534         gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2535                 __GFP_THISNODE;
2536
2537         /* release the mmap_sem read lock. */
2538         new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2539         if (!new_page)
2540                 return;
2541
2542         if (unlikely(mem_cgroup_try_charge(new_page, mm,
2543                                            gfp, &memcg)))
2544                 return;
2545
2546         /*
2547          * Prevent all access to pagetables with the exception of
2548          * gup_fast later hanlded by the ptep_clear_flush and the VM
2549          * handled by the anon_vma lock + PG_lock.
2550          */
2551         down_write(&mm->mmap_sem);
2552         if (unlikely(khugepaged_test_exit(mm)))
2553                 goto out;
2554
2555         vma = find_vma(mm, address);
2556         if (!vma)
2557                 goto out;
2558         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2559         hend = vma->vm_end & HPAGE_PMD_MASK;
2560         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2561                 goto out;
2562         if (!hugepage_vma_check(vma))
2563                 goto out;
2564         pmd = mm_find_pmd(mm, address);
2565         if (!pmd)
2566                 goto out;
2567
2568         anon_vma_lock_write(vma->anon_vma);
2569
2570         pte = pte_offset_map(pmd, address);
2571         pte_ptl = pte_lockptr(mm, pmd);
2572
2573         mmun_start = address;
2574         mmun_end   = address + HPAGE_PMD_SIZE;
2575         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2576         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2577         /*
2578          * After this gup_fast can't run anymore. This also removes
2579          * any huge TLB entry from the CPU so we won't allow
2580          * huge and small TLB entries for the same virtual address
2581          * to avoid the risk of CPU bugs in that area.
2582          */
2583         _pmd = pmdp_collapse_flush(vma, address, pmd);
2584         spin_unlock(pmd_ptl);
2585         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2586
2587         spin_lock(pte_ptl);
2588         isolated = __collapse_huge_page_isolate(vma, address, pte);
2589         spin_unlock(pte_ptl);
2590
2591         if (unlikely(!isolated)) {
2592                 pte_unmap(pte);
2593                 spin_lock(pmd_ptl);
2594                 BUG_ON(!pmd_none(*pmd));
2595                 /*
2596                  * We can only use set_pmd_at when establishing
2597                  * hugepmds and never for establishing regular pmds that
2598                  * points to regular pagetables. Use pmd_populate for that
2599                  */
2600                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2601                 spin_unlock(pmd_ptl);
2602                 anon_vma_unlock_write(vma->anon_vma);
2603                 goto out;
2604         }
2605
2606         /*
2607          * All pages are isolated and locked so anon_vma rmap
2608          * can't run anymore.
2609          */
2610         anon_vma_unlock_write(vma->anon_vma);
2611
2612         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2613         pte_unmap(pte);
2614         __SetPageUptodate(new_page);
2615         pgtable = pmd_pgtable(_pmd);
2616
2617         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2618         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2619
2620         /*
2621          * spin_lock() below is not the equivalent of smp_wmb(), so
2622          * this is needed to avoid the copy_huge_page writes to become
2623          * visible after the set_pmd_at() write.
2624          */
2625         smp_wmb();
2626
2627         spin_lock(pmd_ptl);
2628         BUG_ON(!pmd_none(*pmd));
2629         page_add_new_anon_rmap(new_page, vma, address);
2630         mem_cgroup_commit_charge(new_page, memcg, false);
2631         lru_cache_add_active_or_unevictable(new_page, vma);
2632         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2633         set_pmd_at(mm, address, pmd, _pmd);
2634         update_mmu_cache_pmd(vma, address, pmd);
2635         spin_unlock(pmd_ptl);
2636
2637         *hpage = NULL;
2638
2639         khugepaged_pages_collapsed++;
2640 out_up_write:
2641         up_write(&mm->mmap_sem);
2642         return;
2643
2644 out:
2645         mem_cgroup_cancel_charge(new_page, memcg);
2646         goto out_up_write;
2647 }
2648
2649 static int khugepaged_scan_pmd(struct mm_struct *mm,
2650                                struct vm_area_struct *vma,
2651                                unsigned long address,
2652                                struct page **hpage)
2653 {
2654         pmd_t *pmd;
2655         pte_t *pte, *_pte;
2656         int ret = 0, none_or_zero = 0;
2657         struct page *page;
2658         unsigned long _address;
2659         spinlock_t *ptl;
2660         int node = NUMA_NO_NODE;
2661         bool writable = false, referenced = false;
2662
2663         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2664
2665         pmd = mm_find_pmd(mm, address);
2666         if (!pmd)
2667                 goto out;
2668
2669         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2670         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2671         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2672              _pte++, _address += PAGE_SIZE) {
2673                 pte_t pteval = *_pte;
2674                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2675                         if (!userfaultfd_armed(vma) &&
2676                             ++none_or_zero <= khugepaged_max_ptes_none)
2677                                 continue;
2678                         else
2679                                 goto out_unmap;
2680                 }
2681                 if (!pte_present(pteval))
2682                         goto out_unmap;
2683                 if (pte_write(pteval))
2684                         writable = true;
2685
2686                 page = vm_normal_page(vma, _address, pteval);
2687                 if (unlikely(!page))
2688                         goto out_unmap;
2689                 /*
2690                  * Record which node the original page is from and save this
2691                  * information to khugepaged_node_load[].
