ARM: rockchip: update rockchip_defconfig by savedefconfig
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57         bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59         spin_unlock(&spool->lock);
60
61         /* If no pages are used, and no other handles to the subpool
62          * remain, free the subpool the subpool remain */
63         if (free)
64                 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69         struct hugepage_subpool *spool;
70
71         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72         if (!spool)
73                 return NULL;
74
75         spin_lock_init(&spool->lock);
76         spool->count = 1;
77         spool->max_hpages = nr_blocks;
78         spool->used_hpages = 0;
79
80         return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85         spin_lock(&spool->lock);
86         BUG_ON(!spool->count);
87         spool->count--;
88         unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92                                       long delta)
93 {
94         int ret = 0;
95
96         if (!spool)
97                 return 0;
98
99         spin_lock(&spool->lock);
100         if ((spool->used_hpages + delta) <= spool->max_hpages) {
101                 spool->used_hpages += delta;
102         } else {
103                 ret = -ENOMEM;
104         }
105         spin_unlock(&spool->lock);
106
107         return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111                                        long delta)
112 {
113         if (!spool)
114                 return;
115
116         spin_lock(&spool->lock);
117         spool->used_hpages -= delta;
118         /* If hugetlbfs_put_super couldn't free spool due to
119         * an outstanding quota reference, free it now. */
120         unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125         return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130         return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation mutex:
141  *
142  *      down_write(&mm->mmap_sem);
143  * or
144  *      down_read(&mm->mmap_sem);
145  *      mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148         struct list_head link;
149         long from;
150         long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155         struct file_region *rg, *nrg, *trg;
156
157         /* Locate the region we are either in or before. */
158         list_for_each_entry(rg, head, link)
159                 if (f <= rg->to)
160                         break;
161
162         /* Round our left edge to the current segment if it encloses us. */
163         if (f > rg->from)
164                 f = rg->from;
165
166         /* Check for and consume any regions we now overlap with. */
167         nrg = rg;
168         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169                 if (&rg->link == head)
170                         break;
171                 if (rg->from > t)
172                         break;
173
174                 /* If this area reaches higher then extend our area to
175                  * include it completely.  If this is not the first area
176                  * which we intend to reuse, free it. */
177                 if (rg->to > t)
178                         t = rg->to;
179                 if (rg != nrg) {
180                         list_del(&rg->link);
181                         kfree(rg);
182                 }
183         }
184         nrg->from = f;
185         nrg->to = t;
186         return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191         struct file_region *rg, *nrg;
192         long chg = 0;
193
194         /* Locate the region we are before or in. */
195         list_for_each_entry(rg, head, link)
196                 if (f <= rg->to)
197                         break;
198
199         /* If we are below the current region then a new region is required.
200          * Subtle, allocate a new region at the position but make it zero
201          * size such that we can guarantee to record the reservation. */
202         if (&rg->link == head || t < rg->from) {
203                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204                 if (!nrg)
205                         return -ENOMEM;
206                 nrg->from = f;
207                 nrg->to   = f;
208                 INIT_LIST_HEAD(&nrg->link);
209                 list_add(&nrg->link, rg->link.prev);
210
211                 return t - f;
212         }
213
214         /* Round our left edge to the current segment if it encloses us. */
215         if (f > rg->from)
216                 f = rg->from;
217         chg = t - f;
218
219         /* Check for and consume any regions we now overlap with. */
220         list_for_each_entry(rg, rg->link.prev, link) {
221                 if (&rg->link == head)
222                         break;
223                 if (rg->from > t)
224                         return chg;
225
226                 /* We overlap with this area, if it extends further than
227                  * us then we must extend ourselves.  Account for its
228                  * existing reservation. */
229                 if (rg->to > t) {
230                         chg += rg->to - t;
231                         t = rg->to;
232                 }
233                 chg -= rg->to - rg->from;
234         }
235         return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240         struct file_region *rg, *trg;
241         long chg = 0;
242
243         /* Locate the region we are either in or before. */
244         list_for_each_entry(rg, head, link)
245                 if (end <= rg->to)
246                         break;
247         if (&rg->link == head)
248                 return 0;
249
250         /* If we are in the middle of a region then adjust it. */
251         if (end > rg->from) {
252                 chg = rg->to - end;
253                 rg->to = end;
254                 rg = list_entry(rg->link.next, typeof(*rg), link);
255         }
256
257         /* Drop any remaining regions. */
258         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259                 if (&rg->link == head)
260                         break;
261                 chg += rg->to - rg->from;
262                 list_del(&rg->link);
263                 kfree(rg);
264         }
265         return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270         struct file_region *rg;
271         long chg = 0;
272
273         /* Locate each segment we overlap with, and count that overlap. */
274         list_for_each_entry(rg, head, link) {
275                 long seg_from;
276                 long seg_to;
277
278                 if (rg->to <= f)
279                         continue;
280                 if (rg->from >= t)
281                         break;
282
283                 seg_from = max(rg->from, f);
284                 seg_to = min(rg->to, t);
285
286                 chg += seg_to - seg_from;
287         }
288
289         return chg;
290 }
291
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297                         struct vm_area_struct *vma, unsigned long address)
298 {
299         return ((address - vma->vm_start) >> huge_page_shift(h)) +
300                         (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304                                      unsigned long address)
305 {
306         return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315         struct hstate *hstate;
316
317         if (!is_vm_hugetlb_page(vma))
318                 return PAGE_SIZE;
319
320         hstate = hstate_vma(vma);
321
322         return 1UL << (hstate->order + PAGE_SHIFT);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335         return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369         return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373                                                         unsigned long value)
374 {
375         vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379         struct kref refs;
380         struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386         if (!resv_map)
387                 return NULL;
388
389         kref_init(&resv_map->refs);
390         INIT_LIST_HEAD(&resv_map->regions);
391
392         return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399         /* Clear out any active regions before we release the map. */
400         region_truncate(&resv_map->regions, 0);
401         kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406         VM_BUG_ON(!is_vm_hugetlb_page(vma));
407         if (!(vma->vm_flags & VM_MAYSHARE))
408                 return (struct resv_map *)(get_vma_private_data(vma) &
409                                                         ~HPAGE_RESV_MASK);
410         return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415         VM_BUG_ON(!is_vm_hugetlb_page(vma));
416         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418         set_vma_private_data(vma, (get_vma_private_data(vma) &
419                                 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432         VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434         return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Decrement the reserved pages in the hugepage pool by one */
438 static void decrement_hugepage_resv_vma(struct hstate *h,
439                         struct vm_area_struct *vma)
440 {
441         if (vma->vm_flags & VM_NORESERVE)
442                 return;
443
444         if (vma->vm_flags & VM_MAYSHARE) {
445                 /* Shared mappings always use reserves */
446                 h->resv_huge_pages--;
447         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448                 /*
449                  * Only the process that called mmap() has reserves for
450                  * private mappings.
451                  */
452                 h->resv_huge_pages--;
453         }
454 }
455
456 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458 {
459         VM_BUG_ON(!is_vm_hugetlb_page(vma));
460         if (!(vma->vm_flags & VM_MAYSHARE))
461                 vma->vm_private_data = (void *)0;
462 }
463
464 /* Returns true if the VMA has associated reserve pages */
465 static int vma_has_reserves(struct vm_area_struct *vma)
466 {
467         if (vma->vm_flags & VM_MAYSHARE)
468                 return 1;
469         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470                 return 1;
471         return 0;
472 }
473
474 static void copy_gigantic_page(struct page *dst, struct page *src)
475 {
476         int i;
477         struct hstate *h = page_hstate(src);
478         struct page *dst_base = dst;
479         struct page *src_base = src;
480
481         for (i = 0; i < pages_per_huge_page(h); ) {
482                 cond_resched();
483                 copy_highpage(dst, src);
484
485                 i++;
486                 dst = mem_map_next(dst, dst_base, i);
487                 src = mem_map_next(src, src_base, i);
488         }
489 }
490
491 void copy_huge_page(struct page *dst, struct page *src)
492 {
493         int i;
494         struct hstate *h = page_hstate(src);
495
496         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497                 copy_gigantic_page(dst, src);
498                 return;
499         }
500
501         might_sleep();
502         for (i = 0; i < pages_per_huge_page(h); i++) {
503                 cond_resched();
504                 copy_highpage(dst + i, src + i);
505         }
506 }
507
508 static void enqueue_huge_page(struct hstate *h, struct page *page)
509 {
510         int nid = page_to_nid(page);
511         list_move(&page->lru, &h->hugepage_freelists[nid]);
512         h->free_huge_pages++;
513         h->free_huge_pages_node[nid]++;
514 }
515
516 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517 {
518         struct page *page;
519
520         if (list_empty(&h->hugepage_freelists[nid]))
521                 return NULL;
522         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523         list_move(&page->lru, &h->hugepage_activelist);
524         set_page_refcounted(page);
525         h->free_huge_pages--;
526         h->free_huge_pages_node[nid]--;
527         return page;
528 }
529
530 static struct page *dequeue_huge_page_vma(struct hstate *h,
531                                 struct vm_area_struct *vma,
532                                 unsigned long address, int avoid_reserve)
533 {
534         struct page *page = NULL;
535         struct mempolicy *mpol;
536         nodemask_t *nodemask;
537         struct zonelist *zonelist;
538         struct zone *zone;
539         struct zoneref *z;
540         unsigned int cpuset_mems_cookie;
541
542 retry_cpuset:
543         cpuset_mems_cookie = get_mems_allowed();
544         zonelist = huge_zonelist(vma, address,
545                                         htlb_alloc_mask, &mpol, &nodemask);
546         /*
547          * A child process with MAP_PRIVATE mappings created by their parent
548          * have no page reserves. This check ensures that reservations are
549          * not "stolen". The child may still get SIGKILLed
550          */
551         if (!vma_has_reserves(vma) &&
552                         h->free_huge_pages - h->resv_huge_pages == 0)
553                 goto err;
554
555         /* If reserves cannot be used, ensure enough pages are in the pool */
556         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557                 goto err;
558
559         for_each_zone_zonelist_nodemask(zone, z, zonelist,
560                                                 MAX_NR_ZONES - 1, nodemask) {
561                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
563                         if (page) {
564                                 if (!avoid_reserve)
565                                         decrement_hugepage_resv_vma(h, vma);
566                                 break;
567                         }
568                 }
569         }
570
571         mpol_cond_put(mpol);
572         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573                 goto retry_cpuset;
574         return page;
575
576 err:
577         mpol_cond_put(mpol);
578         return NULL;
579 }
580
581 static void update_and_free_page(struct hstate *h, struct page *page)
582 {
583         int i;
584
585         VM_BUG_ON(h->order >= MAX_ORDER);
586
587         h->nr_huge_pages--;
588         h->nr_huge_pages_node[page_to_nid(page)]--;
589         for (i = 0; i < pages_per_huge_page(h); i++) {
590                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591                                 1 << PG_referenced | 1 << PG_dirty |
592                                 1 << PG_active | 1 << PG_reserved |
593                                 1 << PG_private | 1 << PG_writeback);
594         }
595         VM_BUG_ON(hugetlb_cgroup_from_page(page));
596         set_compound_page_dtor(page, NULL);
597         set_page_refcounted(page);
598         arch_release_hugepage(page);
599         __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604         struct hstate *h;
605
606         for_each_hstate(h) {
607                 if (huge_page_size(h) == size)
608                         return h;
609         }
610         return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615         /*
616          * Can't pass hstate in here because it is called from the
617          * compound page destructor.
