hugetlb: add a list for tracking in-use HugeTLB pages
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/node.h>
32 #include "internal.h"
33
34 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
35 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
36 unsigned long hugepages_treat_as_movable;
37
38 static int hugetlb_max_hstate;
39 unsigned int default_hstate_idx;
40 struct hstate hstates[HUGE_MAX_HSTATE];
41
42 __initdata LIST_HEAD(huge_boot_pages);
43
44 /* for command line parsing */
45 static struct hstate * __initdata parsed_hstate;
46 static unsigned long __initdata default_hstate_max_huge_pages;
47 static unsigned long __initdata default_hstate_size;
48
49 #define for_each_hstate(h) \
50         for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
51
52 /*
53  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54  */
55 static DEFINE_SPINLOCK(hugetlb_lock);
56
57 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 {
59         bool free = (spool->count == 0) && (spool->used_hpages == 0);
60
61         spin_unlock(&spool->lock);
62
63         /* If no pages are used, and no other handles to the subpool
64          * remain, free the subpool the subpool remain */
65         if (free)
66                 kfree(spool);
67 }
68
69 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 {
71         struct hugepage_subpool *spool;
72
73         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
74         if (!spool)
75                 return NULL;
76
77         spin_lock_init(&spool->lock);
78         spool->count = 1;
79         spool->max_hpages = nr_blocks;
80         spool->used_hpages = 0;
81
82         return spool;
83 }
84
85 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 {
87         spin_lock(&spool->lock);
88         BUG_ON(!spool->count);
89         spool->count--;
90         unlock_or_release_subpool(spool);
91 }
92
93 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
94                                       long delta)
95 {
96         int ret = 0;
97
98         if (!spool)
99                 return 0;
100
101         spin_lock(&spool->lock);
102         if ((spool->used_hpages + delta) <= spool->max_hpages) {
103                 spool->used_hpages += delta;
104         } else {
105                 ret = -ENOMEM;
106         }
107         spin_unlock(&spool->lock);
108
109         return ret;
110 }
111
112 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
113                                        long delta)
114 {
115         if (!spool)
116                 return;
117
118         spin_lock(&spool->lock);
119         spool->used_hpages -= delta;
120         /* If hugetlbfs_put_super couldn't free spool due to
121         * an outstanding quota reference, free it now. */
122         unlock_or_release_subpool(spool);
123 }
124
125 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 {
127         return HUGETLBFS_SB(inode->i_sb)->spool;
128 }
129
130 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 {
132         return subpool_inode(vma->vm_file->f_dentry->d_inode);
133 }
134
135 /*
136  * Region tracking -- allows tracking of reservations and instantiated pages
137  *                    across the pages in a mapping.
138  *
139  * The region data structures are protected by a combination of the mmap_sem
140  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
141  * must either hold the mmap_sem for write, or the mmap_sem for read and
142  * the hugetlb_instantiation mutex:
143  *
144  *      down_write(&mm->mmap_sem);
145  * or
146  *      down_read(&mm->mmap_sem);
147  *      mutex_lock(&hugetlb_instantiation_mutex);
148  */
149 struct file_region {
150         struct list_head link;
151         long from;
152         long to;
153 };
154
155 static long region_add(struct list_head *head, long f, long t)
156 {
157         struct file_region *rg, *nrg, *trg;
158
159         /* Locate the region we are either in or before. */
160         list_for_each_entry(rg, head, link)
161                 if (f <= rg->to)
162                         break;
163
164         /* Round our left edge to the current segment if it encloses us. */
165         if (f > rg->from)
166                 f = rg->from;
167
168         /* Check for and consume any regions we now overlap with. */
169         nrg = rg;
170         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
171                 if (&rg->link == head)
172                         break;
173                 if (rg->from > t)
174                         break;
175
176                 /* If this area reaches higher then extend our area to
177                  * include it completely.  If this is not the first area
178                  * which we intend to reuse, free it. */
179                 if (rg->to > t)
180                         t = rg->to;
181                 if (rg != nrg) {
182                         list_del(&rg->link);
183                         kfree(rg);
184                 }
185         }
186         nrg->from = f;
187         nrg->to = t;
188         return 0;
189 }
190
191 static long region_chg(struct list_head *head, long f, long t)
192 {
193         struct file_region *rg, *nrg;
194         long chg = 0;
195
196         /* Locate the region we are before or in. */
197         list_for_each_entry(rg, head, link)
198                 if (f <= rg->to)
199                         break;
200
201         /* If we are below the current region then a new region is required.
202          * Subtle, allocate a new region at the position but make it zero
203          * size such that we can guarantee to record the reservation. */
204         if (&rg->link == head || t < rg->from) {
205                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
206                 if (!nrg)
207                         return -ENOMEM;
208                 nrg->from = f;
209                 nrg->to   = f;
210                 INIT_LIST_HEAD(&nrg->link);
211                 list_add(&nrg->link, rg->link.prev);
212
213                 return t - f;
214         }
215
216         /* Round our left edge to the current segment if it encloses us. */
217         if (f > rg->from)
218                 f = rg->from;
219         chg = t - f;
220
221         /* Check for and consume any regions we now overlap with. */
222         list_for_each_entry(rg, rg->link.prev, link) {
223                 if (&rg->link == head)
224                         break;
225                 if (rg->from > t)
226                         return chg;
227
228                 /* We overlap with this area, if it extends further than
229                  * us then we must extend ourselves.  Account for its
230                  * existing reservation. */
231                 if (rg->to > t) {
232                         chg += rg->to - t;
233                         t = rg->to;
234                 }
235                 chg -= rg->to - rg->from;
236         }
237         return chg;
238 }
239
240 static long region_truncate(struct list_head *head, long end)
241 {
242         struct file_region *rg, *trg;
243         long chg = 0;
244
245         /* Locate the region we are either in or before. */
246         list_for_each_entry(rg, head, link)
247                 if (end <= rg->to)
248                         break;
249         if (&rg->link == head)
250                 return 0;
251
252         /* If we are in the middle of a region then adjust it. */
253         if (end > rg->from) {
254                 chg = rg->to - end;
255                 rg->to = end;
256                 rg = list_entry(rg->link.next, typeof(*rg), link);
257         }
258
259         /* Drop any remaining regions. */
260         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
261                 if (&rg->link == head)
262                         break;
263                 chg += rg->to - rg->from;
264                 list_del(&rg->link);
265                 kfree(rg);
266         }
267         return chg;
268 }
269
270 static long region_count(struct list_head *head, long f, long t)
271 {
272         struct file_region *rg;
273         long chg = 0;
274
275         /* Locate each segment we overlap with, and count that overlap. */
276         list_for_each_entry(rg, head, link) {
277                 long seg_from;
278                 long seg_to;
279
280                 if (rg->to <= f)
281                         continue;
282                 if (rg->from >= t)
283                         break;
284
285                 seg_from = max(rg->from, f);
286                 seg_to = min(rg->to, t);
287
288                 chg += seg_to - seg_from;
289         }
290
291         return chg;
292 }
293
294 /*
295  * Convert the address within this vma to the page offset within
296  * the mapping, in pagecache page units; huge pages here.
297  */
298 static pgoff_t vma_hugecache_offset(struct hstate *h,
299                         struct vm_area_struct *vma, unsigned long address)
300 {
301         return ((address - vma->vm_start) >> huge_page_shift(h)) +
302                         (vma->vm_pgoff >> huge_page_order(h));
303 }
304
305 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
306                                      unsigned long address)
307 {
308         return vma_hugecache_offset(hstate_vma(vma), vma, address);
309 }
310
311 /*
312  * Return the size of the pages allocated when backing a VMA. In the majority
313  * cases this will be same size as used by the page table entries.
314  */
315 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 {
317         struct hstate *hstate;
318
319         if (!is_vm_hugetlb_page(vma))
320                 return PAGE_SIZE;
321
322         hstate = hstate_vma(vma);
323
324         return 1UL << (hstate->order + PAGE_SHIFT);
325 }
326 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
327
328 /*
329  * Return the page size being used by the MMU to back a VMA. In the majority
330  * of cases, the page size used by the kernel matches the MMU size. On
331  * architectures where it differs, an architecture-specific version of this
332  * function is required.
333  */
334 #ifndef vma_mmu_pagesize
335 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 {
337         return vma_kernel_pagesize(vma);
338 }
339 #endif
340
341 /*
342  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
343  * bits of the reservation map pointer, which are always clear due to
344  * alignment.
345  */
346 #define HPAGE_RESV_OWNER    (1UL << 0)
347 #define HPAGE_RESV_UNMAPPED (1UL << 1)
348 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
349
350 /*
351  * These helpers are used to track how many pages are reserved for
352  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
353  * is guaranteed to have their future faults succeed.
354  *
355  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
356  * the reserve counters are updated with the hugetlb_lock held. It is safe
357  * to reset the VMA at fork() time as it is not in use yet and there is no
358  * chance of the global counters getting corrupted as a result of the values.
359  *
360  * The private mapping reservation is represented in a subtly different
361  * manner to a shared mapping.  A shared mapping has a region map associated
362  * with the underlying file, this region map represents the backing file
363  * pages which have ever had a reservation assigned which this persists even
364  * after the page is instantiated.  A private mapping has a region map
365  * associated with the original mmap which is attached to all VMAs which
366  * reference it, this region map represents those offsets which have consumed
367  * reservation ie. where pages have been instantiated.