2692                  * Khupaged will allocate hugepage from the node has the max
2693                  * hit record.
2694                  */
2695                 node = page_to_nid(page);
2696                 if (khugepaged_scan_abort(node))
2697                         goto out_unmap;
2698                 khugepaged_node_load[node]++;
2699                 VM_BUG_ON_PAGE(PageCompound(page), page);
2700                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2701                         goto out_unmap;
2702                 /*
2703                  * cannot use mapcount: can't collapse if there's a gup pin.
2704                  * The page must only be referenced by the scanned process
2705                  * and page swap cache.
2706                  */
2707                 if (page_count(page) != 1 + !!PageSwapCache(page))
2708                         goto out_unmap;
2709                 if (pte_young(pteval) ||
2710                     page_is_young(page) || PageReferenced(page) ||
2711                     mmu_notifier_test_young(vma->vm_mm, address))
2712                         referenced = true;
2713         }
2714         if (referenced && writable)
2715                 ret = 1;
2716 out_unmap:
2717         pte_unmap_unlock(pte, ptl);
2718         if (ret) {
2719                 node = khugepaged_find_target_node();
2720                 /* collapse_huge_page will return with the mmap_sem released */
2721                 collapse_huge_page(mm, address, hpage, vma, node);
2722         }
2723 out:
2724         return ret;
2725 }
2726
2727 static void collect_mm_slot(struct mm_slot *mm_slot)
2728 {
2729         struct mm_struct *mm = mm_slot->mm;
2730
2731         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2732
2733         if (khugepaged_test_exit(mm)) {
2734                 /* free mm_slot */
2735                 hash_del(&mm_slot->hash);
2736                 list_del(&mm_slot->mm_node);
2737
2738                 /*
2739                  * Not strictly needed because the mm exited already.
2740                  *
2741                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2742                  */
2743
2744                 /* khugepaged_mm_lock actually not necessary for the below */
2745                 free_mm_slot(mm_slot);
2746                 mmdrop(mm);
2747         }
2748 }
2749
2750 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2751                                             struct page **hpage)
2752         __releases(&khugepaged_mm_lock)
2753         __acquires(&khugepaged_mm_lock)
2754 {
2755         struct mm_slot *mm_slot;
2756         struct mm_struct *mm;
2757         struct vm_area_struct *vma;
2758         int progress = 0;
2759
2760         VM_BUG_ON(!pages);
2761         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2762
2763         if (khugepaged_scan.mm_slot)
2764                 mm_slot = khugepaged_scan.mm_slot;
2765         else {
2766                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2767                                      struct mm_slot, mm_node);
2768                 khugepaged_scan.address = 0;
2769                 khugepaged_scan.mm_slot = mm_slot;
2770         }
2771         spin_unlock(&khugepaged_mm_lock);
2772
2773         mm = mm_slot->mm;
2774         down_read(&mm->mmap_sem);
2775         if (unlikely(khugepaged_test_exit(mm)))
2776                 vma = NULL;
2777         else
2778                 vma = find_vma(mm, khugepaged_scan.address);
2779
2780         progress++;
2781         for (; vma; vma = vma->vm_next) {
2782                 unsigned long hstart, hend;
2783
2784                 cond_resched();
2785                 if (unlikely(khugepaged_test_exit(mm))) {
2786                         progress++;
2787                         break;
2788                 }
2789                 if (!hugepage_vma_check(vma)) {
2790 skip:
2791                         progress++;
2792                         continue;
2793                 }
2794                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2795                 hend = vma->vm_end & HPAGE_PMD_MASK;
2796                 if (hstart >= hend)
2797                         goto skip;
2798                 if (khugepaged_scan.address > hend)
2799                         goto skip;
2800                 if (khugepaged_scan.address < hstart)
2801                         khugepaged_scan.address = hstart;
2802                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2803
2804                 while (khugepaged_scan.address < hend) {
2805                         int ret;
2806                         cond_resched();
2807                         if (unlikely(khugepaged_test_exit(mm)))
2808                                 goto breakouterloop;
2809
2810                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2811                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2812                                   hend);
2813                         ret = khugepaged_scan_pmd(mm, vma,
2814                                                   khugepaged_scan.address,
2815                                                   hpage);
2816                         /* move to next address */
2817                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2818                         progress += HPAGE_PMD_NR;
2819                         if (ret)
2820                                 /* we released mmap_sem so break loop */
2821                                 goto breakouterloop_mmap_sem;
2822                         if (progress >= pages)
2823                                 goto breakouterloop;
2824                 }
2825         }
2826 breakouterloop:
2827         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2828 breakouterloop_mmap_sem:
2829
2830         spin_lock(&khugepaged_mm_lock);
2831         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2832         /*
2833          * Release the current mm_slot if this mm is about to die, or
2834          * if we scanned all vmas of this mm.