618          */
619         struct hstate *h = page_hstate(page);
620         int nid = page_to_nid(page);
621         struct hugepage_subpool *spool =
622                 (struct hugepage_subpool *)page_private(page);
623
624         set_page_private(page, 0);
625         page->mapping = NULL;
626         BUG_ON(page_count(page));
627         BUG_ON(page_mapcount(page));
628
629         spin_lock(&hugetlb_lock);
630         hugetlb_cgroup_uncharge_page(hstate_index(h),
631                                      pages_per_huge_page(h), page);
632         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633                 /* remove the page from active list */
634                 list_del(&page->lru);
635                 update_and_free_page(h, page);
636                 h->surplus_huge_pages--;
637                 h->surplus_huge_pages_node[nid]--;
638         } else {
639                 arch_clear_hugepage_flags(page);
640                 enqueue_huge_page(h, page);
641         }
642         spin_unlock(&hugetlb_lock);
643         hugepage_subpool_put_pages(spool, 1);
644 }
645
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647 {
648         INIT_LIST_HEAD(&page->lru);
649         set_compound_page_dtor(page, free_huge_page);
650         spin_lock(&hugetlb_lock);
651         set_hugetlb_cgroup(page, NULL);
652         h->nr_huge_pages++;
653         h->nr_huge_pages_node[nid]++;
654         spin_unlock(&hugetlb_lock);
655         put_page(page); /* free it into the hugepage allocator */
656 }
657
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 {
660         int i;
661         int nr_pages = 1 << order;
662         struct page *p = page + 1;
663
664         /* we rely on prep_new_huge_page to set the destructor */
665         set_compound_order(page, order);
666         __SetPageHead(page);
667         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668                 __SetPageTail(p);
669                 set_page_count(p, 0);
670                 p->first_page = page;
671         }
672 }
673
674 /*
675  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676  * transparent huge pages.  See the PageTransHuge() documentation for more
677  * details.
678  */
679 int PageHuge(struct page *page)
680 {
681         compound_page_dtor *dtor;
682
683         if (!PageCompound(page))
684                 return 0;
685
686         page = compound_head(page);
687         dtor = get_compound_page_dtor(page);
688
689         return dtor == free_huge_page;
690 }
691 EXPORT_SYMBOL_GPL(PageHuge);
692
693 /*
694  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
695  * normal or transparent huge pages.
696  */
697 int PageHeadHuge(struct page *page_head)
698 {
699         compound_page_dtor *dtor;
700
701         if (!PageHead(page_head))
702                 return 0;
703
704         dtor = get_compound_page_dtor(page_head);
705
706         return dtor == free_huge_page;
707 }
708 EXPORT_SYMBOL_GPL(PageHeadHuge);
709
710 pgoff_t __basepage_index(struct page *page)
711 {
712         struct page *page_head = compound_head(page);
713         pgoff_t index = page_index(page_head);
714         unsigned long compound_idx;
715
716         if (!PageHuge(page_head))
717                 return page_index(page);
718
719         if (compound_order(page_head) >= MAX_ORDER)
720                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
721         else
722                 compound_idx = page - page_head;
723
724         return (index << compound_order(page_head)) + compound_idx;
725 }
726
727 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
728 {
729         struct page *page;
730
731         if (h->order >= MAX_ORDER)
732                 return NULL;
733
734         page = alloc_pages_exact_node(nid,
735                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
736                                                 __GFP_REPEAT|__GFP_NOWARN,
737                 huge_page_order(h));
738         if (page) {
739                 if (arch_prepare_hugepage(page)) {
740                         __free_pages(page, huge_page_order(h));
741                         return NULL;
742                 }
743                 prep_new_huge_page(h, page, nid);
744         }
745
746         return page;
747 }
748
749 /*
750  * common helper functions for hstate_next_node_to_{alloc|free}.
751  * We may have allocated or freed a huge page based on a different
752  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
753  * be outside of *nodes_allowed.  Ensure that we use an allowed
754  * node for alloc or free.
755  */
756 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
757 {
758         nid = next_node(nid, *nodes_allowed);
759         if (nid == MAX_NUMNODES)
760                 nid = first_node(*nodes_allowed);
761         VM_BUG_ON(nid >= MAX_NUMNODES);
762
763         return nid;
764 }
765
766 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
767 {
768         if (!node_isset(nid, *nodes_allowed))
769                 nid = next_node_allowed(nid, nodes_allowed);
770         return nid;
771 }
772
773 /*
774  * returns the previously saved node ["this node"] from which to
775  * allocate a persistent huge page for the pool and advance the
776  * next node from which to allocate, handling wrap at end of node
777  * mask.
778  */
779 static int hstate_next_node_to_alloc(struct hstate *h,
780                                         nodemask_t *nodes_allowed)
781 {
782         int nid;
783
784         VM_BUG_ON(!nodes_allowed);
785
786         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
787         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
788
789         return nid;
790 }
791
792 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
793 {
794         struct page *page;
795         int start_nid;
796         int next_nid;
797         int ret = 0;
798
799         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
800         next_nid = start_nid;
801
802         do {
803                 page = alloc_fresh_huge_page_node(h, next_nid);
804                 if (page) {
805                         ret = 1;
806                         break;
807                 }
808                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
809         } while (next_nid != start_nid);
810
811         if (ret)
812                 count_vm_event(HTLB_BUDDY_PGALLOC);
813         else
814                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
815
816         return ret;
817 }
818
819 /*
820  * helper for free_pool_huge_page() - return the previously saved
821  * node ["this node"] from which to free a huge page.  Advance the
822  * next node id whether or not we find a free huge page to free so
823  * that the next attempt to free addresses the next node.
824  */
825 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
826 {
827         int nid;
828
829         VM_BUG_ON(!nodes_allowed);
830
831         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
832         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
833
834         return nid;
835 }
836
837 /*
838  * Free huge page from pool from next node to free.
839  * Attempt to keep persistent huge pages more or less
840  * balanced over allowed nodes.
841  * Called with hugetlb_lock locked.
842  */
843 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
844                                                          bool acct_surplus)
845 {
846         int start_nid;
847         int next_nid;
848         int ret = 0;
849
850         start_nid = hstate_next_node_to_free(h, nodes_allowed);
851         next_nid = start_nid;
852
853         do {
854                 /*
855                  * If we're returning unused surplus pages, only examine
856                  * nodes with surplus pages.
857                  */
858                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
859                     !list_empty(&h->hugepage_freelists[next_nid])) {
860                         struct page *page =
861                                 list_entry(h->hugepage_freelists[next_nid].next,
862                                           struct page, lru);
863                         list_del(&page->lru);
864                         h->free_huge_pages--;
865                         h->free_huge_pages_node[next_nid]--;
866                         if (acct_surplus) {
867                                 h->surplus_huge_pages--;
868                                 h->surplus_huge_pages_node[next_nid]--;
869                         }
870                         update_and_free_page(h, page);
871                         ret = 1;
872                         break;
873                 }
874                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
875         } while (next_nid != start_nid);
876
877         return ret;
878 }
879
880 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
881 {
882         struct page *page;
883         unsigned int r_nid;
884
885         if (h->order >= MAX_ORDER)
886                 return NULL;
887
888         /*
889          * Assume we will successfully allocate the surplus page to
890          * prevent racing processes from causing the surplus to exceed
891          * overcommit
892          *
893          * This however introduces a different race, where a process B
894          * tries to grow the static hugepage pool while alloc_pages() is
895          * called by process A. B will only examine the per-node
896          * counters in determining if surplus huge pages can be
897          * converted to normal huge pages in adjust_pool_surplus(). A
898          * won't be able to increment the per-node counter, until the
899          * lock is dropped by B, but B doesn't drop hugetlb_lock until
900          * no more huge pages can be converted from surplus to normal
901          * state (and doesn't try to convert again). Thus, we have a
902          * case where a surplus huge page exists, the pool is grown, and
903          * the surplus huge page still exists after, even though it
904          * should just have been converted to a normal huge page. This
905          * does not leak memory, though, as the hugepage will be freed
906          * once it is out of use. It also does not allow the counters to
907          * go out of whack in adjust_pool_surplus() as we don't modify
908          * the node values until we've gotten the hugepage and only the
909          * per-node value is checked there.
910          */
911         spin_lock(&hugetlb_lock);
912         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
913                 spin_unlock(&hugetlb_lock);
914                 return NULL;
915         } else {
916                 h->nr_huge_pages++;
917                 h->surplus_huge_pages++;
918         }
919         spin_unlock(&hugetlb_lock);
920
921         if (nid == NUMA_NO_NODE)
922                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
923                                    __GFP_REPEAT|__GFP_NOWARN,
924                                    huge_page_order(h));
925         else
926                 page = alloc_pages_exact_node(nid,
927                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
928                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
929
930         if (page && arch_prepare_hugepage(page)) {
931                 __free_pages(page, huge_page_order(h));
932                 page = NULL;
933         }
934
935         spin_lock(&hugetlb_lock);
936         if (page) {
937                 INIT_LIST_HEAD(&page->lru);
938                 r_nid = page_to_nid(page);
939                 set_compound_page_dtor(page, free_huge_page);
940                 set_hugetlb_cgroup(page, NULL);
941                 /*
942                  * We incremented the global counters already
943                  */
944                 h->nr_huge_pages_node[r_nid]++;
945                 h->surplus_huge_pages_node[r_nid]++;
946                 __count_vm_event(HTLB_BUDDY_PGALLOC);
947         } else {
948                 h->nr_huge_pages--;
949                 h->surplus_huge_pages--;
950                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
951         }
952         spin_unlock(&hugetlb_lock);
953
954         return page;
955 }
956
957 /*
958  * This allocation function is useful in the context where vma is irrelevant.
959  * E.g. soft-offlining uses this function because it only cares physical
960  * address of error page.
961  */
962 struct page *alloc_huge_page_node(struct hstate *h, int nid)
963 {
964         struct page *page;
965
966         spin_lock(&hugetlb_lock);
967         page = dequeue_huge_page_node(h, nid);
968         spin_unlock(&hugetlb_lock);
969
970         if (!page)
971                 page = alloc_buddy_huge_page(h, nid);
972
973         return page;
974 }
975
976 /*
977  * Increase the hugetlb pool such that it can accommodate a reservation
978  * of size 'delta'.
979  */
980 static int gather_surplus_pages(struct hstate *h, int delta)
981 {
982         struct list_head surplus_list;
983         struct page *page, *tmp;
984         int ret, i;
985         int needed, allocated;
986         bool alloc_ok = true;
987
988         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
989         if (needed <= 0) {
990                 h->resv_huge_pages += delta;
991                 return 0;
992         }
993
994         allocated = 0;
995         INIT_LIST_HEAD(&surplus_list);
996
997         ret = -ENOMEM;
998 retry:
999         spin_unlock(&hugetlb_lock);
1000         for (i = 0; i < needed; i++) {
1001                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1002                 if (!page) {
1003                         alloc_ok = false;
1004                         break;
1005                 }
1006                 list_add(&page->lru, &surplus_list);
1007         }
1008         allocated += i;
1009
1010         /*
1011          * After retaking hugetlb_lock, we need to recalculate 'needed'
1012          * because either resv_huge_pages or free_huge_pages may have changed.
1013          */
1014         spin_lock(&hugetlb_lock);
1015         needed = (h->resv_huge_pages + delta) -
1016                         (h->free_huge_pages + allocated);
1017         if (needed > 0) {
1018                 if (alloc_ok)
1019                         goto retry;
1020                 /*
1021                  * We were not able to allocate enough pages to
1022                  * satisfy the entire reservation so we free what
1023                  * we've allocated so far.
1024                  */
1025                 goto free;
1026         }
1027         /*
1028          * The surplus_list now contains _at_least_ the number of extra pages
1029          * needed to accommodate the reservation.  Add the appropriate number
1030          * of pages to the hugetlb pool and free the extras back to the buddy
1031          * allocator.  Commit the entire reservation here to prevent another
1032          * process from stealing the pages as they are added to the pool but
1033          * before they are reserved.
