Merge remote-tracking branches 'asoc/topic/qcom', 'asoc/topic/rcar', 'asoc/topic...
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53  * free_huge_pages, and surplus_huge_pages.
54  */
55 DEFINE_SPINLOCK(hugetlb_lock);
56
57 /*
58  * Serializes faults on the same logical page.  This is used to
59  * prevent spurious OOMs when the hugepage pool is fully utilized.
60  */
61 static int num_fault_mutexes;
62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
64 /* Forward declaration */
65 static int hugetlb_acct_memory(struct hstate *h, long delta);
66
67 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
68 {
69         bool free = (spool->count == 0) && (spool->used_hpages == 0);
70
71         spin_unlock(&spool->lock);
72
73         /* If no pages are used, and no other handles to the subpool
74          * remain, give up any reservations mased on minimum size and
75          * free the subpool */
76         if (free) {
77                 if (spool->min_hpages != -1)
78                         hugetlb_acct_memory(spool->hstate,
79                                                 -spool->min_hpages);
80                 kfree(spool);
81         }
82 }
83
84 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
85                                                 long min_hpages)
86 {
87         struct hugepage_subpool *spool;
88
89         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90         if (!spool)
91                 return NULL;
92
93         spin_lock_init(&spool->lock);
94         spool->count = 1;
95         spool->max_hpages = max_hpages;
96         spool->hstate = h;
97         spool->min_hpages = min_hpages;
98
99         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
100                 kfree(spool);
101                 return NULL;
102         }
103         spool->rsv_hpages = min_hpages;
104
105         return spool;
106 }
107
108 void hugepage_put_subpool(struct hugepage_subpool *spool)
109 {
110         spin_lock(&spool->lock);
111         BUG_ON(!spool->count);
112         spool->count--;
113         unlock_or_release_subpool(spool);
114 }
115
116 /*
117  * Subpool accounting for allocating and reserving pages.
118  * Return -ENOMEM if there are not enough resources to satisfy the
119  * the request.  Otherwise, return the number of pages by which the
120  * global pools must be adjusted (upward).  The returned value may
121  * only be different than the passed value (delta) in the case where
122  * a subpool minimum size must be manitained.
123  */
124 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
125                                       long delta)
126 {
127         long ret = delta;
128
129         if (!spool)
130                 return ret;
131
132         spin_lock(&spool->lock);
133
134         if (spool->max_hpages != -1) {          /* maximum size accounting */
135                 if ((spool->used_hpages + delta) <= spool->max_hpages)
136                         spool->used_hpages += delta;
137                 else {
138                         ret = -ENOMEM;
139                         goto unlock_ret;
140                 }
141         }
142
143         if (spool->min_hpages != -1) {          /* minimum size accounting */
144                 if (delta > spool->rsv_hpages) {
145                         /*
146                          * Asking for more reserves than those already taken on
147                          * behalf of subpool.  Return difference.
148                          */
149                         ret = delta - spool->rsv_hpages;
150                         spool->rsv_hpages = 0;
151                 } else {
152                         ret = 0;        /* reserves already accounted for */
153                         spool->rsv_hpages -= delta;
154                 }
155         }
156
157 unlock_ret:
158         spin_unlock(&spool->lock);
159         return ret;
160 }
161
162 /*
163  * Subpool accounting for freeing and unreserving pages.
164  * Return the number of global page reservations that must be dropped.
165  * The return value may only be different than the passed value (delta)
166  * in the case where a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
169                                        long delta)
170 {
171         long ret = delta;
172
173         if (!spool)
174                 return delta;
175
176         spin_lock(&spool->lock);
177
178         if (spool->max_hpages != -1)            /* maximum size accounting */
179                 spool->used_hpages -= delta;
180
181         if (spool->min_hpages != -1) {          /* minimum size accounting */
182                 if (spool->rsv_hpages + delta <= spool->min_hpages)
183                         ret = 0;
184                 else
185                         ret = spool->rsv_hpages + delta - spool->min_hpages;
186
187                 spool->rsv_hpages += delta;
188                 if (spool->rsv_hpages > spool->min_hpages)
189                         spool->rsv_hpages = spool->min_hpages;
190         }
191
192         /*
193          * If hugetlbfs_put_super couldn't free spool due to an outstanding
194          * quota reference, free it now.
195          */
196         unlock_or_release_subpool(spool);
197
198         return ret;
199 }
200
201 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
202 {
203         return HUGETLBFS_SB(inode->i_sb)->spool;
204 }
205
206 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
207 {
208         return subpool_inode(file_inode(vma->vm_file));
209 }
210
211 /*
212  * Region tracking -- allows tracking of reservations and instantiated pages
213  *                    across the pages in a mapping.
214  *
215  * The region data structures are embedded into a resv_map and
216  * protected by a resv_map's lock
217  */
218 struct file_region {
219         struct list_head link;
220         long from;
221         long to;
222 };
223
224 static long region_add(struct resv_map *resv, long f, long t)
225 {
226         struct list_head *head = &resv->regions;
227         struct file_region *rg, *nrg, *trg;
228
229         spin_lock(&resv->lock);
230         /* Locate the region we are either in or before. */
231         list_for_each_entry(rg, head, link)
232                 if (f <= rg->to)
233                         break;
234
235         /* Round our left edge to the current segment if it encloses us. */
236         if (f > rg->from)
237                 f = rg->from;
238
239         /* Check for and consume any regions we now overlap with. */
240         nrg = rg;
241         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
242                 if (&rg->link == head)
243                         break;
244                 if (rg->from > t)
245                         break;
246
247                 /* If this area reaches higher then extend our area to
248                  * include it completely.  If this is not the first area
249                  * which we intend to reuse, free it. */
250                 if (rg->to > t)
251                         t = rg->to;
252                 if (rg != nrg) {
253                         list_del(&rg->link);
254                         kfree(rg);
255                 }
256         }
257         nrg->from = f;
258         nrg->to = t;
259         spin_unlock(&resv->lock);
260         return 0;
261 }
262
263 static long region_chg(struct resv_map *resv, long f, long t)
264 {
265         struct list_head *head = &resv->regions;
266         struct file_region *rg, *nrg = NULL;
267         long chg = 0;
268
269 retry:
270         spin_lock(&resv->lock);
271         /* Locate the region we are before or in. */
272         list_for_each_entry(rg, head, link)
273                 if (f <= rg->to)
274                         break;
275
276         /* If we are below the current region then a new region is required.
277          * Subtle, allocate a new region at the position but make it zero
278          * size such that we can guarantee to record the reservation. */
279         if (&rg->link == head || t < rg->from) {
280                 if (!nrg) {
281                         spin_unlock(&resv->lock);
282                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
283                         if (!nrg)
284                                 return -ENOMEM;
285
286                         nrg->from = f;
287                         nrg->to   = f;
288                         INIT_LIST_HEAD(&nrg->link);
289                         goto retry;
290                 }
291
292                 list_add(&nrg->link, rg->link.prev);
293                 chg = t - f;
294                 goto out_nrg;
295         }
296
297         /* Round our left edge to the current segment if it encloses us. */
298         if (f > rg->from)
299                 f = rg->from;
300         chg = t - f;
301
302         /* Check for and consume any regions we now overlap with. */
303         list_for_each_entry(rg, rg->link.prev, link) {
304                 if (&rg->link == head)
305                         break;
306                 if (rg->from > t)
307                         goto out;
308
309                 /* We overlap with this area, if it extends further than
310                  * us then we must extend ourselves.  Account for its
311                  * existing reservation. */
312                 if (rg->to > t) {
313                         chg += rg->to - t;
314                         t = rg->to;
315                 }
316                 chg -= rg->to - rg->from;
317         }
318
319 out:
320         spin_unlock(&resv->lock);
321         /*  We already know we raced and no longer need the new region */
322         kfree(nrg);
323         return chg;
324 out_nrg:
325         spin_unlock(&resv->lock);
326         return chg;
327 }
328
329 static long region_truncate(struct resv_map *resv, long end)
330 {
331         struct list_head *head = &resv->regions;
332         struct file_region *rg, *trg;
333         long chg = 0;
334
335         spin_lock(&resv->lock);
336         /* Locate the region we are either in or before. */
337         list_for_each_entry(rg, head, link)
338                 if (end <= rg->to)
339                         break;
340         if (&rg->link == head)
341                 goto out;
342
343         /* If we are in the middle of a region then adjust it. */
344         if (end > rg->from) {
345                 chg = rg->to - end;
346                 rg->to = end;
347                 rg = list_entry(rg->link.next, typeof(*rg), link);
348         }
349
350         /* Drop any remaining regions. */
351         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
352                 if (&rg->link == head)
353                         break;
354                 chg += rg->to - rg->from;
355                 list_del(&rg->link);
356                 kfree(rg);
357         }
358
359 out:
360         spin_unlock(&resv->lock);
361         return chg;
362 }
363
364 static long region_count(struct resv_map *resv, long f, long t)
365 {
366         struct list_head *head = &resv->regions;
367         struct file_region *rg;
368         long chg = 0;
369
370         spin_lock(&resv->lock);
371         /* Locate each segment we overlap with, and count that overlap. */
372         list_for_each_entry(rg, head, link) {
373                 long seg_from;
374                 long seg_to;
375
376                 if (rg->to <= f)
377                         continue;
378                 if (rg->from >= t)
379                         break;
380
381                 seg_from = max(rg->from, f);
382                 seg_to = min(rg->to, t);
383
384                 chg += seg_to - seg_from;
385         }
386         spin_unlock(&resv->lock);
387
388         return chg;
389 }
390
391 /*
392  * Convert the address within this vma to the page offset within
393  * the mapping, in pagecache page units; huge pages here.
394  */
395 static pgoff_t vma_hugecache_offset(struct hstate *h,
396                         struct vm_area_struct *vma, unsigned long address)
397 {
398         return ((address - vma->vm_start) >> huge_page_shift(h)) +
399                         (vma->vm_pgoff >> huge_page_order(h));
400 }
401
402 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
403                                      unsigned long address)
404 {
405         return vma_hugecache_offset(hstate_vma(vma), vma, address);
406 }
407
408 /*
409  * Return the size of the pages allocated when backing a VMA. In the majority
410  * cases this will be same size as used by the page table entries.
411  */
412 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
413 {
414         struct hstate *hstate;
415
416         if (!is_vm_hugetlb_page(vma))
417                 return PAGE_SIZE;
418
419         hstate = hstate_vma(vma);
420
421         return 1UL << huge_page_shift(hstate);
422 }
423 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
424
425 /*
426  * Return the page size being used by the MMU to back a VMA. In the majority
427  * of cases, the page size used by the kernel matches the MMU size. On
428  * architectures where it differs, an architecture-specific version of this
429  * function is required.
430  */
431 #ifndef vma_mmu_pagesize
432 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
433 {
434         return vma_kernel_pagesize(vma);
435 }
436 #endif
437
438 /*
439  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
440  * bits of the reservation map pointer, which are always clear due to
441  * alignment.
442  */
443 #define HPAGE_RESV_OWNER    (1UL << 0)
444 #define HPAGE_RESV_UNMAPPED (1UL << 1)
445 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
446
447 /*
448  * These helpers are used to track how many pages are reserved for
449  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
450  * is guaranteed to have their future faults succeed.
451  *
452  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
453  * the reserve counters are updated with the hugetlb_lock held. It is safe
454  * to reset the VMA at fork() time as it is not in use yet and there is no
455  * chance of the global counters getting corrupted as a result of the values.
456  *
457  * The private mapping reservation is represented in a subtly different
458  * manner to a shared mapping.  A shared mapping has a region map associated
459  * with the underlying file, this region map represents the backing file
460  * pages which have ever had a reservation assigned which this persists even
461  * after the page is instantiated.  A private mapping has a region map
462  * associated with the original mmap which is attached to all VMAs which
463  * reference it, this region map represents those offsets which have consumed
464  * reservation ie. where pages have been instantiated.
465  */
466 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
467 {
468         return (unsigned long)vma->vm_private_data;
469 }
470
471 static void set_vma_private_data(struct vm_area_struct *vma,
472                                                         unsigned long value)
473 {
474         vma->vm_private_data = (void *)value;
475 }
476
477 struct resv_map *resv_map_alloc(void)
478 {
479         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
480         if (!resv_map)
481                 return NULL;
482
483         kref_init(&resv_map->refs);
484         spin_lock_init(&resv_map->lock);
485         INIT_LIST_HEAD(&resv_map->regions);
486
487         return resv_map;
488 }
489
490 void resv_map_release(struct kref *ref)
491 {
492         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
493
494         /* Clear out any active regions before we release the map. */
495         region_truncate(resv_map, 0);
496         kfree(resv_map);
497 }
498
499 static inline struct resv_map *inode_resv_map(struct inode *inode)
500 {
501         return inode->i_mapping->private_data;
502 }
503
504 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
505 {
506         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
507         if (vma->vm_flags & VM_MAYSHARE) {
508                 struct address_space *mapping = vma->vm_file->f_mapping;
509                 struct inode *inode = mapping->host;
510
511                 return inode_resv_map(inode);
512
513         } else {
514                 return (struct resv_map *)(get_vma_private_data(vma) &
515                                                         ~HPAGE_RESV_MASK);
516         }
517 }
518
519 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
520 {
521         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
522         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
523
524         set_vma_private_data(vma, (get_vma_private_data(vma) &
525                                 HPAGE_RESV_MASK) | (unsigned long)map);
526 }
527
528 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
529 {
530         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
531         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
532
533         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
534 }
535
536 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
537 {
538         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
539
540         return (get_vma_private_data(vma) & flag) != 0;
541 }
542
543 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
544 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
545 {
546         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
547         if (!(vma->vm_flags & VM_MAYSHARE))
548                 vma->vm_private_data = (void *)0;
549 }
550
551 /* Returns true if the VMA has associated reserve pages */
552 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
553 {
554         if (vma->vm_flags & VM_NORESERVE) {
555                 /*
556                  * This address is already reserved by other process(chg == 0),
557                  * so, we should decrement reserved count. Without decrementing,
558                  * reserve count remains after releasing inode, because this
559                  * allocated page will go into page cache and is regarded as
560                  * coming from reserved pool in releasing step.  Currently, we
561                  * don't have any other solution to deal with this situation
562                  * properly, so add work-around here.
563                  */
564                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
565                         return 1;
566                 else
567                         return 0;
568         }
569
570         /* Shared mappings always use reserves */
571         if (vma->vm_flags & VM_MAYSHARE)
572                 return 1;
573
574         /*
575          * Only the process that called mmap() has reserves for
576          * private mappings.
577          */
578         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
579                 return 1;
580
581         return 0;
582 }
583
584 static void enqueue_huge_page(struct hstate *h, struct page *page)
585 {
586         int nid = page_to_nid(page);
587         list_move(&page->lru, &h->hugepage_freelists[nid]);
588         h->free_huge_pages++;
589         h->free_huge_pages_node[nid]++;
590 }
591
592 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
593 {
594         struct page *page;
595
596         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
597                 if (!is_migrate_isolate_page(page))
598                         break;
599         /*
600          * if 'non-isolated free hugepage' not found on the list,
601          * the allocation fails.