368  */
369 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 {
371         return (unsigned long)vma->vm_private_data;
372 }
373
374 static void set_vma_private_data(struct vm_area_struct *vma,
375                                                         unsigned long value)
376 {
377         vma->vm_private_data = (void *)value;
378 }
379
380 struct resv_map {
381         struct kref refs;
382         struct list_head regions;
383 };
384
385 static struct resv_map *resv_map_alloc(void)
386 {
387         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
388         if (!resv_map)
389                 return NULL;
390
391         kref_init(&resv_map->refs);
392         INIT_LIST_HEAD(&resv_map->regions);
393
394         return resv_map;
395 }
396
397 static void resv_map_release(struct kref *ref)
398 {
399         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400
401         /* Clear out any active regions before we release the map. */
402         region_truncate(&resv_map->regions, 0);
403         kfree(resv_map);
404 }
405
406 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 {
408         VM_BUG_ON(!is_vm_hugetlb_page(vma));
409         if (!(vma->vm_flags & VM_MAYSHARE))
410                 return (struct resv_map *)(get_vma_private_data(vma) &
411                                                         ~HPAGE_RESV_MASK);
412         return NULL;
413 }
414
415 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 {
417         VM_BUG_ON(!is_vm_hugetlb_page(vma));
418         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419
420         set_vma_private_data(vma, (get_vma_private_data(vma) &
421                                 HPAGE_RESV_MASK) | (unsigned long)map);
422 }
423
424 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 {
426         VM_BUG_ON(!is_vm_hugetlb_page(vma));
427         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428
429         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
430 }
431
432 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 {
434         VM_BUG_ON(!is_vm_hugetlb_page(vma));
435
436         return (get_vma_private_data(vma) & flag) != 0;
437 }
438
439 /* Decrement the reserved pages in the hugepage pool by one */
440 static void decrement_hugepage_resv_vma(struct hstate *h,
441                         struct vm_area_struct *vma)
442 {
443         if (vma->vm_flags & VM_NORESERVE)
444                 return;
445
446         if (vma->vm_flags & VM_MAYSHARE) {
447                 /* Shared mappings always use reserves */
448                 h->resv_huge_pages--;
449         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450                 /*
451                  * Only the process that called mmap() has reserves for
452                  * private mappings.
453                  */
454                 h->resv_huge_pages--;
455         }
456 }
457
458 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
459 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
460 {
461         VM_BUG_ON(!is_vm_hugetlb_page(vma));
462         if (!(vma->vm_flags & VM_MAYSHARE))
463                 vma->vm_private_data = (void *)0;
464 }
465
466 /* Returns true if the VMA has associated reserve pages */
467 static int vma_has_reserves(struct vm_area_struct *vma)
468 {
469         if (vma->vm_flags & VM_MAYSHARE)
470                 return 1;
471         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
472                 return 1;
473         return 0;
474 }
475
476 static void copy_gigantic_page(struct page *dst, struct page *src)
477 {
478         int i;
479         struct hstate *h = page_hstate(src);
480         struct page *dst_base = dst;
481         struct page *src_base = src;
482
483         for (i = 0; i < pages_per_huge_page(h); ) {
484                 cond_resched();
485                 copy_highpage(dst, src);
486
487                 i++;
488                 dst = mem_map_next(dst, dst_base, i);
489                 src = mem_map_next(src, src_base, i);
490         }
491 }
492
493 void copy_huge_page(struct page *dst, struct page *src)
494 {
495         int i;
496         struct hstate *h = page_hstate(src);
497
498         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
499                 copy_gigantic_page(dst, src);
500                 return;
501         }
502
503         might_sleep();
504         for (i = 0; i < pages_per_huge_page(h); i++) {
505                 cond_resched();
506                 copy_highpage(dst + i, src + i);
507         }
508 }
509
510 static void enqueue_huge_page(struct hstate *h, struct page *page)
511 {
512         int nid = page_to_nid(page);
513         list_move(&page->lru, &h->hugepage_freelists[nid]);
514         h->free_huge_pages++;
515         h->free_huge_pages_node[nid]++;
516 }
517
518 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
519 {
520         struct page *page;
521
522         if (list_empty(&h->hugepage_freelists[nid]))
523                 return NULL;
524         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
525         list_move(&page->lru, &h->hugepage_activelist);
526         set_page_refcounted(page);
527         h->free_huge_pages--;
528         h->free_huge_pages_node[nid]--;
529         return page;
530 }
531
532 static struct page *dequeue_huge_page_vma(struct hstate *h,
533                                 struct vm_area_struct *vma,
534                                 unsigned long address, int avoid_reserve)
535 {
536         struct page *page = NULL;
537         struct mempolicy *mpol;
538         nodemask_t *nodemask;
539         struct zonelist *zonelist;
540         struct zone *zone;
541         struct zoneref *z;
542         unsigned int cpuset_mems_cookie;
543
544 retry_cpuset:
545         cpuset_mems_cookie = get_mems_allowed();
546         zonelist = huge_zonelist(vma, address,
547                                         htlb_alloc_mask, &mpol, &nodemask);
548         /*
549          * A child process with MAP_PRIVATE mappings created by their parent
550          * have no page reserves. This check ensures that reservations are
551          * not "stolen". The child may still get SIGKILLed
552          */
553         if (!vma_has_reserves(vma) &&
554                         h->free_huge_pages - h->resv_huge_pages == 0)
555                 goto err;
556
557         /* If reserves cannot be used, ensure enough pages are in the pool */
558         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
559                 goto err;
560
561         for_each_zone_zonelist_nodemask(zone, z, zonelist,
562                                                 MAX_NR_ZONES - 1, nodemask) {
563                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
564                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
565                         if (page) {
566                                 if (!avoid_reserve)
567                                         decrement_hugepage_resv_vma(h, vma);
568                                 break;
569                         }
570                 }
571         }
572
573         mpol_cond_put(mpol);
574         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
575                 goto retry_cpuset;
576         return page;
577
578 err:
579         mpol_cond_put(mpol);
580         return NULL;
581 }
582
583 static void update_and_free_page(struct hstate *h, struct page *page)
584 {
585         int i;
586
587         VM_BUG_ON(h->order >= MAX_ORDER);
588
589         h->nr_huge_pages--;
590         h->nr_huge_pages_node[page_to_nid(page)]--;
591         for (i = 0; i < pages_per_huge_page(h); i++) {
592                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
593                                 1 << PG_referenced | 1 << PG_dirty |
594                                 1 << PG_active | 1 << PG_reserved |
595                                 1 << PG_private | 1 << PG_writeback);
596         }
597         set_compound_page_dtor(page, NULL);
598         set_page_refcounted(page);
599         arch_release_hugepage(page);
600         __free_pages(page, huge_page_order(h));
601 }
602
603 struct hstate *size_to_hstate(unsigned long size)
604 {
605         struct hstate *h;
606
607         for_each_hstate(h) {
608                 if (huge_page_size(h) == size)
609                         return h;
610         }
611         return NULL;
612 }
613
614 static void free_huge_page(struct page *page)
615 {
616         /*
617          * Can't pass hstate in here because it is called from the
618          * compound page destructor.
619          */
620         struct hstate *h = page_hstate(page);
621         int nid = page_to_nid(page);
622         struct hugepage_subpool *spool =
623                 (struct hugepage_subpool *)page_private(page);
624
625         set_page_private(page, 0);
626         page->mapping = NULL;
627         BUG_ON(page_count(page));
628         BUG_ON(page_mapcount(page));
629
630         spin_lock(&hugetlb_lock);
631         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632                 /* remove the page from active list */
633                 list_del(&page->lru);
634                 update_and_free_page(h, page);
635                 h->surplus_huge_pages--;
636                 h->surplus_huge_pages_node[nid]--;
637         } else {
638                 enqueue_huge_page(h, page);
639         }
640         spin_unlock(&hugetlb_lock);
641         hugepage_subpool_put_pages(spool, 1);
642 }
643
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645 {
646         INIT_LIST_HEAD(&page->lru);
647         set_compound_page_dtor(page, free_huge_page);
648         spin_lock(&hugetlb_lock);
649         h->nr_huge_pages++;
650         h->nr_huge_pages_node[nid]++;
651         spin_unlock(&hugetlb_lock);
652         put_page(page); /* free it into the hugepage allocator */
653 }
654
655 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
656 {
657         int i;
658         int nr_pages = 1 << order;
659         struct page *p = page + 1;
660
661         /* we rely on prep_new_huge_page to set the destructor */
662         set_compound_order(page, order);
663         __SetPageHead(page);
664         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
665                 __SetPageTail(p);
666                 set_page_count(p, 0);
667                 p->first_page = page;
668         }
669 }
670
671 int PageHuge(struct page *page)
672 {
673         compound_page_dtor *dtor;
674
675         if (!PageCompound(page))
676                 return 0;
677
678         page = compound_head(page);
679         dtor = get_compound_page_dtor(page);
680
681         return dtor == free_huge_page;
682 }
683 EXPORT_SYMBOL_GPL(PageHuge);
684
685 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
686 {
687         struct page *page;
688
689         if (h->order >= MAX_ORDER)
690                 return NULL;
691
692         page = alloc_pages_exact_node(nid,
693                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
694                                                 __GFP_REPEAT|__GFP_NOWARN,
695                 huge_page_order(h));
696         if (page) {
697                 if (arch_prepare_hugepage(page)) {
698                         __free_pages(page, huge_page_order(h));
699                         return NULL;
700                 }
701                 prep_new_huge_page(h, page, nid);
702         }
703
704         return page;
705 }
706
707 /*
708  * common helper functions for hstate_next_node_to_{alloc|free}.
709  * We may have allocated or freed a huge page based on a different
710  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
711  * be outside of *nodes_allowed.  Ensure that we use an allowed
712  * node for alloc or free.