1034          */
1035         needed += allocated;
1036         h->resv_huge_pages += delta;
1037         ret = 0;
1038
1039         /* Free the needed pages to the hugetlb pool */
1040         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1041                 if ((--needed) < 0)
1042                         break;
1043                 /*
1044                  * This page is now managed by the hugetlb allocator and has
1045                  * no users -- drop the buddy allocator's reference.
1046                  */
1047                 put_page_testzero(page);
1048                 VM_BUG_ON(page_count(page));
1049                 enqueue_huge_page(h, page);
1050         }
1051 free:
1052         spin_unlock(&hugetlb_lock);
1053
1054         /* Free unnecessary surplus pages to the buddy allocator */
1055         if (!list_empty(&surplus_list)) {
1056                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1057                         put_page(page);
1058                 }
1059         }
1060         spin_lock(&hugetlb_lock);
1061
1062         return ret;
1063 }
1064
1065 /*
1066  * When releasing a hugetlb pool reservation, any surplus pages that were
1067  * allocated to satisfy the reservation must be explicitly freed if they were
1068  * never used.
1069  * Called with hugetlb_lock held.
1070  */
1071 static void return_unused_surplus_pages(struct hstate *h,
1072                                         unsigned long unused_resv_pages)
1073 {
1074         unsigned long nr_pages;
1075
1076         /* Uncommit the reservation */
1077         h->resv_huge_pages -= unused_resv_pages;
1078
1079         /* Cannot return gigantic pages currently */
1080         if (h->order >= MAX_ORDER)
1081                 return;
1082
1083         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1084
1085         /*
1086          * We want to release as many surplus pages as possible, spread
1087          * evenly across all nodes with memory. Iterate across these nodes
1088          * until we can no longer free unreserved surplus pages. This occurs
1089          * when the nodes with surplus pages have no free pages.
1090          * free_pool_huge_page() will balance the the freed pages across the
1091          * on-line nodes with memory and will handle the hstate accounting.
1092          */
1093         while (nr_pages--) {
1094                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1095                         break;
1096         }
1097 }
1098
1099 /*
1100  * Determine if the huge page at addr within the vma has an associated
1101  * reservation.  Where it does not we will need to logically increase
1102  * reservation and actually increase subpool usage before an allocation
1103  * can occur.  Where any new reservation would be required the
1104  * reservation change is prepared, but not committed.  Once the page
1105  * has been allocated from the subpool and instantiated the change should
1106  * be committed via vma_commit_reservation.  No action is required on
1107  * failure.
1108  */
1109 static long vma_needs_reservation(struct hstate *h,
1110                         struct vm_area_struct *vma, unsigned long addr)
1111 {
1112         struct address_space *mapping = vma->vm_file->f_mapping;
1113         struct inode *inode = mapping->host;
1114
1115         if (vma->vm_flags & VM_MAYSHARE) {
1116                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1117                 return region_chg(&inode->i_mapping->private_list,
1118                                                         idx, idx + 1);
1119
1120         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1121                 return 1;
1122
1123         } else  {
1124                 long err;
1125                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1126                 struct resv_map *reservations = vma_resv_map(vma);
1127
1128                 err = region_chg(&reservations->regions, idx, idx + 1);
1129                 if (err < 0)
1130                         return err;
1131                 return 0;
1132         }
1133 }
1134 static void vma_commit_reservation(struct hstate *h,
1135                         struct vm_area_struct *vma, unsigned long addr)
1136 {
1137         struct address_space *mapping = vma->vm_file->f_mapping;
1138         struct inode *inode = mapping->host;
1139
1140         if (vma->vm_flags & VM_MAYSHARE) {
1141                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1142                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1143
1144         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1145                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1146                 struct resv_map *reservations = vma_resv_map(vma);
1147
1148                 /* Mark this page used in the map. */
1149                 region_add(&reservations->regions, idx, idx + 1);
1150         }
1151 }
1152
1153 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1154                                     unsigned long addr, int avoid_reserve)
1155 {
1156         struct hugepage_subpool *spool = subpool_vma(vma);
1157         struct hstate *h = hstate_vma(vma);
1158         struct page *page;
1159         long chg;
1160         int ret, idx;
1161         struct hugetlb_cgroup *h_cg;
1162
1163         idx = hstate_index(h);
1164         /*
1165          * Processes that did not create the mapping will have no
1166          * reserves and will not have accounted against subpool
1167          * limit. Check that the subpool limit can be made before
1168          * satisfying the allocation MAP_NORESERVE mappings may also
1169          * need pages and subpool limit allocated allocated if no reserve
1170          * mapping overlaps.
1171          */
1172         chg = vma_needs_reservation(h, vma, addr);
1173         if (chg < 0)
1174                 return ERR_PTR(-ENOMEM);
1175         if (chg)
1176                 if (hugepage_subpool_get_pages(spool, chg))
1177                         return ERR_PTR(-ENOSPC);
1178
1179         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1180         if (ret) {
1181                 hugepage_subpool_put_pages(spool, chg);
1182                 return ERR_PTR(-ENOSPC);
1183         }
1184         spin_lock(&hugetlb_lock);
1185         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1186         if (page) {
1187                 /* update page cgroup details */
1188                 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1189                                              h_cg, page);
1190                 spin_unlock(&hugetlb_lock);
1191         } else {
1192                 spin_unlock(&hugetlb_lock);
1193                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1194                 if (!page) {
1195                         hugetlb_cgroup_uncharge_cgroup(idx,
1196                                                        pages_per_huge_page(h),
1197                                                        h_cg);
1198                         hugepage_subpool_put_pages(spool, chg);
1199                         return ERR_PTR(-ENOSPC);
1200                 }
1201                 spin_lock(&hugetlb_lock);
1202                 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1203                                              h_cg, page);
1204                 list_move(&page->lru, &h->hugepage_activelist);
1205                 spin_unlock(&hugetlb_lock);
1206         }
1207
1208         set_page_private(page, (unsigned long)spool);
1209
1210         vma_commit_reservation(h, vma, addr);
1211         return page;
1212 }
1213
1214 int __weak alloc_bootmem_huge_page(struct hstate *h)
1215 {
1216         struct huge_bootmem_page *m;
1217         int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1218
1219         while (nr_nodes) {
1220                 void *addr;
1221
1222                 addr = __alloc_bootmem_node_nopanic(
1223                                 NODE_DATA(hstate_next_node_to_alloc(h,
1224                                                 &node_states[N_MEMORY])),
1225                                 huge_page_size(h), huge_page_size(h), 0);
1226
1227                 if (addr) {
1228                         /*
1229                          * Use the beginning of the huge page to store the
1230                          * huge_bootmem_page struct (until gather_bootmem
1231                          * puts them into the mem_map).
1232                          */
1233                         m = addr;
1234                         goto found;
1235                 }
1236                 nr_nodes--;
1237         }
1238         return 0;
1239
1240 found:
1241         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1242         /* Put them into a private list first because mem_map is not up yet */
1243         list_add(&m->list, &huge_boot_pages);
1244         m->hstate = h;
1245         return 1;
1246 }
1247
1248 static void prep_compound_huge_page(struct page *page, int order)
1249 {
1250         if (unlikely(order > (MAX_ORDER - 1)))
1251                 prep_compound_gigantic_page(page, order);
1252         else
1253                 prep_compound_page(page, order);
1254 }
1255
1256 /* Put bootmem huge pages into the standard lists after mem_map is up */
1257 static void __init gather_bootmem_prealloc(void)
1258 {
1259         struct huge_bootmem_page *m;
1260
1261         list_for_each_entry(m, &huge_boot_pages, list) {
1262                 struct hstate *h = m->hstate;
1263                 struct page *page;
1264
1265 #ifdef CONFIG_HIGHMEM
1266                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1267                 free_bootmem_late((unsigned long)m,
1268                                   sizeof(struct huge_bootmem_page));
1269 #else
1270                 page = virt_to_page(m);
1271 #endif
1272                 __ClearPageReserved(page);
1273                 WARN_ON(page_count(page) != 1);
1274                 prep_compound_huge_page(page, h->order);
1275                 prep_new_huge_page(h, page, page_to_nid(page));
1276                 /*
1277                  * If we had gigantic hugepages allocated at boot time, we need
1278                  * to restore the 'stolen' pages to totalram_pages in order to
1279                  * fix confusing memory reports from free(1) and another
1280                  * side-effects, like CommitLimit going negative.
1281                  */
1282                 if (h->order > (MAX_ORDER - 1))
1283                         totalram_pages += 1 << h->order;
1284         }
1285 }
1286
1287 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1288 {
1289         unsigned long i;
1290
1291         for (i = 0; i < h->max_huge_pages; ++i) {
1292                 if (h->order >= MAX_ORDER) {
1293                         if (!alloc_bootmem_huge_page(h))
1294                                 break;
1295                 } else if (!alloc_fresh_huge_page(h,
1296                                          &node_states[N_MEMORY]))
1297                         break;
1298         }
1299         h->max_huge_pages = i;
1300 }
1301
1302 static void __init hugetlb_init_hstates(void)
1303 {
1304         struct hstate *h;
1305
1306         for_each_hstate(h) {
1307                 /* oversize hugepages were init'ed in early boot */
1308                 if (h->order < MAX_ORDER)
1309                         hugetlb_hstate_alloc_pages(h);
1310         }
1311 }
1312
1313 static char * __init memfmt(char *buf, unsigned long n)
1314 {
1315         if (n >= (1UL << 30))
1316                 sprintf(buf, "%lu GB", n >> 30);
1317         else if (n >= (1UL << 20))
1318                 sprintf(buf, "%lu MB", n >> 20);
1319         else
1320                 sprintf(buf, "%lu KB", n >> 10);
1321         return buf;
1322 }
1323
1324 static void __init report_hugepages(void)
1325 {
1326         struct hstate *h;
1327
1328         for_each_hstate(h) {
1329                 char buf[32];
1330                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1331                         memfmt(buf, huge_page_size(h)),
1332                         h->free_huge_pages);
1333         }
1334 }
1335
1336 #ifdef CONFIG_HIGHMEM
1337 static void try_to_free_low(struct hstate *h, unsigned long count,
1338                                                 nodemask_t *nodes_allowed)
1339 {
1340         int i;
1341
1342         if (h->order >= MAX_ORDER)
1343                 return;
1344
1345         for_each_node_mask(i, *nodes_allowed) {
1346                 struct page *page, *next;
1347                 struct list_head *freel = &h->hugepage_freelists[i];
1348                 list_for_each_entry_safe(page, next, freel, lru) {
1349                         if (count >= h->nr_huge_pages)
1350                                 return;
1351                         if (PageHighMem(page))
1352                                 continue;
1353                         list_del(&page->lru);
1354                         update_and_free_page(h, page);
1355                         h->free_huge_pages--;
1356                         h->free_huge_pages_node[page_to_nid(page)]--;
1357                 }
1358         }
1359 }
1360 #else
1361 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1362                                                 nodemask_t *nodes_allowed)
1363 {
1364 }
1365 #endif
1366
1367 /*
1368  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1369  * balanced by operating on them in a round-robin fashion.
1370  * Returns 1 if an adjustment was made.