602          */
603         if (&h->hugepage_freelists[nid] == &page->lru)
604                 return NULL;
605         list_move(&page->lru, &h->hugepage_activelist);
606         set_page_refcounted(page);
607         h->free_huge_pages--;
608         h->free_huge_pages_node[nid]--;
609         return page;
610 }
611
612 /* Movability of hugepages depends on migration support. */
613 static inline gfp_t htlb_alloc_mask(struct hstate *h)
614 {
615         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
616                 return GFP_HIGHUSER_MOVABLE;
617         else
618                 return GFP_HIGHUSER;
619 }
620
621 static struct page *dequeue_huge_page_vma(struct hstate *h,
622                                 struct vm_area_struct *vma,
623                                 unsigned long address, int avoid_reserve,
624                                 long chg)
625 {
626         struct page *page = NULL;
627         struct mempolicy *mpol;
628         nodemask_t *nodemask;
629         struct zonelist *zonelist;
630         struct zone *zone;
631         struct zoneref *z;
632         unsigned int cpuset_mems_cookie;
633
634         /*
635          * A child process with MAP_PRIVATE mappings created by their parent
636          * have no page reserves. This check ensures that reservations are
637          * not "stolen". The child may still get SIGKILLed
638          */
639         if (!vma_has_reserves(vma, chg) &&
640                         h->free_huge_pages - h->resv_huge_pages == 0)
641                 goto err;
642
643         /* If reserves cannot be used, ensure enough pages are in the pool */
644         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
645                 goto err;
646
647 retry_cpuset:
648         cpuset_mems_cookie = read_mems_allowed_begin();
649         zonelist = huge_zonelist(vma, address,
650                                         htlb_alloc_mask(h), &mpol, &nodemask);
651
652         for_each_zone_zonelist_nodemask(zone, z, zonelist,
653                                                 MAX_NR_ZONES - 1, nodemask) {
654                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
655                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
656                         if (page) {
657                                 if (avoid_reserve)
658                                         break;
659                                 if (!vma_has_reserves(vma, chg))
660                                         break;
661
662                                 SetPagePrivate(page);
663                                 h->resv_huge_pages--;
664                                 break;
665                         }
666                 }
667         }
668
669         mpol_cond_put(mpol);
670         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
671                 goto retry_cpuset;
672         return page;
673
674 err:
675         return NULL;
676 }
677
678 /*
679  * common helper functions for hstate_next_node_to_{alloc|free}.
680  * We may have allocated or freed a huge page based on a different
681  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
682  * be outside of *nodes_allowed.  Ensure that we use an allowed
683  * node for alloc or free.
684  */
685 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
686 {
687         nid = next_node(nid, *nodes_allowed);
688         if (nid == MAX_NUMNODES)
689                 nid = first_node(*nodes_allowed);
690         VM_BUG_ON(nid >= MAX_NUMNODES);
691
692         return nid;
693 }
694
695 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
696 {
697         if (!node_isset(nid, *nodes_allowed))
698                 nid = next_node_allowed(nid, nodes_allowed);
699         return nid;
700 }
701
702 /*
703  * returns the previously saved node ["this node"] from which to
704  * allocate a persistent huge page for the pool and advance the
705  * next node from which to allocate, handling wrap at end of node
706  * mask.
707  */
708 static int hstate_next_node_to_alloc(struct hstate *h,
709                                         nodemask_t *nodes_allowed)
710 {
711         int nid;
712
713         VM_BUG_ON(!nodes_allowed);
714
715         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
716         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
717
718         return nid;
719 }
720
721 /*
722  * helper for free_pool_huge_page() - return the previously saved
723  * node ["this node"] from which to free a huge page.  Advance the
724  * next node id whether or not we find a free huge page to free so
725  * that the next attempt to free addresses the next node.
726  */
727 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
728 {
729         int nid;
730
731         VM_BUG_ON(!nodes_allowed);
732
733         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
734         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
735
736         return nid;
737 }
738
739 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
740         for (nr_nodes = nodes_weight(*mask);                            \
741                 nr_nodes > 0 &&                                         \
742                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
743                 nr_nodes--)
744
745 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
746         for (nr_nodes = nodes_weight(*mask);                            \
747                 nr_nodes > 0 &&                                         \
748                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
749                 nr_nodes--)
750
751 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
752 static void destroy_compound_gigantic_page(struct page *page,
753                                         unsigned long order)
754 {
755         int i;
756         int nr_pages = 1 << order;
757         struct page *p = page + 1;
758
759         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
760                 __ClearPageTail(p);
761                 set_page_refcounted(p);
762                 p->first_page = NULL;
763         }
764
765         set_compound_order(page, 0);
766         __ClearPageHead(page);
767 }
768
769 static void free_gigantic_page(struct page *page, unsigned order)
770 {
771         free_contig_range(page_to_pfn(page), 1 << order);
772 }
773
774 static int __alloc_gigantic_page(unsigned long start_pfn,
775                                 unsigned long nr_pages)
776 {
777         unsigned long end_pfn = start_pfn + nr_pages;
778         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
779 }
780
781 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
782                                 unsigned long nr_pages)
783 {
784         unsigned long i, end_pfn = start_pfn + nr_pages;
785         struct page *page;
786
787         for (i = start_pfn; i < end_pfn; i++) {
788                 if (!pfn_valid(i))
789                         return false;
790
791                 page = pfn_to_page(i);
792
793                 if (PageReserved(page))
794                         return false;
795
796                 if (page_count(page) > 0)
797                         return false;
798
799                 if (PageHuge(page))
800                         return false;
801         }
802
803         return true;
804 }
805
806 static bool zone_spans_last_pfn(const struct zone *zone,
807                         unsigned long start_pfn, unsigned long nr_pages)
808 {
809         unsigned long last_pfn = start_pfn + nr_pages - 1;
810         return zone_spans_pfn(zone, last_pfn);
811 }
812
813 static struct page *alloc_gigantic_page(int nid, unsigned order)
814 {
815         unsigned long nr_pages = 1 << order;
816         unsigned long ret, pfn, flags;
817         struct zone *z;
818
819         z = NODE_DATA(nid)->node_zones;
820         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
821                 spin_lock_irqsave(&z->lock, flags);
822
823                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
824                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
825                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
826                                 /*
827                                  * We release the zone lock here because
828                                  * alloc_contig_range() will also lock the zone
829                                  * at some point. If there's an allocation
830                                  * spinning on this lock, it may win the race
831                                  * and cause alloc_contig_range() to fail...
832                                  */
833                                 spin_unlock_irqrestore(&z->lock, flags);
834                                 ret = __alloc_gigantic_page(pfn, nr_pages);
835                                 if (!ret)
836                                         return pfn_to_page(pfn);
837                                 spin_lock_irqsave(&z->lock, flags);
838                         }
839                         pfn += nr_pages;
840                 }
841
842                 spin_unlock_irqrestore(&z->lock, flags);
843         }
844
845         return NULL;
846 }
847
848 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
849 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
850
851 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
852 {
853         struct page *page;
854
855         page = alloc_gigantic_page(nid, huge_page_order(h));
856         if (page) {
857                 prep_compound_gigantic_page(page, huge_page_order(h));
858                 prep_new_huge_page(h, page, nid);
859         }
860
861         return page;
862 }
863
864 static int alloc_fresh_gigantic_page(struct hstate *h,
865                                 nodemask_t *nodes_allowed)
866 {
867         struct page *page = NULL;
868         int nr_nodes, node;
869
870         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
871                 page = alloc_fresh_gigantic_page_node(h, node);
872                 if (page)
873                         return 1;
874         }
875
876         return 0;
877 }
878
879 static inline bool gigantic_page_supported(void) { return true; }
880 #else
881 static inline bool gigantic_page_supported(void) { return false; }
882 static inline void free_gigantic_page(struct page *page, unsigned order) { }
883 static inline void destroy_compound_gigantic_page(struct page *page,
884                                                 unsigned long order) { }
885 static inline int alloc_fresh_gigantic_page(struct hstate *h,
886                                         nodemask_t *nodes_allowed) { return 0; }
887 #endif
888
889 static void update_and_free_page(struct hstate *h, struct page *page)
890 {
891         int i;
892
893         if (hstate_is_gigantic(h) && !gigantic_page_supported())
894                 return;
895
896         h->nr_huge_pages--;
897         h->nr_huge_pages_node[page_to_nid(page)]--;
898         for (i = 0; i < pages_per_huge_page(h); i++) {
899                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
900                                 1 << PG_referenced | 1 << PG_dirty |
901                                 1 << PG_active | 1 << PG_private |
902                                 1 << PG_writeback);
903         }
904         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
905         set_compound_page_dtor(page, NULL);
906         set_page_refcounted(page);
907         if (hstate_is_gigantic(h)) {
908                 destroy_compound_gigantic_page(page, huge_page_order(h));
909                 free_gigantic_page(page, huge_page_order(h));
910         } else {
911                 arch_release_hugepage(page);
912                 __free_pages(page, huge_page_order(h));
913         }
914 }
915
916 struct hstate *size_to_hstate(unsigned long size)
917 {
918         struct hstate *h;
919
920         for_each_hstate(h) {
921                 if (huge_page_size(h) == size)
922                         return h;
923         }
924         return NULL;
925 }
926
927 /*
928  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
929  * to hstate->hugepage_activelist.)
930  *
931  * This function can be called for tail pages, but never returns true for them.
932  */
933 bool page_huge_active(struct page *page)
934 {
935         VM_BUG_ON_PAGE(!PageHuge(page), page);
936         return PageHead(page) && PagePrivate(&page[1]);
937 }
938
939 /* never called for tail page */
940 static void set_page_huge_active(struct page *page)
941 {
942         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
943         SetPagePrivate(&page[1]);
944 }
945
946 static void clear_page_huge_active(struct page *page)
947 {
948         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
949         ClearPagePrivate(&page[1]);
950 }
951
952 void free_huge_page(struct page *page)
953 {
954         /*
955          * Can't pass hstate in here because it is called from the
956          * compound page destructor.
957          */
958         struct hstate *h = page_hstate(page);
959         int nid = page_to_nid(page);
960         struct hugepage_subpool *spool =
961                 (struct hugepage_subpool *)page_private(page);
962         bool restore_reserve;
963
964         set_page_private(page, 0);
965         page->mapping = NULL;
966         BUG_ON(page_count(page));
967         BUG_ON(page_mapcount(page));
968         restore_reserve = PagePrivate(page);
969         ClearPagePrivate(page);
970
971         /*
972          * A return code of zero implies that the subpool will be under its
973          * minimum size if the reservation is not restored after page is free.
974          * Therefore, force restore_reserve operation.
975          */
976         if (hugepage_subpool_put_pages(spool, 1) == 0)
977                 restore_reserve = true;
978
979         spin_lock(&hugetlb_lock);
980         clear_page_huge_active(page);
981         hugetlb_cgroup_uncharge_page(hstate_index(h),
982                                      pages_per_huge_page(h), page);
983         if (restore_reserve)
984                 h->resv_huge_pages++;
985
986         if (h->surplus_huge_pages_node[nid]) {
987                 /* remove the page from active list */
988                 list_del(&page->lru);
989                 update_and_free_page(h, page);
990                 h->surplus_huge_pages--;
991                 h->surplus_huge_pages_node[nid]--;
992         } else {
993                 arch_clear_hugepage_flags(page);
994                 enqueue_huge_page(h, page);
995         }
996         spin_unlock(&hugetlb_lock);
997 }
998
999 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1000 {
1001         INIT_LIST_HEAD(&page->lru);
1002         set_compound_page_dtor(page, free_huge_page);
1003         spin_lock(&hugetlb_lock);
1004         set_hugetlb_cgroup(page, NULL);
1005         h->nr_huge_pages++;
1006         h->nr_huge_pages_node[nid]++;
1007         spin_unlock(&hugetlb_lock);
1008         put_page(page); /* free it into the hugepage allocator */
1009 }
1010
1011 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1012 {
1013         int i;
1014         int nr_pages = 1 << order;
1015         struct page *p = page + 1;
1016
1017         /* we rely on prep_new_huge_page to set the destructor */
1018         set_compound_order(page, order);
1019         __SetPageHead(page);
1020         __ClearPageReserved(page);
1021         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1022                 /*
1023                  * For gigantic hugepages allocated through bootmem at
1024                  * boot, it's safer to be consistent with the not-gigantic
1025                  * hugepages and clear the PG_reserved bit from all tail pages
1026                  * too.  Otherwse drivers using get_user_pages() to access tail
1027                  * pages may get the reference counting wrong if they see
1028                  * PG_reserved set on a tail page (despite the head page not
1029                  * having PG_reserved set).  Enforcing this consistency between
1030                  * head and tail pages allows drivers to optimize away a check
1031                  * on the head page when they need know if put_page() is needed
1032                  * after get_user_pages().
1033                  */
1034                 __ClearPageReserved(p);
1035                 set_page_count(p, 0);
1036                 p->first_page = page;
1037                 /* Make sure p->first_page is always valid for PageTail() */
1038                 smp_wmb();
1039                 __SetPageTail(p);
1040         }
1041 }
1042
1043 /*
1044  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1045  * transparent huge pages.  See the PageTransHuge() documentation for more
1046  * details.
1047  */
1048 int PageHuge(struct page *page)
1049 {
1050         if (!PageCompound(page))
1051                 return 0;
1052
1053         page = compound_head(page);
1054         return get_compound_page_dtor(page) == free_huge_page;
1055 }
1056 EXPORT_SYMBOL_GPL(PageHuge);
1057
1058 /*
1059  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1060  * normal or transparent huge pages.
1061  */
1062 int PageHeadHuge(struct page *page_head)
1063 {
1064         if (!PageHead(page_head))
1065                 return 0;
1066
1067         return get_compound_page_dtor(page_head) == free_huge_page;
1068 }
1069
1070 pgoff_t __basepage_index(struct page *page)
1071 {
1072         struct page *page_head = compound_head(page);
1073         pgoff_t index = page_index(page_head);
1074         unsigned long compound_idx;
1075
1076         if (!PageHuge(page_head))
1077                 return page_index(page);
1078
1079         if (compound_order(page_head) >= MAX_ORDER)
1080                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1081         else
1082                 compound_idx = page - page_head;
1083
1084         return (index << compound_order(page_head)) + compound_idx;
1085 }
1086
1087 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1088 {
1089         struct page *page;
1090
1091         page = alloc_pages_exact_node(nid,
1092                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1093                                                 __GFP_REPEAT|__GFP_NOWARN,
1094                 huge_page_order(h));
1095         if (page) {
1096                 if (arch_prepare_hugepage(page)) {
1097                         __free_pages(page, huge_page_order(h));
1098                         return NULL;
1099                 }
1100                 prep_new_huge_page(h, page, nid);
1101         }
1102
1103         return page;
1104 }
1105
1106 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1107 {
1108         struct page *page;
1109         int nr_nodes, node;
1110         int ret = 0;
1111
1112         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1113                 page = alloc_fresh_huge_page_node(h, node);
1114                 if (page) {
1115                         ret = 1;
1116                         break;
1117                 }
1118         }
1119
1120         if (ret)
1121                 count_vm_event(HTLB_BUDDY_PGALLOC);
1122         else
1123                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1124
1125         return ret;
1126 }
1127
1128 /*
1129  * Free huge page from pool from next node to free.
