PNP / ACPI: proper handling of ACPI IO/Memory resource parsing failures
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_move(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
522                 if (!is_migrate_isolate_page(page))
523                         break;
524         /*
525          * if 'non-isolated free hugepage' not found on the list,
526          * the allocation fails.
527          */
528         if (&h->hugepage_freelists[nid] == &page->lru)
529                 return NULL;
530         list_move(&page->lru, &h->hugepage_activelist);
531         set_page_refcounted(page);
532         h->free_huge_pages--;
533         h->free_huge_pages_node[nid]--;
534         return page;
535 }
536
537 static struct page *dequeue_huge_page_vma(struct hstate *h,
538                                 struct vm_area_struct *vma,
539                                 unsigned long address, int avoid_reserve)
540 {
541         struct page *page = NULL;
542         struct mempolicy *mpol;
543         nodemask_t *nodemask;
544         struct zonelist *zonelist;
545         struct zone *zone;
546         struct zoneref *z;
547         unsigned int cpuset_mems_cookie;
548
549 retry_cpuset:
550         cpuset_mems_cookie = get_mems_allowed();
551         zonelist = huge_zonelist(vma, address,
552                                         htlb_alloc_mask, &mpol, &nodemask);
553         /*
554          * A child process with MAP_PRIVATE mappings created by their parent
555          * have no page reserves. This check ensures that reservations are
556          * not "stolen". The child may still get SIGKILLed
557          */
558         if (!vma_has_reserves(vma) &&
559                         h->free_huge_pages - h->resv_huge_pages == 0)
560                 goto err;
561
562         /* If reserves cannot be used, ensure enough pages are in the pool */
563         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
564                 goto err;
565
566         for_each_zone_zonelist_nodemask(zone, z, zonelist,
567                                                 MAX_NR_ZONES - 1, nodemask) {
568                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
569                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
570                         if (page) {
571                                 if (!avoid_reserve)
572                                         decrement_hugepage_resv_vma(h, vma);
573                                 break;
574                         }
575                 }
576         }
577
578         mpol_cond_put(mpol);
579         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
580                 goto retry_cpuset;
581         return page;
582
583 err:
584         mpol_cond_put(mpol);
585         return NULL;
586 }
587
588 static void update_and_free_page(struct hstate *h, struct page *page)
589 {
590         int i;
591
592         VM_BUG_ON(h->order >= MAX_ORDER);
593
594         h->nr_huge_pages--;
595         h->nr_huge_pages_node[page_to_nid(page)]--;
596         for (i = 0; i < pages_per_huge_page(h); i++) {
597                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
598                                 1 << PG_referenced | 1 << PG_dirty |
599                                 1 << PG_active | 1 << PG_reserved |
600                                 1 << PG_private | 1 << PG_writeback);
601         }
602         VM_BUG_ON(hugetlb_cgroup_from_page(page));
603         set_compound_page_dtor(page, NULL);
604         set_page_refcounted(page);
605         arch_release_hugepage(page);
606         __free_pages(page, huge_page_order(h));
607 }
608
609 struct hstate *size_to_hstate(unsigned long size)
610 {
611         struct hstate *h;
612
613         for_each_hstate(h) {
614                 if (huge_page_size(h) == size)
615                         return h;
616         }
617         return NULL;
618 }
619
620 static void free_huge_page(struct page *page)
621 {
622         /*
623          * Can't pass hstate in here because it is called from the
624          * compound page destructor.
625          */
626         struct hstate *h = page_hstate(page);
627         int nid = page_to_nid(page);
628         struct hugepage_subpool *spool =
629                 (struct hugepage_subpool *)page_private(page);
630
631         set_page_private(page, 0);
632         page->mapping = NULL;
633         BUG_ON(page_count(page));
634         BUG_ON(page_mapcount(page));
635
636         spin_lock(&hugetlb_lock);
637         hugetlb_cgroup_uncharge_page(hstate_index(h),
638                                      pages_per_huge_page(h), page);
639         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
640                 /* remove the page from active list */
641                 list_del(&page->lru);
642                 update_and_free_page(h, page);
643                 h->surplus_huge_pages--;
644                 h->surplus_huge_pages_node[nid]--;
645         } else {
646                 arch_clear_hugepage_flags(page);
647                 enqueue_huge_page(h, page);
648         }
649         spin_unlock(&hugetlb_lock);
650         hugepage_subpool_put_pages(spool, 1);
651 }
652
653 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
654 {
655         INIT_LIST_HEAD(&page->lru);
656         set_compound_page_dtor(page, free_huge_page);
657         spin_lock(&hugetlb_lock);
658         set_hugetlb_cgroup(page, NULL);
659         h->nr_huge_pages++;
660         h->nr_huge_pages_node[nid]++;
661         spin_unlock(&hugetlb_lock);
662         put_page(page); /* free it into the hugepage allocator */
663 }
664
665 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
666 {
667         int i;
668         int nr_pages = 1 << order;
669         struct page *p = page + 1;
670
671         /* we rely on prep_new_huge_page to set the destructor */
672         set_compound_order(page, order);
673         __SetPageHead(page);
674         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
675                 __SetPageTail(p);
676                 set_page_count(p, 0);
677                 p->first_page = page;
678         }
679 }
680
681 /*
682  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
683  * transparent huge pages.  See the PageTransHuge() documentation for more
684  * details.
685  */
686 int PageHuge(struct page *page)
687 {
688         compound_page_dtor *dtor;
689
690         if (!PageCompound(page))
691                 return 0;
692
693         page = compound_head(page);
694         dtor = get_compound_page_dtor(page);
695
696         return dtor == free_huge_page;
697 }
698 EXPORT_SYMBOL_GPL(PageHuge);
699
700 /*
701  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
702  * normal or transparent huge pages.
703  */
704 int PageHeadHuge(struct page *page_head)
705 {
706         compound_page_dtor *dtor;
707
708         if (!PageHead(page_head))
709                 return 0;
710
711         dtor = get_compound_page_dtor(page_head);
712
713         return dtor == free_huge_page;
714 }
715 EXPORT_SYMBOL_GPL(PageHeadHuge);
716
717 pgoff_t __basepage_index(struct page *page)
718 {
719         struct page *page_head = compound_head(page);
720         pgoff_t index = page_index(page_head);
721         unsigned long compound_idx;
722
723         if (!PageHuge(page_head))
724                 return page_index(page);
725
726         if (compound_order(page_head) >= MAX_ORDER)
727                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
728         else
729                 compound_idx = page - page_head;
730
731         return (index << compound_order(page_head)) + compound_idx;
732 }
733
734 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
735 {
736         struct page *page;
737
738         if (h->order >= MAX_ORDER)
739                 return NULL;
740
741         page = alloc_pages_exact_node(nid,
742                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
743                                                 __GFP_REPEAT|__GFP_NOWARN,
744                 huge_page_order(h));
745         if (page) {
746                 if (arch_prepare_hugepage(page)) {
747                         __free_pages(page, huge_page_order(h));
748                         return NULL;
749                 }
750                 prep_new_huge_page(h, page, nid);
751         }
752
753         return page;
754 }
755
756 /*
757  * common helper functions for hstate_next_node_to_{alloc|free}.
758  * We may have allocated or freed a huge page based on a different
759  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
760  * be outside of *nodes_allowed.  Ensure that we use an allowed
761  * node for alloc or free.
762  */
763 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
764 {
765         nid = next_node(nid, *nodes_allowed);
766         if (nid == MAX_NUMNODES)
767                 nid = first_node(*nodes_allowed);
768         VM_BUG_ON(nid >= MAX_NUMNODES);
769
770         return nid;
771 }
772
773 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
774 {
775         if (!node_isset(nid, *nodes_allowed))
776                 nid = next_node_allowed(nid, nodes_allowed);
777         return nid;
778 }
779
780 /*
781  * returns the previously saved node ["this node"] from which to
782  * allocate a persistent huge page for the pool and advance the
783  * next node from which to allocate, handling wrap at end of node
784  * mask.
785  */
786 static int hstate_next_node_to_alloc(struct hstate *h,
787                                         nodemask_t *nodes_allowed)
788 {
789         int nid;
790
791         VM_BUG_ON(!nodes_allowed);
792
793         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
794         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
795
796         return nid;
797 }
798
799 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
800 {
801         struct page *page;
802         int start_nid;
803         int next_nid;
804         int ret = 0;
805
806         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
807         next_nid = start_nid;
808
809         do {
810                 page = alloc_fresh_huge_page_node(h, next_nid);
811                 if (page) {
812                         ret = 1;
813                         break;
814                 }
815                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
816         } while (next_nid != start_nid);
817
818         if (ret)
819                 count_vm_event(HTLB_BUDDY_PGALLOC);
820         else
821                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
822
823         return ret;
824 }
825
826 /*
827  * helper for free_pool_huge_page() - return the previously saved
828  * node ["this node"] from which to free a huge page.  Advance the
829  * next node id whether or not we find a free huge page to free so
830  * that the next attempt to free addresses the next node.
831  */
832 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
833 {
834         int nid;
835
836         VM_BUG_ON(!nodes_allowed);
837
838         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
839         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
840
841         return nid;
842 }
843
844 /*
845  * Free huge page from pool from next node to free.
846  * Attempt to keep persistent huge pages more or less
847  * balanced over allowed nodes.
848  * Called with hugetlb_lock locked.
849  */
850 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
851                                                          bool acct_surplus)
852 {
853         int start_nid;
854         int next_nid;
855         int ret = 0;
856
857         start_nid = hstate_next_node_to_free(h, nodes_allowed);
858         next_nid = start_nid;
859
860         do {
861                 /*
862                  * If we're returning unused surplus pages, only examine
863                  * nodes with surplus pages.
864                  */
865                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
866                     !list_empty(&h->hugepage_freelists[next_nid])) {
867                         struct page *page =
868                                 list_entry(h->hugepage_freelists[next_nid].next,
869                                           struct page, lru);
870                         list_del(&page->lru);
871                         h->free_huge_pages--;
872                         h->free_huge_pages_node[next_nid]--;
873                         if (acct_surplus) {
874                                 h->surplus_huge_pages--;
875                                 h->surplus_huge_pages_node[next_nid]--;
876                         }
877                         update_and_free_page(h, page);
878                         ret = 1;
879                         break;
880                 }
881                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
882         } while (next_nid != start_nid);
883
884         return ret;
885 }
886
887 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
888 {
889         struct page *page;
890         unsigned int r_nid;
891
892         if (h->order >= MAX_ORDER)
893                 return NULL;
894
895         /*
896          * Assume we will successfully allocate the surplus page to
897          * prevent racing processes from causing the surplus to exceed
898          * overcommit
899          *
900          * This however introduces a different race, where a process B
901          * tries to grow the static hugepage pool while alloc_pages() is
902          * called by process A. B will only examine the per-node
903          * counters in determining if surplus huge pages can be
904          * converted to normal huge pages in adjust_pool_surplus(). A
905          * won't be able to increment the per-node counter, until the
906          * lock is dropped by B, but B doesn't drop hugetlb_lock until
907          * no more huge pages can be converted from surplus to normal
908          * state (and doesn't try to convert again). Thus, we have a
909          * case where a surplus huge page exists, the pool is grown, and
910          * the surplus huge page still exists after, even though it
911          * should just have been converted to a normal huge page. This
912          * does not leak memory, though, as the hugepage will be freed
913          * once it is out of use. It also does not allow the counters to
914          * go out of whack in adjust_pool_surplus() as we don't modify
915          * the node values until we've gotten the hugepage and only the
916          * per-node value is checked there.
