Revert "netfilter: xt_qtaguid: Allow tracking loopback"
[firefly-linux-kernel-4.4.55.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75         struct hlist_node hash;
76         struct list_head mm_node;
77         struct mm_struct *mm;
78 };
79
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89         struct list_head mm_head;
90         struct mm_slot *mm_slot;
91         unsigned long address;
92 } khugepaged_scan = {
93         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
94 };
95
96
97 static int set_recommended_min_free_kbytes(void)
98 {
99         struct zone *zone;
100         int nr_zones = 0;
101         unsigned long recommended_min;
102         extern int min_free_kbytes;
103
104         if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
105                       &transparent_hugepage_flags) &&
106             !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
107                       &transparent_hugepage_flags))
108                 return 0;
109
110         for_each_populated_zone(zone)
111                 nr_zones++;
112
113         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114         recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116         /*
117          * Make sure that on average at least two pageblocks are almost free
118          * of another type, one for a migratetype to fall back to and a
119          * second to avoid subsequent fallbacks of other types There are 3
120          * MIGRATE_TYPES we care about.
121          */
122         recommended_min += pageblock_nr_pages * nr_zones *
123                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125         /* don't ever allow to reserve more than 5% of the lowmem */
126         recommended_min = min(recommended_min,
127                               (unsigned long) nr_free_buffer_pages() / 20);
128         recommended_min <<= (PAGE_SHIFT-10);
129
130         if (recommended_min > min_free_kbytes)
131                 min_free_kbytes = recommended_min;
132         setup_per_zone_wmarks();
133         return 0;
134 }
135 late_initcall(set_recommended_min_free_kbytes);
136
137 static int start_khugepaged(void)
138 {
139         int err = 0;
140         if (khugepaged_enabled()) {
141                 int wakeup;
142                 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
143                         err = -ENOMEM;
144                         goto out;
145                 }
146                 mutex_lock(&khugepaged_mutex);
147                 if (!khugepaged_thread)
148                         khugepaged_thread = kthread_run(khugepaged, NULL,
149                                                         "khugepaged");
150                 if (unlikely(IS_ERR(khugepaged_thread))) {
151                         printk(KERN_ERR
152                                "khugepaged: kthread_run(khugepaged) failed\n");
153                         err = PTR_ERR(khugepaged_thread);
154                         khugepaged_thread = NULL;
155                 }
156                 wakeup = !list_empty(&khugepaged_scan.mm_head);
157                 mutex_unlock(&khugepaged_mutex);
158                 if (wakeup)
159                         wake_up_interruptible(&khugepaged_wait);
160
161                 set_recommended_min_free_kbytes();
162         } else
163                 /* wakeup to exit */
164                 wake_up_interruptible(&khugepaged_wait);
165 out:
166         return err;
167 }
168
169 #ifdef CONFIG_SYSFS
170
171 static ssize_t double_flag_show(struct kobject *kobj,
172                                 struct kobj_attribute *attr, char *buf,
173                                 enum transparent_hugepage_flag enabled,
174                                 enum transparent_hugepage_flag req_madv)
175 {
176         if (test_bit(enabled, &transparent_hugepage_flags)) {
177                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
178                 return sprintf(buf, "[always] madvise never\n");
179         } else if (test_bit(req_madv, &transparent_hugepage_flags))
180                 return sprintf(buf, "always [madvise] never\n");
181         else
182                 return sprintf(buf, "always madvise [never]\n");
183 }
184 static ssize_t double_flag_store(struct kobject *kobj,
185                                  struct kobj_attribute *attr,
186                                  const char *buf, size_t count,
187                                  enum transparent_hugepage_flag enabled,
188                                  enum transparent_hugepage_flag req_madv)
189 {
190         if (!memcmp("always", buf,
191                     min(sizeof("always")-1, count))) {
192                 set_bit(enabled, &transparent_hugepage_flags);
193                 clear_bit(req_madv, &transparent_hugepage_flags);
194         } else if (!memcmp("madvise", buf,
195                            min(sizeof("madvise")-1, count))) {
196                 clear_bit(enabled, &transparent_hugepage_flags);
197                 set_bit(req_madv, &transparent_hugepage_flags);
198         } else if (!memcmp("never", buf,
199                            min(sizeof("never")-1, count))) {
200                 clear_bit(enabled, &transparent_hugepage_flags);
201                 clear_bit(req_madv, &transparent_hugepage_flags);
202         } else
203                 return -EINVAL;
204
205         return count;
206 }
207
208 static ssize_t enabled_show(struct kobject *kobj,
209                             struct kobj_attribute *attr, char *buf)
210 {
211         return double_flag_show(kobj, attr, buf,
212                                 TRANSPARENT_HUGEPAGE_FLAG,
213                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
214 }
215 static ssize_t enabled_store(struct kobject *kobj,
216                              struct kobj_attribute *attr,
217                              const char *buf, size_t count)
218 {
219         ssize_t ret;
220
221         ret = double_flag_store(kobj, attr, buf, count,
222                                 TRANSPARENT_HUGEPAGE_FLAG,
223                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
224
225         if (ret > 0) {
226                 int err = start_khugepaged();
227                 if (err)
228                         ret = err;
229         }
230
231         if (ret > 0 &&
232             (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
233                       &transparent_hugepage_flags) ||
234              test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
235                       &transparent_hugepage_flags)))
236                 set_recommended_min_free_kbytes();
237
238         return ret;
239 }
240 static struct kobj_attribute enabled_attr =
241         __ATTR(enabled, 0644, enabled_show, enabled_store);
242
243 static ssize_t single_flag_show(struct kobject *kobj,
244                                 struct kobj_attribute *attr, char *buf,
245                                 enum transparent_hugepage_flag flag)
246 {
247         return sprintf(buf, "%d\n",
248                        !!test_bit(flag, &transparent_hugepage_flags));
249 }
250
251 static ssize_t single_flag_store(struct kobject *kobj,
252                                  struct kobj_attribute *attr,
253                                  const char *buf, size_t count,
254                                  enum transparent_hugepage_flag flag)
255 {
256         unsigned long value;
257         int ret;
258
259         ret = kstrtoul(buf, 10, &value);
260         if (ret < 0)
261                 return ret;
262         if (value > 1)
263                 return -EINVAL;
264
265         if (value)
266                 set_bit(flag, &transparent_hugepage_flags);
267         else
268                 clear_bit(flag, &transparent_hugepage_flags);
269
270         return count;
271 }
272
273 /*
274  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
275  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
276  * memory just to allocate one more hugepage.
277  */
278 static ssize_t defrag_show(struct kobject *kobj,
279                            struct kobj_attribute *attr, char *buf)
280 {
281         return double_flag_show(kobj, attr, buf,
282                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284 }
285 static ssize_t defrag_store(struct kobject *kobj,
286                             struct kobj_attribute *attr,
287                             const char *buf, size_t count)
288 {
289         return double_flag_store(kobj, attr, buf, count,
290                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
291                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
292 }
293 static struct kobj_attribute defrag_attr =
294         __ATTR(defrag, 0644, defrag_show, defrag_store);
295
296 #ifdef CONFIG_DEBUG_VM
297 static ssize_t debug_cow_show(struct kobject *kobj,
298                                 struct kobj_attribute *attr, char *buf)
299 {
300         return single_flag_show(kobj, attr, buf,
301                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302 }
303 static ssize_t debug_cow_store(struct kobject *kobj,
304                                struct kobj_attribute *attr,
305                                const char *buf, size_t count)
306 {
307         return single_flag_store(kobj, attr, buf, count,
308                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309 }
310 static struct kobj_attribute debug_cow_attr =
311         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312 #endif /* CONFIG_DEBUG_VM */
313
314 static struct attribute *hugepage_attr[] = {
315         &enabled_attr.attr,
316         &defrag_attr.attr,
317 #ifdef CONFIG_DEBUG_VM
318         &debug_cow_attr.attr,
319 #endif
320         NULL,
321 };
322
323 static struct attribute_group hugepage_attr_group = {
324         .attrs = hugepage_attr,
325 };
326
327 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
328                                          struct kobj_attribute *attr,
329                                          char *buf)
330 {
331         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
332 }
333
334 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
335                                           struct kobj_attribute *attr,
336                                           const char *buf, size_t count)
337 {
338         unsigned long msecs;
339         int err;
340
341         err = strict_strtoul(buf, 10, &msecs);
342         if (err || msecs > UINT_MAX)
343                 return -EINVAL;
344
345         khugepaged_scan_sleep_millisecs = msecs;
346         wake_up_interruptible(&khugepaged_wait);
347
348         return count;
349 }
350 static struct kobj_attribute scan_sleep_millisecs_attr =
351         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
352                scan_sleep_millisecs_store);
353
354 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
355                                           struct kobj_attribute *attr,
356                                           char *buf)
357 {
358         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
359 }
360
361 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
362                                            struct kobj_attribute *attr,
363                                            const char *buf, size_t count)
364 {
365         unsigned long msecs;
366         int err;
367
368         err = strict_strtoul(buf, 10, &msecs);
369         if (err || msecs > UINT_MAX)
370                 return -EINVAL;
371
372         khugepaged_alloc_sleep_millisecs = msecs;
373         wake_up_interruptible(&khugepaged_wait);
374
375         return count;
376 }
377 static struct kobj_attribute alloc_sleep_millisecs_attr =
378         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
379                alloc_sleep_millisecs_store);
380
381 static ssize_t pages_to_scan_show(struct kobject *kobj,
382                                   struct kobj_attribute *attr,
383                                   char *buf)
384 {
385         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
386 }
387 static ssize_t pages_to_scan_store(struct kobject *kobj,
388                                    struct kobj_attribute *attr,
389                                    const char *buf, size_t count)
390 {
391         int err;
392         unsigned long pages;
393
394         err = strict_strtoul(buf, 10, &pages);
395         if (err || !pages || pages > UINT_MAX)
396                 return -EINVAL;
397
398         khugepaged_pages_to_scan = pages;
399
400         return count;
401 }
402 static struct kobj_attribute pages_to_scan_attr =
403         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
404                pages_to_scan_store);
405
406 static ssize_t pages_collapsed_show(struct kobject *kobj,
407                                     struct kobj_attribute *attr,
408                                     char *buf)
409 {
410         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
411 }
412 static struct kobj_attribute pages_collapsed_attr =
413         __ATTR_RO(pages_collapsed);
414
415 static ssize_t full_scans_show(struct kobject *kobj,
416                                struct kobj_attribute *attr,
417                                char *buf)
418 {
419         return sprintf(buf, "%u\n", khugepaged_full_scans);
420 }
421 static struct kobj_attribute full_scans_attr =
422         __ATTR_RO(full_scans);
423
424 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
425                                       struct kobj_attribute *attr, char *buf)
426 {
427         return single_flag_show(kobj, attr, buf,
428                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
429 }
430 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
431                                        struct kobj_attribute *attr,
432                                        const char *buf, size_t count)
433 {
434         return single_flag_store(kobj, attr, buf, count,
435                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
436 }
437 static struct kobj_attribute khugepaged_defrag_attr =
438         __ATTR(defrag, 0644, khugepaged_defrag_show,
439                khugepaged_defrag_store);
440
441 /*
442  * max_ptes_none controls if khugepaged should collapse hugepages over
443  * any unmapped ptes in turn potentially increasing the memory
444  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
445  * reduce the available free memory in the system as it
446  * runs. Increasing max_ptes_none will instead potentially reduce the
447  * free memory in the system during the khugepaged scan.