1130  * Attempt to keep persistent huge pages more or less
1131  * balanced over allowed nodes.
1132  * Called with hugetlb_lock locked.
1133  */
1134 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1135                                                          bool acct_surplus)
1136 {
1137         int nr_nodes, node;
1138         int ret = 0;
1139
1140         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1141                 /*
1142                  * If we're returning unused surplus pages, only examine
1143                  * nodes with surplus pages.
1144                  */
1145                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1146                     !list_empty(&h->hugepage_freelists[node])) {
1147                         struct page *page =
1148                                 list_entry(h->hugepage_freelists[node].next,
1149                                           struct page, lru);
1150                         list_del(&page->lru);
1151                         h->free_huge_pages--;
1152                         h->free_huge_pages_node[node]--;
1153                         if (acct_surplus) {
1154                                 h->surplus_huge_pages--;
1155                                 h->surplus_huge_pages_node[node]--;
1156                         }
1157                         update_and_free_page(h, page);
1158                         ret = 1;
1159                         break;
1160                 }
1161         }
1162
1163         return ret;
1164 }
1165
1166 /*
1167  * Dissolve a given free hugepage into free buddy pages. This function does
1168  * nothing for in-use (including surplus) hugepages.
1169  */
1170 static void dissolve_free_huge_page(struct page *page)
1171 {
1172         spin_lock(&hugetlb_lock);
1173         if (PageHuge(page) && !page_count(page)) {
1174                 struct hstate *h = page_hstate(page);
1175                 int nid = page_to_nid(page);
1176                 list_del(&page->lru);
1177                 h->free_huge_pages--;
1178                 h->free_huge_pages_node[nid]--;
1179                 update_and_free_page(h, page);
1180         }
1181         spin_unlock(&hugetlb_lock);
1182 }
1183
1184 /*
1185  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1186  * make specified memory blocks removable from the system.
1187  * Note that start_pfn should aligned with (minimum) hugepage size.
1188  */
1189 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1190 {
1191         unsigned int order = 8 * sizeof(void *);
1192         unsigned long pfn;
1193         struct hstate *h;
1194
1195         if (!hugepages_supported())
1196                 return;
1197
1198         /* Set scan step to minimum hugepage size */
1199         for_each_hstate(h)
1200                 if (order > huge_page_order(h))
1201                         order = huge_page_order(h);
1202         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1203         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1204                 dissolve_free_huge_page(pfn_to_page(pfn));
1205 }
1206
1207 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1208 {
1209         struct page *page;
1210         unsigned int r_nid;
1211
1212         if (hstate_is_gigantic(h))
1213                 return NULL;
1214
1215         /*
1216          * Assume we will successfully allocate the surplus page to
1217          * prevent racing processes from causing the surplus to exceed
1218          * overcommit
1219          *
1220          * This however introduces a different race, where a process B
1221          * tries to grow the static hugepage pool while alloc_pages() is
1222          * called by process A. B will only examine the per-node
1223          * counters in determining if surplus huge pages can be
1224          * converted to normal huge pages in adjust_pool_surplus(). A
1225          * won't be able to increment the per-node counter, until the
1226          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1227          * no more huge pages can be converted from surplus to normal
1228          * state (and doesn't try to convert again). Thus, we have a
1229          * case where a surplus huge page exists, the pool is grown, and
1230          * the surplus huge page still exists after, even though it
1231          * should just have been converted to a normal huge page. This
1232          * does not leak memory, though, as the hugepage will be freed
1233          * once it is out of use. It also does not allow the counters to
1234          * go out of whack in adjust_pool_surplus() as we don't modify
1235          * the node values until we've gotten the hugepage and only the
1236          * per-node value is checked there.
1237          */
1238         spin_lock(&hugetlb_lock);
1239         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1240                 spin_unlock(&hugetlb_lock);
1241                 return NULL;
1242         } else {
1243                 h->nr_huge_pages++;
1244                 h->surplus_huge_pages++;
1245         }
1246         spin_unlock(&hugetlb_lock);
1247
1248         if (nid == NUMA_NO_NODE)
1249                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1250                                    __GFP_REPEAT|__GFP_NOWARN,
1251                                    huge_page_order(h));
1252         else
1253                 page = alloc_pages_exact_node(nid,
1254                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1255                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1256
1257         if (page && arch_prepare_hugepage(page)) {
1258                 __free_pages(page, huge_page_order(h));
1259                 page = NULL;
1260         }
1261
1262         spin_lock(&hugetlb_lock);
1263         if (page) {
1264                 INIT_LIST_HEAD(&page->lru);
1265                 r_nid = page_to_nid(page);
1266                 set_compound_page_dtor(page, free_huge_page);
1267                 set_hugetlb_cgroup(page, NULL);
1268                 /*
1269                  * We incremented the global counters already
1270                  */
1271                 h->nr_huge_pages_node[r_nid]++;
1272                 h->surplus_huge_pages_node[r_nid]++;
1273                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1274         } else {
1275                 h->nr_huge_pages--;
1276                 h->surplus_huge_pages--;
1277                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1278         }
1279         spin_unlock(&hugetlb_lock);
1280
1281         return page;
1282 }
1283
1284 /*
1285  * This allocation function is useful in the context where vma is irrelevant.
1286  * E.g. soft-offlining uses this function because it only cares physical
1287  * address of error page.
1288  */
1289 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1290 {
1291         struct page *page = NULL;
1292
1293         spin_lock(&hugetlb_lock);
1294         if (h->free_huge_pages - h->resv_huge_pages > 0)
1295                 page = dequeue_huge_page_node(h, nid);
1296         spin_unlock(&hugetlb_lock);
1297
1298         if (!page)
1299                 page = alloc_buddy_huge_page(h, nid);
1300
1301         return page;
1302 }
1303
1304 /*
1305  * Increase the hugetlb pool such that it can accommodate a reservation
1306  * of size 'delta'.
1307  */
1308 static int gather_surplus_pages(struct hstate *h, int delta)
1309 {
1310         struct list_head surplus_list;
1311         struct page *page, *tmp;
1312         int ret, i;
1313         int needed, allocated;
1314         bool alloc_ok = true;
1315
1316         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1317         if (needed <= 0) {
1318                 h->resv_huge_pages += delta;
1319                 return 0;
1320         }
1321
1322         allocated = 0;
1323         INIT_LIST_HEAD(&surplus_list);
1324
1325         ret = -ENOMEM;
1326 retry:
1327         spin_unlock(&hugetlb_lock);
1328         for (i = 0; i < needed; i++) {
1329                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1330                 if (!page) {
1331                         alloc_ok = false;
1332                         break;
1333                 }
1334                 list_add(&page->lru, &surplus_list);
1335         }
1336         allocated += i;
1337
1338         /*
1339          * After retaking hugetlb_lock, we need to recalculate 'needed'
1340          * because either resv_huge_pages or free_huge_pages may have changed.
1341          */
1342         spin_lock(&hugetlb_lock);
1343         needed = (h->resv_huge_pages + delta) -
1344                         (h->free_huge_pages + allocated);
1345         if (needed > 0) {
1346                 if (alloc_ok)
1347                         goto retry;
1348                 /*
1349                  * We were not able to allocate enough pages to
1350                  * satisfy the entire reservation so we free what
1351                  * we've allocated so far.
1352                  */
1353                 goto free;
1354         }
1355         /*
1356          * The surplus_list now contains _at_least_ the number of extra pages
1357          * needed to accommodate the reservation.  Add the appropriate number
1358          * of pages to the hugetlb pool and free the extras back to the buddy
1359          * allocator.  Commit the entire reservation here to prevent another
1360          * process from stealing the pages as they are added to the pool but
1361          * before they are reserved.
1362          */
1363         needed += allocated;
1364         h->resv_huge_pages += delta;
1365         ret = 0;
1366
1367         /* Free the needed pages to the hugetlb pool */
1368         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1369                 if ((--needed) < 0)
1370                         break;
1371                 /*
1372                  * This page is now managed by the hugetlb allocator and has
1373                  * no users -- drop the buddy allocator's reference.
1374                  */
1375                 put_page_testzero(page);
1376                 VM_BUG_ON_PAGE(page_count(page), page);
1377                 enqueue_huge_page(h, page);
1378         }
1379 free:
1380         spin_unlock(&hugetlb_lock);
1381
1382         /* Free unnecessary surplus pages to the buddy allocator */
1383         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1384                 put_page(page);
1385         spin_lock(&hugetlb_lock);
1386
1387         return ret;
1388 }
1389
1390 /*
1391  * When releasing a hugetlb pool reservation, any surplus pages that were
1392  * allocated to satisfy the reservation must be explicitly freed if they were
1393  * never used.
1394  * Called with hugetlb_lock held.
1395  */
1396 static void return_unused_surplus_pages(struct hstate *h,
1397                                         unsigned long unused_resv_pages)
1398 {
1399         unsigned long nr_pages;
1400
1401         /* Uncommit the reservation */
1402         h->resv_huge_pages -= unused_resv_pages;
1403
1404         /* Cannot return gigantic pages currently */
1405         if (hstate_is_gigantic(h))
1406                 return;
1407
1408         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1409
1410         /*
1411          * We want to release as many surplus pages as possible, spread
1412          * evenly across all nodes with memory. Iterate across these nodes
1413          * until we can no longer free unreserved surplus pages. This occurs
1414          * when the nodes with surplus pages have no free pages.
1415          * free_pool_huge_page() will balance the the freed pages across the
1416          * on-line nodes with memory and will handle the hstate accounting.
1417          */
1418         while (nr_pages--) {
1419                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1420                         break;
1421                 cond_resched_lock(&hugetlb_lock);
1422         }
1423 }
1424
1425 /*
1426  * Determine if the huge page at addr within the vma has an associated
1427  * reservation.  Where it does not we will need to logically increase
1428  * reservation and actually increase subpool usage before an allocation
1429  * can occur.  Where any new reservation would be required the
1430  * reservation change is prepared, but not committed.  Once the page
1431  * has been allocated from the subpool and instantiated the change should
1432  * be committed via vma_commit_reservation.  No action is required on
1433  * failure.
1434  */
1435 static long vma_needs_reservation(struct hstate *h,
1436                         struct vm_area_struct *vma, unsigned long addr)
1437 {
1438         struct resv_map *resv;
1439         pgoff_t idx;
1440         long chg;
1441
1442         resv = vma_resv_map(vma);
1443         if (!resv)
1444                 return 1;
1445
1446         idx = vma_hugecache_offset(h, vma, addr);
1447         chg = region_chg(resv, idx, idx + 1);
1448
1449         if (vma->vm_flags & VM_MAYSHARE)
1450                 return chg;
1451         else
1452                 return chg < 0 ? chg : 0;
1453 }
1454 static void vma_commit_reservation(struct hstate *h,
1455                         struct vm_area_struct *vma, unsigned long addr)
1456 {
1457         struct resv_map *resv;
1458         pgoff_t idx;
1459
1460         resv = vma_resv_map(vma);
1461         if (!resv)
1462                 return;
1463
1464         idx = vma_hugecache_offset(h, vma, addr);
1465         region_add(resv, idx, idx + 1);
1466 }
1467
1468 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1469                                     unsigned long addr, int avoid_reserve)
1470 {
1471         struct hugepage_subpool *spool = subpool_vma(vma);
1472         struct hstate *h = hstate_vma(vma);
1473         struct page *page;
1474         long chg;
1475         int ret, idx;
1476         struct hugetlb_cgroup *h_cg;
1477
1478         idx = hstate_index(h);
1479         /*
1480          * Processes that did not create the mapping will have no
1481          * reserves and will not have accounted against subpool
1482          * limit. Check that the subpool limit can be made before
1483          * satisfying the allocation MAP_NORESERVE mappings may also
1484          * need pages and subpool limit allocated allocated if no reserve
1485          * mapping overlaps.
1486          */
1487         chg = vma_needs_reservation(h, vma, addr);
1488         if (chg < 0)
1489                 return ERR_PTR(-ENOMEM);
1490         if (chg || avoid_reserve)
1491                 if (hugepage_subpool_get_pages(spool, 1) < 0)
1492                         return ERR_PTR(-ENOSPC);
1493
1494         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1495         if (ret)
1496                 goto out_subpool_put;
1497
1498         spin_lock(&hugetlb_lock);
1499         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1500         if (!page) {
1501                 spin_unlock(&hugetlb_lock);
1502                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1503                 if (!page)
1504                         goto out_uncharge_cgroup;
1505
1506                 spin_lock(&hugetlb_lock);
1507                 list_move(&page->lru, &h->hugepage_activelist);
1508                 /* Fall through */
1509         }
1510         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1511         spin_unlock(&hugetlb_lock);
1512
1513         set_page_private(page, (unsigned long)spool);
1514
1515         vma_commit_reservation(h, vma, addr);
1516         return page;
1517
1518 out_uncharge_cgroup:
1519         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1520 out_subpool_put:
1521         if (chg || avoid_reserve)
1522                 hugepage_subpool_put_pages(spool, 1);
1523         return ERR_PTR(-ENOSPC);
1524 }
1525
1526 /*
1527  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1528  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1529  * where no ERR_VALUE is expected to be returned.
1530  */
1531 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1532                                 unsigned long addr, int avoid_reserve)
1533 {
1534         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1535         if (IS_ERR(page))
1536                 page = NULL;
1537         return page;
1538 }
1539
1540 int __weak alloc_bootmem_huge_page(struct hstate *h)
1541 {
1542         struct huge_bootmem_page *m;
1543         int nr_nodes, node;
1544
1545         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1546                 void *addr;
1547
1548                 addr = memblock_virt_alloc_try_nid_nopanic(
1549                                 huge_page_size(h), huge_page_size(h),
1550                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1551                 if (addr) {
1552                         /*
1553                          * Use the beginning of the huge page to store the
1554                          * huge_bootmem_page struct (until gather_bootmem
1555                          * puts them into the mem_map).