917          */
918         spin_lock(&hugetlb_lock);
919         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
920                 spin_unlock(&hugetlb_lock);
921                 return NULL;
922         } else {
923                 h->nr_huge_pages++;
924                 h->surplus_huge_pages++;
925         }
926         spin_unlock(&hugetlb_lock);
927
928         if (nid == NUMA_NO_NODE)
929                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
930                                    __GFP_REPEAT|__GFP_NOWARN,
931                                    huge_page_order(h));
932         else
933                 page = alloc_pages_exact_node(nid,
934                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
935                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
936
937         if (page && arch_prepare_hugepage(page)) {
938                 __free_pages(page, huge_page_order(h));
939                 page = NULL;
940         }
941
942         spin_lock(&hugetlb_lock);
943         if (page) {
944                 INIT_LIST_HEAD(&page->lru);
945                 r_nid = page_to_nid(page);
946                 set_compound_page_dtor(page, free_huge_page);
947                 set_hugetlb_cgroup(page, NULL);
948                 /*
949                  * We incremented the global counters already
950                  */
951                 h->nr_huge_pages_node[r_nid]++;
952                 h->surplus_huge_pages_node[r_nid]++;
953                 __count_vm_event(HTLB_BUDDY_PGALLOC);
954         } else {
955                 h->nr_huge_pages--;
956                 h->surplus_huge_pages--;
957                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
958         }
959         spin_unlock(&hugetlb_lock);
960
961         return page;
962 }
963
964 /*
965  * This allocation function is useful in the context where vma is irrelevant.
966  * E.g. soft-offlining uses this function because it only cares physical
967  * address of error page.
968  */
969 struct page *alloc_huge_page_node(struct hstate *h, int nid)
970 {
971         struct page *page;
972
973         spin_lock(&hugetlb_lock);
974         page = dequeue_huge_page_node(h, nid);
975         spin_unlock(&hugetlb_lock);
976
977         if (!page)
978                 page = alloc_buddy_huge_page(h, nid);
979
980         return page;
981 }
982
983 /*
984  * Increase the hugetlb pool such that it can accommodate a reservation
985  * of size 'delta'.
986  */
987 static int gather_surplus_pages(struct hstate *h, int delta)
988 {
989         struct list_head surplus_list;
990         struct page *page, *tmp;
991         int ret, i;
992         int needed, allocated;
993         bool alloc_ok = true;
994
995         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
996         if (needed <= 0) {
997                 h->resv_huge_pages += delta;
998                 return 0;
999         }
1000
1001         allocated = 0;
1002         INIT_LIST_HEAD(&surplus_list);
1003
1004         ret = -ENOMEM;
1005 retry:
1006         spin_unlock(&hugetlb_lock);
1007         for (i = 0; i < needed; i++) {
1008                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1009                 if (!page) {
1010                         alloc_ok = false;
1011                         break;
1012                 }
1013                 list_add(&page->lru, &surplus_list);
1014         }
1015         allocated += i;
1016
1017         /*
1018          * After retaking hugetlb_lock, we need to recalculate 'needed'
1019          * because either resv_huge_pages or free_huge_pages may have changed.
1020          */
1021         spin_lock(&hugetlb_lock);
1022         needed = (h->resv_huge_pages + delta) -
1023                         (h->free_huge_pages + allocated);
1024         if (needed > 0) {
1025                 if (alloc_ok)
1026                         goto retry;
1027                 /*
1028                  * We were not able to allocate enough pages to
1029                  * satisfy the entire reservation so we free what
1030                  * we've allocated so far.
1031                  */
1032                 goto free;
1033         }
1034         /*
1035          * The surplus_list now contains _at_least_ the number of extra pages
1036          * needed to accommodate the reservation.  Add the appropriate number
1037          * of pages to the hugetlb pool and free the extras back to the buddy
1038          * allocator.  Commit the entire reservation here to prevent another
1039          * process from stealing the pages as they are added to the pool but
1040          * before they are reserved.
1041          */
1042         needed += allocated;
1043         h->resv_huge_pages += delta;
1044         ret = 0;
1045
1046         /* Free the needed pages to the hugetlb pool */
1047         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1048                 if ((--needed) < 0)
1049                         break;
1050                 /*
1051                  * This page is now managed by the hugetlb allocator and has
1052                  * no users -- drop the buddy allocator's reference.
1053                  */
1054                 put_page_testzero(page);
1055                 VM_BUG_ON(page_count(page));
1056                 enqueue_huge_page(h, page);
1057         }
1058 free:
1059         spin_unlock(&hugetlb_lock);
1060
1061         /* Free unnecessary surplus pages to the buddy allocator */
1062         if (!list_empty(&surplus_list)) {
1063                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1064                         put_page(page);
1065                 }
1066         }
1067         spin_lock(&hugetlb_lock);
1068
1069         return ret;
1070 }
1071
1072 /*
1073  * When releasing a hugetlb pool reservation, any surplus pages that were
1074  * allocated to satisfy the reservation must be explicitly freed if they were
1075  * never used.
1076  * Called with hugetlb_lock held.
1077  */
1078 static void return_unused_surplus_pages(struct hstate *h,
1079                                         unsigned long unused_resv_pages)
1080 {
1081         unsigned long nr_pages;
1082
1083         /* Uncommit the reservation */
1084         h->resv_huge_pages -= unused_resv_pages;
1085
1086         /* Cannot return gigantic pages currently */
1087         if (h->order >= MAX_ORDER)
1088                 return;
1089
1090         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1091
1092         /*
1093          * We want to release as many surplus pages as possible, spread
1094          * evenly across all nodes with memory. Iterate across these nodes
1095          * until we can no longer free unreserved surplus pages. This occurs
1096          * when the nodes with surplus pages have no free pages.
1097          * free_pool_huge_page() will balance the the freed pages across the
1098          * on-line nodes with memory and will handle the hstate accounting.
1099          */
1100         while (nr_pages--) {
1101                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1102                         break;
1103         }
1104 }
1105
1106 /*
1107  * Determine if the huge page at addr within the vma has an associated
1108  * reservation.  Where it does not we will need to logically increase
1109  * reservation and actually increase subpool usage before an allocation
1110  * can occur.  Where any new reservation would be required the
1111  * reservation change is prepared, but not committed.  Once the page
1112  * has been allocated from the subpool and instantiated the change should
1113  * be committed via vma_commit_reservation.  No action is required on
1114  * failure.
1115  */
1116 static long vma_needs_reservation(struct hstate *h,
1117                         struct vm_area_struct *vma, unsigned long addr)
1118 {
1119         struct address_space *mapping = vma->vm_file->f_mapping;
1120         struct inode *inode = mapping->host;
1121
1122         if (vma->vm_flags & VM_MAYSHARE) {
1123                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1124                 return region_chg(&inode->i_mapping->private_list,
1125                                                         idx, idx + 1);
1126
1127         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1128                 return 1;
1129
1130         } else  {
1131                 long err;
1132                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1133                 struct resv_map *reservations = vma_resv_map(vma);
1134
1135                 err = region_chg(&reservations->regions, idx, idx + 1);
1136                 if (err < 0)
1137                         return err;
1138                 return 0;
1139         }
1140 }
1141 static void vma_commit_reservation(struct hstate *h,
1142                         struct vm_area_struct *vma, unsigned long addr)
1143 {
1144         struct address_space *mapping = vma->vm_file->f_mapping;
1145         struct inode *inode = mapping->host;
1146
1147         if (vma->vm_flags & VM_MAYSHARE) {
1148                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1149                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1150
1151         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1152                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1153                 struct resv_map *reservations = vma_resv_map(vma);
1154
1155                 /* Mark this page used in the map. */
1156                 region_add(&reservations->regions, idx, idx + 1);
1157         }
1158 }
1159
1160 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1161                                     unsigned long addr, int avoid_reserve)
1162 {
1163         struct hugepage_subpool *spool = subpool_vma(vma);
1164         struct hstate *h = hstate_vma(vma);
1165         struct page *page;
1166         long chg;
1167         int ret, idx;
1168         struct hugetlb_cgroup *h_cg;
1169
1170         idx = hstate_index(h);
1171         /*
1172          * Processes that did not create the mapping will have no
1173          * reserves and will not have accounted against subpool
1174          * limit. Check that the subpool limit can be made before
1175          * satisfying the allocation MAP_NORESERVE mappings may also
1176          * need pages and subpool limit allocated allocated if no reserve
1177          * mapping overlaps.
1178          */
1179         chg = vma_needs_reservation(h, vma, addr);
1180         if (chg < 0)
1181                 return ERR_PTR(-ENOMEM);
1182         if (chg)
1183                 if (hugepage_subpool_get_pages(spool, chg))
1184                         return ERR_PTR(-ENOSPC);
1185
1186         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1187         if (ret) {
1188                 hugepage_subpool_put_pages(spool, chg);
1189                 return ERR_PTR(-ENOSPC);
1190         }
1191         spin_lock(&hugetlb_lock);
1192         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1193         if (page) {
1194                 /* update page cgroup details */
1195                 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1196                                              h_cg, page);
1197                 spin_unlock(&hugetlb_lock);
1198         } else {
1199                 spin_unlock(&hugetlb_lock);
1200                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1201                 if (!page) {
1202                         hugetlb_cgroup_uncharge_cgroup(idx,
1203                                                        pages_per_huge_page(h),
1204                                                        h_cg);
1205                         hugepage_subpool_put_pages(spool, chg);
1206                         return ERR_PTR(-ENOSPC);
1207                 }
1208                 spin_lock(&hugetlb_lock);
1209                 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1210                                              h_cg, page);
1211                 list_move(&page->lru, &h->hugepage_activelist);
1212                 spin_unlock(&hugetlb_lock);
1213         }
1214
1215         set_page_private(page, (unsigned long)spool);
1216
1217         vma_commit_reservation(h, vma, addr);
1218         return page;
1219 }
1220
1221 int __weak alloc_bootmem_huge_page(struct hstate *h)
1222 {
1223         struct huge_bootmem_page *m;
1224         int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1225
1226         while (nr_nodes) {
1227                 void *addr;
1228
1229                 addr = __alloc_bootmem_node_nopanic(
1230                                 NODE_DATA(hstate_next_node_to_alloc(h,
1231                                                 &node_states[N_MEMORY])),
1232                                 huge_page_size(h), huge_page_size(h), 0);
1233
1234                 if (addr) {
1235                         /*
1236                          * Use the beginning of the huge page to store the
1237                          * huge_bootmem_page struct (until gather_bootmem
1238                          * puts them into the mem_map).
