mm: numa: Do not migrate or account for hinting faults on the zero page
[firefly-linux-kernel-4.4.55.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28
29 /*
30  * By default transparent hugepage support is enabled for all mappings
31  * and khugepaged scans all mappings. Defrag is only invoked by
32  * khugepaged hugepage allocations and by page faults inside
33  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34  * allocations.
35  */
36 unsigned long transparent_hugepage_flags __read_mostly =
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
39 #endif
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42 #endif
43         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
44         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
46
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49 static unsigned int khugepaged_pages_collapsed;
50 static unsigned int khugepaged_full_scans;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54 static struct task_struct *khugepaged_thread __read_mostly;
55 static DEFINE_MUTEX(khugepaged_mutex);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58 /*
59  * default collapse hugepages if there is at least one pte mapped like
60  * it would have happened if the vma was large enough during page
61  * fault.
62  */
63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64
65 static int khugepaged(void *none);
66 static int khugepaged_slab_init(void);
67
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70
71 static struct kmem_cache *mm_slot_cache __read_mostly;
72
73 /**
74  * struct mm_slot - hash lookup from mm to mm_slot
75  * @hash: hash collision list
76  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77  * @mm: the mm that this information is valid for
78  */
79 struct mm_slot {
80         struct hlist_node hash;
81         struct list_head mm_node;
82         struct mm_struct *mm;
83 };
84
85 /**
86  * struct khugepaged_scan - cursor for scanning
87  * @mm_head: the head of the mm list to scan
88  * @mm_slot: the current mm_slot we are scanning
89  * @address: the next address inside that to be scanned
90  *
91  * There is only the one khugepaged_scan instance of this cursor structure.
92  */
93 struct khugepaged_scan {
94         struct list_head mm_head;
95         struct mm_slot *mm_slot;
96         unsigned long address;
97 };
98 static struct khugepaged_scan khugepaged_scan = {
99         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100 };
101
102
103 static int set_recommended_min_free_kbytes(void)
104 {
105         struct zone *zone;
106         int nr_zones = 0;
107         unsigned long recommended_min;
108
109         if (!khugepaged_enabled())
110                 return 0;
111
112         for_each_populated_zone(zone)
113                 nr_zones++;
114
115         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116         recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118         /*
119          * Make sure that on average at least two pageblocks are almost free
120          * of another type, one for a migratetype to fall back to and a
121          * second to avoid subsequent fallbacks of other types There are 3
122          * MIGRATE_TYPES we care about.
123          */
124         recommended_min += pageblock_nr_pages * nr_zones *
125                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127         /* don't ever allow to reserve more than 5% of the lowmem */
128         recommended_min = min(recommended_min,
129                               (unsigned long) nr_free_buffer_pages() / 20);
130         recommended_min <<= (PAGE_SHIFT-10);
131
132         if (recommended_min > min_free_kbytes)
133                 min_free_kbytes = recommended_min;
134         setup_per_zone_wmarks();
135         return 0;
136 }
137 late_initcall(set_recommended_min_free_kbytes);
138
139 static int start_khugepaged(void)
140 {
141         int err = 0;
142         if (khugepaged_enabled()) {
143                 if (!khugepaged_thread)
144                         khugepaged_thread = kthread_run(khugepaged, NULL,
145                                                         "khugepaged");
146                 if (unlikely(IS_ERR(khugepaged_thread))) {
147                         printk(KERN_ERR
148                                "khugepaged: kthread_run(khugepaged) failed\n");
149                         err = PTR_ERR(khugepaged_thread);
150                         khugepaged_thread = NULL;
151                 }
152
153                 if (!list_empty(&khugepaged_scan.mm_head))
154                         wake_up_interruptible(&khugepaged_wait);
155
156                 set_recommended_min_free_kbytes();
157         } else if (khugepaged_thread) {
158                 kthread_stop(khugepaged_thread);
159                 khugepaged_thread = NULL;
160         }
161
162         return err;
163 }
164
165 static atomic_t huge_zero_refcount;
166 static struct page *huge_zero_page __read_mostly;
167
168 static inline bool is_huge_zero_page(struct page *page)
169 {
170         return ACCESS_ONCE(huge_zero_page) == page;
171 }
172
173 static inline bool is_huge_zero_pmd(pmd_t pmd)
174 {
175         return is_huge_zero_page(pmd_page(pmd));
176 }
177
178 static struct page *get_huge_zero_page(void)
179 {
180         struct page *zero_page;
181 retry:
182         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
183                 return ACCESS_ONCE(huge_zero_page);
184
185         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
186                         HPAGE_PMD_ORDER);
187         if (!zero_page) {
188                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
189                 return NULL;
190         }
191         count_vm_event(THP_ZERO_PAGE_ALLOC);
192         preempt_disable();
193         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
194                 preempt_enable();
195                 __free_page(zero_page);
196                 goto retry;
197         }
198
199         /* We take additional reference here. It will be put back by shrinker */
200         atomic_set(&huge_zero_refcount, 2);
201         preempt_enable();
202         return ACCESS_ONCE(huge_zero_page);
203 }
204
205 static void put_huge_zero_page(void)
206 {
207         /*
208          * Counter should never go to zero here. Only shrinker can put
209          * last reference.
210          */
211         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
212 }
213
214 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
215                                         struct shrink_control *sc)
216 {
217         /* we can free zero page only if last reference remains */
218         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
219 }
220
221 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
222                                        struct shrink_control *sc)
223 {
224         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
225                 struct page *zero_page = xchg(&huge_zero_page, NULL);
226                 BUG_ON(zero_page == NULL);
227                 __free_page(zero_page);
228                 return HPAGE_PMD_NR;
229         }
230
231         return 0;
232 }
233
234 static struct shrinker huge_zero_page_shrinker = {
235         .count_objects = shrink_huge_zero_page_count,
236         .scan_objects = shrink_huge_zero_page_scan,
237         .seeks = DEFAULT_SEEKS,
238 };
239
240 #ifdef CONFIG_SYSFS
241
242 static ssize_t double_flag_show(struct kobject *kobj,
243                                 struct kobj_attribute *attr, char *buf,
244                                 enum transparent_hugepage_flag enabled,
245                                 enum transparent_hugepage_flag req_madv)
246 {
247         if (test_bit(enabled, &transparent_hugepage_flags)) {
248                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
249                 return sprintf(buf, "[always] madvise never\n");
250         } else if (test_bit(req_madv, &transparent_hugepage_flags))
251                 return sprintf(buf, "always [madvise] never\n");
252         else
253                 return sprintf(buf, "always madvise [never]\n");
254 }
255 static ssize_t double_flag_store(struct kobject *kobj,
256                                  struct kobj_attribute *attr,
257                                  const char *buf, size_t count,
258                                  enum transparent_hugepage_flag enabled,
259                                  enum transparent_hugepage_flag req_madv)
260 {
261         if (!memcmp("always", buf,
262                     min(sizeof("always")-1, count))) {
263                 set_bit(enabled, &transparent_hugepage_flags);
264                 clear_bit(req_madv, &transparent_hugepage_flags);
265         } else if (!memcmp("madvise", buf,
266                            min(sizeof("madvise")-1, count))) {
267                 clear_bit(enabled, &transparent_hugepage_flags);
268                 set_bit(req_madv, &transparent_hugepage_flags);
269         } else if (!memcmp("never", buf,
270                            min(sizeof("never")-1, count))) {
271                 clear_bit(enabled, &transparent_hugepage_flags);
272                 clear_bit(req_madv, &transparent_hugepage_flags);
273         } else
274                 return -EINVAL;
275
276         return count;
277 }
278
279 static ssize_t enabled_show(struct kobject *kobj,
280                             struct kobj_attribute *attr, char *buf)
281 {
282         return double_flag_show(kobj, attr, buf,
283                                 TRANSPARENT_HUGEPAGE_FLAG,
284                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
285 }
286 static ssize_t enabled_store(struct kobject *kobj,
287                              struct kobj_attribute *attr,
288                              const char *buf, size_t count)
289 {
290         ssize_t ret;
291
292         ret = double_flag_store(kobj, attr, buf, count,
293                                 TRANSPARENT_HUGEPAGE_FLAG,
294                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
295
296         if (ret > 0) {
297                 int err;
298
299                 mutex_lock(&khugepaged_mutex);
300                 err = start_khugepaged();
301                 mutex_unlock(&khugepaged_mutex);
302
303                 if (err)
304                         ret = err;
305         }
306
307         return ret;
308 }
309 static struct kobj_attribute enabled_attr =
310         __ATTR(enabled, 0644, enabled_show, enabled_store);
311
312 static ssize_t single_flag_show(struct kobject *kobj,
313                                 struct kobj_attribute *attr, char *buf,
314                                 enum transparent_hugepage_flag flag)
315 {
316         return sprintf(buf, "%d\n",
317                        !!test_bit(flag, &transparent_hugepage_flags));
318 }
319
320 static ssize_t single_flag_store(struct kobject *kobj,
321                                  struct kobj_attribute *attr,
322                                  const char *buf, size_t count,
323                                  enum transparent_hugepage_flag flag)
324 {
325         unsigned long value;
326         int ret;
327
328         ret = kstrtoul(buf, 10, &value);
329         if (ret < 0)
330                 return ret;
331         if (value > 1)
332                 return -EINVAL;
333
334         if (value)
335                 set_bit(flag, &transparent_hugepage_flags);
336         else
337                 clear_bit(flag, &transparent_hugepage_flags);
338
339         return count;
340 }
341
342 /*
343  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
344  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
345  * memory just to allocate one more hugepage.