1556                          */
1557                         m = addr;
1558                         goto found;
1559                 }
1560         }
1561         return 0;
1562
1563 found:
1564         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1565         /* Put them into a private list first because mem_map is not up yet */
1566         list_add(&m->list, &huge_boot_pages);
1567         m->hstate = h;
1568         return 1;
1569 }
1570
1571 static void __init prep_compound_huge_page(struct page *page, int order)
1572 {
1573         if (unlikely(order > (MAX_ORDER - 1)))
1574                 prep_compound_gigantic_page(page, order);
1575         else
1576                 prep_compound_page(page, order);
1577 }
1578
1579 /* Put bootmem huge pages into the standard lists after mem_map is up */
1580 static void __init gather_bootmem_prealloc(void)
1581 {
1582         struct huge_bootmem_page *m;
1583
1584         list_for_each_entry(m, &huge_boot_pages, list) {
1585                 struct hstate *h = m->hstate;
1586                 struct page *page;
1587
1588 #ifdef CONFIG_HIGHMEM
1589                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1590                 memblock_free_late(__pa(m),
1591                                    sizeof(struct huge_bootmem_page));
1592 #else
1593                 page = virt_to_page(m);
1594 #endif
1595                 WARN_ON(page_count(page) != 1);
1596                 prep_compound_huge_page(page, h->order);
1597                 WARN_ON(PageReserved(page));
1598                 prep_new_huge_page(h, page, page_to_nid(page));
1599                 /*
1600                  * If we had gigantic hugepages allocated at boot time, we need
1601                  * to restore the 'stolen' pages to totalram_pages in order to
1602                  * fix confusing memory reports from free(1) and another
1603                  * side-effects, like CommitLimit going negative.
1604                  */
1605                 if (hstate_is_gigantic(h))
1606                         adjust_managed_page_count(page, 1 << h->order);
1607         }
1608 }
1609
1610 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1611 {
1612         unsigned long i;
1613
1614         for (i = 0; i < h->max_huge_pages; ++i) {
1615                 if (hstate_is_gigantic(h)) {
1616                         if (!alloc_bootmem_huge_page(h))
1617                                 break;
1618                 } else if (!alloc_fresh_huge_page(h,
1619                                          &node_states[N_MEMORY]))
1620                         break;
1621         }
1622         h->max_huge_pages = i;
1623 }
1624
1625 static void __init hugetlb_init_hstates(void)
1626 {
1627         struct hstate *h;
1628
1629         for_each_hstate(h) {
1630                 /* oversize hugepages were init'ed in early boot */
1631                 if (!hstate_is_gigantic(h))
1632                         hugetlb_hstate_alloc_pages(h);
1633         }
1634 }
1635
1636 static char * __init memfmt(char *buf, unsigned long n)
1637 {
1638         if (n >= (1UL << 30))
1639                 sprintf(buf, "%lu GB", n >> 30);
1640         else if (n >= (1UL << 20))
1641                 sprintf(buf, "%lu MB", n >> 20);
1642         else
1643                 sprintf(buf, "%lu KB", n >> 10);
1644         return buf;
1645 }
1646
1647 static void __init report_hugepages(void)
1648 {
1649         struct hstate *h;
1650
1651         for_each_hstate(h) {
1652                 char buf[32];
1653                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1654                         memfmt(buf, huge_page_size(h)),
1655                         h->free_huge_pages);
1656         }
1657 }
1658
1659 #ifdef CONFIG_HIGHMEM
1660 static void try_to_free_low(struct hstate *h, unsigned long count,
1661                                                 nodemask_t *nodes_allowed)
1662 {
1663         int i;
1664
1665         if (hstate_is_gigantic(h))
1666                 return;
1667
1668         for_each_node_mask(i, *nodes_allowed) {
1669                 struct page *page, *next;
1670                 struct list_head *freel = &h->hugepage_freelists[i];
1671                 list_for_each_entry_safe(page, next, freel, lru) {
1672                         if (count >= h->nr_huge_pages)
1673                                 return;
1674                         if (PageHighMem(page))
1675                                 continue;
1676                         list_del(&page->lru);
1677                         update_and_free_page(h, page);
1678                         h->free_huge_pages--;
1679                         h->free_huge_pages_node[page_to_nid(page)]--;
1680                 }
1681         }
1682 }
1683 #else
1684 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1685                                                 nodemask_t *nodes_allowed)
1686 {
1687 }
1688 #endif
1689
1690 /*
1691  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1692  * balanced by operating on them in a round-robin fashion.
1693  * Returns 1 if an adjustment was made.
1694  */
1695 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1696                                 int delta)
1697 {
1698         int nr_nodes, node;
1699
1700         VM_BUG_ON(delta != -1 && delta != 1);
1701
1702         if (delta < 0) {
1703                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1704                         if (h->surplus_huge_pages_node[node])
1705                                 goto found;
1706                 }
1707         } else {
1708                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1709                         if (h->surplus_huge_pages_node[node] <
1710                                         h->nr_huge_pages_node[node])
1711                                 goto found;
1712                 }
1713         }
1714         return 0;
1715
1716 found:
1717         h->surplus_huge_pages += delta;
1718         h->surplus_huge_pages_node[node] += delta;
1719         return 1;
1720 }
1721
1722 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1723 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1724                                                 nodemask_t *nodes_allowed)
1725 {
1726         unsigned long min_count, ret;
1727
1728         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1729                 return h->max_huge_pages;
1730
1731         /*
1732          * Increase the pool size
1733          * First take pages out of surplus state.  Then make up the
1734          * remaining difference by allocating fresh huge pages.
1735          *
1736          * We might race with alloc_buddy_huge_page() here and be unable
1737          * to convert a surplus huge page to a normal huge page. That is
1738          * not critical, though, it just means the overall size of the
1739          * pool might be one hugepage larger than it needs to be, but
1740          * within all the constraints specified by the sysctls.
1741          */
1742         spin_lock(&hugetlb_lock);
1743         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1744                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1745                         break;
1746         }
1747
1748         while (count > persistent_huge_pages(h)) {
1749                 /*
1750                  * If this allocation races such that we no longer need the
1751                  * page, free_huge_page will handle it by freeing the page
1752                  * and reducing the surplus.
1753                  */
1754                 spin_unlock(&hugetlb_lock);
1755                 if (hstate_is_gigantic(h))
1756                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1757                 else
1758                         ret = alloc_fresh_huge_page(h, nodes_allowed);
1759                 spin_lock(&hugetlb_lock);
1760                 if (!ret)
1761                         goto out;
1762
1763                 /* Bail for signals. Probably ctrl-c from user */
1764                 if (signal_pending(current))
1765                         goto out;
1766         }
1767
1768         /*
1769          * Decrease the pool size
1770          * First return free pages to the buddy allocator (being careful
1771          * to keep enough around to satisfy reservations).  Then place
1772          * pages into surplus state as needed so the pool will shrink
1773          * to the desired size as pages become free.
1774          *
1775          * By placing pages into the surplus state independent of the
1776          * overcommit value, we are allowing the surplus pool size to
1777          * exceed overcommit. There are few sane options here. Since
1778          * alloc_buddy_huge_page() is checking the global counter,
1779          * though, we'll note that we're not allowed to exceed surplus
1780          * and won't grow the pool anywhere else. Not until one of the
1781          * sysctls are changed, or the surplus pages go out of use.
1782          */
1783         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1784         min_count = max(count, min_count);
1785         try_to_free_low(h, min_count, nodes_allowed);
1786         while (min_count < persistent_huge_pages(h)) {
1787                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1788                         break;
1789                 cond_resched_lock(&hugetlb_lock);
1790         }
1791         while (count < persistent_huge_pages(h)) {
1792                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1793                         break;
1794         }
1795 out:
1796         ret = persistent_huge_pages(h);
1797         spin_unlock(&hugetlb_lock);
1798         return ret;
1799 }
1800
1801 #define HSTATE_ATTR_RO(_name) \
1802         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1803
1804 #define HSTATE_ATTR(_name) \
1805         static struct kobj_attribute _name##_attr = \
1806                 __ATTR(_name, 0644, _name##_show, _name##_store)
1807
1808 static struct kobject *hugepages_kobj;
1809 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1810
1811 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1812
1813 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1814 {
1815         int i;
1816
1817         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1818                 if (hstate_kobjs[i] == kobj) {
1819                         if (nidp)
1820                                 *nidp = NUMA_NO_NODE;
1821                         return &hstates[i];
1822                 }
1823
1824         return kobj_to_node_hstate(kobj, nidp);
1825 }
1826
1827 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1828                                         struct kobj_attribute *attr, char *buf)
1829 {
1830         struct hstate *h;
1831         unsigned long nr_huge_pages;
1832         int nid;
1833
1834         h = kobj_to_hstate(kobj, &nid);
1835         if (nid == NUMA_NO_NODE)
1836                 nr_huge_pages = h->nr_huge_pages;
1837         else
1838                 nr_huge_pages = h->nr_huge_pages_node[nid];
1839
1840         return sprintf(buf, "%lu\n", nr_huge_pages);
1841 }
1842
1843 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1844                                            struct hstate *h, int nid,
1845                                            unsigned long count, size_t len)
1846 {
1847         int err;
1848         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1849
1850         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1851                 err = -EINVAL;
1852                 goto out;
1853         }
1854
1855         if (nid == NUMA_NO_NODE) {
1856                 /*
1857                  * global hstate attribute
1858                  */
1859                 if (!(obey_mempolicy &&
1860                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1861                         NODEMASK_FREE(nodes_allowed);
1862                         nodes_allowed = &node_states[N_MEMORY];
1863                 }
1864         } else if (nodes_allowed) {
1865                 /*
1866                  * per node hstate attribute: adjust count to global,
1867                  * but restrict alloc/free to the specified node.
1868                  */
1869                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1870                 init_nodemask_of_node(nodes_allowed, nid);
1871         } else
1872                 nodes_allowed = &node_states[N_MEMORY];
1873
1874         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1875
1876         if (nodes_allowed != &node_states[N_MEMORY])
1877                 NODEMASK_FREE(nodes_allowed);
1878
1879         return len;
1880 out:
1881         NODEMASK_FREE(nodes_allowed);
1882         return err;
1883 }
1884
1885 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1886                                          struct kobject *kobj, const char *buf,
1887                                          size_t len)
1888 {
1889         struct hstate *h;
1890         unsigned long count;
1891         int nid;
1892         int err;
1893
1894         err = kstrtoul(buf, 10, &count);
1895         if (err)
1896                 return err;
1897
1898         h = kobj_to_hstate(kobj, &nid);
1899         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1900 }
1901
1902 static ssize_t nr_hugepages_show(struct kobject *kobj,
1903                                        struct kobj_attribute *attr, char *buf)
1904 {
1905         return nr_hugepages_show_common(kobj, attr, buf);
1906 }
1907
1908 static ssize_t nr_hugepages_store(struct kobject *kobj,
1909                struct kobj_attribute *attr, const char *buf, size_t len)
1910 {
1911         return nr_hugepages_store_common(false, kobj, buf, len);
1912 }
1913 HSTATE_ATTR(nr_hugepages);
1914
1915 #ifdef CONFIG_NUMA
1916
1917 /*
1918  * hstate attribute for optionally mempolicy-based constraint on persistent
1919  * huge page alloc/free.
1920  */
1921 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1922                                        struct kobj_attribute *attr, char *buf)
1923 {
1924         return nr_hugepages_show_common(kobj, attr, buf);
1925 }
1926
1927 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1928                struct kobj_attribute *attr, const char *buf, size_t len)
1929 {
1930         return nr_hugepages_store_common(true, kobj, buf, len);
1931 }
1932 HSTATE_ATTR(nr_hugepages_mempolicy);
1933 #endif
1934
1935
1936 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1937                                         struct kobj_attribute *attr, char *buf)
1938 {
1939         struct hstate *h = kobj_to_hstate(kobj, NULL);
1940         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1941 }
1942
1943 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1944                 struct kobj_attribute *attr, const char *buf, size_t count)
1945 {
1946         int err;
1947         unsigned long input;
1948         struct hstate *h = kobj_to_hstate(kobj, NULL);
1949
1950         if (hstate_is_gigantic(h))
1951                 return -EINVAL;
1952
1953         err = kstrtoul(buf, 10, &input);
1954         if (err)
1955                 return err;
1956
1957         spin_lock(&hugetlb_lock);
1958         h->nr_overcommit_huge_pages = input;
1959         spin_unlock(&hugetlb_lock);
1960
1961         return count;
1962 }
1963 HSTATE_ATTR(nr_overcommit_hugepages);
1964
1965 static ssize_t free_hugepages_show(struct kobject *kobj,
1966                                         struct kobj_attribute *attr, char *buf)
1967 {
1968         struct hstate *h;
1969         unsigned long free_huge_pages;
1970         int nid;
1971
1972         h = kobj_to_hstate(kobj, &nid);
1973         if (nid == NUMA_NO_NODE)
1974                 free_huge_pages = h->free_huge_pages;
1975         else
1976                 free_huge_pages = h->free_huge_pages_node[nid];
1977
1978         return sprintf(buf, "%lu\n", free_huge_pages);
1979 }
1980 HSTATE_ATTR_RO(free_hugepages);
1981
1982 static ssize_t resv_hugepages_show(struct kobject *kobj,
1983                                         struct kobj_attribute *attr, char *buf)
1984 {
1985         struct hstate *h = kobj_to_hstate(kobj, NULL);
1986         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1987 }
1988 HSTATE_ATTR_RO(resv_hugepages);
1989
1990 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1991                                         struct kobj_attribute *attr, char *buf)
1992 {
1993         struct hstate *h;
1994         unsigned long surplus_huge_pages;
1995         int nid;
1996
1997         h = kobj_to_hstate(kobj, &nid);
1998         if (nid == NUMA_NO_NODE)
1999                 surplus_huge_pages = h->surplus_huge_pages;
2000         else
2001                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2002
2003         return sprintf(buf, "%lu\n", surplus_huge_pages);
2004 }
2005 HSTATE_ATTR_RO(surplus_hugepages);
2006
2007 static struct attribute *hstate_attrs[] = {
2008         &nr_hugepages_attr.attr,
2009         &nr_overcommit_hugepages_attr.attr,
2010         &free_hugepages_attr.attr,
2011         &resv_hugepages_attr.attr,
2012         &surplus_hugepages_attr.attr,
2013 #ifdef CONFIG_NUMA
2014         &nr_hugepages_mempolicy_attr.attr,
2015 #endif
2016         NULL,
2017 };
2018
2019 static struct attribute_group hstate_attr_group = {
2020         .attrs = hstate_attrs,
2021 };
2022
2023 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2024                                     struct kobject **hstate_kobjs,
2025                                     struct attribute_group *hstate_attr_group)
2026 {
2027         int retval;
2028         int hi = hstate_index(h);
2029
2030         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2031         if (!hstate_kobjs[hi])
2032                 return -ENOMEM;
2033
2034         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2035         if (retval)
2036                 kobject_put(hstate_kobjs[hi]);
2037
2038         return retval;
2039 }
2040
2041 static void __init hugetlb_sysfs_init(void)
2042 {
2043         struct hstate *h;
2044         int err;
2045
2046         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2047         if (!hugepages_kobj)
2048                 return;
2049
2050         for_each_hstate(h) {
2051                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2052                                          hstate_kobjs, &hstate_attr_group);
2053                 if (err)
2054                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2055         }
2056 }
2057
2058 #ifdef CONFIG_NUMA
2059
2060 /*
2061  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2062  * with node devices in node_devices[] using a parallel array.  The array
2063  * index of a node device or _hstate == node id.