1239                          */
1240                         m = addr;
1241                         goto found;
1242                 }
1243                 nr_nodes--;
1244         }
1245         return 0;
1246
1247 found:
1248         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1249         /* Put them into a private list first because mem_map is not up yet */
1250         list_add(&m->list, &huge_boot_pages);
1251         m->hstate = h;
1252         return 1;
1253 }
1254
1255 static void prep_compound_huge_page(struct page *page, int order)
1256 {
1257         if (unlikely(order > (MAX_ORDER - 1)))
1258                 prep_compound_gigantic_page(page, order);
1259         else
1260                 prep_compound_page(page, order);
1261 }
1262
1263 /* Put bootmem huge pages into the standard lists after mem_map is up */
1264 static void __init gather_bootmem_prealloc(void)
1265 {
1266         struct huge_bootmem_page *m;
1267
1268         list_for_each_entry(m, &huge_boot_pages, list) {
1269                 struct hstate *h = m->hstate;
1270                 struct page *page;
1271
1272 #ifdef CONFIG_HIGHMEM
1273                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1274                 free_bootmem_late((unsigned long)m,
1275                                   sizeof(struct huge_bootmem_page));
1276 #else
1277                 page = virt_to_page(m);
1278 #endif
1279                 __ClearPageReserved(page);
1280                 WARN_ON(page_count(page) != 1);
1281                 prep_compound_huge_page(page, h->order);
1282                 prep_new_huge_page(h, page, page_to_nid(page));
1283                 /*
1284                  * If we had gigantic hugepages allocated at boot time, we need
1285                  * to restore the 'stolen' pages to totalram_pages in order to
1286                  * fix confusing memory reports from free(1) and another
1287                  * side-effects, like CommitLimit going negative.
1288                  */
1289                 if (h->order > (MAX_ORDER - 1))
1290                         totalram_pages += 1 << h->order;
1291         }
1292 }
1293
1294 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1295 {
1296         unsigned long i;
1297
1298         for (i = 0; i < h->max_huge_pages; ++i) {
1299                 if (h->order >= MAX_ORDER) {
1300                         if (!alloc_bootmem_huge_page(h))
1301                                 break;
1302                 } else if (!alloc_fresh_huge_page(h,
1303                                          &node_states[N_MEMORY]))
1304                         break;
1305         }
1306         h->max_huge_pages = i;
1307 }
1308
1309 static void __init hugetlb_init_hstates(void)
1310 {
1311         struct hstate *h;
1312
1313         for_each_hstate(h) {
1314                 /* oversize hugepages were init'ed in early boot */
1315                 if (h->order < MAX_ORDER)
1316                         hugetlb_hstate_alloc_pages(h);
1317         }
1318 }
1319
1320 static char * __init memfmt(char *buf, unsigned long n)
1321 {
1322         if (n >= (1UL << 30))
1323                 sprintf(buf, "%lu GB", n >> 30);
1324         else if (n >= (1UL << 20))
1325                 sprintf(buf, "%lu MB", n >> 20);
1326         else
1327                 sprintf(buf, "%lu KB", n >> 10);
1328         return buf;
1329 }
1330
1331 static void __init report_hugepages(void)
1332 {
1333         struct hstate *h;
1334
1335         for_each_hstate(h) {
1336                 char buf[32];
1337                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1338                         memfmt(buf, huge_page_size(h)),
1339                         h->free_huge_pages);
1340         }
1341 }
1342
1343 #ifdef CONFIG_HIGHMEM
1344 static void try_to_free_low(struct hstate *h, unsigned long count,
1345                                                 nodemask_t *nodes_allowed)
1346 {
1347         int i;
1348
1349         if (h->order >= MAX_ORDER)
1350                 return;
1351
1352         for_each_node_mask(i, *nodes_allowed) {
1353                 struct page *page, *next;
1354                 struct list_head *freel = &h->hugepage_freelists[i];
1355                 list_for_each_entry_safe(page, next, freel, lru) {
1356                         if (count >= h->nr_huge_pages)
1357                                 return;
1358                         if (PageHighMem(page))
1359                                 continue;
1360                         list_del(&page->lru);
1361                         update_and_free_page(h, page);
1362                         h->free_huge_pages--;
1363                         h->free_huge_pages_node[page_to_nid(page)]--;
1364                 }
1365         }
1366 }
1367 #else
1368 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1369                                                 nodemask_t *nodes_allowed)
1370 {
1371 }
1372 #endif
1373
1374 /*
1375  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1376  * balanced by operating on them in a round-robin fashion.
1377  * Returns 1 if an adjustment was made.
1378  */
1379 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1380                                 int delta)
1381 {
1382         int start_nid, next_nid;
1383         int ret = 0;
1384
1385         VM_BUG_ON(delta != -1 && delta != 1);
1386
1387         if (delta < 0)
1388                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1389         else
1390                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1391         next_nid = start_nid;
1392
1393         do {
1394                 int nid = next_nid;
1395                 if (delta < 0)  {
1396                         /*
1397                          * To shrink on this node, there must be a surplus page
1398                          */
1399                         if (!h->surplus_huge_pages_node[nid]) {
1400                                 next_nid = hstate_next_node_to_alloc(h,
1401                                                                 nodes_allowed);
1402                                 continue;
1403                         }
1404                 }
1405                 if (delta > 0) {
1406                         /*
1407                          * Surplus cannot exceed the total number of pages
1408                          */
1409                         if (h->surplus_huge_pages_node[nid] >=
1410                                                 h->nr_huge_pages_node[nid]) {
1411                                 next_nid = hstate_next_node_to_free(h,
1412                                                                 nodes_allowed);
1413                                 continue;
1414                         }
1415                 }
1416
1417                 h->surplus_huge_pages += delta;
1418                 h->surplus_huge_pages_node[nid] += delta;
1419                 ret = 1;
1420                 break;
1421         } while (next_nid != start_nid);
1422
1423         return ret;
1424 }
1425
1426 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1427 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1428                                                 nodemask_t *nodes_allowed)
1429 {
1430         unsigned long min_count, ret;
1431
1432         if (h->order >= MAX_ORDER)
1433                 return h->max_huge_pages;
1434
1435         /*
1436          * Increase the pool size
1437          * First take pages out of surplus state.  Then make up the
1438          * remaining difference by allocating fresh huge pages.
1439          *
1440          * We might race with alloc_buddy_huge_page() here and be unable
1441          * to convert a surplus huge page to a normal huge page. That is
1442          * not critical, though, it just means the overall size of the
1443          * pool might be one hugepage larger than it needs to be, but
1444          * within all the constraints specified by the sysctls.
1445          */
1446         spin_lock(&hugetlb_lock);
1447         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1448                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1449                         break;
1450         }
1451
1452         while (count > persistent_huge_pages(h)) {
1453                 /*
1454                  * If this allocation races such that we no longer need the
1455                  * page, free_huge_page will handle it by freeing the page
1456                  * and reducing the surplus.
1457                  */
1458                 spin_unlock(&hugetlb_lock);
1459                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1460                 spin_lock(&hugetlb_lock);
1461                 if (!ret)
1462                         goto out;
1463
1464                 /* Bail for signals. Probably ctrl-c from user */
1465                 if (signal_pending(current))
1466                         goto out;
1467         }
1468
1469         /*
1470          * Decrease the pool size
1471          * First return free pages to the buddy allocator (being careful
1472          * to keep enough around to satisfy reservations).  Then place
1473          * pages into surplus state as needed so the pool will shrink
1474          * to the desired size as pages become free.
1475          *
1476          * By placing pages into the surplus state independent of the
1477          * overcommit value, we are allowing the surplus pool size to
1478          * exceed overcommit. There are few sane options here. Since
1479          * alloc_buddy_huge_page() is checking the global counter,
1480          * though, we'll note that we're not allowed to exceed surplus
1481          * and won't grow the pool anywhere else. Not until one of the
1482          * sysctls are changed, or the surplus pages go out of use.
1483          */
1484         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1485         min_count = max(count, min_count);
1486         try_to_free_low(h, min_count, nodes_allowed);
1487         while (min_count < persistent_huge_pages(h)) {
1488                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1489                         break;
1490         }
1491         while (count < persistent_huge_pages(h)) {
1492                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1493                         break;
1494         }
1495 out:
1496         ret = persistent_huge_pages(h);
1497         spin_unlock(&hugetlb_lock);
1498         return ret;
1499 }
1500
1501 #define HSTATE_ATTR_RO(_name) \
1502         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1503
1504 #define HSTATE_ATTR(_name) \
1505         static struct kobj_attribute _name##_attr = \
1506                 __ATTR(_name, 0644, _name##_show, _name##_store)
1507
1508 static struct kobject *hugepages_kobj;
1509 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1510
1511 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1512
1513 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1514 {
1515         int i;
1516
1517         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1518                 if (hstate_kobjs[i] == kobj) {
1519                         if (nidp)
1520                                 *nidp = NUMA_NO_NODE;
1521                         return &hstates[i];
1522                 }
1523
1524         return kobj_to_node_hstate(kobj, nidp);
1525 }
1526
1527 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1528                                         struct kobj_attribute *attr, char *buf)
1529 {
1530         struct hstate *h;
1531         unsigned long nr_huge_pages;
1532         int nid;
1533
1534         h = kobj_to_hstate(kobj, &nid);
1535         if (nid == NUMA_NO_NODE)
1536                 nr_huge_pages = h->nr_huge_pages;
1537         else
1538                 nr_huge_pages = h->nr_huge_pages_node[nid];
1539
1540         return sprintf(buf, "%lu\n", nr_huge_pages);
1541 }
1542
1543 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1544                         struct kobject *kobj, struct kobj_attribute *attr,
1545                         const char *buf, size_t len)
1546 {
1547         int err;
1548         int nid;
1549         unsigned long count;
1550         struct hstate *h;
1551         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1552
1553         err = strict_strtoul(buf, 10, &count);
1554         if (err)
1555                 goto out;
1556
1557         h = kobj_to_hstate(kobj, &nid);
1558         if (h->order >= MAX_ORDER) {
1559                 err = -EINVAL;
1560                 goto out;
1561         }
1562
1563         if (nid == NUMA_NO_NODE) {
1564                 /*
1565                  * global hstate attribute
1566                  */
1567                 if (!(obey_mempolicy &&
1568                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1569                         NODEMASK_FREE(nodes_allowed);
1570                         nodes_allowed = &node_states[N_MEMORY];
1571                 }
1572         } else if (nodes_allowed) {
1573                 /*
1574                  * per node hstate attribute: adjust count to global,
1575                  * but restrict alloc/free to the specified node.