448  */
449 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
450                                              struct kobj_attribute *attr,
451                                              char *buf)
452 {
453         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
454 }
455 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
456                                               struct kobj_attribute *attr,
457                                               const char *buf, size_t count)
458 {
459         int err;
460         unsigned long max_ptes_none;
461
462         err = strict_strtoul(buf, 10, &max_ptes_none);
463         if (err || max_ptes_none > HPAGE_PMD_NR-1)
464                 return -EINVAL;
465
466         khugepaged_max_ptes_none = max_ptes_none;
467
468         return count;
469 }
470 static struct kobj_attribute khugepaged_max_ptes_none_attr =
471         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
472                khugepaged_max_ptes_none_store);
473
474 static struct attribute *khugepaged_attr[] = {
475         &khugepaged_defrag_attr.attr,
476         &khugepaged_max_ptes_none_attr.attr,
477         &pages_to_scan_attr.attr,
478         &pages_collapsed_attr.attr,
479         &full_scans_attr.attr,
480         &scan_sleep_millisecs_attr.attr,
481         &alloc_sleep_millisecs_attr.attr,
482         NULL,
483 };
484
485 static struct attribute_group khugepaged_attr_group = {
486         .attrs = khugepaged_attr,
487         .name = "khugepaged",
488 };
489 #endif /* CONFIG_SYSFS */
490
491 static int __init hugepage_init(void)
492 {
493         int err;
494 #ifdef CONFIG_SYSFS
495         static struct kobject *hugepage_kobj;
496 #endif
497
498         err = -EINVAL;
499         if (!has_transparent_hugepage()) {
500                 transparent_hugepage_flags = 0;
501                 goto out;
502         }
503
504 #ifdef CONFIG_SYSFS
505         err = -ENOMEM;
506         hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
507         if (unlikely(!hugepage_kobj)) {
508                 printk(KERN_ERR "hugepage: failed kobject create\n");
509                 goto out;
510         }
511
512         err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
513         if (err) {
514                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
515                 goto out;
516         }
517
518         err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
519         if (err) {
520                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
521                 goto out;
522         }
523 #endif
524
525         err = khugepaged_slab_init();
526         if (err)
527                 goto out;
528
529         err = mm_slots_hash_init();
530         if (err) {
531                 khugepaged_slab_free();
532                 goto out;
533         }
534
535         /*
536          * By default disable transparent hugepages on smaller systems,
537          * where the extra memory used could hurt more than TLB overhead
538          * is likely to save.  The admin can still enable it through /sys.
539          */
540         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
541                 transparent_hugepage_flags = 0;
542
543         start_khugepaged();
544
545         set_recommended_min_free_kbytes();
546
547 out:
548         return err;
549 }
550 module_init(hugepage_init)
551
552 static int __init setup_transparent_hugepage(char *str)
553 {
554         int ret = 0;
555         if (!str)
556                 goto out;
557         if (!strcmp(str, "always")) {
558                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
559                         &transparent_hugepage_flags);
560                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
561                           &transparent_hugepage_flags);
562                 ret = 1;
563         } else if (!strcmp(str, "madvise")) {
564                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
565                           &transparent_hugepage_flags);
566                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
567                         &transparent_hugepage_flags);
568                 ret = 1;
569         } else if (!strcmp(str, "never")) {
570                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
571                           &transparent_hugepage_flags);
572                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
573                           &transparent_hugepage_flags);
574                 ret = 1;
575         }
576 out:
577         if (!ret)
578                 printk(KERN_WARNING
579                        "transparent_hugepage= cannot parse, ignored\n");
580         return ret;
581 }
582 __setup("transparent_hugepage=", setup_transparent_hugepage);
583
584 static void prepare_pmd_huge_pte(pgtable_t pgtable,
585                                  struct mm_struct *mm)
586 {
587         assert_spin_locked(&mm->page_table_lock);
588
589         /* FIFO */
590         if (!mm->pmd_huge_pte)
591                 INIT_LIST_HEAD(&pgtable->lru);
592         else
593                 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
594         mm->pmd_huge_pte = pgtable;
595 }
596
597 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
598 {
599         if (likely(vma->vm_flags & VM_WRITE))
600                 pmd = pmd_mkwrite(pmd);
601         return pmd;
602 }
603
604 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
605                                         struct vm_area_struct *vma,
606                                         unsigned long haddr, pmd_t *pmd,
607                                         struct page *page)
608 {
609         int ret = 0;
610         pgtable_t pgtable;
611
612         VM_BUG_ON(!PageCompound(page));
613         pgtable = pte_alloc_one(mm, haddr);
614         if (unlikely(!pgtable)) {
615                 mem_cgroup_uncharge_page(page);
616                 put_page(page);
617                 return VM_FAULT_OOM;
618         }
619
620         clear_huge_page(page, haddr, HPAGE_PMD_NR);
621         __SetPageUptodate(page);
622
623         spin_lock(&mm->page_table_lock);
624         if (unlikely(!pmd_none(*pmd))) {
625                 spin_unlock(&mm->page_table_lock);
626                 mem_cgroup_uncharge_page(page);
627                 put_page(page);
628                 pte_free(mm, pgtable);
629         } else {
630                 pmd_t entry;
631                 entry = mk_pmd(page, vma->vm_page_prot);
632                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633                 entry = pmd_mkhuge(entry);
634                 /*
635                  * The spinlocking to take the lru_lock inside
636                  * page_add_new_anon_rmap() acts as a full memory
637                  * barrier to be sure clear_huge_page writes become
638                  * visible after the set_pmd_at() write.
639                  */
640                 page_add_new_anon_rmap(page, vma, haddr);
641                 set_pmd_at(mm, haddr, pmd, entry);
642                 prepare_pmd_huge_pte(pgtable, mm);
643                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
644                 mm->nr_ptes++;
645                 spin_unlock(&mm->page_table_lock);
646         }
647
648         return ret;
649 }
650
651 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
652 {
653         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
654 }
655
656 static inline struct page *alloc_hugepage_vma(int defrag,
657                                               struct vm_area_struct *vma,
658                                               unsigned long haddr, int nd,
659                                               gfp_t extra_gfp)
660 {
661         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
662                                HPAGE_PMD_ORDER, vma, haddr, nd);
663 }
664
665 #ifndef CONFIG_NUMA
666 static inline struct page *alloc_hugepage(int defrag)
667 {
668         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
669                            HPAGE_PMD_ORDER);
670 }
671 #endif
672
673 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
674                                unsigned long address, pmd_t *pmd,
675                                unsigned int flags)
676 {
677         struct page *page;
678         unsigned long haddr = address & HPAGE_PMD_MASK;
679         pte_t *pte;
680
681         if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
682                 if (unlikely(anon_vma_prepare(vma)))
683                         return VM_FAULT_OOM;
684                 if (unlikely(khugepaged_enter(vma)))
685                         return VM_FAULT_OOM;
686                 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
687                                           vma, haddr, numa_node_id(), 0);
688                 if (unlikely(!page)) {
689                         count_vm_event(THP_FAULT_FALLBACK);
690                         goto out;
691                 }
692                 count_vm_event(THP_FAULT_ALLOC);
693                 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
694                         put_page(page);
695                         goto out;
696                 }
697
698                 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
699         }
700 out:
701         /*
702          * Use __pte_alloc instead of pte_alloc_map, because we can't
703          * run pte_offset_map on the pmd, if an huge pmd could
704          * materialize from under us from a different thread.