2064  * This is here to avoid any static dependency of the node device driver, in
2065  * the base kernel, on the hugetlb module.
2066  */
2067 struct node_hstate {
2068         struct kobject          *hugepages_kobj;
2069         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2070 };
2071 struct node_hstate node_hstates[MAX_NUMNODES];
2072
2073 /*
2074  * A subset of global hstate attributes for node devices
2075  */
2076 static struct attribute *per_node_hstate_attrs[] = {
2077         &nr_hugepages_attr.attr,
2078         &free_hugepages_attr.attr,
2079         &surplus_hugepages_attr.attr,
2080         NULL,
2081 };
2082
2083 static struct attribute_group per_node_hstate_attr_group = {
2084         .attrs = per_node_hstate_attrs,
2085 };
2086
2087 /*
2088  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2089  * Returns node id via non-NULL nidp.
2090  */
2091 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2092 {
2093         int nid;
2094
2095         for (nid = 0; nid < nr_node_ids; nid++) {
2096                 struct node_hstate *nhs = &node_hstates[nid];
2097                 int i;
2098                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2099                         if (nhs->hstate_kobjs[i] == kobj) {
2100                                 if (nidp)
2101                                         *nidp = nid;
2102                                 return &hstates[i];
2103                         }
2104         }
2105
2106         BUG();
2107         return NULL;
2108 }
2109
2110 /*
2111  * Unregister hstate attributes from a single node device.
2112  * No-op if no hstate attributes attached.
2113  */
2114 static void hugetlb_unregister_node(struct node *node)
2115 {
2116         struct hstate *h;
2117         struct node_hstate *nhs = &node_hstates[node->dev.id];
2118
2119         if (!nhs->hugepages_kobj)
2120                 return;         /* no hstate attributes */
2121
2122         for_each_hstate(h) {
2123                 int idx = hstate_index(h);
2124                 if (nhs->hstate_kobjs[idx]) {
2125                         kobject_put(nhs->hstate_kobjs[idx]);
2126                         nhs->hstate_kobjs[idx] = NULL;
2127                 }
2128         }
2129
2130         kobject_put(nhs->hugepages_kobj);
2131         nhs->hugepages_kobj = NULL;
2132 }
2133
2134 /*
2135  * hugetlb module exit:  unregister hstate attributes from node devices
2136  * that have them.
2137  */
2138 static void hugetlb_unregister_all_nodes(void)
2139 {
2140         int nid;
2141
2142         /*
2143          * disable node device registrations.
2144          */
2145         register_hugetlbfs_with_node(NULL, NULL);
2146
2147         /*
2148          * remove hstate attributes from any nodes that have them.
2149          */
2150         for (nid = 0; nid < nr_node_ids; nid++)
2151                 hugetlb_unregister_node(node_devices[nid]);
2152 }
2153
2154 /*
2155  * Register hstate attributes for a single node device.
2156  * No-op if attributes already registered.
2157  */
2158 static void hugetlb_register_node(struct node *node)
2159 {
2160         struct hstate *h;
2161         struct node_hstate *nhs = &node_hstates[node->dev.id];
2162         int err;
2163
2164         if (nhs->hugepages_kobj)
2165                 return;         /* already allocated */
2166
2167         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2168                                                         &node->dev.kobj);
2169         if (!nhs->hugepages_kobj)
2170                 return;
2171
2172         for_each_hstate(h) {
2173                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2174                                                 nhs->hstate_kobjs,
2175                                                 &per_node_hstate_attr_group);
2176                 if (err) {
2177                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2178                                 h->name, node->dev.id);
2179                         hugetlb_unregister_node(node);
2180                         break;
2181                 }
2182         }
2183 }
2184
2185 /*
2186  * hugetlb init time:  register hstate attributes for all registered node
2187  * devices of nodes that have memory.  All on-line nodes should have
2188  * registered their associated device by this time.
2189  */
2190 static void __init hugetlb_register_all_nodes(void)
2191 {
2192         int nid;
2193
2194         for_each_node_state(nid, N_MEMORY) {
2195                 struct node *node = node_devices[nid];
2196                 if (node->dev.id == nid)
2197                         hugetlb_register_node(node);
2198         }
2199
2200         /*
2201          * Let the node device driver know we're here so it can
2202          * [un]register hstate attributes on node hotplug.
2203          */
2204         register_hugetlbfs_with_node(hugetlb_register_node,
2205                                      hugetlb_unregister_node);
2206 }
2207 #else   /* !CONFIG_NUMA */
2208
2209 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2210 {
2211         BUG();
2212         if (nidp)
2213                 *nidp = -1;
2214         return NULL;
2215 }
2216
2217 static void hugetlb_unregister_all_nodes(void) { }
2218
2219 static void hugetlb_register_all_nodes(void) { }
2220
2221 #endif
2222
2223 static void __exit hugetlb_exit(void)
2224 {
2225         struct hstate *h;
2226
2227         hugetlb_unregister_all_nodes();
2228
2229         for_each_hstate(h) {
2230                 kobject_put(hstate_kobjs[hstate_index(h)]);
2231         }
2232
2233         kobject_put(hugepages_kobj);
2234         kfree(htlb_fault_mutex_table);
2235 }
2236 module_exit(hugetlb_exit);
2237
2238 static int __init hugetlb_init(void)
2239 {
2240         int i;
2241
2242         if (!hugepages_supported())
2243                 return 0;
2244
2245         if (!size_to_hstate(default_hstate_size)) {
2246                 default_hstate_size = HPAGE_SIZE;
2247                 if (!size_to_hstate(default_hstate_size))
2248                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2249         }
2250         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2251         if (default_hstate_max_huge_pages)
2252                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2253
2254         hugetlb_init_hstates();
2255         gather_bootmem_prealloc();
2256         report_hugepages();
2257
2258         hugetlb_sysfs_init();
2259         hugetlb_register_all_nodes();
2260         hugetlb_cgroup_file_init();
2261
2262 #ifdef CONFIG_SMP
2263         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2264 #else
2265         num_fault_mutexes = 1;
2266 #endif
2267         htlb_fault_mutex_table =
2268                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2269         BUG_ON(!htlb_fault_mutex_table);
2270
2271         for (i = 0; i < num_fault_mutexes; i++)
2272                 mutex_init(&htlb_fault_mutex_table[i]);
2273         return 0;
2274 }
2275 module_init(hugetlb_init);
2276
2277 /* Should be called on processing a hugepagesz=... option */
2278 void __init hugetlb_add_hstate(unsigned order)
2279 {
2280         struct hstate *h;
2281         unsigned long i;
2282
2283         if (size_to_hstate(PAGE_SIZE << order)) {
2284                 pr_warning("hugepagesz= specified twice, ignoring\n");
2285                 return;
2286         }
2287         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2288         BUG_ON(order == 0);
2289         h = &hstates[hugetlb_max_hstate++];
2290         h->order = order;
2291         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2292         h->nr_huge_pages = 0;
2293         h->free_huge_pages = 0;
2294         for (i = 0; i < MAX_NUMNODES; ++i)
2295                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2296         INIT_LIST_HEAD(&h->hugepage_activelist);
2297         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2298         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2299         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2300                                         huge_page_size(h)/1024);
2301
2302         parsed_hstate = h;
2303 }
2304
2305 static int __init hugetlb_nrpages_setup(char *s)
2306 {
2307         unsigned long *mhp;
2308         static unsigned long *last_mhp;
2309
2310         /*
2311          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2312          * so this hugepages= parameter goes to the "default hstate".
2313          */
2314         if (!hugetlb_max_hstate)
2315                 mhp = &default_hstate_max_huge_pages;
2316         else
2317                 mhp = &parsed_hstate->max_huge_pages;
2318
2319         if (mhp == last_mhp) {
2320                 pr_warning("hugepages= specified twice without "
2321                            "interleaving hugepagesz=, ignoring\n");
2322                 return 1;
2323         }
2324
2325         if (sscanf(s, "%lu", mhp) <= 0)
2326                 *mhp = 0;
2327
2328         /*
2329          * Global state is always initialized later in hugetlb_init.
2330          * But we need to allocate >= MAX_ORDER hstates here early to still
2331          * use the bootmem allocator.
2332          */
2333         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2334                 hugetlb_hstate_alloc_pages(parsed_hstate);
2335
2336         last_mhp = mhp;
2337
2338         return 1;
2339 }
2340 __setup("hugepages=", hugetlb_nrpages_setup);
2341
2342 static int __init hugetlb_default_setup(char *s)
2343 {
2344         default_hstate_size = memparse(s, &s);
2345         return 1;
2346 }
2347 __setup("default_hugepagesz=", hugetlb_default_setup);
2348
2349 static unsigned int cpuset_mems_nr(unsigned int *array)
2350 {
2351         int node;
2352         unsigned int nr = 0;
2353
2354         for_each_node_mask(node, cpuset_current_mems_allowed)
2355                 nr += array[node];
2356
2357         return nr;
2358 }
2359
2360 #ifdef CONFIG_SYSCTL
2361 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2362                          struct ctl_table *table, int write,
2363                          void __user *buffer, size_t *length, loff_t *ppos)
2364 {
2365         struct hstate *h = &default_hstate;
2366         unsigned long tmp = h->max_huge_pages;
2367         int ret;
2368
2369         if (!hugepages_supported())
2370                 return -ENOTSUPP;
2371
2372         table->data = &tmp;
2373         table->maxlen = sizeof(unsigned long);
2374         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2375         if (ret)
2376                 goto out;
2377
2378         if (write)
2379                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2380                                                   NUMA_NO_NODE, tmp, *length);
2381 out:
2382         return ret;
2383 }
2384
2385 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2386                           void __user *buffer, size_t *length, loff_t *ppos)
2387 {
2388
2389         return hugetlb_sysctl_handler_common(false, table, write,
2390                                                         buffer, length, ppos);
2391 }
2392
2393 #ifdef CONFIG_NUMA
2394 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2395                           void __user *buffer, size_t *length, loff_t *ppos)
2396 {
2397         return hugetlb_sysctl_handler_common(true, table, write,
2398                                                         buffer, length, ppos);
2399 }
2400 #endif /* CONFIG_NUMA */
2401
2402 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2403                         void __user *buffer,
2404                         size_t *length, loff_t *ppos)
2405 {
2406         struct hstate *h = &default_hstate;
2407         unsigned long tmp;
2408         int ret;
2409
2410         if (!hugepages_supported())
2411                 return -ENOTSUPP;
2412
2413         tmp = h->nr_overcommit_huge_pages;
2414
2415         if (write && hstate_is_gigantic(h))
2416                 return -EINVAL;
2417
2418         table->data = &tmp;
2419         table->maxlen = sizeof(unsigned long);
2420         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2421         if (ret)
2422                 goto out;
2423
2424         if (write) {
2425                 spin_lock(&hugetlb_lock);
2426                 h->nr_overcommit_huge_pages = tmp;
2427                 spin_unlock(&hugetlb_lock);
2428         }
2429 out:
2430         return ret;
2431 }
2432
2433 #endif /* CONFIG_SYSCTL */
2434
2435 void hugetlb_report_meminfo(struct seq_file *m)
2436 {
2437         struct hstate *h = &default_hstate;
2438         if (!hugepages_supported())
2439                 return;
2440         seq_printf(m,
2441                         "HugePages_Total:   %5lu\n"
2442                         "HugePages_Free:    %5lu\n"
2443                         "HugePages_Rsvd:    %5lu\n"
2444                         "HugePages_Surp:    %5lu\n"
2445                         "Hugepagesize:   %8lu kB\n",
2446                         h->nr_huge_pages,
2447                         h->free_huge_pages,
2448                         h->resv_huge_pages,
2449                         h->surplus_huge_pages,
2450                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2451 }
2452
2453 int hugetlb_report_node_meminfo(int nid, char *buf)
2454 {
2455         struct hstate *h = &default_hstate;
2456         if (!hugepages_supported())
2457                 return 0;
2458         return sprintf(buf,
2459                 "Node %d HugePages_Total: %5u\n"
2460                 "Node %d HugePages_Free:  %5u\n"
2461                 "Node %d HugePages_Surp:  %5u\n",
2462                 nid, h->nr_huge_pages_node[nid],
2463                 nid, h->free_huge_pages_node[nid],
2464                 nid, h->surplus_huge_pages_node[nid]);
2465 }
2466
2467 void hugetlb_show_meminfo(void)
2468 {
2469         struct hstate *h;
2470         int nid;
2471
2472         if (!hugepages_supported())
2473                 return;
2474
2475         for_each_node_state(nid, N_MEMORY)
2476                 for_each_hstate(h)
2477                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2478                                 nid,
2479                                 h->nr_huge_pages_node[nid],
2480                                 h->free_huge_pages_node[nid],
2481                                 h->surplus_huge_pages_node[nid],
2482                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2483 }
2484
2485 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2486 unsigned long hugetlb_total_pages(void)
2487 {
2488         struct hstate *h;
2489         unsigned long nr_total_pages = 0;
2490
2491         for_each_hstate(h)
2492                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2493         return nr_total_pages;
2494 }
2495
2496 static int hugetlb_acct_memory(struct hstate *h, long delta)
2497 {
2498         int ret = -ENOMEM;
2499
2500         spin_lock(&hugetlb_lock);
2501         /*
2502          * When cpuset is configured, it breaks the strict hugetlb page
2503          * reservation as the accounting is done on a global variable. Such
2504          * reservation is completely rubbish in the presence of cpuset because
2505          * the reservation is not checked against page availability for the
2506          * current cpuset. Application can still potentially OOM'ed by kernel
2507          * with lack of free htlb page in cpuset that the task is in.
2508          * Attempt to enforce strict accounting with cpuset is almost
2509          * impossible (or too ugly) because cpuset is too fluid that
2510          * task or memory node can be dynamically moved between cpusets.
2511          *
2512          * The change of semantics for shared hugetlb mapping with cpuset is
2513          * undesirable. However, in order to preserve some of the semantics,
2514          * we fall back to check against current free page availability as
2515          * a best attempt and hopefully to minimize the impact of changing
2516          * semantics that cpuset has.
2517          */
2518         if (delta > 0) {
2519                 if (gather_surplus_pages(h, delta) < 0)
2520                         goto out;
2521
2522                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2523                         return_unused_surplus_pages(h, delta);
2524                         goto out;
2525                 }
2526         }
2527
2528         ret = 0;
2529         if (delta < 0)
2530                 return_unused_surplus_pages(h, (unsigned long) -delta);
2531
2532 out:
2533         spin_unlock(&hugetlb_lock);
2534         return ret;
2535 }
2536
2537 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2538 {
2539         struct resv_map *resv = vma_resv_map(vma);
2540
2541         /*
2542          * This new VMA should share its siblings reservation map if present.