1576                  */
1577                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1578                 init_nodemask_of_node(nodes_allowed, nid);
1579         } else
1580                 nodes_allowed = &node_states[N_MEMORY];
1581
1582         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1583
1584         if (nodes_allowed != &node_states[N_MEMORY])
1585                 NODEMASK_FREE(nodes_allowed);
1586
1587         return len;
1588 out:
1589         NODEMASK_FREE(nodes_allowed);
1590         return err;
1591 }
1592
1593 static ssize_t nr_hugepages_show(struct kobject *kobj,
1594                                        struct kobj_attribute *attr, char *buf)
1595 {
1596         return nr_hugepages_show_common(kobj, attr, buf);
1597 }
1598
1599 static ssize_t nr_hugepages_store(struct kobject *kobj,
1600                struct kobj_attribute *attr, const char *buf, size_t len)
1601 {
1602         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1603 }
1604 HSTATE_ATTR(nr_hugepages);
1605
1606 #ifdef CONFIG_NUMA
1607
1608 /*
1609  * hstate attribute for optionally mempolicy-based constraint on persistent
1610  * huge page alloc/free.
1611  */
1612 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1613                                        struct kobj_attribute *attr, char *buf)
1614 {
1615         return nr_hugepages_show_common(kobj, attr, buf);
1616 }
1617
1618 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1619                struct kobj_attribute *attr, const char *buf, size_t len)
1620 {
1621         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1622 }
1623 HSTATE_ATTR(nr_hugepages_mempolicy);
1624 #endif
1625
1626
1627 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1628                                         struct kobj_attribute *attr, char *buf)
1629 {
1630         struct hstate *h = kobj_to_hstate(kobj, NULL);
1631         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1632 }
1633
1634 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1635                 struct kobj_attribute *attr, const char *buf, size_t count)
1636 {
1637         int err;
1638         unsigned long input;
1639         struct hstate *h = kobj_to_hstate(kobj, NULL);
1640
1641         if (h->order >= MAX_ORDER)
1642                 return -EINVAL;
1643
1644         err = strict_strtoul(buf, 10, &input);
1645         if (err)
1646                 return err;
1647
1648         spin_lock(&hugetlb_lock);
1649         h->nr_overcommit_huge_pages = input;
1650         spin_unlock(&hugetlb_lock);
1651
1652         return count;
1653 }
1654 HSTATE_ATTR(nr_overcommit_hugepages);
1655
1656 static ssize_t free_hugepages_show(struct kobject *kobj,
1657                                         struct kobj_attribute *attr, char *buf)
1658 {
1659         struct hstate *h;
1660         unsigned long free_huge_pages;
1661         int nid;
1662
1663         h = kobj_to_hstate(kobj, &nid);
1664         if (nid == NUMA_NO_NODE)
1665                 free_huge_pages = h->free_huge_pages;
1666         else
1667                 free_huge_pages = h->free_huge_pages_node[nid];
1668
1669         return sprintf(buf, "%lu\n", free_huge_pages);
1670 }
1671 HSTATE_ATTR_RO(free_hugepages);
1672
1673 static ssize_t resv_hugepages_show(struct kobject *kobj,
1674                                         struct kobj_attribute *attr, char *buf)
1675 {
1676         struct hstate *h = kobj_to_hstate(kobj, NULL);
1677         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1678 }
1679 HSTATE_ATTR_RO(resv_hugepages);
1680
1681 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1682                                         struct kobj_attribute *attr, char *buf)
1683 {
1684         struct hstate *h;
1685         unsigned long surplus_huge_pages;
1686         int nid;
1687
1688         h = kobj_to_hstate(kobj, &nid);
1689         if (nid == NUMA_NO_NODE)
1690                 surplus_huge_pages = h->surplus_huge_pages;
1691         else
1692                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1693
1694         return sprintf(buf, "%lu\n", surplus_huge_pages);
1695 }
1696 HSTATE_ATTR_RO(surplus_hugepages);
1697
1698 static struct attribute *hstate_attrs[] = {
1699         &nr_hugepages_attr.attr,
1700         &nr_overcommit_hugepages_attr.attr,
1701         &free_hugepages_attr.attr,
1702         &resv_hugepages_attr.attr,
1703         &surplus_hugepages_attr.attr,
1704 #ifdef CONFIG_NUMA
1705         &nr_hugepages_mempolicy_attr.attr,
1706 #endif
1707         NULL,
1708 };
1709
1710 static struct attribute_group hstate_attr_group = {
1711         .attrs = hstate_attrs,
1712 };
1713
1714 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1715                                     struct kobject **hstate_kobjs,
1716                                     struct attribute_group *hstate_attr_group)
1717 {
1718         int retval;
1719         int hi = hstate_index(h);
1720
1721         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1722         if (!hstate_kobjs[hi])
1723                 return -ENOMEM;
1724
1725         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1726         if (retval)
1727                 kobject_put(hstate_kobjs[hi]);
1728
1729         return retval;
1730 }
1731
1732 static void __init hugetlb_sysfs_init(void)
1733 {
1734         struct hstate *h;
1735         int err;
1736
1737         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1738         if (!hugepages_kobj)
1739                 return;
1740
1741         for_each_hstate(h) {
1742                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1743                                          hstate_kobjs, &hstate_attr_group);
1744                 if (err)
1745                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1746         }
1747 }
1748
1749 #ifdef CONFIG_NUMA
1750
1751 /*
1752  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1753  * with node devices in node_devices[] using a parallel array.  The array
1754  * index of a node device or _hstate == node id.
1755  * This is here to avoid any static dependency of the node device driver, in
1756  * the base kernel, on the hugetlb module.
1757  */
1758 struct node_hstate {
1759         struct kobject          *hugepages_kobj;
1760         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1761 };
1762 struct node_hstate node_hstates[MAX_NUMNODES];
1763
1764 /*
1765  * A subset of global hstate attributes for node devices
1766  */
1767 static struct attribute *per_node_hstate_attrs[] = {
1768         &nr_hugepages_attr.attr,
1769         &free_hugepages_attr.attr,
1770         &surplus_hugepages_attr.attr,
1771         NULL,
1772 };
1773
1774 static struct attribute_group per_node_hstate_attr_group = {
1775         .attrs = per_node_hstate_attrs,
1776 };
1777
1778 /*
1779  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1780  * Returns node id via non-NULL nidp.
1781  */
1782 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1783 {
1784         int nid;
1785
1786         for (nid = 0; nid < nr_node_ids; nid++) {
1787                 struct node_hstate *nhs = &node_hstates[nid];
1788                 int i;
1789                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1790                         if (nhs->hstate_kobjs[i] == kobj) {
1791                                 if (nidp)
1792                                         *nidp = nid;
1793                                 return &hstates[i];
1794                         }
1795         }
1796
1797         BUG();
1798         return NULL;
1799 }
1800
1801 /*
1802  * Unregister hstate attributes from a single node device.
1803  * No-op if no hstate attributes attached.
1804  */
1805 static void hugetlb_unregister_node(struct node *node)
1806 {
1807         struct hstate *h;
1808         struct node_hstate *nhs = &node_hstates[node->dev.id];
1809
1810         if (!nhs->hugepages_kobj)
1811                 return;         /* no hstate attributes */
1812
1813         for_each_hstate(h) {
1814                 int idx = hstate_index(h);
1815                 if (nhs->hstate_kobjs[idx]) {
1816                         kobject_put(nhs->hstate_kobjs[idx]);
1817                         nhs->hstate_kobjs[idx] = NULL;
1818                 }
1819         }
1820
1821         kobject_put(nhs->hugepages_kobj);
1822         nhs->hugepages_kobj = NULL;
1823 }
1824
1825 /*
1826  * hugetlb module exit:  unregister hstate attributes from node devices
1827  * that have them.
1828  */
1829 static void hugetlb_unregister_all_nodes(void)
1830 {
1831         int nid;
1832
1833         /*
1834          * disable node device registrations.
1835          */
1836         register_hugetlbfs_with_node(NULL, NULL);
1837
1838         /*
1839          * remove hstate attributes from any nodes that have them.
1840          */
1841         for (nid = 0; nid < nr_node_ids; nid++)
1842                 hugetlb_unregister_node(node_devices[nid]);
1843 }
1844
1845 /*
1846  * Register hstate attributes for a single node device.
1847  * No-op if attributes already registered.
1848  */
1849 static void hugetlb_register_node(struct node *node)
1850 {
1851         struct hstate *h;
1852         struct node_hstate *nhs = &node_hstates[node->dev.id];
1853         int err;
1854
1855         if (nhs->hugepages_kobj)
1856                 return;         /* already allocated */
1857
1858         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1859                                                         &node->dev.kobj);
1860         if (!nhs->hugepages_kobj)
1861                 return;
1862
1863         for_each_hstate(h) {
1864                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1865                                                 nhs->hstate_kobjs,
1866                                                 &per_node_hstate_attr_group);
1867                 if (err) {
1868                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1869                                 h->name, node->dev.id);
1870                         hugetlb_unregister_node(node);
1871                         break;
1872                 }
1873         }
1874 }
1875
1876 /*
1877  * hugetlb init time:  register hstate attributes for all registered node
1878  * devices of nodes that have memory.  All on-line nodes should have
1879  * registered their associated device by this time.
1880  */
1881 static void hugetlb_register_all_nodes(void)
1882 {
1883         int nid;
1884
1885         for_each_node_state(nid, N_MEMORY) {
1886                 struct node *node = node_devices[nid];
1887                 if (node->dev.id == nid)
1888                         hugetlb_register_node(node);
1889         }
1890
1891         /*
1892          * Let the node device driver know we're here so it can
1893          * [un]register hstate attributes on node hotplug.