713  */
714 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
715 {
716         nid = next_node(nid, *nodes_allowed);
717         if (nid == MAX_NUMNODES)
718                 nid = first_node(*nodes_allowed);
719         VM_BUG_ON(nid >= MAX_NUMNODES);
720
721         return nid;
722 }
723
724 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
725 {
726         if (!node_isset(nid, *nodes_allowed))
727                 nid = next_node_allowed(nid, nodes_allowed);
728         return nid;
729 }
730
731 /*
732  * returns the previously saved node ["this node"] from which to
733  * allocate a persistent huge page for the pool and advance the
734  * next node from which to allocate, handling wrap at end of node
735  * mask.
736  */
737 static int hstate_next_node_to_alloc(struct hstate *h,
738                                         nodemask_t *nodes_allowed)
739 {
740         int nid;
741
742         VM_BUG_ON(!nodes_allowed);
743
744         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
745         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
746
747         return nid;
748 }
749
750 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
751 {
752         struct page *page;
753         int start_nid;
754         int next_nid;
755         int ret = 0;
756
757         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
758         next_nid = start_nid;
759
760         do {
761                 page = alloc_fresh_huge_page_node(h, next_nid);
762                 if (page) {
763                         ret = 1;
764                         break;
765                 }
766                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
767         } while (next_nid != start_nid);
768
769         if (ret)
770                 count_vm_event(HTLB_BUDDY_PGALLOC);
771         else
772                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
773
774         return ret;
775 }
776
777 /*
778  * helper for free_pool_huge_page() - return the previously saved
779  * node ["this node"] from which to free a huge page.  Advance the
780  * next node id whether or not we find a free huge page to free so
781  * that the next attempt to free addresses the next node.
782  */
783 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
784 {
785         int nid;
786
787         VM_BUG_ON(!nodes_allowed);
788
789         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
790         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
791
792         return nid;
793 }
794
795 /*
796  * Free huge page from pool from next node to free.
797  * Attempt to keep persistent huge pages more or less
798  * balanced over allowed nodes.
799  * Called with hugetlb_lock locked.
800  */
801 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
802                                                          bool acct_surplus)
803 {
804         int start_nid;
805         int next_nid;
806         int ret = 0;
807
808         start_nid = hstate_next_node_to_free(h, nodes_allowed);
809         next_nid = start_nid;
810
811         do {
812                 /*
813                  * If we're returning unused surplus pages, only examine
814                  * nodes with surplus pages.
815                  */
816                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
817                     !list_empty(&h->hugepage_freelists[next_nid])) {
818                         struct page *page =
819                                 list_entry(h->hugepage_freelists[next_nid].next,
820                                           struct page, lru);
821                         list_del(&page->lru);
822                         h->free_huge_pages--;
823                         h->free_huge_pages_node[next_nid]--;
824                         if (acct_surplus) {
825                                 h->surplus_huge_pages--;
826                                 h->surplus_huge_pages_node[next_nid]--;
827                         }
828                         update_and_free_page(h, page);
829                         ret = 1;
830                         break;
831                 }
832                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
833         } while (next_nid != start_nid);
834
835         return ret;
836 }
837
838 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
839 {
840         struct page *page;
841         unsigned int r_nid;
842
843         if (h->order >= MAX_ORDER)
844                 return NULL;
845
846         /*
847          * Assume we will successfully allocate the surplus page to
848          * prevent racing processes from causing the surplus to exceed
849          * overcommit
850          *
851          * This however introduces a different race, where a process B
852          * tries to grow the static hugepage pool while alloc_pages() is
853          * called by process A. B will only examine the per-node
854          * counters in determining if surplus huge pages can be
855          * converted to normal huge pages in adjust_pool_surplus(). A
856          * won't be able to increment the per-node counter, until the
857          * lock is dropped by B, but B doesn't drop hugetlb_lock until
858          * no more huge pages can be converted from surplus to normal
859          * state (and doesn't try to convert again). Thus, we have a
860          * case where a surplus huge page exists, the pool is grown, and
861          * the surplus huge page still exists after, even though it
862          * should just have been converted to a normal huge page. This
863          * does not leak memory, though, as the hugepage will be freed
864          * once it is out of use. It also does not allow the counters to
865          * go out of whack in adjust_pool_surplus() as we don't modify
866          * the node values until we've gotten the hugepage and only the
867          * per-node value is checked there.
868          */
869         spin_lock(&hugetlb_lock);
870         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
871                 spin_unlock(&hugetlb_lock);
872                 return NULL;
873         } else {
874                 h->nr_huge_pages++;
875                 h->surplus_huge_pages++;
876         }
877         spin_unlock(&hugetlb_lock);
878
879         if (nid == NUMA_NO_NODE)
880                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
881                                    __GFP_REPEAT|__GFP_NOWARN,
882                                    huge_page_order(h));
883         else
884                 page = alloc_pages_exact_node(nid,
885                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
886                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
887
888         if (page && arch_prepare_hugepage(page)) {
889                 __free_pages(page, huge_page_order(h));
890                 page = NULL;
891         }
892
893         spin_lock(&hugetlb_lock);
894         if (page) {
895                 INIT_LIST_HEAD(&page->lru);
896                 r_nid = page_to_nid(page);
897                 set_compound_page_dtor(page, free_huge_page);
898                 /*
899                  * We incremented the global counters already
900                  */
901                 h->nr_huge_pages_node[r_nid]++;
902                 h->surplus_huge_pages_node[r_nid]++;
903                 __count_vm_event(HTLB_BUDDY_PGALLOC);
904         } else {
905                 h->nr_huge_pages--;
906                 h->surplus_huge_pages--;
907                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
908         }
909         spin_unlock(&hugetlb_lock);
910
911         return page;
912 }
913
914 /*
915  * This allocation function is useful in the context where vma is irrelevant.
916  * E.g. soft-offlining uses this function because it only cares physical
917  * address of error page.
918  */
919 struct page *alloc_huge_page_node(struct hstate *h, int nid)
920 {
921         struct page *page;
922
923         spin_lock(&hugetlb_lock);
924         page = dequeue_huge_page_node(h, nid);
925         spin_unlock(&hugetlb_lock);
926
927         if (!page)
928                 page = alloc_buddy_huge_page(h, nid);
929
930         return page;
931 }
932
933 /*
934  * Increase the hugetlb pool such that it can accommodate a reservation
935  * of size 'delta'.
936  */
937 static int gather_surplus_pages(struct hstate *h, int delta)
938 {
939         struct list_head surplus_list;
940         struct page *page, *tmp;
941         int ret, i;
942         int needed, allocated;
943         bool alloc_ok = true;
944
945         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
946         if (needed <= 0) {
947                 h->resv_huge_pages += delta;
948                 return 0;
949         }
950
951         allocated = 0;
952         INIT_LIST_HEAD(&surplus_list);
953
954         ret = -ENOMEM;
955 retry:
956         spin_unlock(&hugetlb_lock);
957         for (i = 0; i < needed; i++) {
958                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
959                 if (!page) {
960                         alloc_ok = false;
961                         break;
962                 }
963                 list_add(&page->lru, &surplus_list);
964         }
965         allocated += i;
966
967         /*
968          * After retaking hugetlb_lock, we need to recalculate 'needed'
969          * because either resv_huge_pages or free_huge_pages may have changed.
970          */
971         spin_lock(&hugetlb_lock);
972         needed = (h->resv_huge_pages + delta) -
973                         (h->free_huge_pages + allocated);
974         if (needed > 0) {
975                 if (alloc_ok)
976                         goto retry;
977                 /*
978                  * We were not able to allocate enough pages to
979                  * satisfy the entire reservation so we free what
980                  * we've allocated so far.
981                  */
982                 goto free;
983         }
984         /*
985          * The surplus_list now contains _at_least_ the number of extra pages
986          * needed to accommodate the reservation.  Add the appropriate number
987          * of pages to the hugetlb pool and free the extras back to the buddy
988          * allocator.  Commit the entire reservation here to prevent another
989          * process from stealing the pages as they are added to the pool but
990          * before they are reserved.
991          */
992         needed += allocated;
993         h->resv_huge_pages += delta;
994         ret = 0;
995
996         /* Free the needed pages to the hugetlb pool */
997         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
998                 if ((--needed) < 0)
999                         break;
1000                 /*
1001                  * This page is now managed by the hugetlb allocator and has
1002                  * no users -- drop the buddy allocator's reference.
1003                  */
1004                 put_page_testzero(page);
1005                 VM_BUG_ON(page_count(page));
1006                 enqueue_huge_page(h, page);
1007         }
1008 free:
1009         spin_unlock(&hugetlb_lock);
1010
1011         /* Free unnecessary surplus pages to the buddy allocator */
1012         if (!list_empty(&surplus_list)) {
1013                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1014                         put_page(page);
1015                 }
1016         }
1017         spin_lock(&hugetlb_lock);
1018
1019         return ret;
1020 }
1021
1022 /*
1023  * When releasing a hugetlb pool reservation, any surplus pages that were
1024  * allocated to satisfy the reservation must be explicitly freed if they were
1025  * never used.
1026  * Called with hugetlb_lock held.
1027  */
1028 static void return_unused_surplus_pages(struct hstate *h,
1029                                         unsigned long unused_resv_pages)
1030 {
1031         unsigned long nr_pages;
1032
1033         /* Uncommit the reservation */
1034         h->resv_huge_pages -= unused_resv_pages;
1035
1036         /* Cannot return gigantic pages currently */
1037         if (h->order >= MAX_ORDER)
1038                 return;
1039
1040         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1041
1042         /*
1043          * We want to release as many surplus pages as possible, spread
1044          * evenly across all nodes with memory. Iterate across these nodes
1045          * until we can no longer free unreserved surplus pages. This occurs
1046          * when the nodes with surplus pages have no free pages.