1371  */
1372 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1373                                 int delta)
1374 {
1375         int start_nid, next_nid;
1376         int ret = 0;
1377
1378         VM_BUG_ON(delta != -1 && delta != 1);
1379
1380         if (delta < 0)
1381                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1382         else
1383                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1384         next_nid = start_nid;
1385
1386         do {
1387                 int nid = next_nid;
1388                 if (delta < 0)  {
1389                         /*
1390                          * To shrink on this node, there must be a surplus page
1391                          */
1392                         if (!h->surplus_huge_pages_node[nid]) {
1393                                 next_nid = hstate_next_node_to_alloc(h,
1394                                                                 nodes_allowed);
1395                                 continue;
1396                         }
1397                 }
1398                 if (delta > 0) {
1399                         /*
1400                          * Surplus cannot exceed the total number of pages
1401                          */
1402                         if (h->surplus_huge_pages_node[nid] >=
1403                                                 h->nr_huge_pages_node[nid]) {
1404                                 next_nid = hstate_next_node_to_free(h,
1405                                                                 nodes_allowed);
1406                                 continue;
1407                         }
1408                 }
1409
1410                 h->surplus_huge_pages += delta;
1411                 h->surplus_huge_pages_node[nid] += delta;
1412                 ret = 1;
1413                 break;
1414         } while (next_nid != start_nid);
1415
1416         return ret;
1417 }
1418
1419 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1420 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1421                                                 nodemask_t *nodes_allowed)
1422 {
1423         unsigned long min_count, ret;
1424
1425         if (h->order >= MAX_ORDER)
1426                 return h->max_huge_pages;
1427
1428         /*
1429          * Increase the pool size
1430          * First take pages out of surplus state.  Then make up the
1431          * remaining difference by allocating fresh huge pages.
1432          *
1433          * We might race with alloc_buddy_huge_page() here and be unable
1434          * to convert a surplus huge page to a normal huge page. That is
1435          * not critical, though, it just means the overall size of the
1436          * pool might be one hugepage larger than it needs to be, but
1437          * within all the constraints specified by the sysctls.
1438          */
1439         spin_lock(&hugetlb_lock);
1440         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1441                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1442                         break;
1443         }
1444
1445         while (count > persistent_huge_pages(h)) {
1446                 /*
1447                  * If this allocation races such that we no longer need the
1448                  * page, free_huge_page will handle it by freeing the page
1449                  * and reducing the surplus.
1450                  */
1451                 spin_unlock(&hugetlb_lock);
1452                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1453                 spin_lock(&hugetlb_lock);
1454                 if (!ret)
1455                         goto out;
1456
1457                 /* Bail for signals. Probably ctrl-c from user */
1458                 if (signal_pending(current))
1459                         goto out;
1460         }
1461
1462         /*
1463          * Decrease the pool size
1464          * First return free pages to the buddy allocator (being careful
1465          * to keep enough around to satisfy reservations).  Then place
1466          * pages into surplus state as needed so the pool will shrink
1467          * to the desired size as pages become free.
1468          *
1469          * By placing pages into the surplus state independent of the
1470          * overcommit value, we are allowing the surplus pool size to
1471          * exceed overcommit. There are few sane options here. Since
1472          * alloc_buddy_huge_page() is checking the global counter,
1473          * though, we'll note that we're not allowed to exceed surplus
1474          * and won't grow the pool anywhere else. Not until one of the
1475          * sysctls are changed, or the surplus pages go out of use.
1476          */
1477         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1478         min_count = max(count, min_count);
1479         try_to_free_low(h, min_count, nodes_allowed);
1480         while (min_count < persistent_huge_pages(h)) {
1481                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1482                         break;
1483         }
1484         while (count < persistent_huge_pages(h)) {
1485                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1486                         break;
1487         }
1488 out:
1489         ret = persistent_huge_pages(h);
1490         spin_unlock(&hugetlb_lock);
1491         return ret;
1492 }
1493
1494 #define HSTATE_ATTR_RO(_name) \
1495         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1496
1497 #define HSTATE_ATTR(_name) \
1498         static struct kobj_attribute _name##_attr = \
1499                 __ATTR(_name, 0644, _name##_show, _name##_store)
1500
1501 static struct kobject *hugepages_kobj;
1502 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1503
1504 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1505
1506 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1507 {
1508         int i;
1509
1510         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1511                 if (hstate_kobjs[i] == kobj) {
1512                         if (nidp)
1513                                 *nidp = NUMA_NO_NODE;
1514                         return &hstates[i];
1515                 }
1516
1517         return kobj_to_node_hstate(kobj, nidp);
1518 }
1519
1520 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1521                                         struct kobj_attribute *attr, char *buf)
1522 {
1523         struct hstate *h;
1524         unsigned long nr_huge_pages;
1525         int nid;
1526
1527         h = kobj_to_hstate(kobj, &nid);
1528         if (nid == NUMA_NO_NODE)
1529                 nr_huge_pages = h->nr_huge_pages;
1530         else
1531                 nr_huge_pages = h->nr_huge_pages_node[nid];
1532
1533         return sprintf(buf, "%lu\n", nr_huge_pages);
1534 }
1535
1536 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1537                         struct kobject *kobj, struct kobj_attribute *attr,
1538                         const char *buf, size_t len)
1539 {
1540         int err;
1541         int nid;
1542         unsigned long count;
1543         struct hstate *h;
1544         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1545
1546         err = strict_strtoul(buf, 10, &count);
1547         if (err)
1548                 goto out;
1549
1550         h = kobj_to_hstate(kobj, &nid);
1551         if (h->order >= MAX_ORDER) {
1552                 err = -EINVAL;
1553                 goto out;
1554         }
1555
1556         if (nid == NUMA_NO_NODE) {
1557                 /*
1558                  * global hstate attribute
1559                  */
1560                 if (!(obey_mempolicy &&
1561                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1562                         NODEMASK_FREE(nodes_allowed);
1563                         nodes_allowed = &node_states[N_MEMORY];
1564                 }
1565         } else if (nodes_allowed) {
1566                 /*
1567                  * per node hstate attribute: adjust count to global,
1568                  * but restrict alloc/free to the specified node.
1569                  */
1570                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1571                 init_nodemask_of_node(nodes_allowed, nid);
1572         } else
1573                 nodes_allowed = &node_states[N_MEMORY];
1574
1575         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1576
1577         if (nodes_allowed != &node_states[N_MEMORY])
1578                 NODEMASK_FREE(nodes_allowed);
1579
1580         return len;
1581 out:
1582         NODEMASK_FREE(nodes_allowed);
1583         return err;
1584 }
1585
1586 static ssize_t nr_hugepages_show(struct kobject *kobj,
1587                                        struct kobj_attribute *attr, char *buf)
1588 {
1589         return nr_hugepages_show_common(kobj, attr, buf);
1590 }
1591
1592 static ssize_t nr_hugepages_store(struct kobject *kobj,
1593                struct kobj_attribute *attr, const char *buf, size_t len)
1594 {
1595         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1596 }
1597 HSTATE_ATTR(nr_hugepages);
1598
1599 #ifdef CONFIG_NUMA
1600
1601 /*
1602  * hstate attribute for optionally mempolicy-based constraint on persistent
1603  * huge page alloc/free.
1604  */
1605 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1606                                        struct kobj_attribute *attr, char *buf)
1607 {
1608         return nr_hugepages_show_common(kobj, attr, buf);
1609 }
1610
1611 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1612                struct kobj_attribute *attr, const char *buf, size_t len)
1613 {
1614         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1615 }
1616 HSTATE_ATTR(nr_hugepages_mempolicy);
1617 #endif
1618
1619
1620 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1621                                         struct kobj_attribute *attr, char *buf)
1622 {
1623         struct hstate *h = kobj_to_hstate(kobj, NULL);
1624         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1625 }
1626
1627 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1628                 struct kobj_attribute *attr, const char *buf, size_t count)
1629 {
1630         int err;
1631         unsigned long input;
1632         struct hstate *h = kobj_to_hstate(kobj, NULL);
1633
1634         if (h->order >= MAX_ORDER)
1635                 return -EINVAL;
1636
1637         err = strict_strtoul(buf, 10, &input);
1638         if (err)
1639                 return err;
1640
1641         spin_lock(&hugetlb_lock);
1642         h->nr_overcommit_huge_pages = input;
1643         spin_unlock(&hugetlb_lock);
1644
1645         return count;
1646 }
1647 HSTATE_ATTR(nr_overcommit_hugepages);
1648
1649 static ssize_t free_hugepages_show(struct kobject *kobj,
1650                                         struct kobj_attribute *attr, char *buf)
1651 {
1652         struct hstate *h;
1653         unsigned long free_huge_pages;
1654         int nid;
1655
1656         h = kobj_to_hstate(kobj, &nid);
1657         if (nid == NUMA_NO_NODE)
1658                 free_huge_pages = h->free_huge_pages;
1659         else
1660                 free_huge_pages = h->free_huge_pages_node[nid];
1661
1662         return sprintf(buf, "%lu\n", free_huge_pages);
1663 }
1664 HSTATE_ATTR_RO(free_hugepages);
1665
1666 static ssize_t resv_hugepages_show(struct kobject *kobj,
1667                                         struct kobj_attribute *attr, char *buf)
1668 {
1669         struct hstate *h = kobj_to_hstate(kobj, NULL);
1670         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1671 }
1672 HSTATE_ATTR_RO(resv_hugepages);
1673
1674 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1675                                         struct kobj_attribute *attr, char *buf)
1676 {
1677         struct hstate *h;
1678         unsigned long surplus_huge_pages;
1679         int nid;
1680
1681         h = kobj_to_hstate(kobj, &nid);
1682         if (nid == NUMA_NO_NODE)
1683                 surplus_huge_pages = h->surplus_huge_pages;
1684         else
1685                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1686
1687         return sprintf(buf, "%lu\n", surplus_huge_pages);
1688 }
1689 HSTATE_ATTR_RO(surplus_hugepages);
1690
1691 static struct attribute *hstate_attrs[] = {
1692         &nr_hugepages_attr.attr,
1693         &nr_overcommit_hugepages_attr.attr,
1694         &free_hugepages_attr.attr,
1695         &resv_hugepages_attr.attr,
1696         &surplus_hugepages_attr.attr,
1697 #ifdef CONFIG_NUMA
1698         &nr_hugepages_mempolicy_attr.attr,
1699 #endif
1700         NULL,
1701 };
1702
1703 static struct attribute_group hstate_attr_group = {
1704         .attrs = hstate_attrs,
1705 };
1706
1707 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1708                                     struct kobject **hstate_kobjs,
1709                                     struct attribute_group *hstate_attr_group)
1710 {
1711         int retval;
1712         int hi = hstate_index(h);
1713
1714         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1715         if (!hstate_kobjs[hi])
1716                 return -ENOMEM;
1717
1718         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1719         if (retval)
1720                 kobject_put(hstate_kobjs[hi]);
1721
1722         return retval;
1723 }
1724
1725 static void __init hugetlb_sysfs_init(void)
1726 {
1727         struct hstate *h;
1728         int err;
1729
1730         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1731         if (!hugepages_kobj)
1732                 return;
1733
1734         for_each_hstate(h) {
1735                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1736                                          hstate_kobjs, &hstate_attr_group);
1737                 if (err)
1738                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1739         }
1740 }
1741
1742 #ifdef CONFIG_NUMA
1743
1744 /*
1745  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1746  * with node devices in node_devices[] using a parallel array.  The array
1747  * index of a node device or _hstate == node id.
1748  * This is here to avoid any static dependency of the node device driver, in
1749  * the base kernel, on the hugetlb module.
1750  */
1751 struct node_hstate {
1752         struct kobject          *hugepages_kobj;
1753         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1754 };
1755 struct node_hstate node_hstates[MAX_NUMNODES];
1756
1757 /*
1758  * A subset of global hstate attributes for node devices
1759  */
1760 static struct attribute *per_node_hstate_attrs[] = {
1761         &nr_hugepages_attr.attr,
1762         &free_hugepages_attr.attr,
1763         &surplus_hugepages_attr.attr,
1764         NULL,
1765 };
1766
1767 static struct attribute_group per_node_hstate_attr_group = {
1768         .attrs = per_node_hstate_attrs,
1769 };
1770
1771 /*
1772  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1773  * Returns node id via non-NULL nidp.