1894          */
1895         register_hugetlbfs_with_node(hugetlb_register_node,
1896                                      hugetlb_unregister_node);
1897 }
1898 #else   /* !CONFIG_NUMA */
1899
1900 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1901 {
1902         BUG();
1903         if (nidp)
1904                 *nidp = -1;
1905         return NULL;
1906 }
1907
1908 static void hugetlb_unregister_all_nodes(void) { }
1909
1910 static void hugetlb_register_all_nodes(void) { }
1911
1912 #endif
1913
1914 static void __exit hugetlb_exit(void)
1915 {
1916         struct hstate *h;
1917
1918         hugetlb_unregister_all_nodes();
1919
1920         for_each_hstate(h) {
1921                 kobject_put(hstate_kobjs[hstate_index(h)]);
1922         }
1923
1924         kobject_put(hugepages_kobj);
1925 }
1926 module_exit(hugetlb_exit);
1927
1928 static int __init hugetlb_init(void)
1929 {
1930         /* Some platform decide whether they support huge pages at boot
1931          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1932          * there is no such support
1933          */
1934         if (HPAGE_SHIFT == 0)
1935                 return 0;
1936
1937         if (!size_to_hstate(default_hstate_size)) {
1938                 default_hstate_size = HPAGE_SIZE;
1939                 if (!size_to_hstate(default_hstate_size))
1940                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1941         }
1942         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1943         if (default_hstate_max_huge_pages)
1944                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1945
1946         hugetlb_init_hstates();
1947         gather_bootmem_prealloc();
1948         report_hugepages();
1949
1950         hugetlb_sysfs_init();
1951         hugetlb_register_all_nodes();
1952         hugetlb_cgroup_file_init();
1953
1954         return 0;
1955 }
1956 module_init(hugetlb_init);
1957
1958 /* Should be called on processing a hugepagesz=... option */
1959 void __init hugetlb_add_hstate(unsigned order)
1960 {
1961         struct hstate *h;
1962         unsigned long i;
1963
1964         if (size_to_hstate(PAGE_SIZE << order)) {
1965                 pr_warning("hugepagesz= specified twice, ignoring\n");
1966                 return;
1967         }
1968         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1969         BUG_ON(order == 0);
1970         h = &hstates[hugetlb_max_hstate++];
1971         h->order = order;
1972         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1973         h->nr_huge_pages = 0;
1974         h->free_huge_pages = 0;
1975         for (i = 0; i < MAX_NUMNODES; ++i)
1976                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1977         INIT_LIST_HEAD(&h->hugepage_activelist);
1978         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1979         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1980         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1981                                         huge_page_size(h)/1024);
1982
1983         parsed_hstate = h;
1984 }
1985
1986 static int __init hugetlb_nrpages_setup(char *s)
1987 {
1988         unsigned long *mhp;
1989         static unsigned long *last_mhp;
1990
1991         /*
1992          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1993          * so this hugepages= parameter goes to the "default hstate".
1994          */
1995         if (!hugetlb_max_hstate)
1996                 mhp = &default_hstate_max_huge_pages;
1997         else
1998                 mhp = &parsed_hstate->max_huge_pages;
1999
2000         if (mhp == last_mhp) {
2001                 pr_warning("hugepages= specified twice without "
2002                            "interleaving hugepagesz=, ignoring\n");
2003                 return 1;
2004         }
2005
2006         if (sscanf(s, "%lu", mhp) <= 0)
2007                 *mhp = 0;
2008
2009         /*
2010          * Global state is always initialized later in hugetlb_init.
2011          * But we need to allocate >= MAX_ORDER hstates here early to still
2012          * use the bootmem allocator.
2013          */
2014         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2015                 hugetlb_hstate_alloc_pages(parsed_hstate);
2016
2017         last_mhp = mhp;
2018
2019         return 1;
2020 }
2021 __setup("hugepages=", hugetlb_nrpages_setup);
2022
2023 static int __init hugetlb_default_setup(char *s)
2024 {
2025         default_hstate_size = memparse(s, &s);
2026         return 1;
2027 }
2028 __setup("default_hugepagesz=", hugetlb_default_setup);
2029
2030 static unsigned int cpuset_mems_nr(unsigned int *array)
2031 {
2032         int node;
2033         unsigned int nr = 0;
2034
2035         for_each_node_mask(node, cpuset_current_mems_allowed)
2036                 nr += array[node];
2037
2038         return nr;
2039 }
2040
2041 #ifdef CONFIG_SYSCTL
2042 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2043                          struct ctl_table *table, int write,
2044                          void __user *buffer, size_t *length, loff_t *ppos)
2045 {
2046         struct hstate *h = &default_hstate;
2047         unsigned long tmp;
2048         int ret;
2049
2050         tmp = h->max_huge_pages;
2051
2052         if (write && h->order >= MAX_ORDER)
2053                 return -EINVAL;
2054
2055         table->data = &tmp;
2056         table->maxlen = sizeof(unsigned long);
2057         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2058         if (ret)
2059                 goto out;
2060
2061         if (write) {
2062                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2063                                                 GFP_KERNEL | __GFP_NORETRY);
2064                 if (!(obey_mempolicy &&
2065                                init_nodemask_of_mempolicy(nodes_allowed))) {
2066                         NODEMASK_FREE(nodes_allowed);
2067                         nodes_allowed = &node_states[N_MEMORY];
2068                 }
2069                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2070
2071                 if (nodes_allowed != &node_states[N_MEMORY])
2072                         NODEMASK_FREE(nodes_allowed);
2073         }
2074 out:
2075         return ret;
2076 }
2077
2078 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2079                           void __user *buffer, size_t *length, loff_t *ppos)
2080 {
2081
2082         return hugetlb_sysctl_handler_common(false, table, write,
2083                                                         buffer, length, ppos);
2084 }
2085
2086 #ifdef CONFIG_NUMA
2087 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2088                           void __user *buffer, size_t *length, loff_t *ppos)
2089 {
2090         return hugetlb_sysctl_handler_common(true, table, write,
2091                                                         buffer, length, ppos);
2092 }
2093 #endif /* CONFIG_NUMA */
2094
2095 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2096                         void __user *buffer,
2097                         size_t *length, loff_t *ppos)
2098 {
2099         proc_dointvec(table, write, buffer, length, ppos);
2100         if (hugepages_treat_as_movable)
2101                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2102         else
2103                 htlb_alloc_mask = GFP_HIGHUSER;
2104         return 0;
2105 }
2106
2107 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2108                         void __user *buffer,
2109                         size_t *length, loff_t *ppos)
2110 {
2111         struct hstate *h = &default_hstate;
2112         unsigned long tmp;
2113         int ret;
2114
2115         tmp = h->nr_overcommit_huge_pages;
2116
2117         if (write && h->order >= MAX_ORDER)
2118                 return -EINVAL;
2119
2120         table->data = &tmp;
2121         table->maxlen = sizeof(unsigned long);
2122         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2123         if (ret)
2124                 goto out;
2125
2126         if (write) {
2127                 spin_lock(&hugetlb_lock);
2128                 h->nr_overcommit_huge_pages = tmp;
2129                 spin_unlock(&hugetlb_lock);
2130         }
2131 out:
2132         return ret;
2133 }
2134
2135 #endif /* CONFIG_SYSCTL */
2136
2137 void hugetlb_report_meminfo(struct seq_file *m)
2138 {
2139         struct hstate *h = &default_hstate;
2140         seq_printf(m,
2141                         "HugePages_Total:   %5lu\n"
2142                         "HugePages_Free:    %5lu\n"
2143                         "HugePages_Rsvd:    %5lu\n"
2144                         "HugePages_Surp:    %5lu\n"
2145                         "Hugepagesize:   %8lu kB\n",
2146                         h->nr_huge_pages,
2147                         h->free_huge_pages,
2148                         h->resv_huge_pages,
2149                         h->surplus_huge_pages,
2150                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2151 }
2152
2153 int hugetlb_report_node_meminfo(int nid, char *buf)
2154 {
2155         struct hstate *h = &default_hstate;
2156         return sprintf(buf,
2157                 "Node %d HugePages_Total: %5u\n"
2158                 "Node %d HugePages_Free:  %5u\n"
2159                 "Node %d HugePages_Surp:  %5u\n",
2160                 nid, h->nr_huge_pages_node[nid],
2161                 nid, h->free_huge_pages_node[nid],
2162                 nid, h->surplus_huge_pages_node[nid]);
2163 }
2164
2165 void hugetlb_show_meminfo(void)
2166 {
2167         struct hstate *h;
2168         int nid;
2169
2170         for_each_node_state(nid, N_MEMORY)
2171                 for_each_hstate(h)
2172                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2173                                 nid,
2174                                 h->nr_huge_pages_node[nid],
2175                                 h->free_huge_pages_node[nid],
2176                                 h->surplus_huge_pages_node[nid],
2177                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2178 }
2179
2180 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2181 unsigned long hugetlb_total_pages(void)
2182 {
2183         struct hstate *h;
2184         unsigned long nr_total_pages = 0;
2185
2186         for_each_hstate(h)
2187                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2188         return nr_total_pages;
2189 }
2190
2191 static int hugetlb_acct_memory(struct hstate *h, long delta)
2192 {
2193         int ret = -ENOMEM;
2194
2195         spin_lock(&hugetlb_lock);
2196         /*
2197          * When cpuset is configured, it breaks the strict hugetlb page
2198          * reservation as the accounting is done on a global variable. Such
2199          * reservation is completely rubbish in the presence of cpuset because
2200          * the reservation is not checked against page availability for the
2201          * current cpuset. Application can still potentially OOM'ed by kernel
2202          * with lack of free htlb page in cpuset that the task is in.
2203          * Attempt to enforce strict accounting with cpuset is almost
2204          * impossible (or too ugly) because cpuset is too fluid that
2205          * task or memory node can be dynamically moved between cpusets.
2206          *
2207          * The change of semantics for shared hugetlb mapping with cpuset is
2208          * undesirable. However, in order to preserve some of the semantics,
2209          * we fall back to check against current free page availability as
2210          * a best attempt and hopefully to minimize the impact of changing
2211          * semantics that cpuset has.
2212          */
2213         if (delta > 0) {
2214                 if (gather_surplus_pages(h, delta) < 0)
2215                         goto out;
2216
2217                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2218                         return_unused_surplus_pages(h, delta);
2219                         goto out;
2220                 }
2221         }
2222
2223         ret = 0;
2224         if (delta < 0)
2225                 return_unused_surplus_pages(h, (unsigned long) -delta);
2226
2227 out:
2228         spin_unlock(&hugetlb_lock);
2229         return ret;
2230 }
2231
2232 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2233 {
2234         struct resv_map *reservations = vma_resv_map(vma);
2235
2236         /*
2237          * This new VMA should share its siblings reservation map if present.
2238          * The VMA will only ever have a valid reservation map pointer where
2239          * it is being copied for another still existing VMA.  As that VMA
2240          * has a reference to the reservation map it cannot disappear until
2241          * after this open call completes.  It is therefore safe to take a
2242          * new reference here without additional locking.