346  */
347 static ssize_t defrag_show(struct kobject *kobj,
348                            struct kobj_attribute *attr, char *buf)
349 {
350         return double_flag_show(kobj, attr, buf,
351                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
352                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
353 }
354 static ssize_t defrag_store(struct kobject *kobj,
355                             struct kobj_attribute *attr,
356                             const char *buf, size_t count)
357 {
358         return double_flag_store(kobj, attr, buf, count,
359                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361 }
362 static struct kobj_attribute defrag_attr =
363         __ATTR(defrag, 0644, defrag_show, defrag_store);
364
365 static ssize_t use_zero_page_show(struct kobject *kobj,
366                 struct kobj_attribute *attr, char *buf)
367 {
368         return single_flag_show(kobj, attr, buf,
369                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
370 }
371 static ssize_t use_zero_page_store(struct kobject *kobj,
372                 struct kobj_attribute *attr, const char *buf, size_t count)
373 {
374         return single_flag_store(kobj, attr, buf, count,
375                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
376 }
377 static struct kobj_attribute use_zero_page_attr =
378         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
379 #ifdef CONFIG_DEBUG_VM
380 static ssize_t debug_cow_show(struct kobject *kobj,
381                                 struct kobj_attribute *attr, char *buf)
382 {
383         return single_flag_show(kobj, attr, buf,
384                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
385 }
386 static ssize_t debug_cow_store(struct kobject *kobj,
387                                struct kobj_attribute *attr,
388                                const char *buf, size_t count)
389 {
390         return single_flag_store(kobj, attr, buf, count,
391                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392 }
393 static struct kobj_attribute debug_cow_attr =
394         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
395 #endif /* CONFIG_DEBUG_VM */
396
397 static struct attribute *hugepage_attr[] = {
398         &enabled_attr.attr,
399         &defrag_attr.attr,
400         &use_zero_page_attr.attr,
401 #ifdef CONFIG_DEBUG_VM
402         &debug_cow_attr.attr,
403 #endif
404         NULL,
405 };
406
407 static struct attribute_group hugepage_attr_group = {
408         .attrs = hugepage_attr,
409 };
410
411 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
412                                          struct kobj_attribute *attr,
413                                          char *buf)
414 {
415         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
416 }
417
418 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
419                                           struct kobj_attribute *attr,
420                                           const char *buf, size_t count)
421 {
422         unsigned long msecs;
423         int err;
424
425         err = kstrtoul(buf, 10, &msecs);
426         if (err || msecs > UINT_MAX)
427                 return -EINVAL;
428
429         khugepaged_scan_sleep_millisecs = msecs;
430         wake_up_interruptible(&khugepaged_wait);
431
432         return count;
433 }
434 static struct kobj_attribute scan_sleep_millisecs_attr =
435         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
436                scan_sleep_millisecs_store);
437
438 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
439                                           struct kobj_attribute *attr,
440                                           char *buf)
441 {
442         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
443 }
444
445 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
446                                            struct kobj_attribute *attr,
447                                            const char *buf, size_t count)
448 {
449         unsigned long msecs;
450         int err;
451
452         err = kstrtoul(buf, 10, &msecs);
453         if (err || msecs > UINT_MAX)
454                 return -EINVAL;
455
456         khugepaged_alloc_sleep_millisecs = msecs;
457         wake_up_interruptible(&khugepaged_wait);
458
459         return count;
460 }
461 static struct kobj_attribute alloc_sleep_millisecs_attr =
462         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
463                alloc_sleep_millisecs_store);
464
465 static ssize_t pages_to_scan_show(struct kobject *kobj,
466                                   struct kobj_attribute *attr,
467                                   char *buf)
468 {
469         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
470 }
471 static ssize_t pages_to_scan_store(struct kobject *kobj,
472                                    struct kobj_attribute *attr,
473                                    const char *buf, size_t count)
474 {
475         int err;
476         unsigned long pages;
477
478         err = kstrtoul(buf, 10, &pages);
479         if (err || !pages || pages > UINT_MAX)
480                 return -EINVAL;
481
482         khugepaged_pages_to_scan = pages;
483
484         return count;
485 }
486 static struct kobj_attribute pages_to_scan_attr =
487         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
488                pages_to_scan_store);
489
490 static ssize_t pages_collapsed_show(struct kobject *kobj,
491                                     struct kobj_attribute *attr,
492                                     char *buf)
493 {
494         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
495 }
496 static struct kobj_attribute pages_collapsed_attr =
497         __ATTR_RO(pages_collapsed);
498
499 static ssize_t full_scans_show(struct kobject *kobj,
500                                struct kobj_attribute *attr,
501                                char *buf)
502 {
503         return sprintf(buf, "%u\n", khugepaged_full_scans);
504 }
505 static struct kobj_attribute full_scans_attr =
506         __ATTR_RO(full_scans);
507
508 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
509                                       struct kobj_attribute *attr, char *buf)
510 {
511         return single_flag_show(kobj, attr, buf,
512                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
513 }
514 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
515                                        struct kobj_attribute *attr,
516                                        const char *buf, size_t count)
517 {
518         return single_flag_store(kobj, attr, buf, count,
519                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520 }
521 static struct kobj_attribute khugepaged_defrag_attr =
522         __ATTR(defrag, 0644, khugepaged_defrag_show,
523                khugepaged_defrag_store);
524
525 /*
526  * max_ptes_none controls if khugepaged should collapse hugepages over
527  * any unmapped ptes in turn potentially increasing the memory
528  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
529  * reduce the available free memory in the system as it
530  * runs. Increasing max_ptes_none will instead potentially reduce the
531  * free memory in the system during the khugepaged scan.
532  */
533 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
534                                              struct kobj_attribute *attr,
535                                              char *buf)
536 {
537         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
538 }
539 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
540                                               struct kobj_attribute *attr,
541                                               const char *buf, size_t count)
542 {
543         int err;
544         unsigned long max_ptes_none;
545
546         err = kstrtoul(buf, 10, &max_ptes_none);
547         if (err || max_ptes_none > HPAGE_PMD_NR-1)
548                 return -EINVAL;
549
550         khugepaged_max_ptes_none = max_ptes_none;
551
552         return count;
553 }
554 static struct kobj_attribute khugepaged_max_ptes_none_attr =
555         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
556                khugepaged_max_ptes_none_store);
557
558 static struct attribute *khugepaged_attr[] = {
559         &khugepaged_defrag_attr.attr,
560         &khugepaged_max_ptes_none_attr.attr,
561         &pages_to_scan_attr.attr,
562         &pages_collapsed_attr.attr,
563         &full_scans_attr.attr,
564         &scan_sleep_millisecs_attr.attr,
565         &alloc_sleep_millisecs_attr.attr,
566         NULL,
567 };
568
569 static struct attribute_group khugepaged_attr_group = {
570         .attrs = khugepaged_attr,
571         .name = "khugepaged",
572 };
573
574 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
575 {
576         int err;
577
578         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
579         if (unlikely(!*hugepage_kobj)) {
580                 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
581                 return -ENOMEM;
582         }
583
584         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
585         if (err) {
586                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
587                 goto delete_obj;
588         }
589
590         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
591         if (err) {
592                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
593                 goto remove_hp_group;
594         }
595
596         return 0;
597
598 remove_hp_group:
599         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
600 delete_obj:
601         kobject_put(*hugepage_kobj);
602         return err;
603 }
604
605 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
606 {
607         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
608         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
609         kobject_put(hugepage_kobj);
610 }
611 #else
612 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
613 {
614         return 0;
615 }
616
617 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
618 {
619 }
620 #endif /* CONFIG_SYSFS */
621
622 static int __init hugepage_init(void)
623 {
624         int err;
625         struct kobject *hugepage_kobj;
626
627         if (!has_transparent_hugepage()) {
628                 transparent_hugepage_flags = 0;
629                 return -EINVAL;
630         }
631
632         err = hugepage_init_sysfs(&hugepage_kobj);
633         if (err)
634                 return err;
635
636         err = khugepaged_slab_init();
637         if (err)
638                 goto out;
639
640         register_shrinker(&huge_zero_page_shrinker);
641
642         /*
643          * By default disable transparent hugepages on smaller systems,
644          * where the extra memory used could hurt more than TLB overhead
645          * is likely to save.  The admin can still enable it through /sys.
646          */
647         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
648                 transparent_hugepage_flags = 0;
649
650         start_khugepaged();
651
652         return 0;
653 out:
654         hugepage_exit_sysfs(hugepage_kobj);
655         return err;
656 }
657 module_init(hugepage_init)
658
659 static int __init setup_transparent_hugepage(char *str)
660 {
661         int ret = 0;
662         if (!str)
663                 goto out;
664         if (!strcmp(str, "always")) {
665                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
666                         &transparent_hugepage_flags);
667                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
668                           &transparent_hugepage_flags);
669                 ret = 1;
670         } else if (!strcmp(str, "madvise")) {
671                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
672                           &transparent_hugepage_flags);
673                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
674                         &transparent_hugepage_flags);
675                 ret = 1;
676         } else if (!strcmp(str, "never")) {
677                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
678                           &transparent_hugepage_flags);
679                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
680                           &transparent_hugepage_flags);
681                 ret = 1;
682         }
683 out:
684         if (!ret)
685                 printk(KERN_WARNING
686                        "transparent_hugepage= cannot parse, ignored\n");
687         return ret;
688 }
689 __setup("transparent_hugepage=", setup_transparent_hugepage);
690
691 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
692 {
693         if (likely(vma->vm_flags & VM_WRITE))
694                 pmd = pmd_mkwrite(pmd);
695         return pmd;
696 }
697
698 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
699 {
700         pmd_t entry;
701         entry = mk_pmd(page, prot);
702         entry = pmd_mkhuge(entry);
703         return entry;
704 }
705
706 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
707                                         struct vm_area_struct *vma,
708                                         unsigned long haddr, pmd_t *pmd,
709                                         struct page *page)
710 {
711         pgtable_t pgtable;
712
713         VM_BUG_ON(!PageCompound(page));
714         pgtable = pte_alloc_one(mm, haddr);
715         if (unlikely(!pgtable))
716                 return VM_FAULT_OOM;
717
718         clear_huge_page(page, haddr, HPAGE_PMD_NR);
719         /*
720          * The memory barrier inside __SetPageUptodate makes sure that
721          * clear_huge_page writes become visible before the set_pmd_at()
722          * write.
723          */
724         __SetPageUptodate(page);
725
726         spin_lock(&mm->page_table_lock);
727         if (unlikely(!pmd_none(*pmd))) {
728                 spin_unlock(&mm->page_table_lock);
729                 mem_cgroup_uncharge_page(page);
730                 put_page(page);
731                 pte_free(mm, pgtable);
732         } else {
733                 pmd_t entry;
734                 entry = mk_huge_pmd(page, vma->vm_page_prot);
735                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
736                 page_add_new_anon_rmap(page, vma, haddr);
737                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
738                 set_pmd_at(mm, haddr, pmd, entry);
739                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
740                 mm->nr_ptes++;
741                 spin_unlock(&mm->page_table_lock);
742         }
743
744         return 0;
745 }
746
747 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
748 {
749         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
750 }
751
752 static inline struct page *alloc_hugepage_vma(int defrag,
753                                               struct vm_area_struct *vma,
754                                               unsigned long haddr, int nd,
755                                               gfp_t extra_gfp)
756 {
757         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
758                                HPAGE_PMD_ORDER, vma, haddr, nd);
759 }
760
761 #ifndef CONFIG_NUMA
762 static inline struct page *alloc_hugepage(int defrag)
763 {
764         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
765                            HPAGE_PMD_ORDER);
766 }
767 #endif
768
769 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
770                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
771                 struct page *zero_page)
772 {
773         pmd_t entry;
774         if (!pmd_none(*pmd))
775                 return false;
776         entry = mk_pmd(zero_page, vma->vm_page_prot);
777         entry = pmd_wrprotect(entry);
778         entry = pmd_mkhuge(entry);
779         pgtable_trans_huge_deposit(mm, pmd, pgtable);
780         set_pmd_at(mm, haddr, pmd, entry);
781         mm->nr_ptes++;
782         return true;
783 }
784
785 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
786                                unsigned long address, pmd_t *pmd,
787                                unsigned int flags)
788 {
789         struct page *page;
790         unsigned long haddr = address & HPAGE_PMD_MASK;
791
792         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
793                 return VM_FAULT_FALLBACK;
794         if (unlikely(anon_vma_prepare(vma)))
795                 return VM_FAULT_OOM;
796         if (unlikely(khugepaged_enter(vma)))
797                 return VM_FAULT_OOM;
798         if (!(flags & FAULT_FLAG_WRITE) &&
799                         transparent_hugepage_use_zero_page()) {
800                 pgtable_t pgtable;
801                 struct page *zero_page;
802                 bool set;
803                 pgtable = pte_alloc_one(mm, haddr);
804                 if (unlikely(!pgtable))
805                         return VM_FAULT_OOM;
806                 zero_page = get_huge_zero_page();
807                 if (unlikely(!zero_page)) {
808                         pte_free(mm, pgtable);
809                         count_vm_event(THP_FAULT_FALLBACK);
810                         return VM_FAULT_FALLBACK;
811                 }
812                 spin_lock(&mm->page_table_lock);
813                 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
814                                 zero_page);
815                 spin_unlock(&mm->page_table_lock);
816                 if (!set) {
817                         pte_free(mm, pgtable);
818                         put_huge_zero_page();
819                 }
820                 return 0;
821         }
822         page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
823                         vma, haddr, numa_node_id(), 0);
824         if (unlikely(!page)) {
825                 count_vm_event(THP_FAULT_FALLBACK);
826                 return VM_FAULT_FALLBACK;
827         }
828         if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
829                 put_page(page);
830                 count_vm_event(THP_FAULT_FALLBACK);
831                 return VM_FAULT_FALLBACK;
832         }
833         if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
834                 mem_cgroup_uncharge_page(page);
835                 put_page(page);
836                 count_vm_event(THP_FAULT_FALLBACK);
837                 return VM_FAULT_FALLBACK;
838         }
839
840         count_vm_event(THP_FAULT_ALLOC);
841         return 0;
842 }
843
844 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
845                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
846                   struct vm_area_struct *vma)
847 {
848         struct page *src_page;
849         pmd_t pmd;
850         pgtable_t pgtable;
851         int ret;
852
853         ret = -ENOMEM;
854         pgtable = pte_alloc_one(dst_mm, addr);
855         if (unlikely(!pgtable))
856                 goto out;
857
858         spin_lock(&dst_mm->page_table_lock);
859         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
860
861         ret = -EAGAIN;
862         pmd = *src_pmd;
863         if (unlikely(!pmd_trans_huge(pmd))) {
864                 pte_free(dst_mm, pgtable);
865                 goto out_unlock;
866         }
867         /*
868          * mm->page_table_lock is enough to be sure that huge zero pmd is not
869          * under splitting since we don't split the page itself, only pmd to
870          * a page table.