2835          */
2836         if (khugepaged_test_exit(mm) || !vma) {
2837                 /*
2838                  * Make sure that if mm_users is reaching zero while
2839                  * khugepaged runs here, khugepaged_exit will find
2840                  * mm_slot not pointing to the exiting mm.
2841                  */
2842                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2843                         khugepaged_scan.mm_slot = list_entry(
2844                                 mm_slot->mm_node.next,
2845                                 struct mm_slot, mm_node);
2846                         khugepaged_scan.address = 0;
2847                 } else {
2848                         khugepaged_scan.mm_slot = NULL;
2849                         khugepaged_full_scans++;
2850                 }
2851
2852                 collect_mm_slot(mm_slot);
2853         }
2854
2855         return progress;
2856 }
2857
2858 static int khugepaged_has_work(void)
2859 {
2860         return !list_empty(&khugepaged_scan.mm_head) &&
2861                 khugepaged_enabled();
2862 }
2863
2864 static int khugepaged_wait_event(void)
2865 {
2866         return !list_empty(&khugepaged_scan.mm_head) ||
2867                 kthread_should_stop();
2868 }
2869
2870 static void khugepaged_do_scan(void)
2871 {
2872         struct page *hpage = NULL;
2873         unsigned int progress = 0, pass_through_head = 0;
2874         unsigned int pages = khugepaged_pages_to_scan;
2875         bool wait = true;
2876
2877         barrier(); /* write khugepaged_pages_to_scan to local stack */
2878
2879         while (progress < pages) {
2880                 if (!khugepaged_prealloc_page(&hpage, &wait))
2881                         break;
2882
2883                 cond_resched();
2884
2885                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2886                         break;
2887
2888                 spin_lock(&khugepaged_mm_lock);
2889                 if (!khugepaged_scan.mm_slot)
2890                         pass_through_head++;
2891                 if (khugepaged_has_work() &&
2892                     pass_through_head < 2)
2893                         progress += khugepaged_scan_mm_slot(pages - progress,
2894                                                             &hpage);
2895                 else
2896                         progress = pages;
2897                 spin_unlock(&khugepaged_mm_lock);
2898         }
2899
2900         if (!IS_ERR_OR_NULL(hpage))
2901                 put_page(hpage);
2902 }
2903
2904 static void khugepaged_wait_work(void)
2905 {
2906         if (khugepaged_has_work()) {
2907                 if (!khugepaged_scan_sleep_millisecs)
2908                         return;
2909
2910                 wait_event_freezable_timeout(khugepaged_wait,
2911                                              kthread_should_stop(),
2912                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2913                 return;
2914         }
2915
2916         if (khugepaged_enabled())
2917                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2918 }
2919
2920 static int khugepaged(void *none)
2921 {
2922         struct mm_slot *mm_slot;
2923
2924         set_freezable();
2925         set_user_nice(current, MAX_NICE);
2926
2927         while (!kthread_should_stop()) {
2928                 khugepaged_do_scan();
2929                 khugepaged_wait_work();
2930         }
2931
2932         spin_lock(&khugepaged_mm_lock);
2933         mm_slot = khugepaged_scan.mm_slot;
2934         khugepaged_scan.mm_slot = NULL;
2935         if (mm_slot)
2936                 collect_mm_slot(mm_slot);
2937         spin_unlock(&khugepaged_mm_lock);
2938         return 0;
2939 }
2940
2941 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2942                 unsigned long haddr, pmd_t *pmd)
2943 {
2944         struct mm_struct *mm = vma->vm_mm;
2945         pgtable_t pgtable;
2946         pmd_t _pmd;
2947         int i;
2948
2949         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2950         /* leave pmd empty until pte is filled */
2951
2952         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2953         pmd_populate(mm, &_pmd, pgtable);
2954
2955         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2956                 pte_t *pte, entry;
2957                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2958                 entry = pte_mkspecial(entry);
2959                 pte = pte_offset_map(&_pmd, haddr);
2960                 VM_BUG_ON(!pte_none(*pte));
2961                 set_pte_at(mm, haddr, pte, entry);
2962                 pte_unmap(pte);
2963         }
2964         smp_wmb(); /* make pte visible before pmd */
2965         pmd_populate(mm, pmd, pgtable);
2966         put_huge_zero_page();
2967 }
2968
2969 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2970                 pmd_t *pmd)