1047          * free_pool_huge_page() will balance the the freed pages across the
1048          * on-line nodes with memory and will handle the hstate accounting.
1049          */
1050         while (nr_pages--) {
1051                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1052                         break;
1053         }
1054 }
1055
1056 /*
1057  * Determine if the huge page at addr within the vma has an associated
1058  * reservation.  Where it does not we will need to logically increase
1059  * reservation and actually increase subpool usage before an allocation
1060  * can occur.  Where any new reservation would be required the
1061  * reservation change is prepared, but not committed.  Once the page
1062  * has been allocated from the subpool and instantiated the change should
1063  * be committed via vma_commit_reservation.  No action is required on
1064  * failure.
1065  */
1066 static long vma_needs_reservation(struct hstate *h,
1067                         struct vm_area_struct *vma, unsigned long addr)
1068 {
1069         struct address_space *mapping = vma->vm_file->f_mapping;
1070         struct inode *inode = mapping->host;
1071
1072         if (vma->vm_flags & VM_MAYSHARE) {
1073                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1074                 return region_chg(&inode->i_mapping->private_list,
1075                                                         idx, idx + 1);
1076
1077         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1078                 return 1;
1079
1080         } else  {
1081                 long err;
1082                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1083                 struct resv_map *reservations = vma_resv_map(vma);
1084
1085                 err = region_chg(&reservations->regions, idx, idx + 1);
1086                 if (err < 0)
1087                         return err;
1088                 return 0;
1089         }
1090 }
1091 static void vma_commit_reservation(struct hstate *h,
1092                         struct vm_area_struct *vma, unsigned long addr)
1093 {
1094         struct address_space *mapping = vma->vm_file->f_mapping;
1095         struct inode *inode = mapping->host;
1096
1097         if (vma->vm_flags & VM_MAYSHARE) {
1098                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1099                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1100
1101         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1102                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103                 struct resv_map *reservations = vma_resv_map(vma);
1104
1105                 /* Mark this page used in the map. */
1106                 region_add(&reservations->regions, idx, idx + 1);
1107         }
1108 }
1109
1110 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1111                                     unsigned long addr, int avoid_reserve)
1112 {
1113         struct hugepage_subpool *spool = subpool_vma(vma);
1114         struct hstate *h = hstate_vma(vma);
1115         struct page *page;
1116         long chg;
1117
1118         /*
1119          * Processes that did not create the mapping will have no
1120          * reserves and will not have accounted against subpool
1121          * limit. Check that the subpool limit can be made before
1122          * satisfying the allocation MAP_NORESERVE mappings may also
1123          * need pages and subpool limit allocated allocated if no reserve
1124          * mapping overlaps.
1125          */
1126         chg = vma_needs_reservation(h, vma, addr);
1127         if (chg < 0)
1128                 return ERR_PTR(-ENOMEM);
1129         if (chg)
1130                 if (hugepage_subpool_get_pages(spool, chg))
1131                         return ERR_PTR(-ENOSPC);
1132
1133         spin_lock(&hugetlb_lock);
1134         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1135         spin_unlock(&hugetlb_lock);
1136
1137         if (!page) {
1138                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1139                 if (!page) {
1140                         hugepage_subpool_put_pages(spool, chg);
1141                         return ERR_PTR(-ENOSPC);
1142                 }
1143         }
1144
1145         set_page_private(page, (unsigned long)spool);
1146
1147         vma_commit_reservation(h, vma, addr);
1148
1149         return page;
1150 }
1151
1152 int __weak alloc_bootmem_huge_page(struct hstate *h)
1153 {
1154         struct huge_bootmem_page *m;
1155         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1156
1157         while (nr_nodes) {
1158                 void *addr;
1159
1160                 addr = __alloc_bootmem_node_nopanic(
1161                                 NODE_DATA(hstate_next_node_to_alloc(h,
1162                                                 &node_states[N_HIGH_MEMORY])),
1163                                 huge_page_size(h), huge_page_size(h), 0);
1164
1165                 if (addr) {
1166                         /*
1167                          * Use the beginning of the huge page to store the
1168                          * huge_bootmem_page struct (until gather_bootmem
1169                          * puts them into the mem_map).
1170                          */
1171                         m = addr;
1172                         goto found;
1173                 }
1174                 nr_nodes--;
1175         }
1176         return 0;
1177
1178 found:
1179         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1180         /* Put them into a private list first because mem_map is not up yet */
1181         list_add(&m->list, &huge_boot_pages);
1182         m->hstate = h;
1183         return 1;
1184 }
1185
1186 static void prep_compound_huge_page(struct page *page, int order)
1187 {
1188         if (unlikely(order > (MAX_ORDER - 1)))
1189                 prep_compound_gigantic_page(page, order);
1190         else
1191                 prep_compound_page(page, order);
1192 }
1193
1194 /* Put bootmem huge pages into the standard lists after mem_map is up */
1195 static void __init gather_bootmem_prealloc(void)
1196 {
1197         struct huge_bootmem_page *m;
1198
1199         list_for_each_entry(m, &huge_boot_pages, list) {
1200                 struct hstate *h = m->hstate;
1201                 struct page *page;
1202
1203 #ifdef CONFIG_HIGHMEM
1204                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1205                 free_bootmem_late((unsigned long)m,
1206                                   sizeof(struct huge_bootmem_page));
1207 #else
1208                 page = virt_to_page(m);
1209 #endif
1210                 __ClearPageReserved(page);
1211                 WARN_ON(page_count(page) != 1);
1212                 prep_compound_huge_page(page, h->order);
1213                 prep_new_huge_page(h, page, page_to_nid(page));
1214                 /*
1215                  * If we had gigantic hugepages allocated at boot time, we need
1216                  * to restore the 'stolen' pages to totalram_pages in order to
1217                  * fix confusing memory reports from free(1) and another
1218                  * side-effects, like CommitLimit going negative.
1219                  */
1220                 if (h->order > (MAX_ORDER - 1))
1221                         totalram_pages += 1 << h->order;
1222         }
1223 }
1224
1225 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1226 {
1227         unsigned long i;
1228
1229         for (i = 0; i < h->max_huge_pages; ++i) {
1230                 if (h->order >= MAX_ORDER) {
1231                         if (!alloc_bootmem_huge_page(h))
1232                                 break;
1233                 } else if (!alloc_fresh_huge_page(h,
1234                                          &node_states[N_HIGH_MEMORY]))
1235                         break;
1236         }
1237         h->max_huge_pages = i;
1238 }
1239
1240 static void __init hugetlb_init_hstates(void)
1241 {
1242         struct hstate *h;
1243
1244         for_each_hstate(h) {
1245                 /* oversize hugepages were init'ed in early boot */
1246                 if (h->order < MAX_ORDER)
1247                         hugetlb_hstate_alloc_pages(h);
1248         }
1249 }
1250
1251 static char * __init memfmt(char *buf, unsigned long n)
1252 {
1253         if (n >= (1UL << 30))
1254                 sprintf(buf, "%lu GB", n >> 30);
1255         else if (n >= (1UL << 20))
1256                 sprintf(buf, "%lu MB", n >> 20);
1257         else
1258                 sprintf(buf, "%lu KB", n >> 10);
1259         return buf;
1260 }
1261
1262 static void __init report_hugepages(void)
1263 {
1264         struct hstate *h;
1265
1266         for_each_hstate(h) {
1267                 char buf[32];
1268                 printk(KERN_INFO "HugeTLB registered %s page size, "
1269                                  "pre-allocated %ld pages\n",
1270                         memfmt(buf, huge_page_size(h)),
1271                         h->free_huge_pages);
1272         }
1273 }
1274
1275 #ifdef CONFIG_HIGHMEM
1276 static void try_to_free_low(struct hstate *h, unsigned long count,
1277                                                 nodemask_t *nodes_allowed)
1278 {
1279         int i;
1280
1281         if (h->order >= MAX_ORDER)
1282                 return;
1283
1284         for_each_node_mask(i, *nodes_allowed) {
1285                 struct page *page, *next;
1286                 struct list_head *freel = &h->hugepage_freelists[i];
1287                 list_for_each_entry_safe(page, next, freel, lru) {
1288                         if (count >= h->nr_huge_pages)
1289                                 return;
1290                         if (PageHighMem(page))
1291                                 continue;
1292                         list_del(&page->lru);
1293                         update_and_free_page(h, page);
1294                         h->free_huge_pages--;
1295                         h->free_huge_pages_node[page_to_nid(page)]--;
1296                 }
1297         }
1298 }
1299 #else
1300 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1301                                                 nodemask_t *nodes_allowed)
1302 {
1303 }
1304 #endif
1305
1306 /*
1307  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1308  * balanced by operating on them in a round-robin fashion.
1309  * Returns 1 if an adjustment was made.