705          */
706         if (unlikely(__pte_alloc(mm, vma, pmd, address)))
707                 return VM_FAULT_OOM;
708         /* if an huge pmd materialized from under us just retry later */
709         if (unlikely(pmd_trans_huge(*pmd)))
710                 return 0;
711         /*
712          * A regular pmd is established and it can't morph into a huge pmd
713          * from under us anymore at this point because we hold the mmap_sem
714          * read mode and khugepaged takes it in write mode. So now it's
715          * safe to run pte_offset_map().
716          */
717         pte = pte_offset_map(pmd, address);
718         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
719 }
720
721 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
722                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
723                   struct vm_area_struct *vma)
724 {
725         struct page *src_page;
726         pmd_t pmd;
727         pgtable_t pgtable;
728         int ret;
729
730         ret = -ENOMEM;
731         pgtable = pte_alloc_one(dst_mm, addr);
732         if (unlikely(!pgtable))
733                 goto out;
734
735         spin_lock(&dst_mm->page_table_lock);
736         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
737
738         ret = -EAGAIN;
739         pmd = *src_pmd;
740         if (unlikely(!pmd_trans_huge(pmd))) {
741                 pte_free(dst_mm, pgtable);
742                 goto out_unlock;
743         }
744         if (unlikely(pmd_trans_splitting(pmd))) {
745                 /* split huge page running from under us */
746                 spin_unlock(&src_mm->page_table_lock);
747                 spin_unlock(&dst_mm->page_table_lock);
748                 pte_free(dst_mm, pgtable);
749
750                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
751                 goto out;
752         }
753         src_page = pmd_page(pmd);
754         VM_BUG_ON(!PageHead(src_page));
755         get_page(src_page);
756         page_dup_rmap(src_page);
757         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
758
759         pmdp_set_wrprotect(src_mm, addr, src_pmd);
760         pmd = pmd_mkold(pmd_wrprotect(pmd));
761         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
762         prepare_pmd_huge_pte(pgtable, dst_mm);
763         dst_mm->nr_ptes++;
764
765         ret = 0;
766 out_unlock:
767         spin_unlock(&src_mm->page_table_lock);
768         spin_unlock(&dst_mm->page_table_lock);
769 out:
770         return ret;
771 }
772
773 /* no "address" argument so destroys page coloring of some arch */
774 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
775 {
776         pgtable_t pgtable;
777
778         assert_spin_locked(&mm->page_table_lock);
779
780         /* FIFO */
781         pgtable = mm->pmd_huge_pte;
782         if (list_empty(&pgtable->lru))
783                 mm->pmd_huge_pte = NULL;
784         else {
785                 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
786                                               struct page, lru);
787                 list_del(&pgtable->lru);
788         }
789         return pgtable;
790 }
791
792 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
793                                         struct vm_area_struct *vma,
794                                         unsigned long address,
795                                         pmd_t *pmd, pmd_t orig_pmd,
796                                         struct page *page,
797                                         unsigned long haddr)
798 {
799         pgtable_t pgtable;
800         pmd_t _pmd;
801         int ret = 0, i;
802         struct page **pages;
803
804         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
805                         GFP_KERNEL);
806         if (unlikely(!pages)) {
807                 ret |= VM_FAULT_OOM;
808                 goto out;
809         }
810
811         for (i = 0; i < HPAGE_PMD_NR; i++) {
812                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
813                                                __GFP_OTHER_NODE,
814                                                vma, address, page_to_nid(page));
815                 if (unlikely(!pages[i] ||
816                              mem_cgroup_newpage_charge(pages[i], mm,
817                                                        GFP_KERNEL))) {
818                         if (pages[i])
819                                 put_page(pages[i]);
820                         mem_cgroup_uncharge_start();
821                         while (--i >= 0) {
822                                 mem_cgroup_uncharge_page(pages[i]);
823                                 put_page(pages[i]);
824                         }
825                         mem_cgroup_uncharge_end();
826                         kfree(pages);
827                         ret |= VM_FAULT_OOM;
828                         goto out;
829                 }
830         }
831
832         for (i = 0; i < HPAGE_PMD_NR; i++) {
833                 copy_user_highpage(pages[i], page + i,
834                                    haddr + PAGE_SHIFT*i, vma);
835                 __SetPageUptodate(pages[i]);
836                 cond_resched();
837         }
838
839         spin_lock(&mm->page_table_lock);
840         if (unlikely(!pmd_same(*pmd, orig_pmd)))
841                 goto out_free_pages;
842         VM_BUG_ON(!PageHead(page));
843
844         pmdp_clear_flush_notify(vma, haddr, pmd);
845         /* leave pmd empty until pte is filled */
846
847         pgtable = get_pmd_huge_pte(mm);
848         pmd_populate(mm, &_pmd, pgtable);
849
850         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
851                 pte_t *pte, entry;
852                 entry = mk_pte(pages[i], vma->vm_page_prot);
853                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
854                 page_add_new_anon_rmap(pages[i], vma, haddr);
855                 pte = pte_offset_map(&_pmd, haddr);
856                 VM_BUG_ON(!pte_none(*pte));
857                 set_pte_at(mm, haddr, pte, entry);
858                 pte_unmap(pte);
859         }
860         kfree(pages);
861
862         smp_wmb(); /* make pte visible before pmd */
863         pmd_populate(mm, pmd, pgtable);
864         page_remove_rmap(page);
865         spin_unlock(&mm->page_table_lock);
866
867         ret |= VM_FAULT_WRITE;
868         put_page(page);
869
870 out:
871         return ret;
872
873 out_free_pages:
874         spin_unlock(&mm->page_table_lock);
875         mem_cgroup_uncharge_start();
876         for (i = 0; i < HPAGE_PMD_NR; i++) {
877                 mem_cgroup_uncharge_page(pages[i]);
878                 put_page(pages[i]);
879         }
880         mem_cgroup_uncharge_end();
881         kfree(pages);
882         goto out;
883 }
884
885 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
886                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
887 {
888         int ret = 0;
889         struct page *page, *new_page;
890         unsigned long haddr;
891
892         VM_BUG_ON(!vma->anon_vma);
893         spin_lock(&mm->page_table_lock);
894         if (unlikely(!pmd_same(*pmd, orig_pmd)))
895                 goto out_unlock;
896
897         page = pmd_page(orig_pmd);
898         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
899         haddr = address & HPAGE_PMD_MASK;
900         if (page_mapcount(page) == 1) {
901                 pmd_t entry;
902                 entry = pmd_mkyoung(orig_pmd);
903                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
904                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
905                         update_mmu_cache(vma, address, entry);
906                 ret |= VM_FAULT_WRITE;
907                 goto out_unlock;
908         }
909         get_page(page);
910         spin_unlock(&mm->page_table_lock);
911
912         if (transparent_hugepage_enabled(vma) &&
913             !transparent_hugepage_debug_cow())
914                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
915                                               vma, haddr, numa_node_id(), 0);
916         else
917                 new_page = NULL;
918
919         if (unlikely(!new_page)) {
920                 count_vm_event(THP_FAULT_FALLBACK);
921                 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
922                                                    pmd, orig_pmd, page, haddr);
923                 if (ret & VM_FAULT_OOM)
924                         split_huge_page(page);
925                 put_page(page);
926                 goto out;
927         }
928         count_vm_event(THP_FAULT_ALLOC);
929
930         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
931                 put_page(new_page);
932                 split_huge_page(page);
933                 put_page(page);
934                 ret |= VM_FAULT_OOM;
935                 goto out;
936         }
937
938         copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
939         __SetPageUptodate(new_page);
940
941         spin_lock(&mm->page_table_lock);
942         put_page(page);
943         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
944                 mem_cgroup_uncharge_page(new_page);
945                 put_page(new_page);
946         } else {
947                 pmd_t entry;
948                 VM_BUG_ON(!PageHead(page));
949                 entry = mk_pmd(new_page, vma->vm_page_prot);
950                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
951                 entry = pmd_mkhuge(entry);
952                 pmdp_clear_flush_notify(vma, haddr, pmd);
953                 page_add_new_anon_rmap(new_page, vma, haddr);
954                 set_pmd_at(mm, haddr, pmd, entry);
955                 update_mmu_cache(vma, address, entry);
956                 page_remove_rmap(page);
957                 put_page(page);
958                 ret |= VM_FAULT_WRITE;
959         }
960 out_unlock:
961         spin_unlock(&mm->page_table_lock);
962 out:
963         return ret;
964 }
965
966 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
967                                    unsigned long addr,
968                                    pmd_t *pmd,
969                                    unsigned int flags)
970 {
971         struct page *page = NULL;
972
973         assert_spin_locked(&mm->page_table_lock);
974
975         if (flags & FOLL_WRITE && !pmd_write(*pmd))
976                 goto out;
977
978         page = pmd_page(*pmd);
979         VM_BUG_ON(!PageHead(page));
980         if (flags & FOLL_TOUCH) {
981                 pmd_t _pmd;
982                 /*
983                  * We should set the dirty bit only for FOLL_WRITE but
984                  * for now the dirty bit in the pmd is meaningless.
985                  * And if the dirty bit will become meaningful and
986                  * we'll only set it with FOLL_WRITE, an atomic
987                  * set_bit will be required on the pmd to set the
988                  * young bit, instead of the current set_pmd_at.