1774  */
1775 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1776 {
1777         int nid;
1778
1779         for (nid = 0; nid < nr_node_ids; nid++) {
1780                 struct node_hstate *nhs = &node_hstates[nid];
1781                 int i;
1782                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1783                         if (nhs->hstate_kobjs[i] == kobj) {
1784                                 if (nidp)
1785                                         *nidp = nid;
1786                                 return &hstates[i];
1787                         }
1788         }
1789
1790         BUG();
1791         return NULL;
1792 }
1793
1794 /*
1795  * Unregister hstate attributes from a single node device.
1796  * No-op if no hstate attributes attached.
1797  */
1798 static void hugetlb_unregister_node(struct node *node)
1799 {
1800         struct hstate *h;
1801         struct node_hstate *nhs = &node_hstates[node->dev.id];
1802
1803         if (!nhs->hugepages_kobj)
1804                 return;         /* no hstate attributes */
1805
1806         for_each_hstate(h) {
1807                 int idx = hstate_index(h);
1808                 if (nhs->hstate_kobjs[idx]) {
1809                         kobject_put(nhs->hstate_kobjs[idx]);
1810                         nhs->hstate_kobjs[idx] = NULL;
1811                 }
1812         }
1813
1814         kobject_put(nhs->hugepages_kobj);
1815         nhs->hugepages_kobj = NULL;
1816 }
1817
1818 /*
1819  * hugetlb module exit:  unregister hstate attributes from node devices
1820  * that have them.
1821  */
1822 static void hugetlb_unregister_all_nodes(void)
1823 {
1824         int nid;
1825
1826         /*
1827          * disable node device registrations.
1828          */
1829         register_hugetlbfs_with_node(NULL, NULL);
1830
1831         /*
1832          * remove hstate attributes from any nodes that have them.
1833          */
1834         for (nid = 0; nid < nr_node_ids; nid++)
1835                 hugetlb_unregister_node(node_devices[nid]);
1836 }
1837
1838 /*
1839  * Register hstate attributes for a single node device.
1840  * No-op if attributes already registered.
1841  */
1842 static void hugetlb_register_node(struct node *node)
1843 {
1844         struct hstate *h;
1845         struct node_hstate *nhs = &node_hstates[node->dev.id];
1846         int err;
1847
1848         if (nhs->hugepages_kobj)
1849                 return;         /* already allocated */
1850
1851         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1852                                                         &node->dev.kobj);
1853         if (!nhs->hugepages_kobj)
1854                 return;
1855
1856         for_each_hstate(h) {
1857                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1858                                                 nhs->hstate_kobjs,
1859                                                 &per_node_hstate_attr_group);
1860                 if (err) {
1861                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1862                                 h->name, node->dev.id);
1863                         hugetlb_unregister_node(node);
1864                         break;
1865                 }
1866         }
1867 }
1868
1869 /*
1870  * hugetlb init time:  register hstate attributes for all registered node
1871  * devices of nodes that have memory.  All on-line nodes should have
1872  * registered their associated device by this time.
1873  */
1874 static void hugetlb_register_all_nodes(void)
1875 {
1876         int nid;
1877
1878         for_each_node_state(nid, N_MEMORY) {
1879                 struct node *node = node_devices[nid];
1880                 if (node->dev.id == nid)
1881                         hugetlb_register_node(node);
1882         }
1883
1884         /*
1885          * Let the node device driver know we're here so it can
1886          * [un]register hstate attributes on node hotplug.
1887          */
1888         register_hugetlbfs_with_node(hugetlb_register_node,
1889                                      hugetlb_unregister_node);
1890 }
1891 #else   /* !CONFIG_NUMA */
1892
1893 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1894 {
1895         BUG();
1896         if (nidp)
1897                 *nidp = -1;
1898         return NULL;
1899 }
1900
1901 static void hugetlb_unregister_all_nodes(void) { }
1902
1903 static void hugetlb_register_all_nodes(void) { }
1904
1905 #endif
1906
1907 static void __exit hugetlb_exit(void)
1908 {
1909         struct hstate *h;
1910
1911         hugetlb_unregister_all_nodes();
1912
1913         for_each_hstate(h) {
1914                 kobject_put(hstate_kobjs[hstate_index(h)]);
1915         }
1916
1917         kobject_put(hugepages_kobj);
1918 }
1919 module_exit(hugetlb_exit);
1920
1921 static int __init hugetlb_init(void)
1922 {
1923         /* Some platform decide whether they support huge pages at boot
1924          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1925          * there is no such support
1926          */
1927         if (HPAGE_SHIFT == 0)
1928                 return 0;
1929
1930         if (!size_to_hstate(default_hstate_size)) {
1931                 default_hstate_size = HPAGE_SIZE;
1932                 if (!size_to_hstate(default_hstate_size))
1933                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1934         }
1935         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1936         if (default_hstate_max_huge_pages)
1937                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1938
1939         hugetlb_init_hstates();
1940         gather_bootmem_prealloc();
1941         report_hugepages();
1942
1943         hugetlb_sysfs_init();
1944         hugetlb_register_all_nodes();
1945         hugetlb_cgroup_file_init();
1946
1947         return 0;
1948 }
1949 module_init(hugetlb_init);
1950
1951 /* Should be called on processing a hugepagesz=... option */
1952 void __init hugetlb_add_hstate(unsigned order)
1953 {
1954         struct hstate *h;
1955         unsigned long i;
1956
1957         if (size_to_hstate(PAGE_SIZE << order)) {
1958                 pr_warning("hugepagesz= specified twice, ignoring\n");
1959                 return;
1960         }
1961         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1962         BUG_ON(order == 0);
1963         h = &hstates[hugetlb_max_hstate++];
1964         h->order = order;
1965         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1966         h->nr_huge_pages = 0;
1967         h->free_huge_pages = 0;
1968         for (i = 0; i < MAX_NUMNODES; ++i)
1969                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1970         INIT_LIST_HEAD(&h->hugepage_activelist);
1971         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1972         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1973         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1974                                         huge_page_size(h)/1024);
1975
1976         parsed_hstate = h;
1977 }
1978
1979 static int __init hugetlb_nrpages_setup(char *s)
1980 {
1981         unsigned long *mhp;
1982         static unsigned long *last_mhp;
1983
1984         /*
1985          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1986          * so this hugepages= parameter goes to the "default hstate".
1987          */
1988         if (!hugetlb_max_hstate)
1989                 mhp = &default_hstate_max_huge_pages;
1990         else
1991                 mhp = &parsed_hstate->max_huge_pages;
1992
1993         if (mhp == last_mhp) {
1994                 pr_warning("hugepages= specified twice without "
1995                            "interleaving hugepagesz=, ignoring\n");
1996                 return 1;
1997         }
1998
1999         if (sscanf(s, "%lu", mhp) <= 0)
2000                 *mhp = 0;
2001
2002         /*
2003          * Global state is always initialized later in hugetlb_init.
2004          * But we need to allocate >= MAX_ORDER hstates here early to still
2005          * use the bootmem allocator.
2006          */
2007         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2008                 hugetlb_hstate_alloc_pages(parsed_hstate);
2009
2010         last_mhp = mhp;
2011
2012         return 1;
2013 }
2014 __setup("hugepages=", hugetlb_nrpages_setup);
2015
2016 static int __init hugetlb_default_setup(char *s)
2017 {
2018         default_hstate_size = memparse(s, &s);
2019         return 1;
2020 }
2021 __setup("default_hugepagesz=", hugetlb_default_setup);
2022
2023 static unsigned int cpuset_mems_nr(unsigned int *array)
2024 {
2025         int node;
2026         unsigned int nr = 0;
2027
2028         for_each_node_mask(node, cpuset_current_mems_allowed)
2029                 nr += array[node];
2030
2031         return nr;
2032 }
2033
2034 #ifdef CONFIG_SYSCTL
2035 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2036                          struct ctl_table *table, int write,
2037                          void __user *buffer, size_t *length, loff_t *ppos)
2038 {
2039         struct hstate *h = &default_hstate;
2040         unsigned long tmp;
2041         int ret;
2042
2043         tmp = h->max_huge_pages;
2044
2045         if (write && h->order >= MAX_ORDER)
2046                 return -EINVAL;
2047
2048         table->data = &tmp;
2049         table->maxlen = sizeof(unsigned long);
2050         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2051         if (ret)
2052                 goto out;
2053
2054         if (write) {
2055                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2056                                                 GFP_KERNEL | __GFP_NORETRY);
2057                 if (!(obey_mempolicy &&
2058                                init_nodemask_of_mempolicy(nodes_allowed))) {
2059                         NODEMASK_FREE(nodes_allowed);
2060                         nodes_allowed = &node_states[N_MEMORY];
2061                 }
2062                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2063
2064                 if (nodes_allowed != &node_states[N_MEMORY])
2065                         NODEMASK_FREE(nodes_allowed);
2066         }
2067 out:
2068         return ret;
2069 }
2070
2071 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2072                           void __user *buffer, size_t *length, loff_t *ppos)
2073 {
2074
2075         return hugetlb_sysctl_handler_common(false, table, write,
2076                                                         buffer, length, ppos);
2077 }
2078
2079 #ifdef CONFIG_NUMA
2080 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2081                           void __user *buffer, size_t *length, loff_t *ppos)
2082 {
2083         return hugetlb_sysctl_handler_common(true, table, write,
2084                                                         buffer, length, ppos);
2085 }
2086 #endif /* CONFIG_NUMA */
2087
2088 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2089                         void __user *buffer,
2090                         size_t *length, loff_t *ppos)
2091 {
2092         proc_dointvec(table, write, buffer, length, ppos);
2093         if (hugepages_treat_as_movable)
2094                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2095         else
2096                 htlb_alloc_mask = GFP_HIGHUSER;
2097         return 0;
2098 }
2099
2100 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2101                         void __user *buffer,
2102                         size_t *length, loff_t *ppos)
2103 {
2104         struct hstate *h = &default_hstate;
2105         unsigned long tmp;
2106         int ret;
2107
2108         tmp = h->nr_overcommit_huge_pages;
2109
2110         if (write && h->order >= MAX_ORDER)
2111                 return -EINVAL;
2112
2113         table->data = &tmp;
2114         table->maxlen = sizeof(unsigned long);
2115         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2116         if (ret)
2117                 goto out;
2118
2119         if (write) {
2120                 spin_lock(&hugetlb_lock);
2121                 h->nr_overcommit_huge_pages = tmp;
2122                 spin_unlock(&hugetlb_lock);
2123         }
2124 out:
2125         return ret;
2126 }
2127
2128 #endif /* CONFIG_SYSCTL */
2129
2130 void hugetlb_report_meminfo(struct seq_file *m)
2131 {
2132         struct hstate *h = &default_hstate;
2133         seq_printf(m,
2134                         "HugePages_Total:   %5lu\n"
2135                         "HugePages_Free:    %5lu\n"
2136                         "HugePages_Rsvd:    %5lu\n"
2137                         "HugePages_Surp:    %5lu\n"
2138                         "Hugepagesize:   %8lu kB\n",
2139                         h->nr_huge_pages,
2140                         h->free_huge_pages,
2141                         h->resv_huge_pages,
2142                         h->surplus_huge_pages,
2143                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2144 }
2145
2146 int hugetlb_report_node_meminfo(int nid, char *buf)
2147 {
2148         struct hstate *h = &default_hstate;
2149         return sprintf(buf,
2150                 "Node %d HugePages_Total: %5u\n"
2151                 "Node %d HugePages_Free:  %5u\n"
2152                 "Node %d HugePages_Surp:  %5u\n",
2153                 nid, h->nr_huge_pages_node[nid],
2154                 nid, h->free_huge_pages_node[nid],
2155                 nid, h->surplus_huge_pages_node[nid]);
2156 }
2157
2158 void hugetlb_show_meminfo(void)
2159 {
2160         struct hstate *h;
2161         int nid;
2162
2163         for_each_node_state(nid, N_MEMORY)
2164                 for_each_hstate(h)
2165                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2166                                 nid,
2167                                 h->nr_huge_pages_node[nid],
2168                                 h->free_huge_pages_node[nid],
2169                                 h->surplus_huge_pages_node[nid],
2170                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2171 }
2172
2173 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2174 unsigned long hugetlb_total_pages(void)
2175 {
2176         struct hstate *h;
2177         unsigned long nr_total_pages = 0;
2178
2179         for_each_hstate(h)
2180                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2181         return nr_total_pages;
2182 }
2183
2184 static int hugetlb_acct_memory(struct hstate *h, long delta)
2185 {
2186         int ret = -ENOMEM;
2187
2188         spin_lock(&hugetlb_lock);
2189         /*
2190          * When cpuset is configured, it breaks the strict hugetlb page
2191          * reservation as the accounting is done on a global variable. Such
2192          * reservation is completely rubbish in the presence of cpuset because
2193          * the reservation is not checked against page availability for the
2194          * current cpuset. Application can still potentially OOM'ed by kernel
2195          * with lack of free htlb page in cpuset that the task is in.