2243          */
2244         if (reservations)
2245                 kref_get(&reservations->refs);
2246 }
2247
2248 static void resv_map_put(struct vm_area_struct *vma)
2249 {
2250         struct resv_map *reservations = vma_resv_map(vma);
2251
2252         if (!reservations)
2253                 return;
2254         kref_put(&reservations->refs, resv_map_release);
2255 }
2256
2257 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2258 {
2259         struct hstate *h = hstate_vma(vma);
2260         struct resv_map *reservations = vma_resv_map(vma);
2261         struct hugepage_subpool *spool = subpool_vma(vma);
2262         unsigned long reserve;
2263         unsigned long start;
2264         unsigned long end;
2265
2266         if (reservations) {
2267                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2268                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2269
2270                 reserve = (end - start) -
2271                         region_count(&reservations->regions, start, end);
2272
2273                 resv_map_put(vma);
2274
2275                 if (reserve) {
2276                         hugetlb_acct_memory(h, -reserve);
2277                         hugepage_subpool_put_pages(spool, reserve);
2278                 }
2279         }
2280 }
2281
2282 /*
2283  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2284  * handle_mm_fault() to try to instantiate regular-sized pages in the
2285  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2286  * this far.
2287  */
2288 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2289 {
2290         BUG();
2291         return 0;
2292 }
2293
2294 const struct vm_operations_struct hugetlb_vm_ops = {
2295         .fault = hugetlb_vm_op_fault,
2296         .open = hugetlb_vm_op_open,
2297         .close = hugetlb_vm_op_close,
2298 };
2299
2300 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2301                                 int writable)
2302 {
2303         pte_t entry;
2304
2305         if (writable) {
2306                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2307                                          vma->vm_page_prot)));
2308         } else {
2309                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2310                                            vma->vm_page_prot));
2311         }
2312         entry = pte_mkyoung(entry);
2313         entry = pte_mkhuge(entry);
2314         entry = arch_make_huge_pte(entry, vma, page, writable);
2315
2316         return entry;
2317 }
2318
2319 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2320                                    unsigned long address, pte_t *ptep)
2321 {
2322         pte_t entry;
2323
2324         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2325         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2326                 update_mmu_cache(vma, address, ptep);
2327 }
2328
2329
2330 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2331                             struct vm_area_struct *vma)
2332 {
2333         pte_t *src_pte, *dst_pte, entry;
2334         struct page *ptepage;
2335         unsigned long addr;
2336         int cow;
2337         struct hstate *h = hstate_vma(vma);
2338         unsigned long sz = huge_page_size(h);
2339
2340         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2341
2342         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2343                 src_pte = huge_pte_offset(src, addr);
2344                 if (!src_pte)
2345                         continue;
2346                 dst_pte = huge_pte_alloc(dst, addr, sz);
2347                 if (!dst_pte)
2348                         goto nomem;
2349
2350                 /* If the pagetables are shared don't copy or take references */
2351                 if (dst_pte == src_pte)
2352                         continue;
2353
2354                 spin_lock(&dst->page_table_lock);
2355                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2356                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2357                         if (cow)
2358                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2359                         entry = huge_ptep_get(src_pte);
2360                         ptepage = pte_page(entry);
2361                         get_page(ptepage);
2362                         page_dup_rmap(ptepage);
2363                         set_huge_pte_at(dst, addr, dst_pte, entry);
2364                 }
2365                 spin_unlock(&src->page_table_lock);
2366                 spin_unlock(&dst->page_table_lock);
2367         }
2368         return 0;
2369
2370 nomem:
2371         return -ENOMEM;
2372 }
2373
2374 static int is_hugetlb_entry_migration(pte_t pte)
2375 {
2376         swp_entry_t swp;
2377
2378         if (huge_pte_none(pte) || pte_present(pte))
2379                 return 0;
2380         swp = pte_to_swp_entry(pte);
2381         if (non_swap_entry(swp) && is_migration_entry(swp))
2382                 return 1;
2383         else
2384                 return 0;
2385 }
2386
2387 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2388 {
2389         swp_entry_t swp;
2390
2391         if (huge_pte_none(pte) || pte_present(pte))
2392                 return 0;
2393         swp = pte_to_swp_entry(pte);
2394         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2395                 return 1;
2396         else
2397                 return 0;
2398 }
2399
2400 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2401                             unsigned long start, unsigned long end,
2402                             struct page *ref_page)
2403 {
2404         int force_flush = 0;
2405         struct mm_struct *mm = vma->vm_mm;
2406         unsigned long address;
2407         pte_t *ptep;
2408         pte_t pte;
2409         struct page *page;
2410         struct hstate *h = hstate_vma(vma);
2411         unsigned long sz = huge_page_size(h);
2412         const unsigned long mmun_start = start; /* For mmu_notifiers */
2413         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2414
2415         WARN_ON(!is_vm_hugetlb_page(vma));
2416         BUG_ON(start & ~huge_page_mask(h));
2417         BUG_ON(end & ~huge_page_mask(h));
2418
2419         tlb_start_vma(tlb, vma);
2420         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2421 again:
2422         spin_lock(&mm->page_table_lock);
2423         for (address = start; address < end; address += sz) {
2424                 ptep = huge_pte_offset(mm, address);
2425                 if (!ptep)
2426                         continue;
2427
2428                 if (huge_pmd_unshare(mm, &address, ptep))
2429                         continue;
2430
2431                 pte = huge_ptep_get(ptep);
2432                 if (huge_pte_none(pte))
2433                         continue;
2434
2435                 /*
2436                  * HWPoisoned hugepage is already unmapped and dropped reference
2437                  */
2438                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2439                         huge_pte_clear(mm, address, ptep);
2440                         continue;
2441                 }
2442
2443                 page = pte_page(pte);
2444                 /*
2445                  * If a reference page is supplied, it is because a specific
2446                  * page is being unmapped, not a range. Ensure the page we
2447                  * are about to unmap is the actual page of interest.
2448                  */
2449                 if (ref_page) {
2450                         if (page != ref_page)
2451                                 continue;
2452
2453                         /*
2454                          * Mark the VMA as having unmapped its page so that
2455                          * future faults in this VMA will fail rather than
2456                          * looking like data was lost
2457                          */
2458                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2459                 }
2460
2461                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2462                 tlb_remove_tlb_entry(tlb, ptep, address);
2463                 if (huge_pte_dirty(pte))
2464                         set_page_dirty(page);
2465
2466                 page_remove_rmap(page);
2467                 force_flush = !__tlb_remove_page(tlb, page);
2468                 if (force_flush)
2469                         break;
2470                 /* Bail out after unmapping reference page if supplied */
2471                 if (ref_page)
2472                         break;
2473         }
2474         spin_unlock(&mm->page_table_lock);
2475         /*
2476          * mmu_gather ran out of room to batch pages, we break out of
2477          * the PTE lock to avoid doing the potential expensive TLB invalidate
2478          * and page-free while holding it.
2479          */
2480         if (force_flush) {
2481                 force_flush = 0;
2482                 tlb_flush_mmu(tlb);
2483                 if (address < end && !ref_page)
2484                         goto again;
2485         }
2486         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2487         tlb_end_vma(tlb, vma);
2488 }
2489
2490 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2491                           struct vm_area_struct *vma, unsigned long start,
2492                           unsigned long end, struct page *ref_page)
2493 {
2494         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2495
2496         /*
2497          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2498          * test will fail on a vma being torn down, and not grab a page table
2499          * on its way out.  We're lucky that the flag has such an appropriate
2500          * name, and can in fact be safely cleared here. We could clear it
2501          * before the __unmap_hugepage_range above, but all that's necessary
2502          * is to clear it before releasing the i_mmap_mutex. This works
2503          * because in the context this is called, the VMA is about to be
2504          * destroyed and the i_mmap_mutex is held.
2505          */
2506         vma->vm_flags &= ~VM_MAYSHARE;
2507 }
2508
2509 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2510                           unsigned long end, struct page *ref_page)
2511 {
2512         struct mm_struct *mm;
2513         struct mmu_gather tlb;
2514
2515         mm = vma->vm_mm;
2516
2517         tlb_gather_mmu(&tlb, mm, start, end);
2518         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2519         tlb_finish_mmu(&tlb, start, end);
2520 }
2521
2522 /*
2523  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2524  * mappping it owns the reserve page for. The intention is to unmap the page
2525  * from other VMAs and let the children be SIGKILLed if they are faulting the
2526  * same region.
2527  */
2528 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2529                                 struct page *page, unsigned long address)
2530 {
2531         struct hstate *h = hstate_vma(vma);
2532         struct vm_area_struct *iter_vma;
2533         struct address_space *mapping;
2534         pgoff_t pgoff;
2535
2536         /*
2537          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2538          * from page cache lookup which is in HPAGE_SIZE units.
2539          */
2540         address = address & huge_page_mask(h);
2541         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2542                         vma->vm_pgoff;
2543         mapping = file_inode(vma->vm_file)->i_mapping;
2544
2545         /*
2546          * Take the mapping lock for the duration of the table walk. As
2547          * this mapping should be shared between all the VMAs,
2548          * __unmap_hugepage_range() is called as the lock is already held
2549          */
2550         mutex_lock(&mapping->i_mmap_mutex);
2551         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2552                 /* Do not unmap the current VMA */
2553                 if (iter_vma == vma)
2554                         continue;
2555
2556                 /*
2557                  * Unmap the page from other VMAs without their own reserves.
2558                  * They get marked to be SIGKILLed if they fault in these
2559                  * areas. This is because a future no-page fault on this VMA
2560                  * could insert a zeroed page instead of the data existing
2561                  * from the time of fork. This would look like data corruption
2562                  */
2563                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2564                         unmap_hugepage_range(iter_vma, address,
2565                                              address + huge_page_size(h), page);
2566         }
2567         mutex_unlock(&mapping->i_mmap_mutex);
2568
2569         return 1;
2570 }
2571
2572 /*
2573  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2574  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2575  * cannot race with other handlers or page migration.
2576  * Keep the pte_same checks anyway to make transition from the mutex easier.
2577  */
2578 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2579                         unsigned long address, pte_t *ptep, pte_t pte,
2580                         struct page *pagecache_page)
2581 {
2582         struct hstate *h = hstate_vma(vma);
2583         struct page *old_page, *new_page;
2584         int avoidcopy;
2585         int outside_reserve = 0;
2586         unsigned long mmun_start;       /* For mmu_notifiers */
2587         unsigned long mmun_end;         /* For mmu_notifiers */
2588
2589         old_page = pte_page(pte);
2590
2591 retry_avoidcopy:
2592         /* If no-one else is actually using this page, avoid the copy
2593          * and just make the page writable */
2594         avoidcopy = (page_mapcount(old_page) == 1);
2595         if (avoidcopy) {
2596                 if (PageAnon(old_page))
2597                         page_move_anon_rmap(old_page, vma, address);
2598                 set_huge_ptep_writable(vma, address, ptep);
2599                 return 0;
2600         }
2601
2602         /*
2603          * If the process that created a MAP_PRIVATE mapping is about to
2604          * perform a COW due to a shared page count, attempt to satisfy
2605          * the allocation without using the existing reserves. The pagecache
2606          * page is used to determine if the reserve at this address was
2607          * consumed or not. If reserves were used, a partial faulted mapping
2608          * at the time of fork() could consume its reserves on COW instead
2609          * of the full address range.