2543          * The VMA will only ever have a valid reservation map pointer where
2544          * it is being copied for another still existing VMA.  As that VMA
2545          * has a reference to the reservation map it cannot disappear until
2546          * after this open call completes.  It is therefore safe to take a
2547          * new reference here without additional locking.
2548          */
2549         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2550                 kref_get(&resv->refs);
2551 }
2552
2553 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2554 {
2555         struct hstate *h = hstate_vma(vma);
2556         struct resv_map *resv = vma_resv_map(vma);
2557         struct hugepage_subpool *spool = subpool_vma(vma);
2558         unsigned long reserve, start, end;
2559         long gbl_reserve;
2560
2561         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2562                 return;
2563
2564         start = vma_hugecache_offset(h, vma, vma->vm_start);
2565         end = vma_hugecache_offset(h, vma, vma->vm_end);
2566
2567         reserve = (end - start) - region_count(resv, start, end);
2568
2569         kref_put(&resv->refs, resv_map_release);
2570
2571         if (reserve) {
2572                 /*
2573                  * Decrement reserve counts.  The global reserve count may be
2574                  * adjusted if the subpool has a minimum size.
2575                  */
2576                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2577                 hugetlb_acct_memory(h, -gbl_reserve);
2578         }
2579 }
2580
2581 /*
2582  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2583  * handle_mm_fault() to try to instantiate regular-sized pages in the
2584  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2585  * this far.
2586  */
2587 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2588 {
2589         BUG();
2590         return 0;
2591 }
2592
2593 const struct vm_operations_struct hugetlb_vm_ops = {
2594         .fault = hugetlb_vm_op_fault,
2595         .open = hugetlb_vm_op_open,
2596         .close = hugetlb_vm_op_close,
2597 };
2598
2599 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2600                                 int writable)
2601 {
2602         pte_t entry;
2603
2604         if (writable) {
2605                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2606                                          vma->vm_page_prot)));
2607         } else {
2608                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2609                                            vma->vm_page_prot));
2610         }
2611         entry = pte_mkyoung(entry);
2612         entry = pte_mkhuge(entry);
2613         entry = arch_make_huge_pte(entry, vma, page, writable);
2614
2615         return entry;
2616 }
2617
2618 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2619                                    unsigned long address, pte_t *ptep)
2620 {
2621         pte_t entry;
2622
2623         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2624         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2625                 update_mmu_cache(vma, address, ptep);
2626 }
2627
2628 static int is_hugetlb_entry_migration(pte_t pte)
2629 {
2630         swp_entry_t swp;
2631
2632         if (huge_pte_none(pte) || pte_present(pte))
2633                 return 0;
2634         swp = pte_to_swp_entry(pte);
2635         if (non_swap_entry(swp) && is_migration_entry(swp))
2636                 return 1;
2637         else
2638                 return 0;
2639 }
2640
2641 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2642 {
2643         swp_entry_t swp;
2644
2645         if (huge_pte_none(pte) || pte_present(pte))
2646                 return 0;
2647         swp = pte_to_swp_entry(pte);
2648         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2649                 return 1;
2650         else
2651                 return 0;
2652 }
2653
2654 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2655                             struct vm_area_struct *vma)
2656 {
2657         pte_t *src_pte, *dst_pte, entry;
2658         struct page *ptepage;
2659         unsigned long addr;
2660         int cow;
2661         struct hstate *h = hstate_vma(vma);
2662         unsigned long sz = huge_page_size(h);
2663         unsigned long mmun_start;       /* For mmu_notifiers */
2664         unsigned long mmun_end;         /* For mmu_notifiers */
2665         int ret = 0;
2666
2667         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2668
2669         mmun_start = vma->vm_start;
2670         mmun_end = vma->vm_end;
2671         if (cow)
2672                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2673
2674         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2675                 spinlock_t *src_ptl, *dst_ptl;
2676                 src_pte = huge_pte_offset(src, addr);
2677                 if (!src_pte)
2678                         continue;
2679                 dst_pte = huge_pte_alloc(dst, addr, sz);
2680                 if (!dst_pte) {
2681                         ret = -ENOMEM;
2682                         break;
2683                 }
2684
2685                 /* If the pagetables are shared don't copy or take references */
2686                 if (dst_pte == src_pte)
2687                         continue;
2688
2689                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2690                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2691                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2692                 entry = huge_ptep_get(src_pte);
2693                 if (huge_pte_none(entry)) { /* skip none entry */
2694                         ;
2695                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2696                                     is_hugetlb_entry_hwpoisoned(entry))) {
2697                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2698
2699                         if (is_write_migration_entry(swp_entry) && cow) {
2700                                 /*
2701                                  * COW mappings require pages in both
2702                                  * parent and child to be set to read.
2703                                  */
2704                                 make_migration_entry_read(&swp_entry);
2705                                 entry = swp_entry_to_pte(swp_entry);
2706                                 set_huge_pte_at(src, addr, src_pte, entry);
2707                         }
2708                         set_huge_pte_at(dst, addr, dst_pte, entry);
2709                 } else {
2710                         if (cow) {
2711                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2712                                 mmu_notifier_invalidate_range(src, mmun_start,
2713                                                                    mmun_end);
2714                         }
2715                         entry = huge_ptep_get(src_pte);
2716                         ptepage = pte_page(entry);
2717                         get_page(ptepage);
2718                         page_dup_rmap(ptepage);
2719                         set_huge_pte_at(dst, addr, dst_pte, entry);
2720                 }
2721                 spin_unlock(src_ptl);
2722                 spin_unlock(dst_ptl);
2723         }
2724
2725         if (cow)
2726                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2727
2728         return ret;
2729 }
2730
2731 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2732                             unsigned long start, unsigned long end,
2733                             struct page *ref_page)
2734 {
2735         int force_flush = 0;
2736         struct mm_struct *mm = vma->vm_mm;
2737         unsigned long address;
2738         pte_t *ptep;
2739         pte_t pte;
2740         spinlock_t *ptl;
2741         struct page *page;
2742         struct hstate *h = hstate_vma(vma);
2743         unsigned long sz = huge_page_size(h);
2744         const unsigned long mmun_start = start; /* For mmu_notifiers */
2745         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2746
2747         WARN_ON(!is_vm_hugetlb_page(vma));
2748         BUG_ON(start & ~huge_page_mask(h));
2749         BUG_ON(end & ~huge_page_mask(h));
2750
2751         tlb_start_vma(tlb, vma);
2752         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2753         address = start;
2754 again:
2755         for (; address < end; address += sz) {
2756                 ptep = huge_pte_offset(mm, address);
2757                 if (!ptep)
2758                         continue;
2759
2760                 ptl = huge_pte_lock(h, mm, ptep);
2761                 if (huge_pmd_unshare(mm, &address, ptep))
2762                         goto unlock;
2763
2764                 pte = huge_ptep_get(ptep);
2765                 if (huge_pte_none(pte))
2766                         goto unlock;
2767
2768                 /*
2769                  * Migrating hugepage or HWPoisoned hugepage is already
2770                  * unmapped and its refcount is dropped, so just clear pte here.
2771                  */
2772                 if (unlikely(!pte_present(pte))) {
2773                         huge_pte_clear(mm, address, ptep);
2774                         goto unlock;
2775                 }
2776
2777                 page = pte_page(pte);
2778                 /*
2779                  * If a reference page is supplied, it is because a specific
2780                  * page is being unmapped, not a range. Ensure the page we
2781                  * are about to unmap is the actual page of interest.
2782                  */
2783                 if (ref_page) {
2784                         if (page != ref_page)
2785                                 goto unlock;
2786
2787                         /*
2788                          * Mark the VMA as having unmapped its page so that
2789                          * future faults in this VMA will fail rather than
2790                          * looking like data was lost
2791                          */
2792                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2793                 }
2794
2795                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2796                 tlb_remove_tlb_entry(tlb, ptep, address);
2797                 if (huge_pte_dirty(pte))
2798                         set_page_dirty(page);
2799
2800                 page_remove_rmap(page);
2801                 force_flush = !__tlb_remove_page(tlb, page);
2802                 if (force_flush) {
2803                         address += sz;
2804                         spin_unlock(ptl);
2805                         break;
2806                 }
2807                 /* Bail out after unmapping reference page if supplied */
2808                 if (ref_page) {
2809                         spin_unlock(ptl);
2810                         break;
2811                 }
2812 unlock:
2813                 spin_unlock(ptl);
2814         }
2815         /*
2816          * mmu_gather ran out of room to batch pages, we break out of
2817          * the PTE lock to avoid doing the potential expensive TLB invalidate
2818          * and page-free while holding it.
2819          */
2820         if (force_flush) {
2821                 force_flush = 0;
2822                 tlb_flush_mmu(tlb);
2823                 if (address < end && !ref_page)
2824                         goto again;
2825         }
2826         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2827         tlb_end_vma(tlb, vma);
2828 }
2829
2830 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2831                           struct vm_area_struct *vma, unsigned long start,
2832                           unsigned long end, struct page *ref_page)
2833 {
2834         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2835
2836         /*
2837          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2838          * test will fail on a vma being torn down, and not grab a page table
2839          * on its way out.  We're lucky that the flag has such an appropriate
2840          * name, and can in fact be safely cleared here. We could clear it
2841          * before the __unmap_hugepage_range above, but all that's necessary
2842          * is to clear it before releasing the i_mmap_rwsem. This works
2843          * because in the context this is called, the VMA is about to be
2844          * destroyed and the i_mmap_rwsem is held.
2845          */
2846         vma->vm_flags &= ~VM_MAYSHARE;
2847 }
2848
2849 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2850                           unsigned long end, struct page *ref_page)
2851 {
2852         struct mm_struct *mm;
2853         struct mmu_gather tlb;
2854
2855         mm = vma->vm_mm;
2856
2857         tlb_gather_mmu(&tlb, mm, start, end);
2858         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2859         tlb_finish_mmu(&tlb, start, end);
2860 }
2861
2862 /*
2863  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2864  * mappping it owns the reserve page for. The intention is to unmap the page
2865  * from other VMAs and let the children be SIGKILLed if they are faulting the
2866  * same region.
2867  */
2868 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2869                               struct page *page, unsigned long address)
2870 {
2871         struct hstate *h = hstate_vma(vma);
2872         struct vm_area_struct *iter_vma;
2873         struct address_space *mapping;
2874         pgoff_t pgoff;
2875
2876         /*
2877          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2878          * from page cache lookup which is in HPAGE_SIZE units.
2879          */
2880         address = address & huge_page_mask(h);
2881         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2882                         vma->vm_pgoff;
2883         mapping = file_inode(vma->vm_file)->i_mapping;
2884
2885         /*
2886          * Take the mapping lock for the duration of the table walk. As
2887          * this mapping should be shared between all the VMAs,
2888          * __unmap_hugepage_range() is called as the lock is already held
2889          */
2890         i_mmap_lock_write(mapping);
2891         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2892                 /* Do not unmap the current VMA */
2893                 if (iter_vma == vma)
2894                         continue;
2895
2896                 /*
2897                  * Unmap the page from other VMAs without their own reserves.
2898                  * They get marked to be SIGKILLed if they fault in these
2899                  * areas. This is because a future no-page fault on this VMA
2900                  * could insert a zeroed page instead of the data existing
2901                  * from the time of fork. This would look like data corruption
2902                  */
2903                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2904                         unmap_hugepage_range(iter_vma, address,
2905                                              address + huge_page_size(h), page);
2906         }
2907         i_mmap_unlock_write(mapping);
2908 }
2909
2910 /*
2911  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2912  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2913  * cannot race with other handlers or page migration.
2914  * Keep the pte_same checks anyway to make transition from the mutex easier.
2915  */
2916 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2917                         unsigned long address, pte_t *ptep, pte_t pte,
2918                         struct page *pagecache_page, spinlock_t *ptl)
2919 {
2920         struct hstate *h = hstate_vma(vma);
2921         struct page *old_page, *new_page;
2922         int ret = 0, outside_reserve = 0;
2923         unsigned long mmun_start;       /* For mmu_notifiers */
2924         unsigned long mmun_end;         /* For mmu_notifiers */
2925
2926         old_page = pte_page(pte);
2927
2928 retry_avoidcopy:
2929         /* If no-one else is actually using this page, avoid the copy
2930          * and just make the page writable */
2931         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2932                 page_move_anon_rmap(old_page, vma, address);
2933                 set_huge_ptep_writable(vma, address, ptep);
2934                 return 0;
2935         }
2936
2937         /*
2938          * If the process that created a MAP_PRIVATE mapping is about to
2939          * perform a COW due to a shared page count, attempt to satisfy
2940          * the allocation without using the existing reserves. The pagecache
2941          * page is used to determine if the reserve at this address was
2942          * consumed or not. If reserves were used, a partial faulted mapping
2943          * at the time of fork() could consume its reserves on COW instead
2944          * of the full address range.
2945          */
2946         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2947                         old_page != pagecache_page)
2948                 outside_reserve = 1;
2949
2950         page_cache_get(old_page);
2951
2952         /*
2953          * Drop page table lock as buddy allocator may be called. It will
2954          * be acquired again before returning to the caller, as expected.
2955          */
2956         spin_unlock(ptl);
2957         new_page = alloc_huge_page(vma, address, outside_reserve);
2958
2959         if (IS_ERR(new_page)) {
2960                 /*
2961                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2962                  * it is due to references held by a child and an insufficient
2963                  * huge page pool. To guarantee the original mappers
2964                  * reliability, unmap the page from child processes. The child
2965                  * may get SIGKILLed if it later faults.
2966                  */
2967                 if (outside_reserve) {
2968                         page_cache_release(old_page);
2969                         BUG_ON(huge_pte_none(pte));
2970                         unmap_ref_private(mm, vma, old_page, address);
2971                         BUG_ON(huge_pte_none(pte));
2972                         spin_lock(ptl);
2973                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2974                         if (likely(ptep &&
2975                                    pte_same(huge_ptep_get(ptep), pte)))
2976                                 goto retry_avoidcopy;
2977                         /*
2978                          * race occurs while re-acquiring page table
2979                          * lock, and our job is done.
2980                          */
2981                         return 0;
2982                 }
2983
2984                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2985                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
2986                 goto out_release_old;
2987         }
2988
2989         /*
2990          * When the original hugepage is shared one, it does not have
2991          * anon_vma prepared.