989                  */
990                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
991                 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
992         }
993         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
994         VM_BUG_ON(!PageCompound(page));
995         if (flags & FOLL_GET)
996                 get_page_foll(page);
997
998 out:
999         return page;
1000 }
1001
1002 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1003                  pmd_t *pmd)
1004 {
1005         int ret = 0;
1006
1007         spin_lock(&tlb->mm->page_table_lock);
1008         if (likely(pmd_trans_huge(*pmd))) {
1009                 if (unlikely(pmd_trans_splitting(*pmd))) {
1010                         spin_unlock(&tlb->mm->page_table_lock);
1011                         wait_split_huge_page(vma->anon_vma,
1012                                              pmd);
1013                 } else {
1014                         struct page *page;
1015                         pgtable_t pgtable;
1016                         pgtable = get_pmd_huge_pte(tlb->mm);
1017                         page = pmd_page(*pmd);
1018                         pmd_clear(pmd);
1019                         page_remove_rmap(page);
1020                         VM_BUG_ON(page_mapcount(page) < 0);
1021                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1022                         VM_BUG_ON(!PageHead(page));
1023                         tlb->mm->nr_ptes--;
1024                         spin_unlock(&tlb->mm->page_table_lock);
1025                         tlb_remove_page(tlb, page);
1026                         pte_free(tlb->mm, pgtable);
1027                         ret = 1;
1028                 }
1029         } else
1030                 spin_unlock(&tlb->mm->page_table_lock);
1031
1032         return ret;
1033 }
1034
1035 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1036                 unsigned long addr, unsigned long end,
1037                 unsigned char *vec)
1038 {
1039         int ret = 0;
1040
1041         spin_lock(&vma->vm_mm->page_table_lock);
1042         if (likely(pmd_trans_huge(*pmd))) {
1043                 ret = !pmd_trans_splitting(*pmd);
1044                 spin_unlock(&vma->vm_mm->page_table_lock);
1045                 if (unlikely(!ret))
1046                         wait_split_huge_page(vma->anon_vma, pmd);
1047                 else {
1048                         /*
1049                          * All logical pages in the range are present
1050                          * if backed by a huge page.
1051                          */
1052                         memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1053                 }
1054         } else
1055                 spin_unlock(&vma->vm_mm->page_table_lock);
1056
1057         return ret;
1058 }
1059
1060 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1061                 unsigned long addr, pgprot_t newprot)
1062 {
1063         struct mm_struct *mm = vma->vm_mm;
1064         int ret = 0;
1065
1066         spin_lock(&mm->page_table_lock);
1067         if (likely(pmd_trans_huge(*pmd))) {
1068                 if (unlikely(pmd_trans_splitting(*pmd))) {
1069                         spin_unlock(&mm->page_table_lock);
1070                         wait_split_huge_page(vma->anon_vma, pmd);
1071                 } else {
1072                         pmd_t entry;
1073
1074                         entry = pmdp_get_and_clear(mm, addr, pmd);
1075                         entry = pmd_modify(entry, newprot);
1076                         set_pmd_at(mm, addr, pmd, entry);
1077                         spin_unlock(&vma->vm_mm->page_table_lock);
1078                         flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1079                         ret = 1;
1080                 }
1081         } else
1082                 spin_unlock(&vma->vm_mm->page_table_lock);
1083
1084         return ret;
1085 }
1086
1087 pmd_t *page_check_address_pmd(struct page *page,
1088                               struct mm_struct *mm,
1089                               unsigned long address,
1090                               enum page_check_address_pmd_flag flag)
1091 {
1092         pgd_t *pgd;
1093         pud_t *pud;
1094         pmd_t *pmd, *ret = NULL;
1095
1096         if (address & ~HPAGE_PMD_MASK)
1097                 goto out;
1098
1099         pgd = pgd_offset(mm, address);
1100         if (!pgd_present(*pgd))
1101                 goto out;
1102
1103         pud = pud_offset(pgd, address);
1104         if (!pud_present(*pud))
1105                 goto out;
1106
1107         pmd = pmd_offset(pud, address);
1108         if (pmd_none(*pmd))
1109                 goto out;
1110         if (pmd_page(*pmd) != page)
1111                 goto out;
1112         /*
1113          * split_vma() may create temporary aliased mappings. There is
1114          * no risk as long as all huge pmd are found and have their
1115          * splitting bit set before __split_huge_page_refcount
1116          * runs. Finding the same huge pmd more than once during the
1117          * same rmap walk is not a problem.
1118          */
1119         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1120             pmd_trans_splitting(*pmd))
1121                 goto out;
1122         if (pmd_trans_huge(*pmd)) {
1123                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1124                           !pmd_trans_splitting(*pmd));
1125                 ret = pmd;
1126         }
1127 out:
1128         return ret;
1129 }
1130
1131 static int __split_huge_page_splitting(struct page *page,
1132                                        struct vm_area_struct *vma,
1133                                        unsigned long address)
1134 {
1135         struct mm_struct *mm = vma->vm_mm;
1136         pmd_t *pmd;
1137         int ret = 0;
1138
1139         spin_lock(&mm->page_table_lock);
1140         pmd = page_check_address_pmd(page, mm, address,
1141                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1142         if (pmd) {
1143                 /*
1144                  * We can't temporarily set the pmd to null in order
1145                  * to split it, the pmd must remain marked huge at all
1146                  * times or the VM won't take the pmd_trans_huge paths
1147                  * and it won't wait on the anon_vma->root->mutex to
1148                  * serialize against split_huge_page*.
1149                  */
1150                 pmdp_splitting_flush_notify(vma, address, pmd);
1151                 ret = 1;
1152         }
1153         spin_unlock(&mm->page_table_lock);
1154
1155         return ret;
1156 }
1157
1158 static void __split_huge_page_refcount(struct page *page)
1159 {
1160         int i;
1161         unsigned long head_index = page->index;
1162         struct zone *zone = page_zone(page);
1163         int zonestat;
1164         int tail_count = 0;
1165
1166         /* prevent PageLRU to go away from under us, and freeze lru stats */
1167         spin_lock_irq(&zone->lru_lock);
1168         compound_lock(page);
1169
1170         for (i = 1; i < HPAGE_PMD_NR; i++) {
1171                 struct page *page_tail = page + i;
1172
1173                 /* tail_page->_mapcount cannot change */
1174                 BUG_ON(page_mapcount(page_tail) < 0);
1175                 tail_count += page_mapcount(page_tail);
1176                 /* check for overflow */
1177                 BUG_ON(tail_count < 0);
1178                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1179                 /*
1180                  * tail_page->_count is zero and not changing from
1181                  * under us. But get_page_unless_zero() may be running
1182                  * from under us on the tail_page. If we used
1183                  * atomic_set() below instead of atomic_add(), we
1184                  * would then run atomic_set() concurrently with
1185                  * get_page_unless_zero(), and atomic_set() is
1186                  * implemented in C not using locked ops. spin_unlock
1187                  * on x86 sometime uses locked ops because of PPro
1188                  * errata 66, 92, so unless somebody can guarantee
1189                  * atomic_set() here would be safe on all archs (and
1190                  * not only on x86), it's safer to use atomic_add().
1191                  */
1192                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1193                            &page_tail->_count);
1194
1195                 /* after clearing PageTail the gup refcount can be released */
1196                 smp_mb();
1197
1198                 /*
1199                  * retain hwpoison flag of the poisoned tail page:
1200                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1201                  *   by the memory-failure.
1202                  */
1203                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1204                 page_tail->flags |= (page->flags &
1205                                      ((1L << PG_referenced) |
1206                                       (1L << PG_swapbacked) |
1207                                       (1L << PG_mlocked) |
1208                                       (1L << PG_uptodate)));
1209                 page_tail->flags |= (1L << PG_dirty);
1210
1211                 /* clear PageTail before overwriting first_page */
1212                 smp_wmb();
1213
1214                 /*
1215                  * __split_huge_page_splitting() already set the
1216                  * splitting bit in all pmd that could map this
1217                  * hugepage, that will ensure no CPU can alter the
1218                  * mapcount on the head page. The mapcount is only
1219                  * accounted in the head page and it has to be
1220                  * transferred to all tail pages in the below code. So
1221                  * for this code to be safe, the split the mapcount
1222                  * can't change. But that doesn't mean userland can't
1223                  * keep changing and reading the page contents while
1224                  * we transfer the mapcount, so the pmd splitting
1225                  * status is achieved setting a reserved bit in the
1226                  * pmd, not by clearing the present bit.
1227                 */
1228                 page_tail->_mapcount = page->_mapcount;
1229
1230                 BUG_ON(page_tail->mapping);
1231                 page_tail->mapping = page->mapping;
1232
1233                 page_tail->index = ++head_index;
1234
1235                 BUG_ON(!PageAnon(page_tail));
1236                 BUG_ON(!PageUptodate(page_tail));
1237                 BUG_ON(!PageDirty(page_tail));
1238                 BUG_ON(!PageSwapBacked(page_tail));
1239
1240                 mem_cgroup_split_huge_fixup(page, page_tail);
1241
1242                 lru_add_page_tail(zone, page, page_tail);
1243         }
1244         atomic_sub(tail_count, &page->_count);
1245         BUG_ON(atomic_read(&page->_count) <= 0);
1246
1247         __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1248         __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1249
1250         /*
1251          * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1252          * so adjust those appropriately if this page is on the LRU.
1253          */
1254         if (PageLRU(page)) {
1255                 zonestat = NR_LRU_BASE + page_lru(page);
1256                 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1257         }
1258
1259         ClearPageCompound(page);
1260         compound_unlock(page);
1261         spin_unlock_irq(&zone->lru_lock);
1262
1263         for (i = 1; i < HPAGE_PMD_NR; i++) {
1264                 struct page *page_tail = page + i;
1265                 BUG_ON(page_count(page_tail) <= 0);
1266                 /*
1267                  * Tail pages may be freed if there wasn't any mapping
1268                  * like if add_to_swap() is running on a lru page that
1269                  * had its mapping zapped. And freeing these pages
1270                  * requires taking the lru_lock so we do the put_page
1271                  * of the tail pages after the split is complete.