871          */
872         if (is_huge_zero_pmd(pmd)) {
873                 struct page *zero_page;
874                 bool set;
875                 /*
876                  * get_huge_zero_page() will never allocate a new page here,
877                  * since we already have a zero page to copy. It just takes a
878                  * reference.
879                  */
880                 zero_page = get_huge_zero_page();
881                 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
882                                 zero_page);
883                 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
884                 ret = 0;
885                 goto out_unlock;
886         }
887         if (unlikely(pmd_trans_splitting(pmd))) {
888                 /* split huge page running from under us */
889                 spin_unlock(&src_mm->page_table_lock);
890                 spin_unlock(&dst_mm->page_table_lock);
891                 pte_free(dst_mm, pgtable);
892
893                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
894                 goto out;
895         }
896         src_page = pmd_page(pmd);
897         VM_BUG_ON(!PageHead(src_page));
898         get_page(src_page);
899         page_dup_rmap(src_page);
900         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
901
902         pmdp_set_wrprotect(src_mm, addr, src_pmd);
903         pmd = pmd_mkold(pmd_wrprotect(pmd));
904         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
905         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
906         dst_mm->nr_ptes++;
907
908         ret = 0;
909 out_unlock:
910         spin_unlock(&src_mm->page_table_lock);
911         spin_unlock(&dst_mm->page_table_lock);
912 out:
913         return ret;
914 }
915
916 void huge_pmd_set_accessed(struct mm_struct *mm,
917                            struct vm_area_struct *vma,
918                            unsigned long address,
919                            pmd_t *pmd, pmd_t orig_pmd,
920                            int dirty)
921 {
922         pmd_t entry;
923         unsigned long haddr;
924
925         spin_lock(&mm->page_table_lock);
926         if (unlikely(!pmd_same(*pmd, orig_pmd)))
927                 goto unlock;
928
929         entry = pmd_mkyoung(orig_pmd);
930         haddr = address & HPAGE_PMD_MASK;
931         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
932                 update_mmu_cache_pmd(vma, address, pmd);
933
934 unlock:
935         spin_unlock(&mm->page_table_lock);
936 }
937
938 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
939                 struct vm_area_struct *vma, unsigned long address,
940                 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
941 {
942         pgtable_t pgtable;
943         pmd_t _pmd;
944         struct page *page;
945         int i, ret = 0;
946         unsigned long mmun_start;       /* For mmu_notifiers */
947         unsigned long mmun_end;         /* For mmu_notifiers */
948
949         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
950         if (!page) {
951                 ret |= VM_FAULT_OOM;
952                 goto out;
953         }
954
955         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
956                 put_page(page);
957                 ret |= VM_FAULT_OOM;
958                 goto out;
959         }
960
961         clear_user_highpage(page, address);
962         __SetPageUptodate(page);
963
964         mmun_start = haddr;
965         mmun_end   = haddr + HPAGE_PMD_SIZE;
966         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
967
968         spin_lock(&mm->page_table_lock);
969         if (unlikely(!pmd_same(*pmd, orig_pmd)))
970                 goto out_free_page;
971
972         pmdp_clear_flush(vma, haddr, pmd);
973         /* leave pmd empty until pte is filled */
974
975         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
976         pmd_populate(mm, &_pmd, pgtable);
977
978         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
979                 pte_t *pte, entry;
980                 if (haddr == (address & PAGE_MASK)) {
981                         entry = mk_pte(page, vma->vm_page_prot);
982                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
983                         page_add_new_anon_rmap(page, vma, haddr);
984                 } else {
985                         entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
986                         entry = pte_mkspecial(entry);
987                 }
988                 pte = pte_offset_map(&_pmd, haddr);
989                 VM_BUG_ON(!pte_none(*pte));
990                 set_pte_at(mm, haddr, pte, entry);
991                 pte_unmap(pte);
992         }
993         smp_wmb(); /* make pte visible before pmd */
994         pmd_populate(mm, pmd, pgtable);
995         spin_unlock(&mm->page_table_lock);
996         put_huge_zero_page();
997         inc_mm_counter(mm, MM_ANONPAGES);
998
999         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1000
1001         ret |= VM_FAULT_WRITE;
1002 out:
1003         return ret;
1004 out_free_page:
1005         spin_unlock(&mm->page_table_lock);
1006         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007         mem_cgroup_uncharge_page(page);
1008         put_page(page);
1009         goto out;
1010 }
1011
1012 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1013                                         struct vm_area_struct *vma,
1014                                         unsigned long address,
1015                                         pmd_t *pmd, pmd_t orig_pmd,
1016                                         struct page *page,
1017                                         unsigned long haddr)
1018 {
1019         pgtable_t pgtable;
1020         pmd_t _pmd;
1021         int ret = 0, i;
1022         struct page **pages;
1023         unsigned long mmun_start;       /* For mmu_notifiers */
1024         unsigned long mmun_end;         /* For mmu_notifiers */
1025
1026         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1027                         GFP_KERNEL);
1028         if (unlikely(!pages)) {
1029                 ret |= VM_FAULT_OOM;
1030                 goto out;
1031         }
1032
1033         for (i = 0; i < HPAGE_PMD_NR; i++) {
1034                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1035                                                __GFP_OTHER_NODE,
1036                                                vma, address, page_to_nid(page));
1037                 if (unlikely(!pages[i] ||
1038                              mem_cgroup_newpage_charge(pages[i], mm,
1039                                                        GFP_KERNEL))) {
1040                         if (pages[i])
1041                                 put_page(pages[i]);
1042                         mem_cgroup_uncharge_start();
1043                         while (--i >= 0) {
1044                                 mem_cgroup_uncharge_page(pages[i]);
1045                                 put_page(pages[i]);
1046                         }
1047                         mem_cgroup_uncharge_end();
1048                         kfree(pages);
1049                         ret |= VM_FAULT_OOM;
1050                         goto out;
1051                 }
1052         }
1053
1054         for (i = 0; i < HPAGE_PMD_NR; i++) {
1055                 copy_user_highpage(pages[i], page + i,
1056                                    haddr + PAGE_SIZE * i, vma);
1057                 __SetPageUptodate(pages[i]);
1058                 cond_resched();
1059         }
1060
1061         mmun_start = haddr;
1062         mmun_end   = haddr + HPAGE_PMD_SIZE;
1063         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1064
1065         spin_lock(&mm->page_table_lock);
1066         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1067                 goto out_free_pages;
1068         VM_BUG_ON(!PageHead(page));
1069
1070         pmdp_clear_flush(vma, haddr, pmd);
1071         /* leave pmd empty until pte is filled */
1072
1073         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1074         pmd_populate(mm, &_pmd, pgtable);
1075
1076         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1077                 pte_t *pte, entry;
1078                 entry = mk_pte(pages[i], vma->vm_page_prot);
1079                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1080                 page_add_new_anon_rmap(pages[i], vma, haddr);
1081                 pte = pte_offset_map(&_pmd, haddr);
1082                 VM_BUG_ON(!pte_none(*pte));
1083                 set_pte_at(mm, haddr, pte, entry);
1084                 pte_unmap(pte);
1085         }
1086         kfree(pages);
1087
1088         smp_wmb(); /* make pte visible before pmd */
1089         pmd_populate(mm, pmd, pgtable);
1090         page_remove_rmap(page);
1091         spin_unlock(&mm->page_table_lock);
1092
1093         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1094
1095         ret |= VM_FAULT_WRITE;
1096         put_page(page);
1097
1098 out:
1099         return ret;
1100
1101 out_free_pages:
1102         spin_unlock(&mm->page_table_lock);
1103         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1104         mem_cgroup_uncharge_start();
1105         for (i = 0; i < HPAGE_PMD_NR; i++) {
1106                 mem_cgroup_uncharge_page(pages[i]);
1107                 put_page(pages[i]);
1108         }
1109         mem_cgroup_uncharge_end();
1110         kfree(pages);
1111         goto out;
1112 }
1113
1114 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1115                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1116 {
1117         int ret = 0;
1118         struct page *page = NULL, *new_page;
1119         unsigned long haddr;
1120         unsigned long mmun_start;       /* For mmu_notifiers */
1121         unsigned long mmun_end;         /* For mmu_notifiers */
1122
1123         VM_BUG_ON(!vma->anon_vma);
1124         haddr = address & HPAGE_PMD_MASK;
1125         if (is_huge_zero_pmd(orig_pmd))
1126                 goto alloc;
1127         spin_lock(&mm->page_table_lock);
1128         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1129                 goto out_unlock;
1130
1131         page = pmd_page(orig_pmd);
1132         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1133         if (page_mapcount(page) == 1) {
1134                 pmd_t entry;
1135                 entry = pmd_mkyoung(orig_pmd);
1136                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1137                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1138                         update_mmu_cache_pmd(vma, address, pmd);
1139                 ret |= VM_FAULT_WRITE;
1140                 goto out_unlock;
1141         }
1142         get_page(page);
1143         spin_unlock(&mm->page_table_lock);
1144 alloc:
1145         if (transparent_hugepage_enabled(vma) &&
1146             !transparent_hugepage_debug_cow())
1147                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1148                                               vma, haddr, numa_node_id(), 0);
1149         else
1150                 new_page = NULL;
1151
1152         if (unlikely(!new_page)) {
1153                 if (is_huge_zero_pmd(orig_pmd)) {
1154                         ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1155                                         address, pmd, orig_pmd, haddr);
1156                 } else {
1157                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1158                                         pmd, orig_pmd, page, haddr);
1159                         if (ret & VM_FAULT_OOM)
1160                                 split_huge_page(page);
1161                         put_page(page);
1162                 }
1163                 count_vm_event(THP_FAULT_FALLBACK);
1164                 goto out;
1165         }
1166
1167         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1168                 put_page(new_page);
1169                 if (page) {
1170                         split_huge_page(page);
1171                         put_page(page);
1172                 }
1173                 count_vm_event(THP_FAULT_FALLBACK);
1174                 ret |= VM_FAULT_OOM;
1175                 goto out;
1176         }
1177
1178         count_vm_event(THP_FAULT_ALLOC);
1179
1180         if (is_huge_zero_pmd(orig_pmd))
1181                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1182         else
1183                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1184         __SetPageUptodate(new_page);
1185
1186         mmun_start = haddr;
1187         mmun_end   = haddr + HPAGE_PMD_SIZE;
1188         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1189
1190         spin_lock(&mm->page_table_lock);
1191         if (page)
1192                 put_page(page);
1193         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1194                 spin_unlock(&mm->page_table_lock);
1195                 mem_cgroup_uncharge_page(new_page);
1196                 put_page(new_page);
1197                 goto out_mn;
1198         } else {
1199                 pmd_t entry;
1200                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1201                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1202                 pmdp_clear_flush(vma, haddr, pmd);
1203                 page_add_new_anon_rmap(new_page, vma, haddr);
1204                 set_pmd_at(mm, haddr, pmd, entry);
1205                 update_mmu_cache_pmd(vma, address, pmd);
1206                 if (is_huge_zero_pmd(orig_pmd)) {
1207                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1208                         put_huge_zero_page();
1209                 } else {
1210                         VM_BUG_ON(!PageHead(page));
1211                         page_remove_rmap(page);
1212                         put_page(page);
1213                 }
1214                 ret |= VM_FAULT_WRITE;
1215         }
1216         spin_unlock(&mm->page_table_lock);
1217 out_mn:
1218         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1219 out:
1220         return ret;
1221 out_unlock:
1222         spin_unlock(&mm->page_table_lock);
1223         return ret;
1224 }
1225
1226 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1227                                    unsigned long addr,
1228                                    pmd_t *pmd,
1229                                    unsigned int flags)
1230 {
1231         struct mm_struct *mm = vma->vm_mm;
1232         struct page *page = NULL;
1233
1234         assert_spin_locked(&mm->page_table_lock);
1235
1236         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1237                 goto out;
1238
1239         /* Avoid dumping huge zero page */
1240         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1241                 return ERR_PTR(-EFAULT);
1242
1243         page = pmd_page(*pmd);
1244         VM_BUG_ON(!PageHead(page));
1245         if (flags & FOLL_TOUCH) {
1246                 pmd_t _pmd;
1247                 /*
1248                  * We should set the dirty bit only for FOLL_WRITE but
1249                  * for now the dirty bit in the pmd is meaningless.