2196          * Attempt to enforce strict accounting with cpuset is almost
2197          * impossible (or too ugly) because cpuset is too fluid that
2198          * task or memory node can be dynamically moved between cpusets.
2199          *
2200          * The change of semantics for shared hugetlb mapping with cpuset is
2201          * undesirable. However, in order to preserve some of the semantics,
2202          * we fall back to check against current free page availability as
2203          * a best attempt and hopefully to minimize the impact of changing
2204          * semantics that cpuset has.
2205          */
2206         if (delta > 0) {
2207                 if (gather_surplus_pages(h, delta) < 0)
2208                         goto out;
2209
2210                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2211                         return_unused_surplus_pages(h, delta);
2212                         goto out;
2213                 }
2214         }
2215
2216         ret = 0;
2217         if (delta < 0)
2218                 return_unused_surplus_pages(h, (unsigned long) -delta);
2219
2220 out:
2221         spin_unlock(&hugetlb_lock);
2222         return ret;
2223 }
2224
2225 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2226 {
2227         struct resv_map *reservations = vma_resv_map(vma);
2228
2229         /*
2230          * This new VMA should share its siblings reservation map if present.
2231          * The VMA will only ever have a valid reservation map pointer where
2232          * it is being copied for another still existing VMA.  As that VMA
2233          * has a reference to the reservation map it cannot disappear until
2234          * after this open call completes.  It is therefore safe to take a
2235          * new reference here without additional locking.
2236          */
2237         if (reservations)
2238                 kref_get(&reservations->refs);
2239 }
2240
2241 static void resv_map_put(struct vm_area_struct *vma)
2242 {
2243         struct resv_map *reservations = vma_resv_map(vma);
2244
2245         if (!reservations)
2246                 return;
2247         kref_put(&reservations->refs, resv_map_release);
2248 }
2249
2250 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2251 {
2252         struct hstate *h = hstate_vma(vma);
2253         struct resv_map *reservations = vma_resv_map(vma);
2254         struct hugepage_subpool *spool = subpool_vma(vma);
2255         unsigned long reserve;
2256         unsigned long start;
2257         unsigned long end;
2258
2259         if (reservations) {
2260                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2261                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2262
2263                 reserve = (end - start) -
2264                         region_count(&reservations->regions, start, end);
2265
2266                 resv_map_put(vma);
2267
2268                 if (reserve) {
2269                         hugetlb_acct_memory(h, -reserve);
2270                         hugepage_subpool_put_pages(spool, reserve);
2271                 }
2272         }
2273 }
2274
2275 /*
2276  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2277  * handle_mm_fault() to try to instantiate regular-sized pages in the
2278  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2279  * this far.
2280  */
2281 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2282 {
2283         BUG();
2284         return 0;
2285 }
2286
2287 const struct vm_operations_struct hugetlb_vm_ops = {
2288         .fault = hugetlb_vm_op_fault,
2289         .open = hugetlb_vm_op_open,
2290         .close = hugetlb_vm_op_close,
2291 };
2292
2293 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2294                                 int writable)
2295 {
2296         pte_t entry;
2297
2298         if (writable) {
2299                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2300                                          vma->vm_page_prot)));
2301         } else {
2302                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2303                                            vma->vm_page_prot));
2304         }
2305         entry = pte_mkyoung(entry);
2306         entry = pte_mkhuge(entry);
2307         entry = arch_make_huge_pte(entry, vma, page, writable);
2308
2309         return entry;
2310 }
2311
2312 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2313                                    unsigned long address, pte_t *ptep)
2314 {
2315         pte_t entry;
2316
2317         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2318         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2319                 update_mmu_cache(vma, address, ptep);
2320 }
2321
2322
2323 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2324                             struct vm_area_struct *vma)
2325 {
2326         pte_t *src_pte, *dst_pte, entry;
2327         struct page *ptepage;
2328         unsigned long addr;
2329         int cow;
2330         struct hstate *h = hstate_vma(vma);
2331         unsigned long sz = huge_page_size(h);
2332
2333         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2334
2335         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2336                 src_pte = huge_pte_offset(src, addr);
2337                 if (!src_pte)
2338                         continue;
2339                 dst_pte = huge_pte_alloc(dst, addr, sz);
2340                 if (!dst_pte)
2341                         goto nomem;
2342
2343                 /* If the pagetables are shared don't copy or take references */
2344                 if (dst_pte == src_pte)
2345                         continue;
2346
2347                 spin_lock(&dst->page_table_lock);
2348                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2349                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2350                         if (cow)
2351                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2352                         entry = huge_ptep_get(src_pte);
2353                         ptepage = pte_page(entry);
2354                         get_page(ptepage);
2355                         page_dup_rmap(ptepage);
2356                         set_huge_pte_at(dst, addr, dst_pte, entry);
2357                 }
2358                 spin_unlock(&src->page_table_lock);
2359                 spin_unlock(&dst->page_table_lock);
2360         }
2361         return 0;
2362
2363 nomem:
2364         return -ENOMEM;
2365 }
2366
2367 static int is_hugetlb_entry_migration(pte_t pte)
2368 {
2369         swp_entry_t swp;
2370
2371         if (huge_pte_none(pte) || pte_present(pte))
2372                 return 0;
2373         swp = pte_to_swp_entry(pte);
2374         if (non_swap_entry(swp) && is_migration_entry(swp))
2375                 return 1;
2376         else
2377                 return 0;
2378 }
2379
2380 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2381 {
2382         swp_entry_t swp;
2383
2384         if (huge_pte_none(pte) || pte_present(pte))
2385                 return 0;
2386         swp = pte_to_swp_entry(pte);
2387         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2388                 return 1;
2389         else
2390                 return 0;
2391 }
2392
2393 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2394                             unsigned long start, unsigned long end,
2395                             struct page *ref_page)
2396 {
2397         int force_flush = 0;
2398         struct mm_struct *mm = vma->vm_mm;
2399         unsigned long address;
2400         pte_t *ptep;
2401         pte_t pte;
2402         struct page *page;
2403         struct hstate *h = hstate_vma(vma);
2404         unsigned long sz = huge_page_size(h);
2405         const unsigned long mmun_start = start; /* For mmu_notifiers */
2406         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2407
2408         WARN_ON(!is_vm_hugetlb_page(vma));
2409         BUG_ON(start & ~huge_page_mask(h));
2410         BUG_ON(end & ~huge_page_mask(h));
2411
2412         tlb_start_vma(tlb, vma);
2413         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2414 again:
2415         spin_lock(&mm->page_table_lock);
2416         for (address = start; address < end; address += sz) {
2417                 ptep = huge_pte_offset(mm, address);
2418                 if (!ptep)
2419                         continue;
2420
2421                 if (huge_pmd_unshare(mm, &address, ptep))
2422                         continue;
2423
2424                 pte = huge_ptep_get(ptep);
2425                 if (huge_pte_none(pte))
2426                         continue;
2427
2428                 /*
2429                  * HWPoisoned hugepage is already unmapped and dropped reference
2430                  */
2431                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2432                         huge_pte_clear(mm, address, ptep);
2433                         continue;
2434                 }
2435
2436                 page = pte_page(pte);
2437                 /*
2438                  * If a reference page is supplied, it is because a specific
2439                  * page is being unmapped, not a range. Ensure the page we
2440                  * are about to unmap is the actual page of interest.
2441                  */
2442                 if (ref_page) {
2443                         if (page != ref_page)
2444                                 continue;
2445
2446                         /*
2447                          * Mark the VMA as having unmapped its page so that
2448                          * future faults in this VMA will fail rather than
2449                          * looking like data was lost
2450                          */
2451                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2452                 }
2453
2454                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2455                 tlb_remove_tlb_entry(tlb, ptep, address);
2456                 if (huge_pte_dirty(pte))
2457                         set_page_dirty(page);
2458
2459                 page_remove_rmap(page);
2460                 force_flush = !__tlb_remove_page(tlb, page);
2461                 if (force_flush)
2462                         break;
2463                 /* Bail out after unmapping reference page if supplied */
2464                 if (ref_page)
2465                         break;
2466         }
2467         spin_unlock(&mm->page_table_lock);
2468         /*
2469          * mmu_gather ran out of room to batch pages, we break out of
2470          * the PTE lock to avoid doing the potential expensive TLB invalidate
2471          * and page-free while holding it.
2472          */
2473         if (force_flush) {
2474                 force_flush = 0;
2475                 tlb_flush_mmu(tlb);
2476                 if (address < end && !ref_page)
2477                         goto again;
2478         }
2479         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2480         tlb_end_vma(tlb, vma);
2481 }
2482
2483 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2484                           struct vm_area_struct *vma, unsigned long start,
2485                           unsigned long end, struct page *ref_page)
2486 {
2487         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2488
2489         /*
2490          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2491          * test will fail on a vma being torn down, and not grab a page table
2492          * on its way out.  We're lucky that the flag has such an appropriate
2493          * name, and can in fact be safely cleared here. We could clear it
2494          * before the __unmap_hugepage_range above, but all that's necessary
2495          * is to clear it before releasing the i_mmap_mutex. This works
2496          * because in the context this is called, the VMA is about to be
2497          * destroyed and the i_mmap_mutex is held.
2498          */
2499         vma->vm_flags &= ~VM_MAYSHARE;
2500 }
2501
2502 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2503                           unsigned long end, struct page *ref_page)
2504 {
2505         struct mm_struct *mm;
2506         struct mmu_gather tlb;
2507
2508         mm = vma->vm_mm;
2509
2510         tlb_gather_mmu(&tlb, mm, start, end);
2511         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2512         tlb_finish_mmu(&tlb, start, end);
2513 }
2514
2515 /*
2516  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2517  * mappping it owns the reserve page for. The intention is to unmap the page
2518  * from other VMAs and let the children be SIGKILLed if they are faulting the
2519  * same region.
2520  */
2521 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2522                                 struct page *page, unsigned long address)
2523 {
2524         struct hstate *h = hstate_vma(vma);
2525         struct vm_area_struct *iter_vma;
2526         struct address_space *mapping;
2527         pgoff_t pgoff;
2528
2529         /*
2530          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2531          * from page cache lookup which is in HPAGE_SIZE units.