2992          */
2993         if (unlikely(anon_vma_prepare(vma))) {
2994                 ret = VM_FAULT_OOM;
2995                 goto out_release_all;
2996         }
2997
2998         copy_user_huge_page(new_page, old_page, address, vma,
2999                             pages_per_huge_page(h));
3000         __SetPageUptodate(new_page);
3001         set_page_huge_active(new_page);
3002
3003         mmun_start = address & huge_page_mask(h);
3004         mmun_end = mmun_start + huge_page_size(h);
3005         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3006
3007         /*
3008          * Retake the page table lock to check for racing updates
3009          * before the page tables are altered
3010          */
3011         spin_lock(ptl);
3012         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3013         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3014                 ClearPagePrivate(new_page);
3015
3016                 /* Break COW */
3017                 huge_ptep_clear_flush(vma, address, ptep);
3018                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3019                 set_huge_pte_at(mm, address, ptep,
3020                                 make_huge_pte(vma, new_page, 1));
3021                 page_remove_rmap(old_page);
3022                 hugepage_add_new_anon_rmap(new_page, vma, address);
3023                 /* Make the old page be freed below */
3024                 new_page = old_page;
3025         }
3026         spin_unlock(ptl);
3027         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3028 out_release_all:
3029         page_cache_release(new_page);
3030 out_release_old:
3031         page_cache_release(old_page);
3032
3033         spin_lock(ptl); /* Caller expects lock to be held */
3034         return ret;
3035 }
3036
3037 /* Return the pagecache page at a given address within a VMA */
3038 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3039                         struct vm_area_struct *vma, unsigned long address)
3040 {
3041         struct address_space *mapping;
3042         pgoff_t idx;
3043
3044         mapping = vma->vm_file->f_mapping;
3045         idx = vma_hugecache_offset(h, vma, address);
3046
3047         return find_lock_page(mapping, idx);
3048 }
3049
3050 /*
3051  * Return whether there is a pagecache page to back given address within VMA.
3052  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3053  */
3054 static bool hugetlbfs_pagecache_present(struct hstate *h,
3055                         struct vm_area_struct *vma, unsigned long address)
3056 {
3057         struct address_space *mapping;
3058         pgoff_t idx;
3059         struct page *page;
3060
3061         mapping = vma->vm_file->f_mapping;
3062         idx = vma_hugecache_offset(h, vma, address);
3063
3064         page = find_get_page(mapping, idx);
3065         if (page)
3066                 put_page(page);
3067         return page != NULL;
3068 }
3069
3070 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3071                            struct address_space *mapping, pgoff_t idx,
3072                            unsigned long address, pte_t *ptep, unsigned int flags)
3073 {
3074         struct hstate *h = hstate_vma(vma);
3075         int ret = VM_FAULT_SIGBUS;
3076         int anon_rmap = 0;
3077         unsigned long size;
3078         struct page *page;
3079         pte_t new_pte;
3080         spinlock_t *ptl;
3081
3082         /*
3083          * Currently, we are forced to kill the process in the event the
3084          * original mapper has unmapped pages from the child due to a failed
3085          * COW. Warn that such a situation has occurred as it may not be obvious
3086          */
3087         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3088                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3089                            current->pid);
3090                 return ret;
3091         }
3092
3093         /*
3094          * Use page lock to guard against racing truncation
3095          * before we get page_table_lock.
3096          */
3097 retry:
3098         page = find_lock_page(mapping, idx);
3099         if (!page) {
3100                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3101                 if (idx >= size)
3102                         goto out;
3103                 page = alloc_huge_page(vma, address, 0);
3104                 if (IS_ERR(page)) {
3105                         ret = PTR_ERR(page);
3106                         if (ret == -ENOMEM)
3107                                 ret = VM_FAULT_OOM;
3108                         else
3109                                 ret = VM_FAULT_SIGBUS;
3110                         goto out;
3111                 }
3112                 clear_huge_page(page, address, pages_per_huge_page(h));
3113                 __SetPageUptodate(page);
3114                 set_page_huge_active(page);
3115
3116                 if (vma->vm_flags & VM_MAYSHARE) {
3117                         int err;
3118                         struct inode *inode = mapping->host;
3119
3120                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3121                         if (err) {
3122                                 put_page(page);
3123                                 if (err == -EEXIST)
3124                                         goto retry;
3125                                 goto out;
3126                         }
3127                         ClearPagePrivate(page);
3128
3129                         spin_lock(&inode->i_lock);
3130                         inode->i_blocks += blocks_per_huge_page(h);
3131                         spin_unlock(&inode->i_lock);
3132                 } else {
3133                         lock_page(page);
3134                         if (unlikely(anon_vma_prepare(vma))) {
3135                                 ret = VM_FAULT_OOM;
3136                                 goto backout_unlocked;
3137                         }
3138                         anon_rmap = 1;
3139                 }
3140         } else {
3141                 /*
3142                  * If memory error occurs between mmap() and fault, some process
3143                  * don't have hwpoisoned swap entry for errored virtual address.
3144                  * So we need to block hugepage fault by PG_hwpoison bit check.
3145                  */
3146                 if (unlikely(PageHWPoison(page))) {
3147                         ret = VM_FAULT_HWPOISON |
3148                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3149                         goto backout_unlocked;
3150                 }
3151         }
3152
3153         /*
3154          * If we are going to COW a private mapping later, we examine the
3155          * pending reservations for this page now. This will ensure that
3156          * any allocations necessary to record that reservation occur outside
3157          * the spinlock.
3158          */
3159         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3160                 if (vma_needs_reservation(h, vma, address) < 0) {
3161                         ret = VM_FAULT_OOM;
3162                         goto backout_unlocked;
3163                 }
3164
3165         ptl = huge_pte_lockptr(h, mm, ptep);
3166         spin_lock(ptl);
3167         size = i_size_read(mapping->host) >> huge_page_shift(h);
3168         if (idx >= size)
3169                 goto backout;
3170
3171         ret = 0;
3172         if (!huge_pte_none(huge_ptep_get(ptep)))
3173                 goto backout;
3174
3175         if (anon_rmap) {
3176                 ClearPagePrivate(page);
3177                 hugepage_add_new_anon_rmap(page, vma, address);
3178         } else
3179                 page_dup_rmap(page);
3180         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3181                                 && (vma->vm_flags & VM_SHARED)));
3182         set_huge_pte_at(mm, address, ptep, new_pte);
3183
3184         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3185                 /* Optimization, do the COW without a second fault */
3186                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3187         }
3188
3189         spin_unlock(ptl);
3190         unlock_page(page);
3191 out:
3192         return ret;
3193
3194 backout:
3195         spin_unlock(ptl);
3196 backout_unlocked:
3197         unlock_page(page);
3198         put_page(page);
3199         goto out;
3200 }
3201
3202 #ifdef CONFIG_SMP
3203 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3204                             struct vm_area_struct *vma,
3205                             struct address_space *mapping,
3206                             pgoff_t idx, unsigned long address)
3207 {
3208         unsigned long key[2];
3209         u32 hash;
3210
3211         if (vma->vm_flags & VM_SHARED) {
3212                 key[0] = (unsigned long) mapping;
3213                 key[1] = idx;
3214         } else {
3215                 key[0] = (unsigned long) mm;
3216                 key[1] = address >> huge_page_shift(h);
3217         }
3218
3219         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3220
3221         return hash & (num_fault_mutexes - 1);
3222 }
3223 #else
3224 /*
3225  * For uniprocesor systems we always use a single mutex, so just
3226  * return 0 and avoid the hashing overhead.
3227  */
3228 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3229                             struct vm_area_struct *vma,
3230                             struct address_space *mapping,
3231                             pgoff_t idx, unsigned long address)
3232 {
3233         return 0;
3234 }
3235 #endif
3236
3237 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3238                         unsigned long address, unsigned int flags)
3239 {
3240         pte_t *ptep, entry;
3241         spinlock_t *ptl;
3242         int ret;
3243         u32 hash;
3244         pgoff_t idx;
3245         struct page *page = NULL;
3246         struct page *pagecache_page = NULL;
3247         struct hstate *h = hstate_vma(vma);
3248         struct address_space *mapping;
3249         int need_wait_lock = 0;
3250
3251         address &= huge_page_mask(h);
3252
3253         ptep = huge_pte_offset(mm, address);
3254         if (ptep) {
3255                 entry = huge_ptep_get(ptep);
3256                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3257                         migration_entry_wait_huge(vma, mm, ptep);
3258                         return 0;
3259                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3260                         return VM_FAULT_HWPOISON_LARGE |
3261                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3262         }
3263
3264         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3265         if (!ptep)
3266                 return VM_FAULT_OOM;
3267
3268         mapping = vma->vm_file->f_mapping;
3269         idx = vma_hugecache_offset(h, vma, address);
3270
3271         /*
3272          * Serialize hugepage allocation and instantiation, so that we don't
3273          * get spurious allocation failures if two CPUs race to instantiate
3274          * the same page in the page cache.
3275          */
3276         hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3277         mutex_lock(&htlb_fault_mutex_table[hash]);
3278
3279         entry = huge_ptep_get(ptep);
3280         if (huge_pte_none(entry)) {
3281                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3282                 goto out_mutex;
3283         }
3284
3285         ret = 0;
3286
3287         /*
3288          * entry could be a migration/hwpoison entry at this point, so this
3289          * check prevents the kernel from going below assuming that we have
3290          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3291          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3292          * handle it.
3293          */
3294         if (!pte_present(entry))
3295                 goto out_mutex;
3296
3297         /*
3298          * If we are going to COW the mapping later, we examine the pending
3299          * reservations for this page now. This will ensure that any
3300          * allocations necessary to record that reservation occur outside the
3301          * spinlock. For private mappings, we also lookup the pagecache
3302          * page now as it is used to determine if a reservation has been
3303          * consumed.
3304          */
3305         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3306                 if (vma_needs_reservation(h, vma, address) < 0) {
3307                         ret = VM_FAULT_OOM;
3308                         goto out_mutex;
3309                 }
3310
3311                 if (!(vma->vm_flags & VM_MAYSHARE))
3312                         pagecache_page = hugetlbfs_pagecache_page(h,
3313                                                                 vma, address);
3314         }
3315
3316         ptl = huge_pte_lock(h, mm, ptep);
3317
3318         /* Check for a racing update before calling hugetlb_cow */
3319         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3320                 goto out_ptl;
3321
3322         /*
3323          * hugetlb_cow() requires page locks of pte_page(entry) and
3324          * pagecache_page, so here we need take the former one
3325          * when page != pagecache_page or !pagecache_page.
3326          */
3327         page = pte_page(entry);
3328         if (page != pagecache_page)
3329                 if (!trylock_page(page)) {
3330                         need_wait_lock = 1;
3331                         goto out_ptl;
3332                 }
3333
3334         get_page(page);
3335
3336         if (flags & FAULT_FLAG_WRITE) {
3337                 if (!huge_pte_write(entry)) {
3338                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3339                                         pagecache_page, ptl);
3340                         goto out_put_page;
3341                 }
3342                 entry = huge_pte_mkdirty(entry);
3343         }
3344         entry = pte_mkyoung(entry);
3345         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3346                                                 flags & FAULT_FLAG_WRITE))
3347                 update_mmu_cache(vma, address, ptep);
3348 out_put_page:
3349         if (page != pagecache_page)
3350                 unlock_page(page);
3351         put_page(page);
3352 out_ptl:
3353         spin_unlock(ptl);
3354
3355         if (pagecache_page) {
3356                 unlock_page(pagecache_page);
3357                 put_page(pagecache_page);
3358         }
3359 out_mutex:
3360         mutex_unlock(&htlb_fault_mutex_table[hash]);
3361         /*
3362          * Generally it's safe to hold refcount during waiting page lock. But
3363          * here we just wait to defer the next page fault to avoid busy loop and
3364          * the page is not used after unlocked before returning from the current
3365          * page fault. So we are safe from accessing freed page, even if we wait
3366          * here without taking refcount.
3367          */
3368         if (need_wait_lock)
3369                 wait_on_page_locked(page);
3370         return ret;
3371 }
3372
3373 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3374                          struct page **pages, struct vm_area_struct **vmas,
3375                          unsigned long *position, unsigned long *nr_pages,
3376                          long i, unsigned int flags)
3377 {
3378         unsigned long pfn_offset;
3379         unsigned long vaddr = *position;
3380         unsigned long remainder = *nr_pages;
3381         struct hstate *h = hstate_vma(vma);
3382
3383         while (vaddr < vma->vm_end && remainder) {
3384                 pte_t *pte;
3385                 spinlock_t *ptl = NULL;
3386                 int absent;
3387                 struct page *page;
3388
3389                 /*
3390                  * If we have a pending SIGKILL, don't keep faulting pages and
3391                  * potentially allocating memory.
3392                  */
3393                 if (unlikely(fatal_signal_pending(current))) {
3394                         remainder = 0;
3395                         break;
3396                 }
3397
3398                 /*
3399                  * Some archs (sparc64, sh*) have multiple pte_ts to
3400                  * each hugepage.  We have to make sure we get the
3401                  * first, for the page indexing below to work.
3402                  *
3403                  * Note that page table lock is not held when pte is null.
3404                  */
3405                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3406                 if (pte)
3407                         ptl = huge_pte_lock(h, mm, pte);
3408                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3409
3410                 /*
3411                  * When coredumping, it suits get_dump_page if we just return
3412                  * an error where there's an empty slot with no huge pagecache
3413                  * to back it.  This way, we avoid allocating a hugepage, and
3414                  * the sparse dumpfile avoids allocating disk blocks, but its
3415                  * huge holes still show up with zeroes where they need to be.
3416                  */
3417                 if (absent && (flags & FOLL_DUMP) &&
3418                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3419                         if (pte)
3420                                 spin_unlock(ptl);
3421                         remainder = 0;
3422                         break;
3423                 }
3424
3425                 /*
3426                  * We need call hugetlb_fault for both hugepages under migration
3427                  * (in which case hugetlb_fault waits for the migration,) and
3428                  * hwpoisoned hugepages (in which case we need to prevent the
3429                  * caller from accessing to them.) In order to do this, we use
3430                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3431                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3432                  * both cases, and because we can't follow correct pages
3433                  * directly from any kind of swap entries.
3434                  */
3435                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3436                     ((flags & FOLL_WRITE) &&
3437                       !huge_pte_write(huge_ptep_get(pte)))) {
3438                         int ret;
3439
3440                         if (pte)
3441                                 spin_unlock(ptl);
3442                         ret = hugetlb_fault(mm, vma, vaddr,
3443                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3444                         if (!(ret & VM_FAULT_ERROR))
3445                                 continue;
3446
3447                         remainder = 0;
3448                         break;
3449                 }
3450
3451                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3452                 page = pte_page(huge_ptep_get(pte));
3453 same_page:
3454                 if (pages) {
3455                         pages[i] = mem_map_offset(page, pfn_offset);
3456                         get_page_foll(pages[i]);
3457                 }
3458
3459                 if (vmas)
3460                         vmas[i] = vma;
3461
3462                 vaddr += PAGE_SIZE;
3463                 ++pfn_offset;
3464                 --remainder;
3465                 ++i;
3466                 if (vaddr < vma->vm_end && remainder &&
3467                                 pfn_offset < pages_per_huge_page(h)) {
3468                         /*
3469                          * We use pfn_offset to avoid touching the pageframes
3470                          * of this compound page.