2610          */
2611         if (!(vma->vm_flags & VM_MAYSHARE) &&
2612                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2613                         old_page != pagecache_page)
2614                 outside_reserve = 1;
2615
2616         page_cache_get(old_page);
2617
2618         /* Drop page_table_lock as buddy allocator may be called */
2619         spin_unlock(&mm->page_table_lock);
2620         new_page = alloc_huge_page(vma, address, outside_reserve);
2621
2622         if (IS_ERR(new_page)) {
2623                 long err = PTR_ERR(new_page);
2624                 page_cache_release(old_page);
2625
2626                 /*
2627                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2628                  * it is due to references held by a child and an insufficient
2629                  * huge page pool. To guarantee the original mappers
2630                  * reliability, unmap the page from child processes. The child
2631                  * may get SIGKILLed if it later faults.
2632                  */
2633                 if (outside_reserve) {
2634                         BUG_ON(huge_pte_none(pte));
2635                         if (unmap_ref_private(mm, vma, old_page, address)) {
2636                                 BUG_ON(huge_pte_none(pte));
2637                                 spin_lock(&mm->page_table_lock);
2638                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2639                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2640                                         goto retry_avoidcopy;
2641                                 /*
2642                                  * race occurs while re-acquiring page_table_lock, and
2643                                  * our job is done.
2644                                  */
2645                                 return 0;
2646                         }
2647                         WARN_ON_ONCE(1);
2648                 }
2649
2650                 /* Caller expects lock to be held */
2651                 spin_lock(&mm->page_table_lock);
2652                 if (err == -ENOMEM)
2653                         return VM_FAULT_OOM;
2654                 else
2655                         return VM_FAULT_SIGBUS;
2656         }
2657
2658         /*
2659          * When the original hugepage is shared one, it does not have
2660          * anon_vma prepared.
2661          */
2662         if (unlikely(anon_vma_prepare(vma))) {
2663                 page_cache_release(new_page);
2664                 page_cache_release(old_page);
2665                 /* Caller expects lock to be held */
2666                 spin_lock(&mm->page_table_lock);
2667                 return VM_FAULT_OOM;
2668         }
2669
2670         copy_user_huge_page(new_page, old_page, address, vma,
2671                             pages_per_huge_page(h));
2672         __SetPageUptodate(new_page);
2673
2674         mmun_start = address & huge_page_mask(h);
2675         mmun_end = mmun_start + huge_page_size(h);
2676         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2677         /*
2678          * Retake the page_table_lock to check for racing updates
2679          * before the page tables are altered
2680          */
2681         spin_lock(&mm->page_table_lock);
2682         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2683         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2684                 /* Break COW */
2685                 huge_ptep_clear_flush(vma, address, ptep);
2686                 set_huge_pte_at(mm, address, ptep,
2687                                 make_huge_pte(vma, new_page, 1));
2688                 page_remove_rmap(old_page);
2689                 hugepage_add_new_anon_rmap(new_page, vma, address);
2690                 /* Make the old page be freed below */
2691                 new_page = old_page;
2692         }
2693         spin_unlock(&mm->page_table_lock);
2694         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2695         /* Caller expects lock to be held */
2696         spin_lock(&mm->page_table_lock);
2697         page_cache_release(new_page);
2698         page_cache_release(old_page);
2699         return 0;
2700 }
2701
2702 /* Return the pagecache page at a given address within a VMA */
2703 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2704                         struct vm_area_struct *vma, unsigned long address)
2705 {
2706         struct address_space *mapping;
2707         pgoff_t idx;
2708
2709         mapping = vma->vm_file->f_mapping;
2710         idx = vma_hugecache_offset(h, vma, address);
2711
2712         return find_lock_page(mapping, idx);
2713 }
2714
2715 /*
2716  * Return whether there is a pagecache page to back given address within VMA.
2717  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2718  */
2719 static bool hugetlbfs_pagecache_present(struct hstate *h,
2720                         struct vm_area_struct *vma, unsigned long address)
2721 {
2722         struct address_space *mapping;
2723         pgoff_t idx;
2724         struct page *page;
2725
2726         mapping = vma->vm_file->f_mapping;
2727         idx = vma_hugecache_offset(h, vma, address);
2728
2729         page = find_get_page(mapping, idx);
2730         if (page)
2731                 put_page(page);
2732         return page != NULL;
2733 }
2734
2735 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2736                         unsigned long address, pte_t *ptep, unsigned int flags)
2737 {
2738         struct hstate *h = hstate_vma(vma);
2739         int ret = VM_FAULT_SIGBUS;
2740         int anon_rmap = 0;
2741         pgoff_t idx;
2742         unsigned long size;
2743         struct page *page;
2744         struct address_space *mapping;
2745         pte_t new_pte;
2746
2747         /*
2748          * Currently, we are forced to kill the process in the event the
2749          * original mapper has unmapped pages from the child due to a failed
2750          * COW. Warn that such a situation has occurred as it may not be obvious
2751          */
2752         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2753                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2754                            current->pid);
2755                 return ret;
2756         }
2757
2758         mapping = vma->vm_file->f_mapping;
2759         idx = vma_hugecache_offset(h, vma, address);
2760
2761         /*
2762          * Use page lock to guard against racing truncation
2763          * before we get page_table_lock.
2764          */
2765 retry:
2766         page = find_lock_page(mapping, idx);
2767         if (!page) {
2768                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2769                 if (idx >= size)
2770                         goto out;
2771                 page = alloc_huge_page(vma, address, 0);
2772                 if (IS_ERR(page)) {
2773                         ret = PTR_ERR(page);
2774                         if (ret == -ENOMEM)
2775                                 ret = VM_FAULT_OOM;
2776                         else
2777                                 ret = VM_FAULT_SIGBUS;
2778                         goto out;
2779                 }
2780                 clear_huge_page(page, address, pages_per_huge_page(h));
2781                 __SetPageUptodate(page);
2782
2783                 if (vma->vm_flags & VM_MAYSHARE) {
2784                         int err;
2785                         struct inode *inode = mapping->host;
2786
2787                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2788                         if (err) {
2789                                 put_page(page);
2790                                 if (err == -EEXIST)
2791                                         goto retry;
2792                                 goto out;
2793                         }
2794
2795                         spin_lock(&inode->i_lock);
2796                         inode->i_blocks += blocks_per_huge_page(h);
2797                         spin_unlock(&inode->i_lock);
2798                 } else {
2799                         lock_page(page);
2800                         if (unlikely(anon_vma_prepare(vma))) {
2801                                 ret = VM_FAULT_OOM;
2802                                 goto backout_unlocked;
2803                         }
2804                         anon_rmap = 1;
2805                 }
2806         } else {
2807                 /*
2808                  * If memory error occurs between mmap() and fault, some process
2809                  * don't have hwpoisoned swap entry for errored virtual address.
2810                  * So we need to block hugepage fault by PG_hwpoison bit check.
2811                  */
2812                 if (unlikely(PageHWPoison(page))) {
2813                         ret = VM_FAULT_HWPOISON |
2814                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2815                         goto backout_unlocked;
2816                 }
2817         }
2818
2819         /*
2820          * If we are going to COW a private mapping later, we examine the
2821          * pending reservations for this page now. This will ensure that
2822          * any allocations necessary to record that reservation occur outside
2823          * the spinlock.
2824          */
2825         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2826                 if (vma_needs_reservation(h, vma, address) < 0) {
2827                         ret = VM_FAULT_OOM;
2828                         goto backout_unlocked;
2829                 }
2830
2831         spin_lock(&mm->page_table_lock);
2832         size = i_size_read(mapping->host) >> huge_page_shift(h);
2833         if (idx >= size)
2834                 goto backout;
2835
2836         ret = 0;
2837         if (!huge_pte_none(huge_ptep_get(ptep)))
2838                 goto backout;
2839
2840         if (anon_rmap)
2841                 hugepage_add_new_anon_rmap(page, vma, address);
2842         else
2843                 page_dup_rmap(page);
2844         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2845                                 && (vma->vm_flags & VM_SHARED)));
2846         set_huge_pte_at(mm, address, ptep, new_pte);
2847
2848         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2849                 /* Optimization, do the COW without a second fault */
2850                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2851         }
2852
2853         spin_unlock(&mm->page_table_lock);
2854         unlock_page(page);
2855 out:
2856         return ret;
2857
2858 backout:
2859         spin_unlock(&mm->page_table_lock);
2860 backout_unlocked:
2861         unlock_page(page);
2862         put_page(page);
2863         goto out;
2864 }
2865
2866 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2867                         unsigned long address, unsigned int flags)
2868 {
2869         pte_t *ptep;
2870         pte_t entry;
2871         int ret;
2872         struct page *page = NULL;
2873         struct page *pagecache_page = NULL;
2874         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2875         struct hstate *h = hstate_vma(vma);
2876
2877         address &= huge_page_mask(h);
2878
2879         ptep = huge_pte_offset(mm, address);
2880         if (ptep) {
2881                 entry = huge_ptep_get(ptep);
2882                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2883                         migration_entry_wait_huge(mm, ptep);
2884                         return 0;
2885                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2886                         return VM_FAULT_HWPOISON_LARGE |
2887                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2888         }
2889
2890         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2891         if (!ptep)
2892                 return VM_FAULT_OOM;
2893
2894         /*
2895          * Serialize hugepage allocation and instantiation, so that we don't
2896          * get spurious allocation failures if two CPUs race to instantiate
2897          * the same page in the page cache.
2898          */
2899         mutex_lock(&hugetlb_instantiation_mutex);
2900         entry = huge_ptep_get(ptep);
2901         if (huge_pte_none(entry)) {
2902                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2903                 goto out_mutex;
2904         }
2905
2906         ret = 0;
2907
2908         /*
2909          * If we are going to COW the mapping later, we examine the pending
2910          * reservations for this page now. This will ensure that any
2911          * allocations necessary to record that reservation occur outside the
2912          * spinlock. For private mappings, we also lookup the pagecache
2913          * page now as it is used to determine if a reservation has been
2914          * consumed.
2915          */
2916         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2917                 if (vma_needs_reservation(h, vma, address) < 0) {
2918                         ret = VM_FAULT_OOM;
2919                         goto out_mutex;
2920                 }
2921
2922                 if (!(vma->vm_flags & VM_MAYSHARE))
2923                         pagecache_page = hugetlbfs_pagecache_page(h,
2924                                                                 vma, address);
2925         }
2926
2927         /*
2928          * hugetlb_cow() requires page locks of pte_page(entry) and
2929          * pagecache_page, so here we need take the former one
2930          * when page != pagecache_page or !pagecache_page.