2532          */
2533         address = address & huge_page_mask(h);
2534         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2535                         vma->vm_pgoff;
2536         mapping = file_inode(vma->vm_file)->i_mapping;
2537
2538         /*
2539          * Take the mapping lock for the duration of the table walk. As
2540          * this mapping should be shared between all the VMAs,
2541          * __unmap_hugepage_range() is called as the lock is already held
2542          */
2543         mutex_lock(&mapping->i_mmap_mutex);
2544         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2545                 /* Do not unmap the current VMA */
2546                 if (iter_vma == vma)
2547                         continue;
2548
2549                 /*
2550                  * Unmap the page from other VMAs without their own reserves.
2551                  * They get marked to be SIGKILLed if they fault in these
2552                  * areas. This is because a future no-page fault on this VMA
2553                  * could insert a zeroed page instead of the data existing
2554                  * from the time of fork. This would look like data corruption
2555                  */
2556                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2557                         unmap_hugepage_range(iter_vma, address,
2558                                              address + huge_page_size(h), page);
2559         }
2560         mutex_unlock(&mapping->i_mmap_mutex);
2561
2562         return 1;
2563 }
2564
2565 /*
2566  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2567  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2568  * cannot race with other handlers or page migration.
2569  * Keep the pte_same checks anyway to make transition from the mutex easier.
2570  */
2571 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2572                         unsigned long address, pte_t *ptep, pte_t pte,
2573                         struct page *pagecache_page)
2574 {
2575         struct hstate *h = hstate_vma(vma);
2576         struct page *old_page, *new_page;
2577         int avoidcopy;
2578         int outside_reserve = 0;
2579         unsigned long mmun_start;       /* For mmu_notifiers */
2580         unsigned long mmun_end;         /* For mmu_notifiers */
2581
2582         old_page = pte_page(pte);
2583
2584 retry_avoidcopy:
2585         /* If no-one else is actually using this page, avoid the copy
2586          * and just make the page writable */
2587         avoidcopy = (page_mapcount(old_page) == 1);
2588         if (avoidcopy) {
2589                 if (PageAnon(old_page))
2590                         page_move_anon_rmap(old_page, vma, address);
2591                 set_huge_ptep_writable(vma, address, ptep);
2592                 return 0;
2593         }
2594
2595         /*
2596          * If the process that created a MAP_PRIVATE mapping is about to
2597          * perform a COW due to a shared page count, attempt to satisfy
2598          * the allocation without using the existing reserves. The pagecache
2599          * page is used to determine if the reserve at this address was
2600          * consumed or not. If reserves were used, a partial faulted mapping
2601          * at the time of fork() could consume its reserves on COW instead
2602          * of the full address range.
2603          */
2604         if (!(vma->vm_flags & VM_MAYSHARE) &&
2605                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2606                         old_page != pagecache_page)
2607                 outside_reserve = 1;
2608
2609         page_cache_get(old_page);
2610
2611         /* Drop page_table_lock as buddy allocator may be called */
2612         spin_unlock(&mm->page_table_lock);
2613         new_page = alloc_huge_page(vma, address, outside_reserve);
2614
2615         if (IS_ERR(new_page)) {
2616                 long err = PTR_ERR(new_page);
2617                 page_cache_release(old_page);
2618
2619                 /*
2620                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2621                  * it is due to references held by a child and an insufficient
2622                  * huge page pool. To guarantee the original mappers
2623                  * reliability, unmap the page from child processes. The child
2624                  * may get SIGKILLed if it later faults.
2625                  */
2626                 if (outside_reserve) {
2627                         BUG_ON(huge_pte_none(pte));
2628                         if (unmap_ref_private(mm, vma, old_page, address)) {
2629                                 BUG_ON(huge_pte_none(pte));
2630                                 spin_lock(&mm->page_table_lock);
2631                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2632                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2633                                         goto retry_avoidcopy;
2634                                 /*
2635                                  * race occurs while re-acquiring page_table_lock, and
2636                                  * our job is done.
2637                                  */
2638                                 return 0;
2639                         }
2640                         WARN_ON_ONCE(1);
2641                 }
2642
2643                 /* Caller expects lock to be held */
2644                 spin_lock(&mm->page_table_lock);
2645                 if (err == -ENOMEM)
2646                         return VM_FAULT_OOM;
2647                 else
2648                         return VM_FAULT_SIGBUS;
2649         }
2650
2651         /*
2652          * When the original hugepage is shared one, it does not have
2653          * anon_vma prepared.
2654          */
2655         if (unlikely(anon_vma_prepare(vma))) {
2656                 page_cache_release(new_page);
2657                 page_cache_release(old_page);
2658                 /* Caller expects lock to be held */
2659                 spin_lock(&mm->page_table_lock);
2660                 return VM_FAULT_OOM;
2661         }
2662
2663         copy_user_huge_page(new_page, old_page, address, vma,
2664                             pages_per_huge_page(h));
2665         __SetPageUptodate(new_page);
2666
2667         mmun_start = address & huge_page_mask(h);
2668         mmun_end = mmun_start + huge_page_size(h);
2669         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2670         /*
2671          * Retake the page_table_lock to check for racing updates
2672          * before the page tables are altered
2673          */
2674         spin_lock(&mm->page_table_lock);
2675         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2676         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2677                 /* Break COW */
2678                 huge_ptep_clear_flush(vma, address, ptep);
2679                 set_huge_pte_at(mm, address, ptep,
2680                                 make_huge_pte(vma, new_page, 1));
2681                 page_remove_rmap(old_page);
2682                 hugepage_add_new_anon_rmap(new_page, vma, address);
2683                 /* Make the old page be freed below */
2684                 new_page = old_page;
2685         }
2686         spin_unlock(&mm->page_table_lock);
2687         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2688         /* Caller expects lock to be held */
2689         spin_lock(&mm->page_table_lock);
2690         page_cache_release(new_page);
2691         page_cache_release(old_page);
2692         return 0;
2693 }
2694
2695 /* Return the pagecache page at a given address within a VMA */
2696 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2697                         struct vm_area_struct *vma, unsigned long address)
2698 {
2699         struct address_space *mapping;
2700         pgoff_t idx;
2701
2702         mapping = vma->vm_file->f_mapping;
2703         idx = vma_hugecache_offset(h, vma, address);
2704
2705         return find_lock_page(mapping, idx);
2706 }
2707
2708 /*
2709  * Return whether there is a pagecache page to back given address within VMA.
2710  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2711  */
2712 static bool hugetlbfs_pagecache_present(struct hstate *h,
2713                         struct vm_area_struct *vma, unsigned long address)
2714 {
2715         struct address_space *mapping;
2716         pgoff_t idx;
2717         struct page *page;
2718
2719         mapping = vma->vm_file->f_mapping;
2720         idx = vma_hugecache_offset(h, vma, address);
2721
2722         page = find_get_page(mapping, idx);
2723         if (page)
2724                 put_page(page);
2725         return page != NULL;
2726 }
2727
2728 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2729                         unsigned long address, pte_t *ptep, unsigned int flags)
2730 {
2731         struct hstate *h = hstate_vma(vma);
2732         int ret = VM_FAULT_SIGBUS;
2733         int anon_rmap = 0;
2734         pgoff_t idx;
2735         unsigned long size;
2736         struct page *page;
2737         struct address_space *mapping;
2738         pte_t new_pte;
2739
2740         /*
2741          * Currently, we are forced to kill the process in the event the
2742          * original mapper has unmapped pages from the child due to a failed
2743          * COW. Warn that such a situation has occurred as it may not be obvious
2744          */
2745         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2746                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2747                            current->pid);
2748                 return ret;
2749         }
2750
2751         mapping = vma->vm_file->f_mapping;
2752         idx = vma_hugecache_offset(h, vma, address);
2753
2754         /*
2755          * Use page lock to guard against racing truncation
2756          * before we get page_table_lock.
2757          */
2758 retry:
2759         page = find_lock_page(mapping, idx);
2760         if (!page) {
2761                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2762                 if (idx >= size)
2763                         goto out;
2764                 page = alloc_huge_page(vma, address, 0);
2765                 if (IS_ERR(page)) {
2766                         ret = PTR_ERR(page);
2767                         if (ret == -ENOMEM)
2768                                 ret = VM_FAULT_OOM;
2769                         else
2770                                 ret = VM_FAULT_SIGBUS;
2771                         goto out;
2772                 }
2773                 clear_huge_page(page, address, pages_per_huge_page(h));
2774                 __SetPageUptodate(page);
2775
2776                 if (vma->vm_flags & VM_MAYSHARE) {
2777                         int err;
2778                         struct inode *inode = mapping->host;
2779
2780                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2781                         if (err) {
2782                                 put_page(page);
2783                                 if (err == -EEXIST)
2784                                         goto retry;
2785                                 goto out;
2786                         }
2787
2788                         spin_lock(&inode->i_lock);
2789                         inode->i_blocks += blocks_per_huge_page(h);
2790                         spin_unlock(&inode->i_lock);
2791                 } else {
2792                         lock_page(page);
2793                         if (unlikely(anon_vma_prepare(vma))) {
2794                                 ret = VM_FAULT_OOM;
2795                                 goto backout_unlocked;
2796                         }
2797                         anon_rmap = 1;
2798                 }
2799         } else {
2800                 /*
2801                  * If memory error occurs between mmap() and fault, some process
2802                  * don't have hwpoisoned swap entry for errored virtual address.
2803                  * So we need to block hugepage fault by PG_hwpoison bit check.
2804                  */
2805                 if (unlikely(PageHWPoison(page))) {
2806                         ret = VM_FAULT_HWPOISON |
2807                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2808                         goto backout_unlocked;
2809                 }
2810         }
2811
2812         /*
2813          * If we are going to COW a private mapping later, we examine the
2814          * pending reservations for this page now. This will ensure that
2815          * any allocations necessary to record that reservation occur outside
2816          * the spinlock.
2817          */
2818         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2819                 if (vma_needs_reservation(h, vma, address) < 0) {
2820                         ret = VM_FAULT_OOM;
2821                         goto backout_unlocked;
2822                 }
2823
2824         spin_lock(&mm->page_table_lock);
2825         size = i_size_read(mapping->host) >> huge_page_shift(h);
2826         if (idx >= size)
2827                 goto backout;
2828
2829         ret = 0;
2830         if (!huge_pte_none(huge_ptep_get(ptep)))
2831                 goto backout;
2832
2833         if (anon_rmap)
2834                 hugepage_add_new_anon_rmap(page, vma, address);
2835         else
2836                 page_dup_rmap(page);
2837         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2838                                 && (vma->vm_flags & VM_SHARED)));
2839         set_huge_pte_at(mm, address, ptep, new_pte);
2840
2841         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2842                 /* Optimization, do the COW without a second fault */
2843                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2844         }
2845
2846         spin_unlock(&mm->page_table_lock);
2847         unlock_page(page);
2848 out:
2849         return ret;
2850
2851 backout:
2852         spin_unlock(&mm->page_table_lock);
2853 backout_unlocked:
2854         unlock_page(page);
2855         put_page(page);
2856         goto out;
2857 }
2858
2859 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2860                         unsigned long address, unsigned int flags)
2861 {
2862         pte_t *ptep;
2863         pte_t entry;
2864         int ret;
2865         struct page *page = NULL;
2866         struct page *pagecache_page = NULL;
2867         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2868         struct hstate *h = hstate_vma(vma);
2869
2870         address &= huge_page_mask(h);
2871
2872         ptep = huge_pte_offset(mm, address);
2873         if (ptep) {
2874                 entry = huge_ptep_get(ptep);
2875                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2876                         migration_entry_wait_huge(mm, ptep);
2877                         return 0;
2878                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2879                         return VM_FAULT_HWPOISON_LARGE |
2880                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2881         }
2882
2883         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2884         if (!ptep)
2885                 return VM_FAULT_OOM;
2886
2887         /*
2888          * Serialize hugepage allocation and instantiation, so that we don't
2889          * get spurious allocation failures if two CPUs race to instantiate
2890          * the same page in the page cache.