1272                  */
1273                 put_page(page_tail);
1274         }
1275
1276         /*
1277          * Only the head page (now become a regular page) is required
1278          * to be pinned by the caller.
1279          */
1280         BUG_ON(page_count(page) <= 0);
1281 }
1282
1283 static int __split_huge_page_map(struct page *page,
1284                                  struct vm_area_struct *vma,
1285                                  unsigned long address)
1286 {
1287         struct mm_struct *mm = vma->vm_mm;
1288         pmd_t *pmd, _pmd;
1289         int ret = 0, i;
1290         pgtable_t pgtable;
1291         unsigned long haddr;
1292
1293         spin_lock(&mm->page_table_lock);
1294         pmd = page_check_address_pmd(page, mm, address,
1295                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1296         if (pmd) {
1297                 pgtable = get_pmd_huge_pte(mm);
1298                 pmd_populate(mm, &_pmd, pgtable);
1299
1300                 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1301                      i++, haddr += PAGE_SIZE) {
1302                         pte_t *pte, entry;
1303                         BUG_ON(PageCompound(page+i));
1304                         entry = mk_pte(page + i, vma->vm_page_prot);
1305                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1306                         if (!pmd_write(*pmd))
1307                                 entry = pte_wrprotect(entry);
1308                         else
1309                                 BUG_ON(page_mapcount(page) != 1);
1310                         if (!pmd_young(*pmd))
1311                                 entry = pte_mkold(entry);
1312                         pte = pte_offset_map(&_pmd, haddr);
1313                         BUG_ON(!pte_none(*pte));
1314                         set_pte_at(mm, haddr, pte, entry);
1315                         pte_unmap(pte);
1316                 }
1317
1318                 smp_wmb(); /* make pte visible before pmd */
1319                 /*
1320                  * Up to this point the pmd is present and huge and
1321                  * userland has the whole access to the hugepage
1322                  * during the split (which happens in place). If we
1323                  * overwrite the pmd with the not-huge version
1324                  * pointing to the pte here (which of course we could
1325                  * if all CPUs were bug free), userland could trigger
1326                  * a small page size TLB miss on the small sized TLB
1327                  * while the hugepage TLB entry is still established
1328                  * in the huge TLB. Some CPU doesn't like that. See
1329                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1330                  * Erratum 383 on page 93. Intel should be safe but is
1331                  * also warns that it's only safe if the permission
1332                  * and cache attributes of the two entries loaded in
1333                  * the two TLB is identical (which should be the case
1334                  * here). But it is generally safer to never allow
1335                  * small and huge TLB entries for the same virtual
1336                  * address to be loaded simultaneously. So instead of
1337                  * doing "pmd_populate(); flush_tlb_range();" we first
1338                  * mark the current pmd notpresent (atomically because
1339                  * here the pmd_trans_huge and pmd_trans_splitting
1340                  * must remain set at all times on the pmd until the
1341                  * split is complete for this pmd), then we flush the
1342                  * SMP TLB and finally we write the non-huge version
1343                  * of the pmd entry with pmd_populate.
1344                  */
1345                 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1346                 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1347                 pmd_populate(mm, pmd, pgtable);
1348                 ret = 1;
1349         }
1350         spin_unlock(&mm->page_table_lock);
1351
1352         return ret;
1353 }
1354
1355 /* must be called with anon_vma->root->mutex hold */
1356 static void __split_huge_page(struct page *page,
1357                               struct anon_vma *anon_vma)
1358 {
1359         int mapcount, mapcount2;
1360         struct anon_vma_chain *avc;
1361
1362         BUG_ON(!PageHead(page));
1363         BUG_ON(PageTail(page));
1364
1365         mapcount = 0;
1366         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1367                 struct vm_area_struct *vma = avc->vma;
1368                 unsigned long addr = vma_address(page, vma);
1369                 BUG_ON(is_vma_temporary_stack(vma));
1370                 if (addr == -EFAULT)
1371                         continue;
1372                 mapcount += __split_huge_page_splitting(page, vma, addr);
1373         }
1374         /*
1375          * It is critical that new vmas are added to the tail of the
1376          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1377          * and establishes a child pmd before
1378          * __split_huge_page_splitting() freezes the parent pmd (so if
1379          * we fail to prevent copy_huge_pmd() from running until the
1380          * whole __split_huge_page() is complete), we will still see
1381          * the newly established pmd of the child later during the
1382          * walk, to be able to set it as pmd_trans_splitting too.
1383          */
1384         if (mapcount != page_mapcount(page))
1385                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1386                        mapcount, page_mapcount(page));
1387         BUG_ON(mapcount != page_mapcount(page));
1388
1389         __split_huge_page_refcount(page);
1390
1391         mapcount2 = 0;
1392         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1393                 struct vm_area_struct *vma = avc->vma;
1394                 unsigned long addr = vma_address(page, vma);
1395                 BUG_ON(is_vma_temporary_stack(vma));
1396                 if (addr == -EFAULT)
1397                         continue;
1398                 mapcount2 += __split_huge_page_map(page, vma, addr);
1399         }
1400         if (mapcount != mapcount2)
1401                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1402                        mapcount, mapcount2, page_mapcount(page));
1403         BUG_ON(mapcount != mapcount2);
1404 }
1405
1406 int split_huge_page(struct page *page)
1407 {
1408         struct anon_vma *anon_vma;
1409         int ret = 1;
1410
1411         BUG_ON(!PageAnon(page));
1412         anon_vma = page_lock_anon_vma(page);
1413         if (!anon_vma)
1414                 goto out;
1415         ret = 0;
1416         if (!PageCompound(page))
1417                 goto out_unlock;
1418
1419         BUG_ON(!PageSwapBacked(page));
1420         __split_huge_page(page, anon_vma);
1421         count_vm_event(THP_SPLIT);
1422
1423         BUG_ON(PageCompound(page));
1424 out_unlock:
1425         page_unlock_anon_vma(anon_vma);
1426 out:
1427         return ret;
1428 }
1429
1430 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1431                    VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1432
1433 int hugepage_madvise(struct vm_area_struct *vma,
1434                      unsigned long *vm_flags, int advice)
1435 {
1436         switch (advice) {
1437         case MADV_HUGEPAGE:
1438                 /*
1439                  * Be somewhat over-protective like KSM for now!
1440                  */
1441                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1442                         return -EINVAL;
1443                 *vm_flags &= ~VM_NOHUGEPAGE;
1444                 *vm_flags |= VM_HUGEPAGE;
1445                 /*
1446                  * If the vma become good for khugepaged to scan,
1447                  * register it here without waiting a page fault that
1448                  * may not happen any time soon.
1449                  */
1450                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1451                         return -ENOMEM;
1452                 break;
1453         case MADV_NOHUGEPAGE:
1454                 /*
1455                  * Be somewhat over-protective like KSM for now!
1456                  */
1457                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1458                         return -EINVAL;
1459                 *vm_flags &= ~VM_HUGEPAGE;
1460                 *vm_flags |= VM_NOHUGEPAGE;
1461                 /*
1462                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1463                  * this vma even if we leave the mm registered in khugepaged if
1464                  * it got registered before VM_NOHUGEPAGE was set.
1465                  */
1466                 break;
1467         }
1468
1469         return 0;
1470 }
1471
1472 static int __init khugepaged_slab_init(void)
1473 {
1474         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1475                                           sizeof(struct mm_slot),
1476                                           __alignof__(struct mm_slot), 0, NULL);
1477         if (!mm_slot_cache)
1478                 return -ENOMEM;
1479
1480         return 0;
1481 }
1482
1483 static void __init khugepaged_slab_free(void)
1484 {
1485         kmem_cache_destroy(mm_slot_cache);
1486         mm_slot_cache = NULL;
1487 }
1488
1489 static inline struct mm_slot *alloc_mm_slot(void)
1490 {
1491         if (!mm_slot_cache)     /* initialization failed */
1492                 return NULL;
1493         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1494 }
1495
1496 static inline void free_mm_slot(struct mm_slot *mm_slot)
1497 {
1498         kmem_cache_free(mm_slot_cache, mm_slot);
1499 }
1500
1501 static int __init mm_slots_hash_init(void)
1502 {
1503         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1504                                 GFP_KERNEL);
1505         if (!mm_slots_hash)
1506                 return -ENOMEM;
1507         return 0;
1508 }
1509
1510 #if 0
1511 static void __init mm_slots_hash_free(void)
1512 {
1513         kfree(mm_slots_hash);
1514         mm_slots_hash = NULL;
1515 }
1516 #endif
1517
1518 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1519 {
1520         struct mm_slot *mm_slot;
1521         struct hlist_head *bucket;
1522         struct hlist_node *node;
1523
1524         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1525                                 % MM_SLOTS_HASH_HEADS];
1526         hlist_for_each_entry(mm_slot, node, bucket, hash) {
1527                 if (mm == mm_slot->mm)
1528                         return mm_slot;
1529         }
1530         return NULL;
1531 }
1532
1533 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1534                                     struct mm_slot *mm_slot)
1535 {
1536         struct hlist_head *bucket;
1537
1538         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1539                                 % MM_SLOTS_HASH_HEADS];
1540         mm_slot->mm = mm;
1541         hlist_add_head(&mm_slot->hash, bucket);
1542 }
1543
1544 static inline int khugepaged_test_exit(struct mm_struct *mm)
1545 {
1546         return atomic_read(&mm->mm_users) == 0;
1547 }
1548
1549 int __khugepaged_enter(struct mm_struct *mm)
1550 {
1551         struct mm_slot *mm_slot;
1552         int wakeup;
1553
1554         mm_slot = alloc_mm_slot();
1555         if (!mm_slot)
1556                 return -ENOMEM;
1557
1558         /* __khugepaged_exit() must not run from under us */
1559         VM_BUG_ON(khugepaged_test_exit(mm));
1560         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1561                 free_mm_slot(mm_slot);
1562                 return 0;
1563         }
1564
1565         spin_lock(&khugepaged_mm_lock);
1566         insert_to_mm_slots_hash(mm, mm_slot);
1567         /*
1568          * Insert just behind the scanning cursor, to let the area settle
1569          * down a little.