2931          * Note that locking order is always pagecache_page -> page,
2932          * so no worry about deadlock.
2933          */
2934         page = pte_page(entry);
2935         get_page(page);
2936         if (page != pagecache_page)
2937                 lock_page(page);
2938
2939         spin_lock(&mm->page_table_lock);
2940         /* Check for a racing update before calling hugetlb_cow */
2941         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2942                 goto out_page_table_lock;
2943
2944
2945         if (flags & FAULT_FLAG_WRITE) {
2946                 if (!huge_pte_write(entry)) {
2947                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2948                                                         pagecache_page);
2949                         goto out_page_table_lock;
2950                 }
2951                 entry = huge_pte_mkdirty(entry);
2952         }
2953         entry = pte_mkyoung(entry);
2954         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2955                                                 flags & FAULT_FLAG_WRITE))
2956                 update_mmu_cache(vma, address, ptep);
2957
2958 out_page_table_lock:
2959         spin_unlock(&mm->page_table_lock);
2960
2961         if (pagecache_page) {
2962                 unlock_page(pagecache_page);
2963                 put_page(pagecache_page);
2964         }
2965         if (page != pagecache_page)
2966                 unlock_page(page);
2967         put_page(page);
2968
2969 out_mutex:
2970         mutex_unlock(&hugetlb_instantiation_mutex);
2971
2972         return ret;
2973 }
2974
2975 /* Can be overriden by architectures */
2976 __attribute__((weak)) struct page *
2977 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2978                pud_t *pud, int write)
2979 {
2980         BUG();
2981         return NULL;
2982 }
2983
2984 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2985                          struct page **pages, struct vm_area_struct **vmas,
2986                          unsigned long *position, unsigned long *nr_pages,
2987                          long i, unsigned int flags)
2988 {
2989         unsigned long pfn_offset;
2990         unsigned long vaddr = *position;
2991         unsigned long remainder = *nr_pages;
2992         struct hstate *h = hstate_vma(vma);
2993
2994         spin_lock(&mm->page_table_lock);
2995         while (vaddr < vma->vm_end && remainder) {
2996                 pte_t *pte;
2997                 int absent;
2998                 struct page *page;
2999
3000                 /*
3001                  * Some archs (sparc64, sh*) have multiple pte_ts to
3002                  * each hugepage.  We have to make sure we get the
3003                  * first, for the page indexing below to work.
3004                  */
3005                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3006                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3007
3008                 /*
3009                  * When coredumping, it suits get_dump_page if we just return
3010                  * an error where there's an empty slot with no huge pagecache
3011                  * to back it.  This way, we avoid allocating a hugepage, and
3012                  * the sparse dumpfile avoids allocating disk blocks, but its
3013                  * huge holes still show up with zeroes where they need to be.
3014                  */
3015                 if (absent && (flags & FOLL_DUMP) &&
3016                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3017                         remainder = 0;
3018                         break;
3019                 }
3020
3021                 /*
3022                  * We need call hugetlb_fault for both hugepages under migration
3023                  * (in which case hugetlb_fault waits for the migration,) and
3024                  * hwpoisoned hugepages (in which case we need to prevent the
3025                  * caller from accessing to them.) In order to do this, we use
3026                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3027                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3028                  * both cases, and because we can't follow correct pages
3029                  * directly from any kind of swap entries.
3030                  */
3031                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3032                     ((flags & FOLL_WRITE) &&
3033                       !huge_pte_write(huge_ptep_get(pte)))) {
3034                         int ret;
3035
3036                         spin_unlock(&mm->page_table_lock);
3037                         ret = hugetlb_fault(mm, vma, vaddr,
3038                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3039                         spin_lock(&mm->page_table_lock);
3040                         if (!(ret & VM_FAULT_ERROR))
3041                                 continue;
3042
3043                         remainder = 0;
3044                         break;
3045                 }
3046
3047                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3048                 page = pte_page(huge_ptep_get(pte));
3049 same_page:
3050                 if (pages) {
3051                         pages[i] = mem_map_offset(page, pfn_offset);
3052                         get_page(pages[i]);
3053                 }
3054
3055                 if (vmas)
3056                         vmas[i] = vma;
3057
3058                 vaddr += PAGE_SIZE;
3059                 ++pfn_offset;
3060                 --remainder;
3061                 ++i;
3062                 if (vaddr < vma->vm_end && remainder &&
3063                                 pfn_offset < pages_per_huge_page(h)) {
3064                         /*
3065                          * We use pfn_offset to avoid touching the pageframes
3066                          * of this compound page.
3067                          */
3068                         goto same_page;
3069                 }
3070         }
3071         spin_unlock(&mm->page_table_lock);
3072         *nr_pages = remainder;
3073         *position = vaddr;
3074
3075         return i ? i : -EFAULT;
3076 }
3077
3078 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3079                 unsigned long address, unsigned long end, pgprot_t newprot)
3080 {
3081         struct mm_struct *mm = vma->vm_mm;
3082         unsigned long start = address;
3083         pte_t *ptep;
3084         pte_t pte;
3085         struct hstate *h = hstate_vma(vma);
3086         unsigned long pages = 0;
3087
3088         BUG_ON(address >= end);
3089         flush_cache_range(vma, address, end);
3090
3091         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3092         spin_lock(&mm->page_table_lock);
3093         for (; address < end; address += huge_page_size(h)) {
3094                 ptep = huge_pte_offset(mm, address);
3095                 if (!ptep)
3096                         continue;
3097                 if (huge_pmd_unshare(mm, &address, ptep)) {
3098                         pages++;
3099                         continue;
3100                 }
3101                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3102                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3103                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3104                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3105                         set_huge_pte_at(mm, address, ptep, pte);
3106                         pages++;
3107                 }
3108         }
3109         spin_unlock(&mm->page_table_lock);
3110         /*
3111          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3112          * may have cleared our pud entry and done put_page on the page table:
3113          * once we release i_mmap_mutex, another task can do the final put_page
3114          * and that page table be reused and filled with junk.
3115          */
3116         flush_tlb_range(vma, start, end);
3117         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3118
3119         return pages << h->order;
3120 }
3121
3122 int hugetlb_reserve_pages(struct inode *inode,
3123                                         long from, long to,
3124                                         struct vm_area_struct *vma,
3125                                         vm_flags_t vm_flags)
3126 {
3127         long ret, chg;
3128         struct hstate *h = hstate_inode(inode);
3129         struct hugepage_subpool *spool = subpool_inode(inode);
3130
3131         /*
3132          * Only apply hugepage reservation if asked. At fault time, an
3133          * attempt will be made for VM_NORESERVE to allocate a page
3134          * without using reserves
3135          */
3136         if (vm_flags & VM_NORESERVE)
3137                 return 0;
3138
3139         /*
3140          * Shared mappings base their reservation on the number of pages that
3141          * are already allocated on behalf of the file. Private mappings need
3142          * to reserve the full area even if read-only as mprotect() may be
3143          * called to make the mapping read-write. Assume !vma is a shm mapping
3144          */
3145         if (!vma || vma->vm_flags & VM_MAYSHARE)
3146                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3147         else {
3148                 struct resv_map *resv_map = resv_map_alloc();
3149                 if (!resv_map)
3150                         return -ENOMEM;
3151
3152                 chg = to - from;
3153
3154                 set_vma_resv_map(vma, resv_map);
3155                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3156         }
3157
3158         if (chg < 0) {
3159                 ret = chg;
3160                 goto out_err;
3161         }
3162
3163         /* There must be enough pages in the subpool for the mapping */
3164         if (hugepage_subpool_get_pages(spool, chg)) {
3165                 ret = -ENOSPC;
3166                 goto out_err;
3167         }
3168
3169         /*
3170          * Check enough hugepages are available for the reservation.
3171          * Hand the pages back to the subpool if there are not
3172          */
3173         ret = hugetlb_acct_memory(h, chg);
3174         if (ret < 0) {
3175                 hugepage_subpool_put_pages(spool, chg);
3176                 goto out_err;
3177         }
3178
3179         /*
3180          * Account for the reservations made. Shared mappings record regions
3181          * that have reservations as they are shared by multiple VMAs.
3182          * When the last VMA disappears, the region map says how much
3183          * the reservation was and the page cache tells how much of
3184          * the reservation was consumed. Private mappings are per-VMA and
3185          * only the consumed reservations are tracked. When the VMA
3186          * disappears, the original reservation is the VMA size and the
3187          * consumed reservations are stored in the map. Hence, nothing
3188          * else has to be done for private mappings here
3189          */
3190         if (!vma || vma->vm_flags & VM_MAYSHARE)
3191                 region_add(&inode->i_mapping->private_list, from, to);
3192         return 0;
3193 out_err:
3194         if (vma)
3195                 resv_map_put(vma);
3196         return ret;
3197 }
3198
3199 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3200 {
3201         struct hstate *h = hstate_inode(inode);
3202         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3203         struct hugepage_subpool *spool = subpool_inode(inode);
3204
3205         spin_lock(&inode->i_lock);
3206         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3207         spin_unlock(&inode->i_lock);
3208
3209         hugepage_subpool_put_pages(spool, (chg - freed));
3210         hugetlb_acct_memory(h, -(chg - freed));
3211 }
3212
3213 #ifdef CONFIG_MEMORY_FAILURE
3214
3215 /* Should be called in hugetlb_lock */
3216 static int is_hugepage_on_freelist(struct page *hpage)
3217 {
3218         struct page *page;
3219         struct page *tmp;
3220         struct hstate *h = page_hstate(hpage);
3221         int nid = page_to_nid(hpage);
3222
3223         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3224                 if (page == hpage)
3225                         return 1;
3226         return 0;
3227 }
3228
3229 /*
3230  * This function is called from memory failure code.
3231  * Assume the caller holds page lock of the head page.
3232  */
3233 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3234 {
3235         struct hstate *h = page_hstate(hpage);
3236         int nid = page_to_nid(hpage);
3237         int ret = -EBUSY;
3238
3239         spin_lock(&hugetlb_lock);
3240         if (is_hugepage_on_freelist(hpage)) {
3241                 /*
3242                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3243                  * but dangling hpage->lru can trigger list-debug warnings
3244                  * (this happens when we call unpoison_memory() on it),
3245                  * so let it point to itself with list_del_init().
3246                  */
3247                 list_del_init(&hpage->lru);
3248                 set_page_refcounted(hpage);
3249                 h->free_huge_pages--;
3250                 h->free_huge_pages_node[nid]--;
3251                 ret = 0;
3252         }
3253         spin_unlock(&hugetlb_lock);
3254         return ret;
3255 }
3256 #endif