1310  */
1311 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1312                                 int delta)
1313 {
1314         int start_nid, next_nid;
1315         int ret = 0;
1316
1317         VM_BUG_ON(delta != -1 && delta != 1);
1318
1319         if (delta < 0)
1320                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1321         else
1322                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1323         next_nid = start_nid;
1324
1325         do {
1326                 int nid = next_nid;
1327                 if (delta < 0)  {
1328                         /*
1329                          * To shrink on this node, there must be a surplus page
1330                          */
1331                         if (!h->surplus_huge_pages_node[nid]) {
1332                                 next_nid = hstate_next_node_to_alloc(h,
1333                                                                 nodes_allowed);
1334                                 continue;
1335                         }
1336                 }
1337                 if (delta > 0) {
1338                         /*
1339                          * Surplus cannot exceed the total number of pages
1340                          */
1341                         if (h->surplus_huge_pages_node[nid] >=
1342                                                 h->nr_huge_pages_node[nid]) {
1343                                 next_nid = hstate_next_node_to_free(h,
1344                                                                 nodes_allowed);
1345                                 continue;
1346                         }
1347                 }
1348
1349                 h->surplus_huge_pages += delta;
1350                 h->surplus_huge_pages_node[nid] += delta;
1351                 ret = 1;
1352                 break;
1353         } while (next_nid != start_nid);
1354
1355         return ret;
1356 }
1357
1358 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1359 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1360                                                 nodemask_t *nodes_allowed)
1361 {
1362         unsigned long min_count, ret;
1363
1364         if (h->order >= MAX_ORDER)
1365                 return h->max_huge_pages;
1366
1367         /*
1368          * Increase the pool size
1369          * First take pages out of surplus state.  Then make up the
1370          * remaining difference by allocating fresh huge pages.
1371          *
1372          * We might race with alloc_buddy_huge_page() here and be unable
1373          * to convert a surplus huge page to a normal huge page. That is
1374          * not critical, though, it just means the overall size of the
1375          * pool might be one hugepage larger than it needs to be, but
1376          * within all the constraints specified by the sysctls.
1377          */
1378         spin_lock(&hugetlb_lock);
1379         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1380                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1381                         break;
1382         }
1383
1384         while (count > persistent_huge_pages(h)) {
1385                 /*
1386                  * If this allocation races such that we no longer need the
1387                  * page, free_huge_page will handle it by freeing the page
1388                  * and reducing the surplus.
1389                  */
1390                 spin_unlock(&hugetlb_lock);
1391                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1392                 spin_lock(&hugetlb_lock);
1393                 if (!ret)
1394                         goto out;
1395
1396                 /* Bail for signals. Probably ctrl-c from user */
1397                 if (signal_pending(current))
1398                         goto out;
1399         }
1400
1401         /*
1402          * Decrease the pool size
1403          * First return free pages to the buddy allocator (being careful
1404          * to keep enough around to satisfy reservations).  Then place
1405          * pages into surplus state as needed so the pool will shrink
1406          * to the desired size as pages become free.
1407          *
1408          * By placing pages into the surplus state independent of the
1409          * overcommit value, we are allowing the surplus pool size to
1410          * exceed overcommit. There are few sane options here. Since
1411          * alloc_buddy_huge_page() is checking the global counter,
1412          * though, we'll note that we're not allowed to exceed surplus
1413          * and won't grow the pool anywhere else. Not until one of the
1414          * sysctls are changed, or the surplus pages go out of use.
1415          */
1416         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1417         min_count = max(count, min_count);
1418         try_to_free_low(h, min_count, nodes_allowed);
1419         while (min_count < persistent_huge_pages(h)) {
1420                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1421                         break;
1422         }
1423         while (count < persistent_huge_pages(h)) {
1424                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1425                         break;
1426         }
1427 out:
1428         ret = persistent_huge_pages(h);
1429         spin_unlock(&hugetlb_lock);
1430         return ret;
1431 }
1432
1433 #define HSTATE_ATTR_RO(_name) \
1434         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1435
1436 #define HSTATE_ATTR(_name) \
1437         static struct kobj_attribute _name##_attr = \
1438                 __ATTR(_name, 0644, _name##_show, _name##_store)
1439
1440 static struct kobject *hugepages_kobj;
1441 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1442
1443 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1444
1445 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1446 {
1447         int i;
1448
1449         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1450                 if (hstate_kobjs[i] == kobj) {
1451                         if (nidp)
1452                                 *nidp = NUMA_NO_NODE;
1453                         return &hstates[i];
1454                 }
1455
1456         return kobj_to_node_hstate(kobj, nidp);
1457 }
1458
1459 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1460                                         struct kobj_attribute *attr, char *buf)
1461 {
1462         struct hstate *h;
1463         unsigned long nr_huge_pages;
1464         int nid;
1465
1466         h = kobj_to_hstate(kobj, &nid);
1467         if (nid == NUMA_NO_NODE)
1468                 nr_huge_pages = h->nr_huge_pages;
1469         else
1470                 nr_huge_pages = h->nr_huge_pages_node[nid];
1471
1472         return sprintf(buf, "%lu\n", nr_huge_pages);
1473 }
1474
1475 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1476                         struct kobject *kobj, struct kobj_attribute *attr,
1477                         const char *buf, size_t len)
1478 {
1479         int err;
1480         int nid;
1481         unsigned long count;
1482         struct hstate *h;
1483         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1484
1485         err = strict_strtoul(buf, 10, &count);
1486         if (err)
1487                 goto out;
1488
1489         h = kobj_to_hstate(kobj, &nid);
1490         if (h->order >= MAX_ORDER) {
1491                 err = -EINVAL;
1492                 goto out;
1493         }
1494
1495         if (nid == NUMA_NO_NODE) {
1496                 /*
1497                  * global hstate attribute
1498                  */
1499                 if (!(obey_mempolicy &&
1500                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1501                         NODEMASK_FREE(nodes_allowed);
1502                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1503                 }
1504         } else if (nodes_allowed) {
1505                 /*
1506                  * per node hstate attribute: adjust count to global,
1507                  * but restrict alloc/free to the specified node.
1508                  */
1509                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1510                 init_nodemask_of_node(nodes_allowed, nid);
1511         } else
1512                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1513
1514         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1515
1516         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1517                 NODEMASK_FREE(nodes_allowed);
1518
1519         return len;
1520 out:
1521         NODEMASK_FREE(nodes_allowed);
1522         return err;
1523 }
1524
1525 static ssize_t nr_hugepages_show(struct kobject *kobj,
1526                                        struct kobj_attribute *attr, char *buf)
1527 {
1528         return nr_hugepages_show_common(kobj, attr, buf);
1529 }
1530
1531 static ssize_t nr_hugepages_store(struct kobject *kobj,
1532                struct kobj_attribute *attr, const char *buf, size_t len)
1533 {
1534         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1535 }
1536 HSTATE_ATTR(nr_hugepages);
1537
1538 #ifdef CONFIG_NUMA
1539
1540 /*
1541  * hstate attribute for optionally mempolicy-based constraint on persistent
1542  * huge page alloc/free.
1543  */
1544 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1545                                        struct kobj_attribute *attr, char *buf)
1546 {
1547         return nr_hugepages_show_common(kobj, attr, buf);
1548 }
1549
1550 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1551                struct kobj_attribute *attr, const char *buf, size_t len)
1552 {
1553         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1554 }
1555 HSTATE_ATTR(nr_hugepages_mempolicy);
1556 #endif
1557
1558
1559 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1560                                         struct kobj_attribute *attr, char *buf)
1561 {
1562         struct hstate *h = kobj_to_hstate(kobj, NULL);
1563         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1564 }
1565
1566 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1567                 struct kobj_attribute *attr, const char *buf, size_t count)
1568 {
1569         int err;
1570         unsigned long input;
1571         struct hstate *h = kobj_to_hstate(kobj, NULL);
1572
1573         if (h->order >= MAX_ORDER)
1574                 return -EINVAL;
1575
1576         err = strict_strtoul(buf, 10, &input);
1577         if (err)
1578                 return err;
1579
1580         spin_lock(&hugetlb_lock);
1581         h->nr_overcommit_huge_pages = input;
1582         spin_unlock(&hugetlb_lock);
1583
1584         return count;
1585 }
1586 HSTATE_ATTR(nr_overcommit_hugepages);
1587
1588 static ssize_t free_hugepages_show(struct kobject *kobj,
1589                                         struct kobj_attribute *attr, char *buf)
1590 {
1591         struct hstate *h;
1592         unsigned long free_huge_pages;
1593         int nid;
1594
1595         h = kobj_to_hstate(kobj, &nid);
1596         if (nid == NUMA_NO_NODE)
1597                 free_huge_pages = h->free_huge_pages;
1598         else
1599                 free_huge_pages = h->free_huge_pages_node[nid];
1600
1601         return sprintf(buf, "%lu\n", free_huge_pages);
1602 }
1603 HSTATE_ATTR_RO(free_hugepages);
1604
1605 static ssize_t resv_hugepages_show(struct kobject *kobj,
1606                                         struct kobj_attribute *attr, char *buf)
1607 {
1608         struct hstate *h = kobj_to_hstate(kobj, NULL);
1609         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1610 }
1611 HSTATE_ATTR_RO(resv_hugepages);
1612
1613 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1614                                         struct kobj_attribute *attr, char *buf)
1615 {
1616         struct hstate *h;
1617         unsigned long surplus_huge_pages;
1618         int nid;
1619
1620         h = kobj_to_hstate(kobj, &nid);
1621         if (nid == NUMA_NO_NODE)
1622                 surplus_huge_pages = h->surplus_huge_pages;
1623         else
1624                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1625
1626         return sprintf(buf, "%lu\n", surplus_huge_pages);
1627 }
1628 HSTATE_ATTR_RO(surplus_hugepages);
1629
1630 static struct attribute *hstate_attrs[] = {
1631         &nr_hugepages_attr.attr,
1632         &nr_overcommit_hugepages_attr.attr,
1633         &free_hugepages_attr.attr,
1634         &resv_hugepages_attr.attr,
1635         &surplus_hugepages_attr.attr,
1636 #ifdef CONFIG_NUMA
1637         &nr_hugepages_mempolicy_attr.attr,
1638 #endif
1639         NULL,
1640 };
1641
1642 static struct attribute_group hstate_attr_group = {
1643         .attrs = hstate_attrs,
1644 };
1645
1646 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1647                                     struct kobject **hstate_kobjs,
1648                                     struct attribute_group *hstate_attr_group)
1649 {
1650         int retval;
1651         int hi = hstate_index(h);
1652
1653         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1654         if (!hstate_kobjs[hi])
1655                 return -ENOMEM;
1656
1657         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1658         if (retval)
1659                 kobject_put(hstate_kobjs[hi]);
1660
1661         return retval;
1662 }
1663
1664 static void __init hugetlb_sysfs_init(void)
1665 {
1666         struct hstate *h;
1667         int err;
1668
1669         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1670         if (!hugepages_kobj)
1671                 return;
1672
1673         for_each_hstate(h) {
1674                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1675                                          hstate_kobjs, &hstate_attr_group);
1676                 if (err)
1677                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1678                                                                 h->name);
1679         }
1680 }
1681
1682 #ifdef CONFIG_NUMA
1683
1684 /*
1685  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1686  * with node devices in node_devices[] using a parallel array.  The array
1687  * index of a node device or _hstate == node id.