1570          */
1571         wakeup = list_empty(&khugepaged_scan.mm_head);
1572         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1573         spin_unlock(&khugepaged_mm_lock);
1574
1575         atomic_inc(&mm->mm_count);
1576         if (wakeup)
1577                 wake_up_interruptible(&khugepaged_wait);
1578
1579         return 0;
1580 }
1581
1582 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1583 {
1584         unsigned long hstart, hend;
1585         if (!vma->anon_vma)
1586                 /*
1587                  * Not yet faulted in so we will register later in the
1588                  * page fault if needed.
1589                  */
1590                 return 0;
1591         if (vma->vm_ops)
1592                 /* khugepaged not yet working on file or special mappings */
1593                 return 0;
1594         /*
1595          * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1596          * true too, verify it here.
1597          */
1598         VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1599         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1600         hend = vma->vm_end & HPAGE_PMD_MASK;
1601         if (hstart < hend)
1602                 return khugepaged_enter(vma);
1603         return 0;
1604 }
1605
1606 void __khugepaged_exit(struct mm_struct *mm)
1607 {
1608         struct mm_slot *mm_slot;
1609         int free = 0;
1610
1611         spin_lock(&khugepaged_mm_lock);
1612         mm_slot = get_mm_slot(mm);
1613         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1614                 hlist_del(&mm_slot->hash);
1615                 list_del(&mm_slot->mm_node);
1616                 free = 1;
1617         }
1618
1619         if (free) {
1620                 spin_unlock(&khugepaged_mm_lock);
1621                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1622                 free_mm_slot(mm_slot);
1623                 mmdrop(mm);
1624         } else if (mm_slot) {
1625                 spin_unlock(&khugepaged_mm_lock);
1626                 /*
1627                  * This is required to serialize against
1628                  * khugepaged_test_exit() (which is guaranteed to run
1629                  * under mmap sem read mode). Stop here (after we
1630                  * return all pagetables will be destroyed) until
1631                  * khugepaged has finished working on the pagetables
1632                  * under the mmap_sem.
1633                  */
1634                 down_write(&mm->mmap_sem);
1635                 up_write(&mm->mmap_sem);
1636         } else
1637                 spin_unlock(&khugepaged_mm_lock);
1638 }
1639
1640 static void release_pte_page(struct page *page)
1641 {
1642         /* 0 stands for page_is_file_cache(page) == false */
1643         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1644         unlock_page(page);
1645         putback_lru_page(page);
1646 }
1647
1648 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1649 {
1650         while (--_pte >= pte) {
1651                 pte_t pteval = *_pte;
1652                 if (!pte_none(pteval))
1653                         release_pte_page(pte_page(pteval));
1654         }
1655 }
1656
1657 static void release_all_pte_pages(pte_t *pte)
1658 {
1659         release_pte_pages(pte, pte + HPAGE_PMD_NR);
1660 }
1661
1662 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1663                                         unsigned long address,
1664                                         pte_t *pte)
1665 {
1666         struct page *page;
1667         pte_t *_pte;
1668         int referenced = 0, isolated = 0, none = 0;
1669         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1670              _pte++, address += PAGE_SIZE) {
1671                 pte_t pteval = *_pte;
1672                 if (pte_none(pteval)) {
1673                         if (++none <= khugepaged_max_ptes_none)
1674                                 continue;
1675                         else {
1676                                 release_pte_pages(pte, _pte);
1677                                 goto out;
1678                         }
1679                 }
1680                 if (!pte_present(pteval) || !pte_write(pteval)) {
1681                         release_pte_pages(pte, _pte);
1682                         goto out;
1683                 }
1684                 page = vm_normal_page(vma, address, pteval);
1685                 if (unlikely(!page)) {
1686                         release_pte_pages(pte, _pte);
1687                         goto out;
1688                 }
1689                 VM_BUG_ON(PageCompound(page));
1690                 BUG_ON(!PageAnon(page));
1691                 VM_BUG_ON(!PageSwapBacked(page));
1692
1693                 /* cannot use mapcount: can't collapse if there's a gup pin */
1694                 if (page_count(page) != 1) {
1695                         release_pte_pages(pte, _pte);
1696                         goto out;
1697                 }
1698                 /*
1699                  * We can do it before isolate_lru_page because the
1700                  * page can't be freed from under us. NOTE: PG_lock
1701                  * is needed to serialize against split_huge_page
1702                  * when invoked from the VM.
1703                  */
1704                 if (!trylock_page(page)) {
1705                         release_pte_pages(pte, _pte);
1706                         goto out;
1707                 }
1708                 /*
1709                  * Isolate the page to avoid collapsing an hugepage
1710                  * currently in use by the VM.
1711                  */
1712                 if (isolate_lru_page(page)) {
1713                         unlock_page(page);
1714                         release_pte_pages(pte, _pte);
1715                         goto out;
1716                 }
1717                 /* 0 stands for page_is_file_cache(page) == false */
1718                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1719                 VM_BUG_ON(!PageLocked(page));
1720                 VM_BUG_ON(PageLRU(page));
1721
1722                 /* If there is no mapped pte young don't collapse the page */
1723                 if (pte_young(pteval) || PageReferenced(page) ||
1724                     mmu_notifier_test_young(vma->vm_mm, address))
1725                         referenced = 1;
1726         }
1727         if (unlikely(!referenced))
1728                 release_all_pte_pages(pte);
1729         else
1730                 isolated = 1;
1731 out:
1732         return isolated;
1733 }
1734
1735 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1736                                       struct vm_area_struct *vma,
1737                                       unsigned long address,
1738                                       spinlock_t *ptl)
1739 {
1740         pte_t *_pte;
1741         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1742                 pte_t pteval = *_pte;
1743                 struct page *src_page;
1744
1745                 if (pte_none(pteval)) {
1746                         clear_user_highpage(page, address);
1747                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1748                 } else {
1749                         src_page = pte_page(pteval);
1750                         copy_user_highpage(page, src_page, address, vma);
1751                         VM_BUG_ON(page_mapcount(src_page) != 1);
1752                         VM_BUG_ON(page_count(src_page) != 2);
1753                         release_pte_page(src_page);
1754                         /*
1755                          * ptl mostly unnecessary, but preempt has to
1756                          * be disabled to update the per-cpu stats
1757                          * inside page_remove_rmap().
1758                          */
1759                         spin_lock(ptl);
1760                         /*
1761                          * paravirt calls inside pte_clear here are
1762                          * superfluous.
1763                          */
1764                         pte_clear(vma->vm_mm, address, _pte);
1765                         page_remove_rmap(src_page);
1766                         spin_unlock(ptl);
1767                         free_page_and_swap_cache(src_page);
1768                 }
1769
1770                 address += PAGE_SIZE;
1771                 page++;
1772         }
1773 }
1774
1775 static void collapse_huge_page(struct mm_struct *mm,
1776                                unsigned long address,
1777                                struct page **hpage,
1778                                struct vm_area_struct *vma,
1779                                int node)
1780 {
1781         pgd_t *pgd;
1782         pud_t *pud;
1783         pmd_t *pmd, _pmd;
1784         pte_t *pte;
1785         pgtable_t pgtable;
1786         struct page *new_page;
1787         spinlock_t *ptl;
1788         int isolated;
1789         unsigned long hstart, hend;
1790
1791         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1792 #ifndef CONFIG_NUMA
1793         up_read(&mm->mmap_sem);
1794         VM_BUG_ON(!*hpage);
1795         new_page = *hpage;
1796 #else
1797         VM_BUG_ON(*hpage);
1798         /*
1799          * Allocate the page while the vma is still valid and under
1800          * the mmap_sem read mode so there is no memory allocation
1801          * later when we take the mmap_sem in write mode. This is more
1802          * friendly behavior (OTOH it may actually hide bugs) to
1803          * filesystems in userland with daemons allocating memory in
1804          * the userland I/O paths.  Allocating memory with the
1805          * mmap_sem in read mode is good idea also to allow greater
1806          * scalability.
1807          */
1808         new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1809                                       node, __GFP_OTHER_NODE);
1810
1811         /*
1812          * After allocating the hugepage, release the mmap_sem read lock in
1813          * preparation for taking it in write mode.
1814          */
1815         up_read(&mm->mmap_sem);
1816         if (unlikely(!new_page)) {
1817                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1818                 *hpage = ERR_PTR(-ENOMEM);
1819                 return;
1820         }
1821 #endif
1822
1823         count_vm_event(THP_COLLAPSE_ALLOC);
1824         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1825 #ifdef CONFIG_NUMA
1826                 put_page(new_page);
1827 #endif
1828                 return;
1829         }
1830
1831         /*
1832          * Prevent all access to pagetables with the exception of
1833          * gup_fast later hanlded by the ptep_clear_flush and the VM
1834          * handled by the anon_vma lock + PG_lock.