2891          */
2892         mutex_lock(&hugetlb_instantiation_mutex);
2893         entry = huge_ptep_get(ptep);
2894         if (huge_pte_none(entry)) {
2895                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2896                 goto out_mutex;
2897         }
2898
2899         ret = 0;
2900
2901         /*
2902          * If we are going to COW the mapping later, we examine the pending
2903          * reservations for this page now. This will ensure that any
2904          * allocations necessary to record that reservation occur outside the
2905          * spinlock. For private mappings, we also lookup the pagecache
2906          * page now as it is used to determine if a reservation has been
2907          * consumed.
2908          */
2909         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2910                 if (vma_needs_reservation(h, vma, address) < 0) {
2911                         ret = VM_FAULT_OOM;
2912                         goto out_mutex;
2913                 }
2914
2915                 if (!(vma->vm_flags & VM_MAYSHARE))
2916                         pagecache_page = hugetlbfs_pagecache_page(h,
2917                                                                 vma, address);
2918         }
2919
2920         /*
2921          * hugetlb_cow() requires page locks of pte_page(entry) and
2922          * pagecache_page, so here we need take the former one
2923          * when page != pagecache_page or !pagecache_page.
2924          * Note that locking order is always pagecache_page -> page,
2925          * so no worry about deadlock.
2926          */
2927         page = pte_page(entry);
2928         get_page(page);
2929         if (page != pagecache_page)
2930                 lock_page(page);
2931
2932         spin_lock(&mm->page_table_lock);
2933         /* Check for a racing update before calling hugetlb_cow */
2934         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2935                 goto out_page_table_lock;
2936
2937
2938         if (flags & FAULT_FLAG_WRITE) {
2939                 if (!huge_pte_write(entry)) {
2940                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2941                                                         pagecache_page);
2942                         goto out_page_table_lock;
2943                 }
2944                 entry = huge_pte_mkdirty(entry);
2945         }
2946         entry = pte_mkyoung(entry);
2947         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2948                                                 flags & FAULT_FLAG_WRITE))
2949                 update_mmu_cache(vma, address, ptep);
2950
2951 out_page_table_lock:
2952         spin_unlock(&mm->page_table_lock);
2953
2954         if (pagecache_page) {
2955                 unlock_page(pagecache_page);
2956                 put_page(pagecache_page);
2957         }
2958         if (page != pagecache_page)
2959                 unlock_page(page);
2960         put_page(page);
2961
2962 out_mutex:
2963         mutex_unlock(&hugetlb_instantiation_mutex);
2964
2965         return ret;
2966 }
2967
2968 /* Can be overriden by architectures */
2969 __attribute__((weak)) struct page *
2970 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2971                pud_t *pud, int write)
2972 {
2973         BUG();
2974         return NULL;
2975 }
2976
2977 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2978                          struct page **pages, struct vm_area_struct **vmas,
2979                          unsigned long *position, unsigned long *nr_pages,
2980                          long i, unsigned int flags)
2981 {
2982         unsigned long pfn_offset;
2983         unsigned long vaddr = *position;
2984         unsigned long remainder = *nr_pages;
2985         struct hstate *h = hstate_vma(vma);
2986
2987         spin_lock(&mm->page_table_lock);
2988         while (vaddr < vma->vm_end && remainder) {
2989                 pte_t *pte;
2990                 int absent;
2991                 struct page *page;
2992
2993                 /*
2994                  * Some archs (sparc64, sh*) have multiple pte_ts to
2995                  * each hugepage.  We have to make sure we get the
2996                  * first, for the page indexing below to work.
2997                  */
2998                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2999                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3000
3001                 /*
3002                  * When coredumping, it suits get_dump_page if we just return
3003                  * an error where there's an empty slot with no huge pagecache
3004                  * to back it.  This way, we avoid allocating a hugepage, and
3005                  * the sparse dumpfile avoids allocating disk blocks, but its
3006                  * huge holes still show up with zeroes where they need to be.
3007                  */
3008                 if (absent && (flags & FOLL_DUMP) &&
3009                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3010                         remainder = 0;
3011                         break;
3012                 }
3013
3014                 /*
3015                  * We need call hugetlb_fault for both hugepages under migration
3016                  * (in which case hugetlb_fault waits for the migration,) and
3017                  * hwpoisoned hugepages (in which case we need to prevent the
3018                  * caller from accessing to them.) In order to do this, we use
3019                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3020                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3021                  * both cases, and because we can't follow correct pages
3022                  * directly from any kind of swap entries.
3023                  */
3024                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3025                     ((flags & FOLL_WRITE) &&
3026                       !huge_pte_write(huge_ptep_get(pte)))) {
3027                         int ret;
3028
3029                         spin_unlock(&mm->page_table_lock);
3030                         ret = hugetlb_fault(mm, vma, vaddr,
3031                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3032                         spin_lock(&mm->page_table_lock);
3033                         if (!(ret & VM_FAULT_ERROR))
3034                                 continue;
3035
3036                         remainder = 0;
3037                         break;
3038                 }
3039
3040                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3041                 page = pte_page(huge_ptep_get(pte));
3042 same_page:
3043                 if (pages) {
3044                         pages[i] = mem_map_offset(page, pfn_offset);
3045                         get_page(pages[i]);
3046                 }
3047
3048                 if (vmas)
3049                         vmas[i] = vma;
3050
3051                 vaddr += PAGE_SIZE;
3052                 ++pfn_offset;
3053                 --remainder;
3054                 ++i;
3055                 if (vaddr < vma->vm_end && remainder &&
3056                                 pfn_offset < pages_per_huge_page(h)) {
3057                         /*
3058                          * We use pfn_offset to avoid touching the pageframes
3059                          * of this compound page.
3060                          */
3061                         goto same_page;
3062                 }
3063         }
3064         spin_unlock(&mm->page_table_lock);
3065         *nr_pages = remainder;
3066         *position = vaddr;
3067
3068         return i ? i : -EFAULT;
3069 }
3070
3071 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3072                 unsigned long address, unsigned long end, pgprot_t newprot)
3073 {
3074         struct mm_struct *mm = vma->vm_mm;
3075         unsigned long start = address;
3076         pte_t *ptep;
3077         pte_t pte;
3078         struct hstate *h = hstate_vma(vma);
3079         unsigned long pages = 0;
3080
3081         BUG_ON(address >= end);
3082         flush_cache_range(vma, address, end);
3083
3084         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3085         spin_lock(&mm->page_table_lock);
3086         for (; address < end; address += huge_page_size(h)) {
3087                 ptep = huge_pte_offset(mm, address);
3088                 if (!ptep)
3089                         continue;
3090                 if (huge_pmd_unshare(mm, &address, ptep)) {
3091                         pages++;
3092                         continue;
3093                 }
3094                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3095                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3096                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3097                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3098                         set_huge_pte_at(mm, address, ptep, pte);
3099                         pages++;
3100                 }
3101         }
3102         spin_unlock(&mm->page_table_lock);
3103         /*
3104          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3105          * may have cleared our pud entry and done put_page on the page table:
3106          * once we release i_mmap_mutex, another task can do the final put_page
3107          * and that page table be reused and filled with junk.
3108          */
3109         flush_tlb_range(vma, start, end);
3110         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3111
3112         return pages << h->order;
3113 }
3114
3115 int hugetlb_reserve_pages(struct inode *inode,
3116                                         long from, long to,
3117                                         struct vm_area_struct *vma,
3118                                         vm_flags_t vm_flags)
3119 {
3120         long ret, chg;
3121         struct hstate *h = hstate_inode(inode);
3122         struct hugepage_subpool *spool = subpool_inode(inode);
3123
3124         /*
3125          * Only apply hugepage reservation if asked. At fault time, an
3126          * attempt will be made for VM_NORESERVE to allocate a page
3127          * without using reserves
3128          */
3129         if (vm_flags & VM_NORESERVE)
3130                 return 0;
3131
3132         /*
3133          * Shared mappings base their reservation on the number of pages that
3134          * are already allocated on behalf of the file. Private mappings need
3135          * to reserve the full area even if read-only as mprotect() may be
3136          * called to make the mapping read-write. Assume !vma is a shm mapping
3137          */
3138         if (!vma || vma->vm_flags & VM_MAYSHARE)
3139                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3140         else {
3141                 struct resv_map *resv_map = resv_map_alloc();
3142                 if (!resv_map)
3143                         return -ENOMEM;
3144
3145                 chg = to - from;
3146
3147                 set_vma_resv_map(vma, resv_map);
3148                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3149         }
3150
3151         if (chg < 0) {
3152                 ret = chg;
3153                 goto out_err;
3154         }
3155
3156         /* There must be enough pages in the subpool for the mapping */
3157         if (hugepage_subpool_get_pages(spool, chg)) {
3158                 ret = -ENOSPC;
3159                 goto out_err;
3160         }
3161
3162         /*
3163          * Check enough hugepages are available for the reservation.
3164          * Hand the pages back to the subpool if there are not
3165          */
3166         ret = hugetlb_acct_memory(h, chg);
3167         if (ret < 0) {
3168                 hugepage_subpool_put_pages(spool, chg);
3169                 goto out_err;
3170         }
3171
3172         /*
3173          * Account for the reservations made. Shared mappings record regions
3174          * that have reservations as they are shared by multiple VMAs.
3175          * When the last VMA disappears, the region map says how much
3176          * the reservation was and the page cache tells how much of
3177          * the reservation was consumed. Private mappings are per-VMA and
3178          * only the consumed reservations are tracked. When the VMA
3179          * disappears, the original reservation is the VMA size and the
3180          * consumed reservations are stored in the map. Hence, nothing
3181          * else has to be done for private mappings here
3182          */
3183         if (!vma || vma->vm_flags & VM_MAYSHARE)
3184                 region_add(&inode->i_mapping->private_list, from, to);
3185         return 0;
3186 out_err:
3187         if (vma)
3188                 resv_map_put(vma);
3189         return ret;
3190 }
3191
3192 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3193 {
3194         struct hstate *h = hstate_inode(inode);
3195         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3196         struct hugepage_subpool *spool = subpool_inode(inode);
3197
3198         spin_lock(&inode->i_lock);
3199         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3200         spin_unlock(&inode->i_lock);
3201
3202         hugepage_subpool_put_pages(spool, (chg - freed));
3203         hugetlb_acct_memory(h, -(chg - freed));
3204 }
3205
3206 #ifdef CONFIG_MEMORY_FAILURE
3207
3208 /* Should be called in hugetlb_lock */
3209 static int is_hugepage_on_freelist(struct page *hpage)
3210 {
3211         struct page *page;
3212         struct page *tmp;
3213         struct hstate *h = page_hstate(hpage);
3214         int nid = page_to_nid(hpage);
3215
3216         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3217                 if (page == hpage)
3218                         return 1;
3219         return 0;
3220 }
3221
3222 /*
3223  * This function is called from memory failure code.
3224  * Assume the caller holds page lock of the head page.
3225  */
3226 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3227 {
3228         struct hstate *h = page_hstate(hpage);
3229         int nid = page_to_nid(hpage);
3230         int ret = -EBUSY;
3231
3232         spin_lock(&hugetlb_lock);
3233         if (is_hugepage_on_freelist(hpage)) {
3234                 /*
3235                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3236                  * but dangling hpage->lru can trigger list-debug warnings
3237                  * (this happens when we call unpoison_memory() on it),
3238                  * so let it point to itself with list_del_init().
3239                  */
3240                 list_del_init(&hpage->lru);
3241                 set_page_refcounted(hpage);
3242                 h->free_huge_pages--;
3243                 h->free_huge_pages_node[nid]--;
3244                 ret = 0;
3245         }
3246         spin_unlock(&hugetlb_lock);
3247         return ret;
3248 }
3249 #endif