1688  * This is here to avoid any static dependency of the node device driver, in
1689  * the base kernel, on the hugetlb module.
1690  */
1691 struct node_hstate {
1692         struct kobject          *hugepages_kobj;
1693         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1694 };
1695 struct node_hstate node_hstates[MAX_NUMNODES];
1696
1697 /*
1698  * A subset of global hstate attributes for node devices
1699  */
1700 static struct attribute *per_node_hstate_attrs[] = {
1701         &nr_hugepages_attr.attr,
1702         &free_hugepages_attr.attr,
1703         &surplus_hugepages_attr.attr,
1704         NULL,
1705 };
1706
1707 static struct attribute_group per_node_hstate_attr_group = {
1708         .attrs = per_node_hstate_attrs,
1709 };
1710
1711 /*
1712  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1713  * Returns node id via non-NULL nidp.
1714  */
1715 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1716 {
1717         int nid;
1718
1719         for (nid = 0; nid < nr_node_ids; nid++) {
1720                 struct node_hstate *nhs = &node_hstates[nid];
1721                 int i;
1722                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1723                         if (nhs->hstate_kobjs[i] == kobj) {
1724                                 if (nidp)
1725                                         *nidp = nid;
1726                                 return &hstates[i];
1727                         }
1728         }
1729
1730         BUG();
1731         return NULL;
1732 }
1733
1734 /*
1735  * Unregister hstate attributes from a single node device.
1736  * No-op if no hstate attributes attached.
1737  */
1738 void hugetlb_unregister_node(struct node *node)
1739 {
1740         struct hstate *h;
1741         struct node_hstate *nhs = &node_hstates[node->dev.id];
1742
1743         if (!nhs->hugepages_kobj)
1744                 return;         /* no hstate attributes */
1745
1746         for_each_hstate(h) {
1747                 int idx = hstate_index(h);
1748                 if (nhs->hstate_kobjs[idx]) {
1749                         kobject_put(nhs->hstate_kobjs[idx]);
1750                         nhs->hstate_kobjs[idx] = NULL;
1751                 }
1752         }
1753
1754         kobject_put(nhs->hugepages_kobj);
1755         nhs->hugepages_kobj = NULL;
1756 }
1757
1758 /*
1759  * hugetlb module exit:  unregister hstate attributes from node devices
1760  * that have them.
1761  */
1762 static void hugetlb_unregister_all_nodes(void)
1763 {
1764         int nid;
1765
1766         /*
1767          * disable node device registrations.
1768          */
1769         register_hugetlbfs_with_node(NULL, NULL);
1770
1771         /*
1772          * remove hstate attributes from any nodes that have them.
1773          */
1774         for (nid = 0; nid < nr_node_ids; nid++)
1775                 hugetlb_unregister_node(&node_devices[nid]);
1776 }
1777
1778 /*
1779  * Register hstate attributes for a single node device.
1780  * No-op if attributes already registered.
1781  */
1782 void hugetlb_register_node(struct node *node)
1783 {
1784         struct hstate *h;
1785         struct node_hstate *nhs = &node_hstates[node->dev.id];
1786         int err;
1787
1788         if (nhs->hugepages_kobj)
1789                 return;         /* already allocated */
1790
1791         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1792                                                         &node->dev.kobj);
1793         if (!nhs->hugepages_kobj)
1794                 return;
1795
1796         for_each_hstate(h) {
1797                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1798                                                 nhs->hstate_kobjs,
1799                                                 &per_node_hstate_attr_group);
1800                 if (err) {
1801                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1802                                         " for node %d\n",
1803                                                 h->name, node->dev.id);
1804                         hugetlb_unregister_node(node);
1805                         break;
1806                 }
1807         }
1808 }
1809
1810 /*
1811  * hugetlb init time:  register hstate attributes for all registered node
1812  * devices of nodes that have memory.  All on-line nodes should have
1813  * registered their associated device by this time.
1814  */
1815 static void hugetlb_register_all_nodes(void)
1816 {
1817         int nid;
1818
1819         for_each_node_state(nid, N_HIGH_MEMORY) {
1820                 struct node *node = &node_devices[nid];
1821                 if (node->dev.id == nid)
1822                         hugetlb_register_node(node);
1823         }
1824
1825         /*
1826          * Let the node device driver know we're here so it can
1827          * [un]register hstate attributes on node hotplug.
1828          */
1829         register_hugetlbfs_with_node(hugetlb_register_node,
1830                                      hugetlb_unregister_node);
1831 }
1832 #else   /* !CONFIG_NUMA */
1833
1834 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1835 {
1836         BUG();
1837         if (nidp)
1838                 *nidp = -1;
1839         return NULL;
1840 }
1841
1842 static void hugetlb_unregister_all_nodes(void) { }
1843
1844 static void hugetlb_register_all_nodes(void) { }
1845
1846 #endif
1847
1848 static void __exit hugetlb_exit(void)
1849 {
1850         struct hstate *h;
1851
1852         hugetlb_unregister_all_nodes();
1853
1854         for_each_hstate(h) {
1855                 kobject_put(hstate_kobjs[hstate_index(h)]);
1856         }
1857
1858         kobject_put(hugepages_kobj);
1859 }
1860 module_exit(hugetlb_exit);
1861
1862 static int __init hugetlb_init(void)
1863 {
1864         /* Some platform decide whether they support huge pages at boot
1865          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1866          * there is no such support
1867          */
1868         if (HPAGE_SHIFT == 0)
1869                 return 0;
1870
1871         if (!size_to_hstate(default_hstate_size)) {
1872                 default_hstate_size = HPAGE_SIZE;
1873                 if (!size_to_hstate(default_hstate_size))
1874                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1875         }
1876         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1877         if (default_hstate_max_huge_pages)
1878                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1879
1880         hugetlb_init_hstates();
1881
1882         gather_bootmem_prealloc();
1883
1884         report_hugepages();
1885
1886         hugetlb_sysfs_init();
1887
1888         hugetlb_register_all_nodes();
1889
1890         return 0;
1891 }
1892 module_init(hugetlb_init);
1893
1894 /* Should be called on processing a hugepagesz=... option */
1895 void __init hugetlb_add_hstate(unsigned order)
1896 {
1897         struct hstate *h;
1898         unsigned long i;
1899
1900         if (size_to_hstate(PAGE_SIZE << order)) {
1901                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1902                 return;
1903         }
1904         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1905         BUG_ON(order == 0);
1906         h = &hstates[hugetlb_max_hstate++];
1907         h->order = order;
1908         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1909         h->nr_huge_pages = 0;
1910         h->free_huge_pages = 0;
1911         for (i = 0; i < MAX_NUMNODES; ++i)
1912                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1913         INIT_LIST_HEAD(&h->hugepage_activelist);
1914         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1915         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1916         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1917                                         huge_page_size(h)/1024);
1918
1919         parsed_hstate = h;
1920 }
1921
1922 static int __init hugetlb_nrpages_setup(char *s)
1923 {
1924         unsigned long *mhp;
1925         static unsigned long *last_mhp;
1926
1927         /*
1928          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1929          * so this hugepages= parameter goes to the "default hstate".
1930          */
1931         if (!hugetlb_max_hstate)
1932                 mhp = &default_hstate_max_huge_pages;
1933         else
1934                 mhp = &parsed_hstate->max_huge_pages;
1935
1936         if (mhp == last_mhp) {
1937                 printk(KERN_WARNING "hugepages= specified twice without "
1938                         "interleaving hugepagesz=, ignoring\n");
1939                 return 1;
1940         }
1941
1942         if (sscanf(s, "%lu", mhp) <= 0)
1943                 *mhp = 0;
1944
1945         /*
1946          * Global state is always initialized later in hugetlb_init.
1947          * But we need to allocate >= MAX_ORDER hstates here early to still
1948          * use the bootmem allocator.