1250                  * And if the dirty bit will become meaningful and
1251                  * we'll only set it with FOLL_WRITE, an atomic
1252                  * set_bit will be required on the pmd to set the
1253                  * young bit, instead of the current set_pmd_at.
1254                  */
1255                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1256                 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1257                                           pmd, _pmd,  1))
1258                         update_mmu_cache_pmd(vma, addr, pmd);
1259         }
1260         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1261                 if (page->mapping && trylock_page(page)) {
1262                         lru_add_drain();
1263                         if (page->mapping)
1264                                 mlock_vma_page(page);
1265                         unlock_page(page);
1266                 }
1267         }
1268         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1269         VM_BUG_ON(!PageCompound(page));
1270         if (flags & FOLL_GET)
1271                 get_page_foll(page);
1272
1273 out:
1274         return page;
1275 }
1276
1277 /* NUMA hinting page fault entry point for trans huge pmds */
1278 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1279                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1280 {
1281         struct anon_vma *anon_vma = NULL;
1282         struct page *page;
1283         unsigned long haddr = addr & HPAGE_PMD_MASK;
1284         int page_nid = -1, this_nid = numa_node_id();
1285         int target_nid;
1286         bool page_locked;
1287         bool migrated = false;
1288
1289         spin_lock(&mm->page_table_lock);
1290         if (unlikely(!pmd_same(pmd, *pmdp)))
1291                 goto out_unlock;
1292
1293         page = pmd_page(pmd);
1294         BUG_ON(is_huge_zero_page(page));
1295         page_nid = page_to_nid(page);
1296         count_vm_numa_event(NUMA_HINT_FAULTS);
1297         if (page_nid == this_nid)
1298                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1299
1300         /*
1301          * Acquire the page lock to serialise THP migrations but avoid dropping
1302          * page_table_lock if at all possible
1303          */
1304         page_locked = trylock_page(page);
1305         target_nid = mpol_misplaced(page, vma, haddr);
1306         if (target_nid == -1) {
1307                 /* If the page was locked, there are no parallel migrations */
1308                 if (page_locked)
1309                         goto clear_pmdnuma;
1310
1311                 /*
1312                  * Otherwise wait for potential migrations and retry. We do
1313                  * relock and check_same as the page may no longer be mapped.
1314                  * As the fault is being retried, do not account for it.
1315                  */
1316                 spin_unlock(&mm->page_table_lock);
1317                 wait_on_page_locked(page);
1318                 page_nid = -1;
1319                 goto out;
1320         }
1321
1322         /* Page is misplaced, serialise migrations and parallel THP splits */
1323         get_page(page);
1324         spin_unlock(&mm->page_table_lock);
1325         if (!page_locked)
1326                 lock_page(page);
1327         anon_vma = page_lock_anon_vma_read(page);
1328
1329         /* Confirm the PMD did not change while page_table_lock was released */
1330         spin_lock(&mm->page_table_lock);
1331         if (unlikely(!pmd_same(pmd, *pmdp))) {
1332                 unlock_page(page);
1333                 put_page(page);
1334                 page_nid = -1;
1335                 goto out_unlock;
1336         }
1337
1338         /*
1339          * Migrate the THP to the requested node, returns with page unlocked
1340          * and pmd_numa cleared.
1341          */
1342         spin_unlock(&mm->page_table_lock);
1343         migrated = migrate_misplaced_transhuge_page(mm, vma,
1344                                 pmdp, pmd, addr, page, target_nid);
1345         if (migrated)
1346                 page_nid = target_nid;
1347
1348         goto out;
1349 clear_pmdnuma:
1350         BUG_ON(!PageLocked(page));
1351         pmd = pmd_mknonnuma(pmd);
1352         set_pmd_at(mm, haddr, pmdp, pmd);
1353         VM_BUG_ON(pmd_numa(*pmdp));
1354         update_mmu_cache_pmd(vma, addr, pmdp);
1355         unlock_page(page);
1356 out_unlock:
1357         spin_unlock(&mm->page_table_lock);
1358
1359 out:
1360         if (anon_vma)
1361                 page_unlock_anon_vma_read(anon_vma);
1362
1363         if (page_nid != -1)
1364                 task_numa_fault(page_nid, HPAGE_PMD_NR, migrated);
1365
1366         return 0;
1367 }
1368
1369 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1370                  pmd_t *pmd, unsigned long addr)
1371 {
1372         int ret = 0;
1373
1374         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1375                 struct page *page;
1376                 pgtable_t pgtable;
1377                 pmd_t orig_pmd;
1378                 /*
1379                  * For architectures like ppc64 we look at deposited pgtable
1380                  * when calling pmdp_get_and_clear. So do the
1381                  * pgtable_trans_huge_withdraw after finishing pmdp related
1382                  * operations.
1383                  */
1384                 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1385                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1386                 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1387                 if (is_huge_zero_pmd(orig_pmd)) {
1388                         tlb->mm->nr_ptes--;
1389                         spin_unlock(&tlb->mm->page_table_lock);
1390                         put_huge_zero_page();
1391                 } else {
1392                         page = pmd_page(orig_pmd);
1393                         page_remove_rmap(page);
1394                         VM_BUG_ON(page_mapcount(page) < 0);
1395                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1396                         VM_BUG_ON(!PageHead(page));
1397                         tlb->mm->nr_ptes--;
1398                         spin_unlock(&tlb->mm->page_table_lock);
1399                         tlb_remove_page(tlb, page);
1400                 }
1401                 pte_free(tlb->mm, pgtable);
1402                 ret = 1;
1403         }
1404         return ret;
1405 }
1406
1407 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1408                 unsigned long addr, unsigned long end,
1409                 unsigned char *vec)
1410 {
1411         int ret = 0;
1412
1413         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1414                 /*
1415                  * All logical pages in the range are present
1416                  * if backed by a huge page.
1417                  */
1418                 spin_unlock(&vma->vm_mm->page_table_lock);
1419                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1420                 ret = 1;
1421         }
1422
1423         return ret;
1424 }
1425
1426 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1427                   unsigned long old_addr,
1428                   unsigned long new_addr, unsigned long old_end,
1429                   pmd_t *old_pmd, pmd_t *new_pmd)
1430 {
1431         int ret = 0;
1432         pmd_t pmd;
1433
1434         struct mm_struct *mm = vma->vm_mm;
1435
1436         if ((old_addr & ~HPAGE_PMD_MASK) ||
1437             (new_addr & ~HPAGE_PMD_MASK) ||
1438             old_end - old_addr < HPAGE_PMD_SIZE ||
1439             (new_vma->vm_flags & VM_NOHUGEPAGE))
1440                 goto out;
1441
1442         /*
1443          * The destination pmd shouldn't be established, free_pgtables()
1444          * should have release it.
1445          */
1446         if (WARN_ON(!pmd_none(*new_pmd))) {
1447                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1448                 goto out;
1449         }
1450
1451         ret = __pmd_trans_huge_lock(old_pmd, vma);
1452         if (ret == 1) {
1453                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1454                 VM_BUG_ON(!pmd_none(*new_pmd));
1455                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1456                 spin_unlock(&mm->page_table_lock);
1457         }
1458 out:
1459         return ret;
1460 }
1461
1462 /*
1463  * Returns
1464  *  - 0 if PMD could not be locked
1465  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1466  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1467  */
1468 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1469                 unsigned long addr, pgprot_t newprot, int prot_numa)
1470 {
1471         struct mm_struct *mm = vma->vm_mm;
1472         int ret = 0;
1473
1474         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1475                 pmd_t entry;
1476                 ret = 1;
1477                 if (!prot_numa) {
1478                         entry = pmdp_get_and_clear(mm, addr, pmd);
1479                         entry = pmd_modify(entry, newprot);
1480                         ret = HPAGE_PMD_NR;
1481                         BUG_ON(pmd_write(entry));
1482                 } else {
1483                         struct page *page = pmd_page(*pmd);
1484
1485                         /*
1486                          * Only check non-shared pages. Do not trap faults
1487                          * against the zero page. The read-only data is likely
1488                          * to be read-cached on the local CPU cache and it is
1489                          * less useful to know about local vs remote hits on
1490                          * the zero page.