2971 {
2972         spinlock_t *ptl;
2973         struct page *page = NULL;
2974         struct mm_struct *mm = vma->vm_mm;
2975         unsigned long haddr = address & HPAGE_PMD_MASK;
2976         unsigned long mmun_start;       /* For mmu_notifiers */
2977         unsigned long mmun_end;         /* For mmu_notifiers */
2978
2979         BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2980
2981         mmun_start = haddr;
2982         mmun_end   = haddr + HPAGE_PMD_SIZE;
2983 again:
2984         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2985         ptl = pmd_lock(mm, pmd);
2986         if (unlikely(!pmd_trans_huge(*pmd)))
2987                 goto unlock;
2988         if (vma_is_dax(vma)) {
2989                 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2990                 if (is_huge_zero_pmd(_pmd))
2991                         put_huge_zero_page();
2992         } else if (is_huge_zero_pmd(*pmd)) {
2993                 __split_huge_zero_page_pmd(vma, haddr, pmd);
2994         } else {
2995                 page = pmd_page(*pmd);
2996                 VM_BUG_ON_PAGE(!page_count(page), page);
2997                 get_page(page);
2998         }
2999  unlock:
3000         spin_unlock(ptl);
3001         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3002
3003         if (!page)
3004                 return;
3005
3006         split_huge_page(page);
3007         put_page(page);
3008
3009         /*
3010          * We don't always have down_write of mmap_sem here: a racing
3011          * do_huge_pmd_wp_page() might have copied-on-write to another
3012          * huge page before our split_huge_page() got the anon_vma lock.
3013          */
3014         if (unlikely(pmd_trans_huge(*pmd)))
3015                 goto again;
3016 }
3017
3018 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
3019                 pmd_t *pmd)
3020 {
3021         struct vm_area_struct *vma;
3022
3023         vma = find_vma(mm, address);
3024         BUG_ON(vma == NULL);
3025         split_huge_page_pmd(vma, address, pmd);
3026 }
3027
3028 static void split_huge_page_address(struct mm_struct *mm,
3029                                     unsigned long address)
3030 {
3031         pgd_t *pgd;
3032         pud_t *pud;
3033         pmd_t *pmd;
3034
3035         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3036
3037         pgd = pgd_offset(mm, address);
3038         if (!pgd_present(*pgd))
3039                 return;
3040
3041         pud = pud_offset(pgd, address);
3042         if (!pud_present(*pud))
3043                 return;
3044
3045         pmd = pmd_offset(pud, address);
3046         if (!pmd_present(*pmd))
3047                 return;
3048         /*
3049          * Caller holds the mmap_sem write mode, so a huge pmd cannot
3050          * materialize from under us.
3051          */
3052         split_huge_page_pmd_mm(mm, address, pmd);
3053 }
3054
3055 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3056                              unsigned long start,
3057                              unsigned long end,
3058                              long adjust_next)
3059 {
3060         /*
3061          * If the new start address isn't hpage aligned and it could
3062          * previously contain an hugepage: check if we need to split
3063          * an huge pmd.
3064          */
3065         if (start & ~HPAGE_PMD_MASK &&
3066             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3067             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3068                 split_huge_page_address(vma->vm_mm, start);
3069
3070         /*
3071          * If the new end address isn't hpage aligned and it could
3072          * previously contain an hugepage: check if we need to split
3073          * an huge pmd.
3074          */
3075         if (end & ~HPAGE_PMD_MASK &&
3076             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3077             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3078                 split_huge_page_address(vma->vm_mm, end);
3079
3080         /*
3081          * If we're also updating the vma->vm_next->vm_start, if the new
3082          * vm_next->vm_start isn't page aligned and it could previously
3083          * contain an hugepage: check if we need to split an huge pmd.
3084          */
3085         if (adjust_next > 0) {
3086                 struct vm_area_struct *next = vma->vm_next;
3087                 unsigned long nstart = next->vm_start;
3088                 nstart += adjust_next << PAGE_SHIFT;
3089                 if (nstart & ~HPAGE_PMD_MASK &&
3090                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3091                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3092                         split_huge_page_address(next->vm_mm, nstart);
3093         }
3094 }