1949          */
1950         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1951                 hugetlb_hstate_alloc_pages(parsed_hstate);
1952
1953         last_mhp = mhp;
1954
1955         return 1;
1956 }
1957 __setup("hugepages=", hugetlb_nrpages_setup);
1958
1959 static int __init hugetlb_default_setup(char *s)
1960 {
1961         default_hstate_size = memparse(s, &s);
1962         return 1;
1963 }
1964 __setup("default_hugepagesz=", hugetlb_default_setup);
1965
1966 static unsigned int cpuset_mems_nr(unsigned int *array)
1967 {
1968         int node;
1969         unsigned int nr = 0;
1970
1971         for_each_node_mask(node, cpuset_current_mems_allowed)
1972                 nr += array[node];
1973
1974         return nr;
1975 }
1976
1977 #ifdef CONFIG_SYSCTL
1978 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1979                          struct ctl_table *table, int write,
1980                          void __user *buffer, size_t *length, loff_t *ppos)
1981 {
1982         struct hstate *h = &default_hstate;
1983         unsigned long tmp;
1984         int ret;
1985
1986         tmp = h->max_huge_pages;
1987
1988         if (write && h->order >= MAX_ORDER)
1989                 return -EINVAL;
1990
1991         table->data = &tmp;
1992         table->maxlen = sizeof(unsigned long);
1993         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1994         if (ret)
1995                 goto out;
1996
1997         if (write) {
1998                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1999                                                 GFP_KERNEL | __GFP_NORETRY);
2000                 if (!(obey_mempolicy &&
2001                                init_nodemask_of_mempolicy(nodes_allowed))) {
2002                         NODEMASK_FREE(nodes_allowed);
2003                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2004                 }
2005                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2006
2007                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2008                         NODEMASK_FREE(nodes_allowed);
2009         }
2010 out:
2011         return ret;
2012 }
2013
2014 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2015                           void __user *buffer, size_t *length, loff_t *ppos)
2016 {
2017
2018         return hugetlb_sysctl_handler_common(false, table, write,
2019                                                         buffer, length, ppos);
2020 }
2021
2022 #ifdef CONFIG_NUMA
2023 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2024                           void __user *buffer, size_t *length, loff_t *ppos)
2025 {
2026         return hugetlb_sysctl_handler_common(true, table, write,
2027                                                         buffer, length, ppos);
2028 }
2029 #endif /* CONFIG_NUMA */
2030
2031 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2032                         void __user *buffer,
2033                         size_t *length, loff_t *ppos)
2034 {
2035         proc_dointvec(table, write, buffer, length, ppos);
2036         if (hugepages_treat_as_movable)
2037                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2038         else
2039                 htlb_alloc_mask = GFP_HIGHUSER;
2040         return 0;
2041 }
2042
2043 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2044                         void __user *buffer,
2045                         size_t *length, loff_t *ppos)
2046 {
2047         struct hstate *h = &default_hstate;
2048         unsigned long tmp;
2049         int ret;
2050
2051         tmp = h->nr_overcommit_huge_pages;
2052
2053         if (write && h->order >= MAX_ORDER)
2054                 return -EINVAL;
2055
2056         table->data = &tmp;
2057         table->maxlen = sizeof(unsigned long);
2058         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2059         if (ret)
2060                 goto out;
2061
2062         if (write) {
2063                 spin_lock(&hugetlb_lock);
2064                 h->nr_overcommit_huge_pages = tmp;
2065                 spin_unlock(&hugetlb_lock);
2066         }
2067 out:
2068         return ret;
2069 }
2070
2071 #endif /* CONFIG_SYSCTL */
2072
2073 void hugetlb_report_meminfo(struct seq_file *m)
2074 {
2075         struct hstate *h = &default_hstate;
2076         seq_printf(m,
2077                         "HugePages_Total:   %5lu\n"
2078                         "HugePages_Free:    %5lu\n"
2079                         "HugePages_Rsvd:    %5lu\n"
2080                         "HugePages_Surp:    %5lu\n"
2081                         "Hugepagesize:   %8lu kB\n",
2082                         h->nr_huge_pages,
2083                         h->free_huge_pages,
2084                         h->resv_huge_pages,
2085                         h->surplus_huge_pages,
2086                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2087 }
2088
2089 int hugetlb_report_node_meminfo(int nid, char *buf)
2090 {
2091         struct hstate *h = &default_hstate;
2092         return sprintf(buf,
2093                 "Node %d HugePages_Total: %5u\n"
2094                 "Node %d HugePages_Free:  %5u\n"
2095                 "Node %d HugePages_Surp:  %5u\n",
2096                 nid, h->nr_huge_pages_node[nid],
2097                 nid, h->free_huge_pages_node[nid],
2098                 nid, h->surplus_huge_pages_node[nid]);
2099 }
2100
2101 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2102 unsigned long hugetlb_total_pages(void)
2103 {
2104         struct hstate *h = &default_hstate;
2105         return h->nr_huge_pages * pages_per_huge_page(h);
2106 }
2107
2108 static int hugetlb_acct_memory(struct hstate *h, long delta)
2109 {
2110         int ret = -ENOMEM;
2111
2112         spin_lock(&hugetlb_lock);
2113         /*
2114          * When cpuset is configured, it breaks the strict hugetlb page
2115          * reservation as the accounting is done on a global variable. Such
2116          * reservation is completely rubbish in the presence of cpuset because
2117          * the reservation is not checked against page availability for the
2118          * current cpuset. Application can still potentially OOM'ed by kernel
2119          * with lack of free htlb page in cpuset that the task is in.
2120          * Attempt to enforce strict accounting with cpuset is almost
2121          * impossible (or too ugly) because cpuset is too fluid that
2122          * task or memory node can be dynamically moved between cpusets.
2123          *
2124          * The change of semantics for shared hugetlb mapping with cpuset is
2125          * undesirable. However, in order to preserve some of the semantics,
2126          * we fall back to check against current free page availability as
2127          * a best attempt and hopefully to minimize the impact of changing
2128          * semantics that cpuset has.
2129          */
2130         if (delta > 0) {
2131                 if (gather_surplus_pages(h, delta) < 0)
2132                         goto out;
2133
2134                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2135                         return_unused_surplus_pages(h, delta);
2136                         goto out;
2137                 }
2138         }
2139
2140         ret = 0;
2141         if (delta < 0)
2142                 return_unused_surplus_pages(h, (unsigned long) -delta);
2143
2144 out:
2145         spin_unlock(&hugetlb_lock);
2146         return ret;
2147 }
2148
2149 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2150 {
2151         struct resv_map *reservations = vma_resv_map(vma);
2152
2153         /*
2154          * This new VMA should share its siblings reservation map if present.
2155          * The VMA will only ever have a valid reservation map pointer where
2156          * it is being copied for another still existing VMA.  As that VMA
2157          * has a reference to the reservation map it cannot disappear until
2158          * after this open call completes.  It is therefore safe to take a
2159          * new reference here without additional locking.
2160          */
2161         if (reservations)
2162                 kref_get(&reservations->refs);
2163 }
2164
2165 static void resv_map_put(struct vm_area_struct *vma)
2166 {
2167         struct resv_map *reservations = vma_resv_map(vma);
2168
2169         if (!reservations)
2170                 return;
2171         kref_put(&reservations->refs, resv_map_release);
2172 }
2173
2174 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2175 {
2176         struct hstate *h = hstate_vma(vma);
2177         struct resv_map *reservations = vma_resv_map(vma);
2178         struct hugepage_subpool *spool = subpool_vma(vma);
2179         unsigned long reserve;
2180         unsigned long start;
2181         unsigned long end;
2182
2183         if (reservations) {
2184                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2185                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2186
2187                 reserve = (end - start) -
2188                         region_count(&reservations->regions, start, end);
2189
2190                 resv_map_put(vma);
2191
2192                 if (reserve) {
2193                         hugetlb_acct_memory(h, -reserve);
2194                         hugepage_subpool_put_pages(spool, reserve);
2195                 }
2196         }
2197 }
2198
2199 /*
2200  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2201  * handle_mm_fault() to try to instantiate regular-sized pages in the
2202  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2203  * this far.