1491                          */
1492                         if (page_mapcount(page) == 1 &&
1493                             !is_huge_zero_page(page) &&
1494                             !pmd_numa(*pmd)) {
1495                                 entry = pmdp_get_and_clear(mm, addr, pmd);
1496                                 entry = pmd_mknuma(entry);
1497                                 ret = HPAGE_PMD_NR;
1498                         }
1499                 }
1500
1501                 /* Set PMD if cleared earlier */
1502                 if (ret == HPAGE_PMD_NR)
1503                         set_pmd_at(mm, addr, pmd, entry);
1504
1505                 spin_unlock(&vma->vm_mm->page_table_lock);
1506         }
1507
1508         return ret;
1509 }
1510
1511 /*
1512  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1513  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1514  *
1515  * Note that if it returns 1, this routine returns without unlocking page
1516  * table locks. So callers must unlock them.
1517  */
1518 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1519 {
1520         spin_lock(&vma->vm_mm->page_table_lock);
1521         if (likely(pmd_trans_huge(*pmd))) {
1522                 if (unlikely(pmd_trans_splitting(*pmd))) {
1523                         spin_unlock(&vma->vm_mm->page_table_lock);
1524                         wait_split_huge_page(vma->anon_vma, pmd);
1525                         return -1;
1526                 } else {
1527                         /* Thp mapped by 'pmd' is stable, so we can
1528                          * handle it as it is. */
1529                         return 1;
1530                 }
1531         }
1532         spin_unlock(&vma->vm_mm->page_table_lock);
1533         return 0;
1534 }
1535
1536 pmd_t *page_check_address_pmd(struct page *page,
1537                               struct mm_struct *mm,
1538                               unsigned long address,
1539                               enum page_check_address_pmd_flag flag)
1540 {
1541         pmd_t *pmd, *ret = NULL;
1542
1543         if (address & ~HPAGE_PMD_MASK)
1544                 goto out;
1545
1546         pmd = mm_find_pmd(mm, address);
1547         if (!pmd)
1548                 goto out;
1549         if (pmd_none(*pmd))
1550                 goto out;
1551         if (pmd_page(*pmd) != page)
1552                 goto out;
1553         /*
1554          * split_vma() may create temporary aliased mappings. There is
1555          * no risk as long as all huge pmd are found and have their
1556          * splitting bit set before __split_huge_page_refcount
1557          * runs. Finding the same huge pmd more than once during the
1558          * same rmap walk is not a problem.
1559          */
1560         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1561             pmd_trans_splitting(*pmd))
1562                 goto out;
1563         if (pmd_trans_huge(*pmd)) {
1564                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1565                           !pmd_trans_splitting(*pmd));
1566                 ret = pmd;
1567         }
1568 out:
1569         return ret;
1570 }
1571
1572 static int __split_huge_page_splitting(struct page *page,
1573                                        struct vm_area_struct *vma,
1574                                        unsigned long address)
1575 {
1576         struct mm_struct *mm = vma->vm_mm;
1577         pmd_t *pmd;
1578         int ret = 0;
1579         /* For mmu_notifiers */
1580         const unsigned long mmun_start = address;
1581         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1582
1583         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1584         spin_lock(&mm->page_table_lock);
1585         pmd = page_check_address_pmd(page, mm, address,
1586                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1587         if (pmd) {
1588                 /*
1589                  * We can't temporarily set the pmd to null in order
1590                  * to split it, the pmd must remain marked huge at all
1591                  * times or the VM won't take the pmd_trans_huge paths
1592                  * and it won't wait on the anon_vma->root->rwsem to
1593                  * serialize against split_huge_page*.
1594                  */
1595                 pmdp_splitting_flush(vma, address, pmd);
1596                 ret = 1;
1597         }
1598         spin_unlock(&mm->page_table_lock);
1599         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1600
1601         return ret;
1602 }
1603
1604 static void __split_huge_page_refcount(struct page *page,
1605                                        struct list_head *list)
1606 {
1607         int i;
1608         struct zone *zone = page_zone(page);
1609         struct lruvec *lruvec;
1610         int tail_count = 0;
1611
1612         /* prevent PageLRU to go away from under us, and freeze lru stats */
1613         spin_lock_irq(&zone->lru_lock);
1614         lruvec = mem_cgroup_page_lruvec(page, zone);
1615
1616         compound_lock(page);
1617         /* complete memcg works before add pages to LRU */
1618         mem_cgroup_split_huge_fixup(page);
1619
1620         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1621                 struct page *page_tail = page + i;
1622
1623                 /* tail_page->_mapcount cannot change */
1624                 BUG_ON(page_mapcount(page_tail) < 0);
1625                 tail_count += page_mapcount(page_tail);
1626                 /* check for overflow */
1627                 BUG_ON(tail_count < 0);
1628                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1629                 /*
1630                  * tail_page->_count is zero and not changing from
1631                  * under us. But get_page_unless_zero() may be running
1632                  * from under us on the tail_page. If we used
1633                  * atomic_set() below instead of atomic_add(), we
1634                  * would then run atomic_set() concurrently with
1635                  * get_page_unless_zero(), and atomic_set() is
1636                  * implemented in C not using locked ops. spin_unlock
1637                  * on x86 sometime uses locked ops because of PPro
1638                  * errata 66, 92, so unless somebody can guarantee
1639                  * atomic_set() here would be safe on all archs (and
1640                  * not only on x86), it's safer to use atomic_add().
1641                  */
1642                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1643                            &page_tail->_count);
1644
1645                 /* after clearing PageTail the gup refcount can be released */
1646                 smp_mb();
1647
1648                 /*
1649                  * retain hwpoison flag of the poisoned tail page:
1650                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1651                  *   by the memory-failure.
1652                  */
1653                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1654                 page_tail->flags |= (page->flags &
1655                                      ((1L << PG_referenced) |
1656                                       (1L << PG_swapbacked) |
1657                                       (1L << PG_mlocked) |
1658                                       (1L << PG_uptodate) |
1659                                       (1L << PG_active) |
1660                                       (1L << PG_unevictable)));
1661                 page_tail->flags |= (1L << PG_dirty);
1662
1663                 /* clear PageTail before overwriting first_page */
1664                 smp_wmb();
1665
1666                 /*
1667                  * __split_huge_page_splitting() already set the
1668                  * splitting bit in all pmd that could map this
1669                  * hugepage, that will ensure no CPU can alter the
1670                  * mapcount on the head page. The mapcount is only
1671                  * accounted in the head page and it has to be
1672                  * transferred to all tail pages in the below code. So
1673                  * for this code to be safe, the split the mapcount
1674                  * can't change. But that doesn't mean userland can't
1675                  * keep changing and reading the page contents while
1676                  * we transfer the mapcount, so the pmd splitting
1677                  * status is achieved setting a reserved bit in the
1678                  * pmd, not by clearing the present bit.
1679                 */
1680                 page_tail->_mapcount = page->_mapcount;
1681
1682                 BUG_ON(page_tail->mapping);
1683                 page_tail->mapping = page->mapping;
1684
1685                 page_tail->index = page->index + i;
1686                 page_nid_xchg_last(page_tail, page_nid_last(page));
1687
1688                 BUG_ON(!PageAnon(page_tail));
1689                 BUG_ON(!PageUptodate(page_tail));
1690                 BUG_ON(!PageDirty(page_tail));
1691                 BUG_ON(!PageSwapBacked(page_tail));
1692
1693                 lru_add_page_tail(page, page_tail, lruvec, list);
1694         }
1695         atomic_sub(tail_count, &page->_count);
1696         BUG_ON(atomic_read(&page->_count) <= 0);
1697
1698         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1699
1700         ClearPageCompound(page);
1701         compound_unlock(page);
1702         spin_unlock_irq(&zone->lru_lock);
1703
1704         for (i = 1; i < HPAGE_PMD_NR; i++) {
1705                 struct page *page_tail = page + i;
1706                 BUG_ON(page_count(page_tail) <= 0);
1707                 /*
1708                  * Tail pages may be freed if there wasn't any mapping
1709                  * like if add_to_swap() is running on a lru page that
1710                  * had its mapping zapped. And freeing these pages
1711                  * requires taking the lru_lock so we do the put_page
1712                  * of the tail pages after the split is complete.
1713                  */
1714                 put_page(page_tail);
1715         }
1716
1717         /*
1718          * Only the head page (now become a regular page) is required
1719          * to be pinned by the caller.
1720          */
1721         BUG_ON(page_count(page) <= 0);
1722 }
1723
1724 static int __split_huge_page_map(struct page *page,
1725                                  struct vm_area_struct *vma,
1726                                  unsigned long address)
1727 {
1728         struct mm_struct *mm = vma->vm_mm;
1729         pmd_t *pmd, _pmd;
1730         int ret = 0, i;
1731         pgtable_t pgtable;
1732         unsigned long haddr;
1733
1734         spin_lock(&mm->page_table_lock);
1735         pmd = page_check_address_pmd(page, mm, address,
1736                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1737         if (pmd) {
1738                 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1739                 pmd_populate(mm, &_pmd, pgtable);
1740
1741                 haddr = address;
1742                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1743                         pte_t *pte, entry;
1744                         BUG_ON(PageCompound(page+i));
1745                         entry = mk_pte(page + i, vma->vm_page_prot);
1746                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1747                         if (!pmd_write(*pmd))
1748                                 entry = pte_wrprotect(entry);
1749                         else
1750                                 BUG_ON(page_mapcount(page) != 1);
1751                         if (!pmd_young(*pmd))
1752                                 entry = pte_mkold(entry);
1753                         if (pmd_numa(*pmd))
1754                                 entry = pte_mknuma(entry);
1755                         pte = pte_offset_map(&_pmd, haddr);
1756                         BUG_ON(!pte_none(*pte));
1757                         set_pte_at(mm, haddr, pte, entry);
1758                         pte_unmap(pte);
1759                 }
1760
1761                 smp_wmb(); /* make pte visible before pmd */
1762                 /*
1763                  * Up to this point the pmd is present and huge and
1764                  * userland has the whole access to the hugepage
1765                  * during the split (which happens in place). If we
1766                  * overwrite the pmd with the not-huge version
1767                  * pointing to the pte here (which of course we could
1768                  * if all CPUs were bug free), userland could trigger
1769                  * a small page size TLB miss on the small sized TLB
1770                  * while the hugepage TLB entry is still established
1771                  * in the huge TLB. Some CPU doesn't like that. See
1772                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1773                  * Erratum 383 on page 93. Intel should be safe but is
1774                  * also warns that it's only safe if the permission
1775                  * and cache attributes of the two entries loaded in
1776                  * the two TLB is identical (which should be the case
1777                  * here). But it is generally safer to never allow
1778                  * small and huge TLB entries for the same virtual
1779                  * address to be loaded simultaneously. So instead of
1780                  * doing "pmd_populate(); flush_tlb_range();" we first
1781                  * mark the current pmd notpresent (atomically because
1782                  * here the pmd_trans_huge and pmd_trans_splitting
1783                  * must remain set at all times on the pmd until the
1784                  * split is complete for this pmd), then we flush the
1785                  * SMP TLB and finally we write the non-huge version
1786                  * of the pmd entry with pmd_populate.