1835          */
1836         down_write(&mm->mmap_sem);
1837         if (unlikely(khugepaged_test_exit(mm)))
1838                 goto out;
1839
1840         vma = find_vma(mm, address);
1841         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1842         hend = vma->vm_end & HPAGE_PMD_MASK;
1843         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1844                 goto out;
1845
1846         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1847             (vma->vm_flags & VM_NOHUGEPAGE))
1848                 goto out;
1849
1850         if (!vma->anon_vma || vma->vm_ops)
1851                 goto out;
1852         if (is_vma_temporary_stack(vma))
1853                 goto out;
1854         /*
1855          * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1856          * true too, verify it here.
1857          */
1858         VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1859
1860         pgd = pgd_offset(mm, address);
1861         if (!pgd_present(*pgd))
1862                 goto out;
1863
1864         pud = pud_offset(pgd, address);
1865         if (!pud_present(*pud))
1866                 goto out;
1867
1868         pmd = pmd_offset(pud, address);
1869         /* pmd can't go away or become huge under us */
1870         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1871                 goto out;
1872
1873         anon_vma_lock(vma->anon_vma);
1874
1875         pte = pte_offset_map(pmd, address);
1876         ptl = pte_lockptr(mm, pmd);
1877
1878         spin_lock(&mm->page_table_lock); /* probably unnecessary */
1879         /*
1880          * After this gup_fast can't run anymore. This also removes
1881          * any huge TLB entry from the CPU so we won't allow
1882          * huge and small TLB entries for the same virtual address
1883          * to avoid the risk of CPU bugs in that area.
1884          */
1885         _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1886         spin_unlock(&mm->page_table_lock);
1887
1888         spin_lock(ptl);
1889         isolated = __collapse_huge_page_isolate(vma, address, pte);
1890         spin_unlock(ptl);
1891
1892         if (unlikely(!isolated)) {
1893                 pte_unmap(pte);
1894                 spin_lock(&mm->page_table_lock);
1895                 BUG_ON(!pmd_none(*pmd));
1896                 set_pmd_at(mm, address, pmd, _pmd);
1897                 spin_unlock(&mm->page_table_lock);
1898                 anon_vma_unlock(vma->anon_vma);
1899                 goto out;
1900         }
1901
1902         /*
1903          * All pages are isolated and locked so anon_vma rmap
1904          * can't run anymore.
1905          */
1906         anon_vma_unlock(vma->anon_vma);
1907
1908         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1909         pte_unmap(pte);
1910         __SetPageUptodate(new_page);
1911         pgtable = pmd_pgtable(_pmd);
1912         VM_BUG_ON(page_count(pgtable) != 1);
1913         VM_BUG_ON(page_mapcount(pgtable) != 0);
1914
1915         _pmd = mk_pmd(new_page, vma->vm_page_prot);
1916         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1917         _pmd = pmd_mkhuge(_pmd);
1918
1919         /*
1920          * spin_lock() below is not the equivalent of smp_wmb(), so
1921          * this is needed to avoid the copy_huge_page writes to become
1922          * visible after the set_pmd_at() write.
1923          */
1924         smp_wmb();
1925
1926         spin_lock(&mm->page_table_lock);
1927         BUG_ON(!pmd_none(*pmd));
1928         page_add_new_anon_rmap(new_page, vma, address);
1929         set_pmd_at(mm, address, pmd, _pmd);
1930         update_mmu_cache(vma, address, entry);
1931         prepare_pmd_huge_pte(pgtable, mm);
1932         spin_unlock(&mm->page_table_lock);
1933
1934 #ifndef CONFIG_NUMA
1935         *hpage = NULL;
1936 #endif
1937         khugepaged_pages_collapsed++;
1938 out_up_write:
1939         up_write(&mm->mmap_sem);
1940         return;
1941
1942 out:
1943         mem_cgroup_uncharge_page(new_page);
1944 #ifdef CONFIG_NUMA
1945         put_page(new_page);
1946 #endif
1947         goto out_up_write;
1948 }
1949
1950 static int khugepaged_scan_pmd(struct mm_struct *mm,
1951                                struct vm_area_struct *vma,
1952                                unsigned long address,
1953                                struct page **hpage)
1954 {
1955         pgd_t *pgd;
1956         pud_t *pud;
1957         pmd_t *pmd;
1958         pte_t *pte, *_pte;
1959         int ret = 0, referenced = 0, none = 0;
1960         struct page *page;
1961         unsigned long _address;
1962         spinlock_t *ptl;
1963         int node = -1;
1964
1965         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1966
1967         pgd = pgd_offset(mm, address);
1968         if (!pgd_present(*pgd))
1969                 goto out;
1970
1971         pud = pud_offset(pgd, address);
1972         if (!pud_present(*pud))
1973                 goto out;
1974
1975         pmd = pmd_offset(pud, address);
1976         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1977                 goto out;
1978
1979         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1980         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1981              _pte++, _address += PAGE_SIZE) {
1982                 pte_t pteval = *_pte;
1983                 if (pte_none(pteval)) {
1984                         if (++none <= khugepaged_max_ptes_none)
1985                                 continue;
1986                         else
1987                                 goto out_unmap;
1988                 }
1989                 if (!pte_present(pteval) || !pte_write(pteval))
1990                         goto out_unmap;
1991                 page = vm_normal_page(vma, _address, pteval);
1992                 if (unlikely(!page))
1993                         goto out_unmap;
1994                 /*
1995                  * Chose the node of the first page. This could
1996                  * be more sophisticated and look at more pages,
1997                  * but isn't for now.
1998                  */
1999                 if (node == -1)
2000                         node = page_to_nid(page);
2001                 VM_BUG_ON(PageCompound(page));
2002                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2003                         goto out_unmap;
2004                 /* cannot use mapcount: can't collapse if there's a gup pin */
2005                 if (page_count(page) != 1)
2006                         goto out_unmap;
2007                 if (pte_young(pteval) || PageReferenced(page) ||
2008                     mmu_notifier_test_young(vma->vm_mm, address))
2009                         referenced = 1;
2010         }
2011         if (referenced)
2012                 ret = 1;
2013 out_unmap:
2014         pte_unmap_unlock(pte, ptl);
2015         if (ret)
2016                 /* collapse_huge_page will return with the mmap_sem released */
2017                 collapse_huge_page(mm, address, hpage, vma, node);
2018 out:
2019         return ret;
2020 }
2021
2022 static void collect_mm_slot(struct mm_slot *mm_slot)
2023 {
2024         struct mm_struct *mm = mm_slot->mm;
2025
2026         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2027
2028         if (khugepaged_test_exit(mm)) {
2029                 /* free mm_slot */
2030                 hlist_del(&mm_slot->hash);
2031                 list_del(&mm_slot->mm_node);
2032
2033                 /*
2034                  * Not strictly needed because the mm exited already.
2035                  *
2036                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2037                  */
2038
2039                 /* khugepaged_mm_lock actually not necessary for the below */
2040                 free_mm_slot(mm_slot);
2041                 mmdrop(mm);
2042         }
2043 }
2044
2045 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2046                                             struct page **hpage)
2047 {
2048         struct mm_slot *mm_slot;
2049         struct mm_struct *mm;
2050         struct vm_area_struct *vma;
2051         int progress = 0;
2052
2053         VM_BUG_ON(!pages);
2054         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2055
2056         if (khugepaged_scan.mm_slot)
2057                 mm_slot = khugepaged_scan.mm_slot;
2058         else {
2059                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2060                                      struct mm_slot, mm_node);
2061                 khugepaged_scan.address = 0;
2062                 khugepaged_scan.mm_slot = mm_slot;
2063         }
2064         spin_unlock(&khugepaged_mm_lock);
2065
2066         mm = mm_slot->mm;
2067         down_read(&mm->mmap_sem);
2068         if (unlikely(khugepaged_test_exit(mm)))
2069                 vma = NULL;
2070         else
2071                 vma = find_vma(mm, khugepaged_scan.address);
2072
2073         progress++;
2074         for (; vma; vma = vma->vm_next) {
2075                 unsigned long hstart, hend;
2076
2077                 cond_resched();
2078                 if (unlikely(khugepaged_test_exit(mm))) {
2079                         progress++;
2080                         break;
2081                 }
2082
2083                 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2084                      !khugepaged_always()) ||
2085                     (vma->vm_flags & VM_NOHUGEPAGE)) {
2086                 skip:
2087                         progress++;
2088                         continue;
2089                 }
2090                 if (!vma->anon_vma || vma->vm_ops)
2091                         goto skip;
2092                 if (is_vma_temporary_stack(vma))
2093                         goto skip;
2094                 /*
2095                  * If is_pfn_mapping() is true is_learn_pfn_mapping()
2096                  * must be true too, verify it here.
2097                  */
2098                 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2099                           vma->vm_flags & VM_NO_THP);
2100
2101                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2102                 hend = vma->vm_end & HPAGE_PMD_MASK;
2103                 if (hstart >= hend)
2104                         goto skip;
2105                 if (khugepaged_scan.address > hend)
2106                         goto skip;
2107                 if (khugepaged_scan.address < hstart)
2108                         khugepaged_scan.address = hstart;
2109                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2110
2111                 while (khugepaged_scan.address < hend) {
2112                         int ret;
2113                         cond_resched();
2114                         if (unlikely(khugepaged_test_exit(mm)))
2115                                 goto breakouterloop;
2116
2117                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2118                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2119                                   hend);
2120                         ret = khugepaged_scan_pmd(mm, vma,
2121                                                   khugepaged_scan.address,
2122                                                   hpage);
2123                         /* move to next address */
2124                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2125                         progress += HPAGE_PMD_NR;
2126                         if (ret)
2127                                 /* we released mmap_sem so break loop */
2128                                 goto breakouterloop_mmap_sem;
2129                         if (progress >= pages)
2130                                 goto breakouterloop;
2131                 }
2132         }
2133 breakouterloop:
2134         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2135 breakouterloop_mmap_sem:
2136
2137         spin_lock(&khugepaged_mm_lock);
2138         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2139         /*
2140          * Release the current mm_slot if this mm is about to die, or
2141          * if we scanned all vmas of this mm.