3471                          */
3472                         goto same_page;
3473                 }
3474                 spin_unlock(ptl);
3475         }
3476         *nr_pages = remainder;
3477         *position = vaddr;
3478
3479         return i ? i : -EFAULT;
3480 }
3481
3482 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3483                 unsigned long address, unsigned long end, pgprot_t newprot)
3484 {
3485         struct mm_struct *mm = vma->vm_mm;
3486         unsigned long start = address;
3487         pte_t *ptep;
3488         pte_t pte;
3489         struct hstate *h = hstate_vma(vma);
3490         unsigned long pages = 0;
3491
3492         BUG_ON(address >= end);
3493         flush_cache_range(vma, address, end);
3494
3495         mmu_notifier_invalidate_range_start(mm, start, end);
3496         i_mmap_lock_write(vma->vm_file->f_mapping);
3497         for (; address < end; address += huge_page_size(h)) {
3498                 spinlock_t *ptl;
3499                 ptep = huge_pte_offset(mm, address);
3500                 if (!ptep)
3501                         continue;
3502                 ptl = huge_pte_lock(h, mm, ptep);
3503                 if (huge_pmd_unshare(mm, &address, ptep)) {
3504                         pages++;
3505                         spin_unlock(ptl);
3506                         continue;
3507                 }
3508                 pte = huge_ptep_get(ptep);
3509                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3510                         spin_unlock(ptl);
3511                         continue;
3512                 }
3513                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3514                         swp_entry_t entry = pte_to_swp_entry(pte);
3515
3516                         if (is_write_migration_entry(entry)) {
3517                                 pte_t newpte;
3518
3519                                 make_migration_entry_read(&entry);
3520                                 newpte = swp_entry_to_pte(entry);
3521                                 set_huge_pte_at(mm, address, ptep, newpte);
3522                                 pages++;
3523                         }
3524                         spin_unlock(ptl);
3525                         continue;
3526                 }
3527                 if (!huge_pte_none(pte)) {
3528                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3529                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3530                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3531                         set_huge_pte_at(mm, address, ptep, pte);
3532                         pages++;
3533                 }
3534                 spin_unlock(ptl);
3535         }
3536         /*
3537          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3538          * may have cleared our pud entry and done put_page on the page table:
3539          * once we release i_mmap_rwsem, another task can do the final put_page
3540          * and that page table be reused and filled with junk.
3541          */
3542         flush_tlb_range(vma, start, end);
3543         mmu_notifier_invalidate_range(mm, start, end);
3544         i_mmap_unlock_write(vma->vm_file->f_mapping);
3545         mmu_notifier_invalidate_range_end(mm, start, end);
3546
3547         return pages << h->order;
3548 }
3549
3550 int hugetlb_reserve_pages(struct inode *inode,
3551                                         long from, long to,
3552                                         struct vm_area_struct *vma,
3553                                         vm_flags_t vm_flags)
3554 {
3555         long ret, chg;
3556         struct hstate *h = hstate_inode(inode);
3557         struct hugepage_subpool *spool = subpool_inode(inode);
3558         struct resv_map *resv_map;
3559         long gbl_reserve;
3560
3561         /*
3562          * Only apply hugepage reservation if asked. At fault time, an
3563          * attempt will be made for VM_NORESERVE to allocate a page
3564          * without using reserves
3565          */
3566         if (vm_flags & VM_NORESERVE)
3567                 return 0;
3568
3569         /*
3570          * Shared mappings base their reservation on the number of pages that
3571          * are already allocated on behalf of the file. Private mappings need
3572          * to reserve the full area even if read-only as mprotect() may be
3573          * called to make the mapping read-write. Assume !vma is a shm mapping
3574          */
3575         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3576                 resv_map = inode_resv_map(inode);
3577
3578                 chg = region_chg(resv_map, from, to);
3579
3580         } else {
3581                 resv_map = resv_map_alloc();
3582                 if (!resv_map)
3583                         return -ENOMEM;
3584
3585                 chg = to - from;
3586
3587                 set_vma_resv_map(vma, resv_map);
3588                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3589         }
3590
3591         if (chg < 0) {
3592                 ret = chg;
3593                 goto out_err;
3594         }
3595
3596         /*
3597          * There must be enough pages in the subpool for the mapping. If
3598          * the subpool has a minimum size, there may be some global
3599          * reservations already in place (gbl_reserve).
3600          */
3601         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3602         if (gbl_reserve < 0) {
3603                 ret = -ENOSPC;
3604                 goto out_err;
3605         }
3606
3607         /*
3608          * Check enough hugepages are available for the reservation.
3609          * Hand the pages back to the subpool if there are not
3610          */
3611         ret = hugetlb_acct_memory(h, gbl_reserve);
3612         if (ret < 0) {
3613                 /* put back original number of pages, chg */
3614                 (void)hugepage_subpool_put_pages(spool, chg);
3615                 goto out_err;
3616         }
3617
3618         /*
3619          * Account for the reservations made. Shared mappings record regions
3620          * that have reservations as they are shared by multiple VMAs.
3621          * When the last VMA disappears, the region map says how much
3622          * the reservation was and the page cache tells how much of
3623          * the reservation was consumed. Private mappings are per-VMA and
3624          * only the consumed reservations are tracked. When the VMA
3625          * disappears, the original reservation is the VMA size and the
3626          * consumed reservations are stored in the map. Hence, nothing
3627          * else has to be done for private mappings here
3628          */
3629         if (!vma || vma->vm_flags & VM_MAYSHARE)
3630                 region_add(resv_map, from, to);
3631         return 0;
3632 out_err:
3633         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3634                 kref_put(&resv_map->refs, resv_map_release);
3635         return ret;
3636 }
3637
3638 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3639 {
3640         struct hstate *h = hstate_inode(inode);
3641         struct resv_map *resv_map = inode_resv_map(inode);
3642         long chg = 0;
3643         struct hugepage_subpool *spool = subpool_inode(inode);
3644         long gbl_reserve;
3645
3646         if (resv_map)
3647                 chg = region_truncate(resv_map, offset);
3648         spin_lock(&inode->i_lock);
3649         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3650         spin_unlock(&inode->i_lock);
3651
3652         /*
3653          * If the subpool has a minimum size, the number of global
3654          * reservations to be released may be adjusted.
3655          */
3656         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3657         hugetlb_acct_memory(h, -gbl_reserve);
3658 }
3659
3660 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3661 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3662                                 struct vm_area_struct *vma,
3663                                 unsigned long addr, pgoff_t idx)
3664 {
3665         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3666                                 svma->vm_start;
3667         unsigned long sbase = saddr & PUD_MASK;
3668         unsigned long s_end = sbase + PUD_SIZE;
3669
3670         /* Allow segments to share if only one is marked locked */
3671         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3672         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3673
3674         /*
3675          * match the virtual addresses, permission and the alignment of the
3676          * page table page.
3677          */
3678         if (pmd_index(addr) != pmd_index(saddr) ||
3679             vm_flags != svm_flags ||
3680             sbase < svma->vm_start || svma->vm_end < s_end)
3681                 return 0;
3682
3683         return saddr;
3684 }
3685
3686 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3687 {
3688         unsigned long base = addr & PUD_MASK;
3689         unsigned long end = base + PUD_SIZE;
3690
3691         /*
3692          * check on proper vm_flags and page table alignment
3693          */
3694         if (vma->vm_flags & VM_MAYSHARE &&
3695             vma->vm_start <= base && end <= vma->vm_end)
3696                 return 1;
3697         return 0;
3698 }
3699
3700 /*
3701  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3702  * and returns the corresponding pte. While this is not necessary for the
3703  * !shared pmd case because we can allocate the pmd later as well, it makes the
3704  * code much cleaner. pmd allocation is essential for the shared case because
3705  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3706  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3707  * bad pmd for sharing.
3708  */
3709 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3710 {
3711         struct vm_area_struct *vma = find_vma(mm, addr);
3712         struct address_space *mapping = vma->vm_file->f_mapping;
3713         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3714                         vma->vm_pgoff;
3715         struct vm_area_struct *svma;
3716         unsigned long saddr;
3717         pte_t *spte = NULL;
3718         pte_t *pte;
3719         spinlock_t *ptl;
3720
3721         if (!vma_shareable(vma, addr))
3722                 return (pte_t *)pmd_alloc(mm, pud, addr);
3723
3724         i_mmap_lock_write(mapping);
3725         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3726                 if (svma == vma)
3727                         continue;
3728
3729                 saddr = page_table_shareable(svma, vma, addr, idx);
3730                 if (saddr) {
3731                         spte = huge_pte_offset(svma->vm_mm, saddr);
3732                         if (spte) {
3733                                 mm_inc_nr_pmds(mm);
3734                                 get_page(virt_to_page(spte));
3735                                 break;
3736                         }
3737                 }
3738         }
3739
3740         if (!spte)
3741                 goto out;
3742
3743         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3744         spin_lock(ptl);
3745         if (pud_none(*pud)) {
3746                 pud_populate(mm, pud,
3747                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3748         } else {
3749                 put_page(virt_to_page(spte));
3750                 mm_inc_nr_pmds(mm);
3751         }
3752         spin_unlock(ptl);
3753 out:
3754         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3755         i_mmap_unlock_write(mapping);
3756         return pte;
3757 }
3758
3759 /*
3760  * unmap huge page backed by shared pte.
3761  *
3762  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3763  * indicated by page_count > 1, unmap is achieved by clearing pud and
3764  * decrementing the ref count. If count == 1, the pte page is not shared.
3765  *
3766  * called with page table lock held.
3767  *
3768  * returns: 1 successfully unmapped a shared pte page
3769  *          0 the underlying pte page is not shared, or it is the last user
3770  */
3771 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3772 {
3773         pgd_t *pgd = pgd_offset(mm, *addr);
3774         pud_t *pud = pud_offset(pgd, *addr);
3775
3776         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3777         if (page_count(virt_to_page(ptep)) == 1)
3778                 return 0;
3779
3780         pud_clear(pud);
3781         put_page(virt_to_page(ptep));
3782         mm_dec_nr_pmds(mm);
3783         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3784         return 1;
3785 }
3786 #define want_pmd_share()        (1)
3787 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3788 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3789 {
3790         return NULL;
3791 }
3792 #define want_pmd_share()        (0)
3793 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3794
3795 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3796 pte_t *huge_pte_alloc(struct mm_struct *mm,
3797                         unsigned long addr, unsigned long sz)
3798 {
3799         pgd_t *pgd;
3800         pud_t *pud;
3801         pte_t *pte = NULL;
3802
3803         pgd = pgd_offset(mm, addr);
3804         pud = pud_alloc(mm, pgd, addr);
3805         if (pud) {
3806                 if (sz == PUD_SIZE) {
3807                         pte = (pte_t *)pud;
3808                 } else {
3809                         BUG_ON(sz != PMD_SIZE);
3810                         if (want_pmd_share() && pud_none(*pud))
3811                                 pte = huge_pmd_share(mm, addr, pud);
3812                         else
3813                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3814                 }
3815         }
3816         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3817
3818         return pte;
3819 }
3820
3821 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3822 {
3823         pgd_t *pgd;
3824         pud_t *pud;
3825         pmd_t *pmd = NULL;
3826
3827         pgd = pgd_offset(mm, addr);
3828         if (pgd_present(*pgd)) {
3829                 pud = pud_offset(pgd, addr);
3830                 if (pud_present(*pud)) {
3831                         if (pud_huge(*pud))
3832                                 return (pte_t *)pud;
3833                         pmd = pmd_offset(pud, addr);
3834                 }
3835         }
3836         return (pte_t *) pmd;
3837 }
3838
3839 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3840
3841 /*
3842  * These functions are overwritable if your architecture needs its own
3843  * behavior.
3844  */
3845 struct page * __weak
3846 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3847                               int write)
3848 {
3849         return ERR_PTR(-EINVAL);
3850 }
3851
3852 struct page * __weak
3853 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3854                 pmd_t *pmd, int flags)
3855 {
3856         struct page *page = NULL;
3857         spinlock_t *ptl;
3858 retry:
3859         ptl = pmd_lockptr(mm, pmd);
3860         spin_lock(ptl);
3861         /*
3862          * make sure that the address range covered by this pmd is not
3863          * unmapped from other threads.
3864          */
3865         if (!pmd_huge(*pmd))
3866                 goto out;
3867         if (pmd_present(*pmd)) {
3868                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3869                 if (flags & FOLL_GET)
3870                         get_page(page);
3871         } else {
3872                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3873                         spin_unlock(ptl);
3874                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3875                         goto retry;
3876                 }
3877                 /*
3878                  * hwpoisoned entry is treated as no_page_table in
3879                  * follow_page_mask().
3880                  */
3881         }
3882 out:
3883         spin_unlock(ptl);
3884         return page;
3885 }
3886
3887 struct page * __weak
3888 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3889                 pud_t *pud, int flags)
3890 {
3891         if (flags & FOLL_GET)
3892                 return NULL;
3893
3894         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3895 }
3896
3897 #ifdef CONFIG_MEMORY_FAILURE
3898
3899 /*
3900  * This function is called from memory failure code.
3901  * Assume the caller holds page lock of the head page.
3902  */
3903 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3904 {
3905         struct hstate *h = page_hstate(hpage);
3906         int nid = page_to_nid(hpage);
3907         int ret = -EBUSY;
3908
3909         spin_lock(&hugetlb_lock);
3910         /*
3911          * Just checking !page_huge_active is not enough, because that could be
3912          * an isolated/hwpoisoned hugepage (which have >0 refcount).
3913          */
3914         if (!page_huge_active(hpage) && !page_count(hpage)) {
3915                 /*
3916                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3917                  * but dangling hpage->lru can trigger list-debug warnings
3918                  * (this happens when we call unpoison_memory() on it),
3919                  * so let it point to itself with list_del_init().
3920                  */
3921                 list_del_init(&hpage->lru);
3922                 set_page_refcounted(hpage);
3923                 h->free_huge_pages--;
3924                 h->free_huge_pages_node[nid]--;
3925                 ret = 0;
3926         }
3927         spin_unlock(&hugetlb_lock);
3928         return ret;
3929 }
3930 #endif
3931
3932 bool isolate_huge_page(struct page *page, struct list_head *list)
3933 {
3934         bool ret = true;
3935
3936         VM_BUG_ON_PAGE(!PageHead(page), page);
3937         spin_lock(&hugetlb_lock);
3938         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
3939                 ret = false;
3940                 goto unlock;
3941         }
3942         clear_page_huge_active(page);
3943         list_move_tail(&page->lru, list);
3944 unlock:
3945         spin_unlock(&hugetlb_lock);
3946         return ret;
3947 }
3948
3949 void putback_active_hugepage(struct page *page)
3950 {
3951         VM_BUG_ON_PAGE(!PageHead(page), page);
3952         spin_lock(&hugetlb_lock);
3953         set_page_huge_active(page);
3954         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3955         spin_unlock(&hugetlb_lock);
3956         put_page(page);
3957 }