1787                  */
1788                 pmdp_invalidate(vma, address, pmd);
1789                 pmd_populate(mm, pmd, pgtable);
1790                 ret = 1;
1791         }
1792         spin_unlock(&mm->page_table_lock);
1793
1794         return ret;
1795 }
1796
1797 /* must be called with anon_vma->root->rwsem held */
1798 static void __split_huge_page(struct page *page,
1799                               struct anon_vma *anon_vma,
1800                               struct list_head *list)
1801 {
1802         int mapcount, mapcount2;
1803         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1804         struct anon_vma_chain *avc;
1805
1806         BUG_ON(!PageHead(page));
1807         BUG_ON(PageTail(page));
1808
1809         mapcount = 0;
1810         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1811                 struct vm_area_struct *vma = avc->vma;
1812                 unsigned long addr = vma_address(page, vma);
1813                 BUG_ON(is_vma_temporary_stack(vma));
1814                 mapcount += __split_huge_page_splitting(page, vma, addr);
1815         }
1816         /*
1817          * It is critical that new vmas are added to the tail of the
1818          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1819          * and establishes a child pmd before
1820          * __split_huge_page_splitting() freezes the parent pmd (so if
1821          * we fail to prevent copy_huge_pmd() from running until the
1822          * whole __split_huge_page() is complete), we will still see
1823          * the newly established pmd of the child later during the
1824          * walk, to be able to set it as pmd_trans_splitting too.
1825          */
1826         if (mapcount != page_mapcount(page))
1827                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1828                        mapcount, page_mapcount(page));
1829         BUG_ON(mapcount != page_mapcount(page));
1830
1831         __split_huge_page_refcount(page, list);
1832
1833         mapcount2 = 0;
1834         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1835                 struct vm_area_struct *vma = avc->vma;
1836                 unsigned long addr = vma_address(page, vma);
1837                 BUG_ON(is_vma_temporary_stack(vma));
1838                 mapcount2 += __split_huge_page_map(page, vma, addr);
1839         }
1840         if (mapcount != mapcount2)
1841                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1842                        mapcount, mapcount2, page_mapcount(page));
1843         BUG_ON(mapcount != mapcount2);
1844 }
1845
1846 /*
1847  * Split a hugepage into normal pages. This doesn't change the position of head
1848  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1849  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1850  * from the hugepage.
1851  * Return 0 if the hugepage is split successfully otherwise return 1.
1852  */
1853 int split_huge_page_to_list(struct page *page, struct list_head *list)
1854 {
1855         struct anon_vma *anon_vma;
1856         int ret = 1;
1857
1858         BUG_ON(is_huge_zero_page(page));
1859         BUG_ON(!PageAnon(page));
1860
1861         /*
1862          * The caller does not necessarily hold an mmap_sem that would prevent
1863          * the anon_vma disappearing so we first we take a reference to it
1864          * and then lock the anon_vma for write. This is similar to
1865          * page_lock_anon_vma_read except the write lock is taken to serialise
1866          * against parallel split or collapse operations.
1867          */
1868         anon_vma = page_get_anon_vma(page);
1869         if (!anon_vma)
1870                 goto out;
1871         anon_vma_lock_write(anon_vma);
1872
1873         ret = 0;
1874         if (!PageCompound(page))
1875                 goto out_unlock;
1876
1877         BUG_ON(!PageSwapBacked(page));
1878         __split_huge_page(page, anon_vma, list);
1879         count_vm_event(THP_SPLIT);
1880
1881         BUG_ON(PageCompound(page));
1882 out_unlock:
1883         anon_vma_unlock_write(anon_vma);
1884         put_anon_vma(anon_vma);
1885 out:
1886         return ret;
1887 }
1888
1889 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1890
1891 int hugepage_madvise(struct vm_area_struct *vma,
1892                      unsigned long *vm_flags, int advice)
1893 {
1894         struct mm_struct *mm = vma->vm_mm;
1895
1896         switch (advice) {
1897         case MADV_HUGEPAGE:
1898                 /*
1899                  * Be somewhat over-protective like KSM for now!
1900                  */
1901                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1902                         return -EINVAL;
1903                 if (mm->def_flags & VM_NOHUGEPAGE)
1904                         return -EINVAL;
1905                 *vm_flags &= ~VM_NOHUGEPAGE;
1906                 *vm_flags |= VM_HUGEPAGE;
1907                 /*
1908                  * If the vma become good for khugepaged to scan,
1909                  * register it here without waiting a page fault that
1910                  * may not happen any time soon.
1911                  */
1912                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1913                         return -ENOMEM;
1914                 break;
1915         case MADV_NOHUGEPAGE:
1916                 /*
1917                  * Be somewhat over-protective like KSM for now!
1918                  */
1919                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1920                         return -EINVAL;
1921                 *vm_flags &= ~VM_HUGEPAGE;
1922                 *vm_flags |= VM_NOHUGEPAGE;
1923                 /*
1924                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1925                  * this vma even if we leave the mm registered in khugepaged if
1926                  * it got registered before VM_NOHUGEPAGE was set.
1927                  */
1928                 break;
1929         }
1930
1931         return 0;
1932 }
1933
1934 static int __init khugepaged_slab_init(void)
1935 {
1936         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1937                                           sizeof(struct mm_slot),
1938                                           __alignof__(struct mm_slot), 0, NULL);
1939         if (!mm_slot_cache)
1940                 return -ENOMEM;
1941
1942         return 0;
1943 }
1944
1945 static inline struct mm_slot *alloc_mm_slot(void)
1946 {
1947         if (!mm_slot_cache)     /* initialization failed */
1948                 return NULL;
1949         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1950 }
1951
1952 static inline void free_mm_slot(struct mm_slot *mm_slot)
1953 {
1954         kmem_cache_free(mm_slot_cache, mm_slot);
1955 }
1956
1957 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1958 {
1959         struct mm_slot *mm_slot;
1960
1961         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1962                 if (mm == mm_slot->mm)
1963                         return mm_slot;
1964
1965         return NULL;
1966 }
1967
1968 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1969                                     struct mm_slot *mm_slot)
1970 {
1971         mm_slot->mm = mm;
1972         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1973 }
1974
1975 static inline int khugepaged_test_exit(struct mm_struct *mm)
1976 {
1977         return atomic_read(&mm->mm_users) == 0;
1978 }
1979
1980 int __khugepaged_enter(struct mm_struct *mm)
1981 {
1982         struct mm_slot *mm_slot;
1983         int wakeup;
1984
1985         mm_slot = alloc_mm_slot();
1986         if (!mm_slot)
1987                 return -ENOMEM;
1988
1989         /* __khugepaged_exit() must not run from under us */
1990         VM_BUG_ON(khugepaged_test_exit(mm));
1991         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1992                 free_mm_slot(mm_slot);
1993                 return 0;
1994         }
1995
1996         spin_lock(&khugepaged_mm_lock);
1997         insert_to_mm_slots_hash(mm, mm_slot);
1998         /*
1999          * Insert just behind the scanning cursor, to let the area settle
2000          * down a little.
2001          */
2002         wakeup = list_empty(&khugepaged_scan.mm_head);
2003         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2004         spin_unlock(&khugepaged_mm_lock);
2005
2006         atomic_inc(&mm->mm_count);
2007         if (wakeup)
2008                 wake_up_interruptible(&khugepaged_wait);
2009
2010         return 0;
2011 }
2012
2013 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2014 {
2015         unsigned long hstart, hend;
2016         if (!vma->anon_vma)
2017                 /*
2018                  * Not yet faulted in so we will register later in the
2019                  * page fault if needed.
2020                  */
2021                 return 0;
2022         if (vma->vm_ops)
2023                 /* khugepaged not yet working on file or special mappings */
2024                 return 0;
2025         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2026         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2027         hend = vma->vm_end & HPAGE_PMD_MASK;
2028         if (hstart < hend)
2029                 return khugepaged_enter(vma);
2030         return 0;
2031 }
2032
2033 void __khugepaged_exit(struct mm_struct *mm)
2034 {
2035         struct mm_slot *mm_slot;
2036         int free = 0;
2037
2038         spin_lock(&khugepaged_mm_lock);
2039         mm_slot = get_mm_slot(mm);
2040         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2041                 hash_del(&mm_slot->hash);
2042                 list_del(&mm_slot->mm_node);
2043                 free = 1;
2044         }
2045         spin_unlock(&khugepaged_mm_lock);
2046
2047         if (free) {
2048                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2049                 free_mm_slot(mm_slot);
2050                 mmdrop(mm);
2051         } else if (mm_slot) {
2052                 /*
2053                  * This is required to serialize against
2054                  * khugepaged_test_exit() (which is guaranteed to run
2055                  * under mmap sem read mode). Stop here (after we
2056                  * return all pagetables will be destroyed) until
2057                  * khugepaged has finished working on the pagetables
2058                  * under the mmap_sem.
2059                  */
2060                 down_write(&mm->mmap_sem);
2061                 up_write(&mm->mmap_sem);
2062         }
2063 }
2064
2065 static void release_pte_page(struct page *page)
2066 {
2067         /* 0 stands for page_is_file_cache(page) == false */
2068         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2069         unlock_page(page);
2070         putback_lru_page(page);
2071 }
2072
2073 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2074 {
2075         while (--_pte >= pte) {
2076                 pte_t pteval = *_pte;
2077                 if (!pte_none(pteval))
2078                         release_pte_page(pte_page(pteval));
2079         }
2080 }
2081
2082 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2083                                         unsigned long address,
2084                                         pte_t *pte)
2085 {
2086         struct page *page;
2087         pte_t *_pte;
2088         int referenced = 0, none = 0;
2089         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2090              _pte++, address += PAGE_SIZE) {
2091                 pte_t pteval = *_pte;
2092                 if (pte_none(pteval)) {
2093                         if (++none <= khugepaged_max_ptes_none)
2094                                 continue;
2095                         else
2096                                 goto out;
2097                 }
2098                 if (!pte_present(pteval) || !pte_write(pteval))
2099                         goto out;
2100                 page = vm_normal_page(vma, address, pteval);
2101                 if (unlikely(!page))
2102                         goto out;
2103
2104                 VM_BUG_ON(PageCompound(page));
2105                 BUG_ON(!PageAnon(page));
2106                 VM_BUG_ON(!PageSwapBacked(page));
2107
2108                 /* cannot use mapcount: can't collapse if there's a gup pin */
2109                 if (page_count(page) != 1)
2110                         goto out;
2111                 /*
2112                  * We can do it before isolate_lru_page because the
2113                  * page can't be freed from under us. NOTE: PG_lock
2114                  * is needed to serialize against split_huge_page
2115                  * when invoked from the VM.
2116                  */
2117                 if (!trylock_page(page))
2118                         goto out;
2119                 /*
2120                  * Isolate the page to avoid collapsing an hugepage
2121                  * currently in use by the VM.