2142          */
2143         if (khugepaged_test_exit(mm) || !vma) {
2144                 /*
2145                  * Make sure that if mm_users is reaching zero while
2146                  * khugepaged runs here, khugepaged_exit will find
2147                  * mm_slot not pointing to the exiting mm.
2148                  */
2149                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2150                         khugepaged_scan.mm_slot = list_entry(
2151                                 mm_slot->mm_node.next,
2152                                 struct mm_slot, mm_node);
2153                         khugepaged_scan.address = 0;
2154                 } else {
2155                         khugepaged_scan.mm_slot = NULL;
2156                         khugepaged_full_scans++;
2157                 }
2158
2159                 collect_mm_slot(mm_slot);
2160         }
2161
2162         return progress;
2163 }
2164
2165 static int khugepaged_has_work(void)
2166 {
2167         return !list_empty(&khugepaged_scan.mm_head) &&
2168                 khugepaged_enabled();
2169 }
2170
2171 static int khugepaged_wait_event(void)
2172 {
2173         return !list_empty(&khugepaged_scan.mm_head) ||
2174                 !khugepaged_enabled();
2175 }
2176
2177 static void khugepaged_do_scan(struct page **hpage)
2178 {
2179         unsigned int progress = 0, pass_through_head = 0;
2180         unsigned int pages = khugepaged_pages_to_scan;
2181
2182         barrier(); /* write khugepaged_pages_to_scan to local stack */
2183
2184         while (progress < pages) {
2185                 cond_resched();
2186
2187 #ifndef CONFIG_NUMA
2188                 if (!*hpage) {
2189                         *hpage = alloc_hugepage(khugepaged_defrag());
2190                         if (unlikely(!*hpage)) {
2191                                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2192                                 break;
2193                         }
2194                         count_vm_event(THP_COLLAPSE_ALLOC);
2195                 }
2196 #else
2197                 if (IS_ERR(*hpage))
2198                         break;
2199 #endif
2200
2201                 if (unlikely(kthread_should_stop() || freezing(current)))
2202                         break;
2203
2204                 spin_lock(&khugepaged_mm_lock);
2205                 if (!khugepaged_scan.mm_slot)
2206                         pass_through_head++;
2207                 if (khugepaged_has_work() &&
2208                     pass_through_head < 2)
2209                         progress += khugepaged_scan_mm_slot(pages - progress,
2210                                                             hpage);
2211                 else
2212                         progress = pages;
2213                 spin_unlock(&khugepaged_mm_lock);
2214         }
2215 }
2216
2217 static void khugepaged_alloc_sleep(void)
2218 {
2219         DEFINE_WAIT(wait);
2220         add_wait_queue(&khugepaged_wait, &wait);
2221         schedule_timeout_interruptible(
2222                 msecs_to_jiffies(
2223                         khugepaged_alloc_sleep_millisecs));
2224         remove_wait_queue(&khugepaged_wait, &wait);
2225 }
2226
2227 #ifndef CONFIG_NUMA
2228 static struct page *khugepaged_alloc_hugepage(void)
2229 {
2230         struct page *hpage;
2231
2232         do {
2233                 hpage = alloc_hugepage(khugepaged_defrag());
2234                 if (!hpage) {
2235                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2236                         khugepaged_alloc_sleep();
2237                 } else
2238                         count_vm_event(THP_COLLAPSE_ALLOC);
2239         } while (unlikely(!hpage) &&
2240                  likely(khugepaged_enabled()));
2241         return hpage;
2242 }
2243 #endif
2244
2245 static void khugepaged_loop(void)
2246 {
2247         struct page *hpage;
2248
2249 #ifdef CONFIG_NUMA
2250         hpage = NULL;
2251 #endif
2252         while (likely(khugepaged_enabled())) {
2253 #ifndef CONFIG_NUMA
2254                 hpage = khugepaged_alloc_hugepage();
2255                 if (unlikely(!hpage))
2256                         break;
2257 #else
2258                 if (IS_ERR(hpage)) {
2259                         khugepaged_alloc_sleep();
2260                         hpage = NULL;
2261                 }
2262 #endif
2263
2264                 khugepaged_do_scan(&hpage);
2265 #ifndef CONFIG_NUMA
2266                 if (hpage)
2267                         put_page(hpage);
2268 #endif
2269                 try_to_freeze();
2270                 if (unlikely(kthread_should_stop()))
2271                         break;
2272                 if (khugepaged_has_work()) {
2273                         DEFINE_WAIT(wait);
2274                         if (!khugepaged_scan_sleep_millisecs)
2275                                 continue;
2276                         add_wait_queue(&khugepaged_wait, &wait);
2277                         schedule_timeout_interruptible(
2278                                 msecs_to_jiffies(
2279                                         khugepaged_scan_sleep_millisecs));
2280                         remove_wait_queue(&khugepaged_wait, &wait);
2281                 } else if (khugepaged_enabled())
2282                         wait_event_freezable(khugepaged_wait,
2283                                              khugepaged_wait_event());
2284         }
2285 }
2286
2287 static int khugepaged(void *none)
2288 {
2289         struct mm_slot *mm_slot;
2290
2291         set_freezable();
2292         set_user_nice(current, 19);
2293
2294         /* serialize with start_khugepaged() */
2295         mutex_lock(&khugepaged_mutex);
2296
2297         for (;;) {
2298                 mutex_unlock(&khugepaged_mutex);
2299                 VM_BUG_ON(khugepaged_thread != current);
2300                 khugepaged_loop();
2301                 VM_BUG_ON(khugepaged_thread != current);
2302
2303                 mutex_lock(&khugepaged_mutex);
2304                 if (!khugepaged_enabled())
2305                         break;
2306                 if (unlikely(kthread_should_stop()))
2307                         break;
2308         }
2309
2310         spin_lock(&khugepaged_mm_lock);
2311         mm_slot = khugepaged_scan.mm_slot;
2312         khugepaged_scan.mm_slot = NULL;
2313         if (mm_slot)
2314                 collect_mm_slot(mm_slot);
2315         spin_unlock(&khugepaged_mm_lock);
2316
2317         khugepaged_thread = NULL;
2318         mutex_unlock(&khugepaged_mutex);
2319
2320         return 0;
2321 }
2322
2323 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2324 {
2325         struct page *page;
2326
2327         spin_lock(&mm->page_table_lock);
2328         if (unlikely(!pmd_trans_huge(*pmd))) {
2329                 spin_unlock(&mm->page_table_lock);
2330                 return;
2331         }
2332         page = pmd_page(*pmd);
2333         VM_BUG_ON(!page_count(page));
2334         get_page(page);
2335         spin_unlock(&mm->page_table_lock);
2336
2337         split_huge_page(page);
2338
2339         put_page(page);
2340         BUG_ON(pmd_trans_huge(*pmd));
2341 }
2342
2343 static void split_huge_page_address(struct mm_struct *mm,
2344                                     unsigned long address)
2345 {
2346         pgd_t *pgd;
2347         pud_t *pud;
2348         pmd_t *pmd;
2349
2350         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2351
2352         pgd = pgd_offset(mm, address);
2353         if (!pgd_present(*pgd))
2354                 return;
2355
2356         pud = pud_offset(pgd, address);
2357         if (!pud_present(*pud))
2358                 return;
2359
2360         pmd = pmd_offset(pud, address);
2361         if (!pmd_present(*pmd))
2362                 return;
2363         /*
2364          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2365          * materialize from under us.
2366          */
2367         split_huge_page_pmd(mm, pmd);
2368 }
2369
2370 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2371                              unsigned long start,
2372                              unsigned long end,
2373                              long adjust_next)
2374 {
2375         /*
2376          * If the new start address isn't hpage aligned and it could
2377          * previously contain an hugepage: check if we need to split
2378          * an huge pmd.
2379          */
2380         if (start & ~HPAGE_PMD_MASK &&
2381             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2382             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2383                 split_huge_page_address(vma->vm_mm, start);
2384
2385         /*
2386          * If the new end address isn't hpage aligned and it could
2387          * previously contain an hugepage: check if we need to split
2388          * an huge pmd.
2389          */
2390         if (end & ~HPAGE_PMD_MASK &&
2391             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2392             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2393                 split_huge_page_address(vma->vm_mm, end);
2394
2395         /*
2396          * If we're also updating the vma->vm_next->vm_start, if the new
2397          * vm_next->vm_start isn't page aligned and it could previously
2398          * contain an hugepage: check if we need to split an huge pmd.
2399          */
2400         if (adjust_next > 0) {
2401                 struct vm_area_struct *next = vma->vm_next;
2402                 unsigned long nstart = next->vm_start;
2403                 nstart += adjust_next << PAGE_SHIFT;
2404                 if (nstart & ~HPAGE_PMD_MASK &&
2405                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2406                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2407                         split_huge_page_address(next->vm_mm, nstart);
2408         }
2409 }