2122                  */
2123                 if (isolate_lru_page(page)) {
2124                         unlock_page(page);
2125                         goto out;
2126                 }
2127                 /* 0 stands for page_is_file_cache(page) == false */
2128                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2129                 VM_BUG_ON(!PageLocked(page));
2130                 VM_BUG_ON(PageLRU(page));
2131
2132                 /* If there is no mapped pte young don't collapse the page */
2133                 if (pte_young(pteval) || PageReferenced(page) ||
2134                     mmu_notifier_test_young(vma->vm_mm, address))
2135                         referenced = 1;
2136         }
2137         if (likely(referenced))
2138                 return 1;
2139 out:
2140         release_pte_pages(pte, _pte);
2141         return 0;
2142 }
2143
2144 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2145                                       struct vm_area_struct *vma,
2146                                       unsigned long address,
2147                                       spinlock_t *ptl)
2148 {
2149         pte_t *_pte;
2150         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2151                 pte_t pteval = *_pte;
2152                 struct page *src_page;
2153
2154                 if (pte_none(pteval)) {
2155                         clear_user_highpage(page, address);
2156                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2157                 } else {
2158                         src_page = pte_page(pteval);
2159                         copy_user_highpage(page, src_page, address, vma);
2160                         VM_BUG_ON(page_mapcount(src_page) != 1);
2161                         release_pte_page(src_page);
2162                         /*
2163                          * ptl mostly unnecessary, but preempt has to
2164                          * be disabled to update the per-cpu stats
2165                          * inside page_remove_rmap().
2166                          */
2167                         spin_lock(ptl);
2168                         /*
2169                          * paravirt calls inside pte_clear here are
2170                          * superfluous.
2171                          */
2172                         pte_clear(vma->vm_mm, address, _pte);
2173                         page_remove_rmap(src_page);
2174                         spin_unlock(ptl);
2175                         free_page_and_swap_cache(src_page);
2176                 }
2177
2178                 address += PAGE_SIZE;
2179                 page++;
2180         }
2181 }
2182
2183 static void khugepaged_alloc_sleep(void)
2184 {
2185         wait_event_freezable_timeout(khugepaged_wait, false,
2186                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2187 }
2188
2189 #ifdef CONFIG_NUMA
2190 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2191 {
2192         if (IS_ERR(*hpage)) {
2193                 if (!*wait)
2194                         return false;
2195
2196                 *wait = false;
2197                 *hpage = NULL;
2198                 khugepaged_alloc_sleep();
2199         } else if (*hpage) {
2200                 put_page(*hpage);
2201                 *hpage = NULL;
2202         }
2203
2204         return true;
2205 }
2206
2207 static struct page
2208 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2209                        struct vm_area_struct *vma, unsigned long address,
2210                        int node)
2211 {
2212         VM_BUG_ON(*hpage);
2213         /*
2214          * Allocate the page while the vma is still valid and under
2215          * the mmap_sem read mode so there is no memory allocation
2216          * later when we take the mmap_sem in write mode. This is more
2217          * friendly behavior (OTOH it may actually hide bugs) to
2218          * filesystems in userland with daemons allocating memory in
2219          * the userland I/O paths.  Allocating memory with the
2220          * mmap_sem in read mode is good idea also to allow greater
2221          * scalability.
2222          */
2223         *hpage  = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2224                                       node, __GFP_OTHER_NODE);
2225
2226         /*
2227          * After allocating the hugepage, release the mmap_sem read lock in
2228          * preparation for taking it in write mode.
2229          */
2230         up_read(&mm->mmap_sem);
2231         if (unlikely(!*hpage)) {
2232                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2233                 *hpage = ERR_PTR(-ENOMEM);
2234                 return NULL;
2235         }
2236
2237         count_vm_event(THP_COLLAPSE_ALLOC);
2238         return *hpage;
2239 }
2240 #else
2241 static struct page *khugepaged_alloc_hugepage(bool *wait)
2242 {
2243         struct page *hpage;
2244
2245         do {
2246                 hpage = alloc_hugepage(khugepaged_defrag());
2247                 if (!hpage) {
2248                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2249                         if (!*wait)
2250                                 return NULL;
2251
2252                         *wait = false;
2253                         khugepaged_alloc_sleep();
2254                 } else
2255                         count_vm_event(THP_COLLAPSE_ALLOC);
2256         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2257
2258         return hpage;
2259 }
2260
2261 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2262 {
2263         if (!*hpage)
2264                 *hpage = khugepaged_alloc_hugepage(wait);
2265
2266         if (unlikely(!*hpage))
2267                 return false;
2268
2269         return true;
2270 }
2271
2272 static struct page
2273 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2274                        struct vm_area_struct *vma, unsigned long address,
2275                        int node)
2276 {
2277         up_read(&mm->mmap_sem);
2278         VM_BUG_ON(!*hpage);
2279         return  *hpage;
2280 }
2281 #endif
2282
2283 static bool hugepage_vma_check(struct vm_area_struct *vma)
2284 {
2285         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2286             (vma->vm_flags & VM_NOHUGEPAGE))
2287                 return false;
2288
2289         if (!vma->anon_vma || vma->vm_ops)
2290                 return false;
2291         if (is_vma_temporary_stack(vma))
2292                 return false;
2293         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2294         return true;
2295 }
2296
2297 static void collapse_huge_page(struct mm_struct *mm,
2298                                    unsigned long address,
2299                                    struct page **hpage,
2300                                    struct vm_area_struct *vma,
2301                                    int node)
2302 {
2303         pmd_t *pmd, _pmd;
2304         pte_t *pte;
2305         pgtable_t pgtable;
2306         struct page *new_page;
2307         spinlock_t *ptl;
2308         int isolated;
2309         unsigned long hstart, hend;
2310         unsigned long mmun_start;       /* For mmu_notifiers */
2311         unsigned long mmun_end;         /* For mmu_notifiers */
2312
2313         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2314
2315         /* release the mmap_sem read lock. */
2316         new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2317         if (!new_page)
2318                 return;
2319
2320         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2321                 return;
2322
2323         /*
2324          * Prevent all access to pagetables with the exception of
2325          * gup_fast later hanlded by the ptep_clear_flush and the VM
2326          * handled by the anon_vma lock + PG_lock.
2327          */
2328         down_write(&mm->mmap_sem);
2329         if (unlikely(khugepaged_test_exit(mm)))
2330                 goto out;
2331
2332         vma = find_vma(mm, address);
2333         if (!vma)
2334                 goto out;
2335         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2336         hend = vma->vm_end & HPAGE_PMD_MASK;
2337         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2338                 goto out;
2339         if (!hugepage_vma_check(vma))
2340                 goto out;
2341         pmd = mm_find_pmd(mm, address);
2342         if (!pmd)
2343                 goto out;
2344         if (pmd_trans_huge(*pmd))
2345                 goto out;
2346
2347         anon_vma_lock_write(vma->anon_vma);
2348
2349         pte = pte_offset_map(pmd, address);
2350         ptl = pte_lockptr(mm, pmd);
2351
2352         mmun_start = address;
2353         mmun_end   = address + HPAGE_PMD_SIZE;
2354         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2355         spin_lock(&mm->page_table_lock); /* probably unnecessary */
2356         /*
2357          * After this gup_fast can't run anymore. This also removes
2358          * any huge TLB entry from the CPU so we won't allow
2359          * huge and small TLB entries for the same virtual address
2360          * to avoid the risk of CPU bugs in that area.
2361          */
2362         _pmd = pmdp_clear_flush(vma, address, pmd);
2363         spin_unlock(&mm->page_table_lock);
2364         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2365
2366         spin_lock(ptl);
2367         isolated = __collapse_huge_page_isolate(vma, address, pte);
2368         spin_unlock(ptl);
2369
2370         if (unlikely(!isolated)) {
2371                 pte_unmap(pte);
2372                 spin_lock(&mm->page_table_lock);
2373                 BUG_ON(!pmd_none(*pmd));
2374                 /*
2375                  * We can only use set_pmd_at when establishing
2376                  * hugepmds and never for establishing regular pmds that
2377                  * points to regular pagetables. Use pmd_populate for that
2378                  */
2379                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2380                 spin_unlock(&mm->page_table_lock);
2381                 anon_vma_unlock_write(vma->anon_vma);
2382                 goto out;
2383         }
2384
2385         /*
2386          * All pages are isolated and locked so anon_vma rmap
2387          * can't run anymore.
2388          */
2389         anon_vma_unlock_write(vma->anon_vma);
2390
2391         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2392         pte_unmap(pte);
2393         __SetPageUptodate(new_page);
2394         pgtable = pmd_pgtable(_pmd);
2395
2396         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2397         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2398
2399         /*
2400          * spin_lock() below is not the equivalent of smp_wmb(), so
2401          * this is needed to avoid the copy_huge_page writes to become
2402          * visible after the set_pmd_at() write.
2403          */
2404         smp_wmb();
2405
2406         spin_lock(&mm->page_table_lock);
2407         BUG_ON(!pmd_none(*pmd));
2408         page_add_new_anon_rmap(new_page, vma, address);
2409         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2410         set_pmd_at(mm, address, pmd, _pmd);
2411         update_mmu_cache_pmd(vma, address, pmd);
2412         spin_unlock(&mm->page_table_lock);
2413
2414         *hpage = NULL;
2415
2416         khugepaged_pages_collapsed++;
2417 out_up_write:
2418         up_write(&mm->mmap_sem);
2419         return;
2420
2421 out:
2422         mem_cgroup_uncharge_page(new_page);
2423         goto out_up_write;
2424 }
2425
2426 static int khugepaged_scan_pmd(struct mm_struct *mm,
2427                                struct vm_area_struct *vma,
2428                                unsigned long address,
2429                                struct page **hpage)
2430 {
2431         pmd_t *pmd;
2432         pte_t *pte, *_pte;
2433         int ret = 0, referenced = 0, none = 0;
2434         struct page *page;
2435         unsigned long _address;
2436         spinlock_t *ptl;
2437         int node = NUMA_NO_NODE;
2438
2439         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2440
2441         pmd = mm_find_pmd(mm, address);
2442         if (!pmd)
2443                 goto out;
2444         if (pmd_trans_huge(*pmd))
2445                 goto out;
2446
2447         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2448         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2449              _pte++, _address += PAGE_SIZE) {
2450                 pte_t pteval = *_pte;
2451                 if (pte_none(pteval)) {
2452                         if (++none <= khugepaged_max_ptes_none)
2453                                 continue;
2454                         else
2455                                 goto out_unmap;
2456                 }
2457                 if (!pte_present(pteval) || !pte_write(pteval))
2458                         goto out_unmap;
2459                 page = vm_normal_page(vma, _address, pteval);
2460                 if (unlikely(!page))
2461                         goto out_unmap;
2462                 /*
2463                  * Chose the node of the first page. This could
2464                  * be more sophisticated and look at more pages,
2465                  * but isn't for now.
2466                  */
2467                 if (node == NUMA_NO_NODE)
2468                         node = page_to_nid(page);
2469                 VM_BUG_ON(PageCompound(page));
2470                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2471                         goto out_unmap;
2472                 /* cannot use mapcount: can't collapse if there's a gup pin */
2473                 if (page_count(page) != 1)
2474                         goto out_unmap;
2475                 if (pte_young(pteval) || PageReferenced(page) ||
2476                     mmu_notifier_test_young(vma->vm_mm, address))
2477                         referenced = 1;
2478         }
2479         if (referenced)
2480                 ret = 1;
2481 out_unmap:
2482         pte_unmap_unlock(pte, ptl);
2483         if (ret)
2484                 /* collapse_huge_page will return with the mmap_sem released */
2485                 collapse_huge_page(mm, address, hpage, vma, node);
2486 out:
2487         return ret;
2488 }
2489
2490 static void collect_mm_slot(struct mm_slot *mm_slot)
2491 {
2492         struct mm_struct *mm = mm_slot->mm;
2493
2494         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2495
2496         if (khugepaged_test_exit(mm)) {
2497                 /* free mm_slot */
2498                 hash_del(&mm_slot->hash);
2499                 list_del(&mm_slot->mm_node);
2500
2501                 /*
2502                  * Not strictly needed because the mm exited already.
2503                  *
2504                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2505                  */
2506
2507                 /* khugepaged_mm_lock actually not necessary for the below */
2508                 free_mm_slot(mm_slot);
2509                 mmdrop(mm);
2510         }
2511 }
2512
2513 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2514                                             struct page **hpage)
2515         __releases(&khugepaged_mm_lock)
2516         __acquires(&khugepaged_mm_lock)
2517 {
2518         struct mm_slot *mm_slot;
2519         struct mm_struct *mm;
2520         struct vm_area_struct *vma;
2521         int progress = 0;
2522
2523         VM_BUG_ON(!pages);
2524         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2525
2526         if (khugepaged_scan.mm_slot)
2527                 mm_slot = khugepaged_scan.mm_slot;
2528         else {
2529                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2530                                      struct mm_slot, mm_node);
2531                 khugepaged_scan.address = 0;
2532                 khugepaged_scan.mm_slot = mm_slot;
2533         }
2534         spin_unlock(&khugepaged_mm_lock);
2535
2536         mm = mm_slot->mm;
2537         down_read(&mm->mmap_sem);
2538         if (unlikely(khugepaged_test_exit(mm)))
2539                 vma = NULL;
2540         else
2541                 vma = find_vma(mm, khugepaged_scan.address);
2542
2543         progress++;
2544         for (; vma; vma = vma->vm_next) {
2545                 unsigned long hstart, hend;
2546
2547                 cond_resched();
2548                 if (unlikely(khugepaged_test_exit(mm))) {
2549                         progress++;
2550                         break;
2551                 }
2552                 if (!hugepage_vma_check(vma)) {
2553 skip:
2554                         progress++;
2555                         continue;
2556                 }
2557                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2558                 hend = vma->vm_end & HPAGE_PMD_MASK;
2559                 if (hstart >= hend)
2560                         goto skip;
2561                 if (khugepaged_scan.address > hend)
2562                         goto skip;
2563                 if (khugepaged_scan.address < hstart)
2564                         khugepaged_scan.address = hstart;
2565                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2566
2567                 while (khugepaged_scan.address < hend) {
2568                         int ret;
2569                         cond_resched();
2570                         if (unlikely(khugepaged_test_exit(mm)))
2571                                 goto breakouterloop;
2572
2573                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2574                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2575                                   hend);
2576                         ret = khugepaged_scan_pmd(mm, vma,
2577                                                   khugepaged_scan.address,
2578                                                   hpage);
2579                         /* move to next address */
2580                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2581                         progress += HPAGE_PMD_NR;
2582                         if (ret)
2583                                 /* we released mmap_sem so break loop */
2584                                 goto breakouterloop_mmap_sem;
2585                         if (progress >= pages)
2586                                 goto breakouterloop;
2587                 }
2588         }
2589 breakouterloop:
2590         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2591 breakouterloop_mmap_sem:
2592
2593         spin_lock(&khugepaged_mm_lock);
2594         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2595         /*
2596          * Release the current mm_slot if this mm is about to die, or
2597          * if we scanned all vmas of this mm.
2598          */
2599         if (khugepaged_test_exit(mm) || !vma) {
2600                 /*
2601                  * Make sure that if mm_users is reaching zero while
2602                  * khugepaged runs here, khugepaged_exit will find
2603                  * mm_slot not pointing to the exiting mm.
2604                  */
2605                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2606                         khugepaged_scan.mm_slot = list_entry(
2607                                 mm_slot->mm_node.next,
2608                                 struct mm_slot, mm_node);
2609                         khugepaged_scan.address = 0;
2610                 } else {
2611                         khugepaged_scan.mm_slot = NULL;
2612                         khugepaged_full_scans++;
2613                 }
2614
2615                 collect_mm_slot(mm_slot);
2616         }
2617
2618         return progress;
2619 }
2620
2621 static int khugepaged_has_work(void)
2622 {
2623         return !list_empty(&khugepaged_scan.mm_head) &&
2624                 khugepaged_enabled();
2625 }
2626
2627 static int khugepaged_wait_event(void)
2628 {
2629         return !list_empty(&khugepaged_scan.mm_head) ||
2630                 kthread_should_stop();
2631 }
2632
2633 static void khugepaged_do_scan(void)
2634 {
2635         struct page *hpage = NULL;
2636         unsigned int progress = 0, pass_through_head = 0;
2637         unsigned int pages = khugepaged_pages_to_scan;
2638         bool wait = true;
2639
2640         barrier(); /* write khugepaged_pages_to_scan to local stack */
2641
2642         while (progress < pages) {
2643                 if (!khugepaged_prealloc_page(&hpage, &wait))
2644                         break;
2645
2646                 cond_resched();
2647
2648                 if (unlikely(kthread_should_stop() || freezing(current)))
2649                         break;
2650
2651                 spin_lock(&khugepaged_mm_lock);
2652                 if (!khugepaged_scan.mm_slot)
2653                         pass_through_head++;
2654                 if (khugepaged_has_work() &&
2655                     pass_through_head < 2)
2656                         progress += khugepaged_scan_mm_slot(pages - progress,
2657                                                             &hpage);
2658                 else
2659                         progress = pages;
2660                 spin_unlock(&khugepaged_mm_lock);
2661         }
2662
2663         if (!IS_ERR_OR_NULL(hpage))
2664                 put_page(hpage);
2665 }
2666
2667 static void khugepaged_wait_work(void)
2668 {
2669         try_to_freeze();
2670
2671         if (khugepaged_has_work()) {
2672                 if (!khugepaged_scan_sleep_millisecs)
2673                         return;
2674
2675                 wait_event_freezable_timeout(khugepaged_wait,
2676                                              kthread_should_stop(),
2677                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2678                 return;
2679         }
2680
2681         if (khugepaged_enabled())
2682                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2683 }
2684
2685 static int khugepaged(void *none)
2686 {
2687         struct mm_slot *mm_slot;
2688
2689         set_freezable();
2690         set_user_nice(current, 19);
2691
2692         while (!kthread_should_stop()) {
2693                 khugepaged_do_scan();
2694                 khugepaged_wait_work();
2695         }
2696
2697         spin_lock(&khugepaged_mm_lock);
2698         mm_slot = khugepaged_scan.mm_slot;
2699         khugepaged_scan.mm_slot = NULL;
2700         if (mm_slot)
2701                 collect_mm_slot(mm_slot);
2702         spin_unlock(&khugepaged_mm_lock);
2703         return 0;
2704 }
2705
2706 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2707                 unsigned long haddr, pmd_t *pmd)
2708 {
2709         struct mm_struct *mm = vma->vm_mm;
2710         pgtable_t pgtable;
2711         pmd_t _pmd;
2712         int i;
2713
2714         pmdp_clear_flush(vma, haddr, pmd);
2715         /* leave pmd empty until pte is filled */
2716
2717         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2718         pmd_populate(mm, &_pmd, pgtable);
2719
2720         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2721                 pte_t *pte, entry;
2722                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2723                 entry = pte_mkspecial(entry);
2724                 pte = pte_offset_map(&_pmd, haddr);
2725                 VM_BUG_ON(!pte_none(*pte));
2726                 set_pte_at(mm, haddr, pte, entry);
2727                 pte_unmap(pte);
2728         }
2729         smp_wmb(); /* make pte visible before pmd */
2730         pmd_populate(mm, pmd, pgtable);
2731         put_huge_zero_page();
2732 }
2733
2734 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2735                 pmd_t *pmd)
2736 {
2737         struct page *page;
2738         struct mm_struct *mm = vma->vm_mm;
2739         unsigned long haddr = address & HPAGE_PMD_MASK;
2740         unsigned long mmun_start;       /* For mmu_notifiers */
2741         unsigned long mmun_end;         /* For mmu_notifiers */
2742
2743         BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2744
2745         mmun_start = haddr;
2746         mmun_end   = haddr + HPAGE_PMD_SIZE;
2747         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2748         spin_lock(&mm->page_table_lock);
2749         if (unlikely(!pmd_trans_huge(*pmd))) {
2750                 spin_unlock(&mm->page_table_lock);
2751                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2752                 return;
2753         }
2754         if (is_huge_zero_pmd(*pmd)) {
2755                 __split_huge_zero_page_pmd(vma, haddr, pmd);
2756                 spin_unlock(&mm->page_table_lock);
2757                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2758                 return;
2759         }
2760         page = pmd_page(*pmd);
2761         VM_BUG_ON(!page_count(page));
2762         get_page(page);
2763         spin_unlock(&mm->page_table_lock);
2764         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2765
2766         split_huge_page(page);
2767
2768         put_page(page);
2769         BUG_ON(pmd_trans_huge(*pmd));
2770 }
2771
2772 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2773                 pmd_t *pmd)
2774 {
2775         struct vm_area_struct *vma;
2776
2777         vma = find_vma(mm, address);
2778         BUG_ON(vma == NULL);
2779         split_huge_page_pmd(vma, address, pmd);
2780 }
2781
2782 static void split_huge_page_address(struct mm_struct *mm,
2783                                     unsigned long address)
2784 {
2785         pmd_t *pmd;
2786
2787         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2788
2789         pmd = mm_find_pmd(mm, address);
2790         if (!pmd)
2791                 return;
2792         /*
2793          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2794          * materialize from under us.
2795          */
2796         split_huge_page_pmd_mm(mm, address, pmd);
2797 }
2798
2799 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2800                              unsigned long start,
2801                              unsigned long end,
2802                              long adjust_next)
2803 {
2804         /*
2805          * If the new start address isn't hpage aligned and it could
2806          * previously contain an hugepage: check if we need to split
2807          * an huge pmd.
2808          */
2809         if (start & ~HPAGE_PMD_MASK &&
2810             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2811             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2812                 split_huge_page_address(vma->vm_mm, start);
2813
2814         /*
2815          * If the new end address isn't hpage aligned and it could
2816          * previously contain an hugepage: check if we need to split
2817          * an huge pmd.
2818          */
2819         if (end & ~HPAGE_PMD_MASK &&
2820             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2821             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2822                 split_huge_page_address(vma->vm_mm, end);
2823
2824         /*
2825          * If we're also updating the vma->vm_next->vm_start, if the new
2826          * vm_next->vm_start isn't page aligned and it could previously
2827          * contain an hugepage: check if we need to split an huge pmd.
2828          */
2829         if (adjust_next > 0) {
2830                 struct vm_area_struct *next = vma->vm_next;
2831                 unsigned long nstart = next->vm_start;
2832                 nstart += adjust_next << PAGE_SHIFT;
2833                 if (nstart & ~HPAGE_PMD_MASK &&
2834                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2835                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2836                         split_huge_page_address(next->vm_mm, nstart);
2837         }
2838 }