2204  */
2205 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2206 {
2207         BUG();
2208         return 0;
2209 }
2210
2211 const struct vm_operations_struct hugetlb_vm_ops = {
2212         .fault = hugetlb_vm_op_fault,
2213         .open = hugetlb_vm_op_open,
2214         .close = hugetlb_vm_op_close,
2215 };
2216
2217 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2218                                 int writable)
2219 {
2220         pte_t entry;
2221
2222         if (writable) {
2223                 entry =
2224                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2225         } else {
2226                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2227         }
2228         entry = pte_mkyoung(entry);
2229         entry = pte_mkhuge(entry);
2230         entry = arch_make_huge_pte(entry, vma, page, writable);
2231
2232         return entry;
2233 }
2234
2235 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2236                                    unsigned long address, pte_t *ptep)
2237 {
2238         pte_t entry;
2239
2240         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2241         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2242                 update_mmu_cache(vma, address, ptep);
2243 }
2244
2245
2246 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2247                             struct vm_area_struct *vma)
2248 {
2249         pte_t *src_pte, *dst_pte, entry;
2250         struct page *ptepage;
2251         unsigned long addr;
2252         int cow;
2253         struct hstate *h = hstate_vma(vma);
2254         unsigned long sz = huge_page_size(h);
2255
2256         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2257
2258         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2259                 src_pte = huge_pte_offset(src, addr);
2260                 if (!src_pte)
2261                         continue;
2262                 dst_pte = huge_pte_alloc(dst, addr, sz);
2263                 if (!dst_pte)
2264                         goto nomem;
2265
2266                 /* If the pagetables are shared don't copy or take references */
2267                 if (dst_pte == src_pte)
2268                         continue;
2269
2270                 spin_lock(&dst->page_table_lock);
2271                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2272                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2273                         if (cow)
2274                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2275                         entry = huge_ptep_get(src_pte);
2276                         ptepage = pte_page(entry);
2277                         get_page(ptepage);
2278                         page_dup_rmap(ptepage);
2279                         set_huge_pte_at(dst, addr, dst_pte, entry);
2280                 }
2281                 spin_unlock(&src->page_table_lock);
2282                 spin_unlock(&dst->page_table_lock);
2283         }
2284         return 0;
2285
2286 nomem:
2287         return -ENOMEM;
2288 }
2289
2290 static int is_hugetlb_entry_migration(pte_t pte)
2291 {
2292         swp_entry_t swp;
2293
2294         if (huge_pte_none(pte) || pte_present(pte))
2295                 return 0;
2296         swp = pte_to_swp_entry(pte);
2297         if (non_swap_entry(swp) && is_migration_entry(swp))
2298                 return 1;
2299         else
2300                 return 0;
2301 }
2302
2303 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2304 {
2305         swp_entry_t swp;
2306
2307         if (huge_pte_none(pte) || pte_present(pte))
2308                 return 0;
2309         swp = pte_to_swp_entry(pte);
2310         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2311                 return 1;
2312         else
2313                 return 0;
2314 }
2315
2316 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2317                             unsigned long start, unsigned long end,
2318                             struct page *ref_page)
2319 {
2320         int force_flush = 0;
2321         struct mm_struct *mm = vma->vm_mm;
2322         unsigned long address;
2323         pte_t *ptep;
2324         pte_t pte;
2325         struct page *page;
2326         struct hstate *h = hstate_vma(vma);
2327         unsigned long sz = huge_page_size(h);
2328
2329         WARN_ON(!is_vm_hugetlb_page(vma));
2330         BUG_ON(start & ~huge_page_mask(h));
2331         BUG_ON(end & ~huge_page_mask(h));
2332
2333         tlb_start_vma(tlb, vma);
2334         mmu_notifier_invalidate_range_start(mm, start, end);
2335 again:
2336         spin_lock(&mm->page_table_lock);
2337         for (address = start; address < end; address += sz) {
2338                 ptep = huge_pte_offset(mm, address);
2339                 if (!ptep)
2340                         continue;
2341
2342                 if (huge_pmd_unshare(mm, &address, ptep))
2343                         continue;
2344
2345                 pte = huge_ptep_get(ptep);
2346                 if (huge_pte_none(pte))
2347                         continue;
2348
2349                 /*
2350                  * HWPoisoned hugepage is already unmapped and dropped reference
2351                  */
2352                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2353                         continue;
2354
2355                 page = pte_page(pte);
2356                 /*
2357                  * If a reference page is supplied, it is because a specific
2358                  * page is being unmapped, not a range. Ensure the page we
2359                  * are about to unmap is the actual page of interest.
2360                  */
2361                 if (ref_page) {
2362                         if (page != ref_page)
2363                                 continue;
2364
2365                         /*
2366                          * Mark the VMA as having unmapped its page so that
2367                          * future faults in this VMA will fail rather than
2368                          * looking like data was lost
2369                          */
2370                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2371                 }
2372
2373                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2374                 tlb_remove_tlb_entry(tlb, ptep, address);
2375                 if (pte_dirty(pte))
2376                         set_page_dirty(page);
2377
2378                 page_remove_rmap(page);
2379                 force_flush = !__tlb_remove_page(tlb, page);
2380                 if (force_flush)
2381                         break;
2382                 /* Bail out after unmapping reference page if supplied */
2383                 if (ref_page)
2384                         break;
2385         }
2386         spin_unlock(&mm->page_table_lock);
2387         /*
2388          * mmu_gather ran out of room to batch pages, we break out of
2389          * the PTE lock to avoid doing the potential expensive TLB invalidate
2390          * and page-free while holding it.
2391          */
2392         if (force_flush) {
2393                 force_flush = 0;
2394                 tlb_flush_mmu(tlb);
2395                 if (address < end && !ref_page)
2396                         goto again;
2397         }
2398         mmu_notifier_invalidate_range_end(mm, start, end);
2399         tlb_end_vma(tlb, vma);
2400 }
2401
2402 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2403                           unsigned long end, struct page *ref_page)
2404 {
2405         struct mm_struct *mm;
2406         struct mmu_gather tlb;
2407
2408         mm = vma->vm_mm;
2409
2410         tlb_gather_mmu(&tlb, mm, 0);
2411         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2412         tlb_finish_mmu(&tlb, start, end);
2413 }
2414
2415 /*
2416  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2417  * mappping it owns the reserve page for. The intention is to unmap the page
2418  * from other VMAs and let the children be SIGKILLed if they are faulting the
2419  * same region.
2420  */
2421 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2422                                 struct page *page, unsigned long address)
2423 {
2424         struct hstate *h = hstate_vma(vma);
2425         struct vm_area_struct *iter_vma;
2426         struct address_space *mapping;
2427         struct prio_tree_iter iter;
2428         pgoff_t pgoff;
2429
2430         /*
2431          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2432          * from page cache lookup which is in HPAGE_SIZE units.
2433          */
2434         address = address & huge_page_mask(h);
2435         pgoff = vma_hugecache_offset(h, vma, address);
2436         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2437
2438         /*
2439          * Take the mapping lock for the duration of the table walk. As
2440          * this mapping should be shared between all the VMAs,
2441          * __unmap_hugepage_range() is called as the lock is already held
2442          */
2443         mutex_lock(&mapping->i_mmap_mutex);
2444         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2445                 /* Do not unmap the current VMA */
2446                 if (iter_vma == vma)
2447                         continue;
2448
2449                 /*
2450                  * Unmap the page from other VMAs without their own reserves.
2451                  * They get marked to be SIGKILLed if they fault in these
2452                  * areas. This is because a future no-page fault on this VMA
2453                  * could insert a zeroed page instead of the data existing
2454                  * from the time of fork. This would look like data corruption
2455                  */
2456                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2457                         unmap_hugepage_range(iter_vma, address,
2458                                              address + huge_page_size(h), page);
2459         }
2460         mutex_unlock(&mapping->i_mmap_mutex);
2461
2462         return 1;
2463 }
2464
2465 /*
2466  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2467  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2468  * cannot race with other handlers or page migration.
2469  * Keep the pte_same checks anyway to make transition from the mutex easier.
2470  */
2471 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2472                         unsigned long address, pte_t *ptep, pte_t pte,
2473                         struct page *pagecache_page)
2474 {
2475         struct hstate *h = hstate_vma(vma);
2476         struct page *old_page, *new_page;
2477         int avoidcopy;
2478         int outside_reserve = 0;
2479
2480         old_page = pte_page(pte);
2481
2482 retry_avoidcopy:
2483         /* If no-one else is actually using this page, avoid the copy
2484          * and just make the page writable */
2485         avoidcopy = (page_mapcount(old_page) == 1);
2486         if (avoidcopy) {
2487                 if (PageAnon(old_page))
2488                         page_move_anon_rmap(old_page, vma, address);
2489                 set_huge_ptep_writable(vma, address, ptep);
2490                 return 0;
2491         }
2492
2493         /*
2494          * If the process that created a MAP_PRIVATE mapping is about to
2495          * perform a COW due to a shared page count, attempt to satisfy
2496          * the allocation without using the existing reserves. The pagecache
2497          * page is used to determine if the reserve at this address was
2498          * consumed or not. If reserves were used, a partial faulted mapping
2499          * at the time of fork() could consume its reserves on COW instead
2500          * of the full address range.
2501          */
2502         if (!(vma->vm_flags & VM_MAYSHARE) &&
2503                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2504                         old_page != pagecache_page)
2505                 outside_reserve = 1;
2506
2507         page_cache_get(old_page);
2508
2509         /* Drop page_table_lock as buddy allocator may be called */
2510         spin_unlock(&mm->page_table_lock);
2511         new_page = alloc_huge_page(vma, address, outside_reserve);
2512
2513         if (IS_ERR(new_page)) {
2514                 long err = PTR_ERR(new_page);
2515                 page_cache_release(old_page);
2516
2517                 /*
2518                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2519                  * it is due to references held by a child and an insufficient
2520                  * huge page pool. To guarantee the original mappers
2521                  * reliability, unmap the page from child processes. The child
2522                  * may get SIGKILLed if it later faults.
2523                  */
2524                 if (outside_reserve) {
2525                         BUG_ON(huge_pte_none(pte));
2526                         if (unmap_ref_private(mm, vma, old_page, address)) {
2527                                 BUG_ON(huge_pte_none(pte));
2528                                 spin_lock(&mm->page_table_lock);
2529                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2530                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2531                                         goto retry_avoidcopy;
2532                                 /*
2533                                  * race occurs while re-acquiring page_table_lock, and
2534                                  * our job is done.
2535                                  */
2536                                 return 0;
2537                         }
2538                         WARN_ON_ONCE(1);
2539                 }
2540
2541                 /* Caller expects lock to be held */
2542                 spin_lock(&mm->page_table_lock);
2543                 if (err == -ENOMEM)
2544                         return VM_FAULT_OOM;
2545                 else
2546                         return VM_FAULT_SIGBUS;
2547         }
2548
2549         /*
2550          * When the original hugepage is shared one, it does not have
2551          * anon_vma prepared.
2552          */
2553         if (unlikely(anon_vma_prepare(vma))) {
2554                 page_cache_release(new_page);
2555                 page_cache_release(old_page);
2556                 /* Caller expects lock to be held */
2557                 spin_lock(&mm->page_table_lock);
2558                 return VM_FAULT_OOM;
2559         }
2560
2561         copy_user_huge_page(new_page, old_page, address, vma,
2562                             pages_per_huge_page(h));
2563         __SetPageUptodate(new_page);
2564
2565         /*
2566          * Retake the page_table_lock to check for racing updates
2567          * before the page tables are altered
2568          */
2569         spin_lock(&mm->page_table_lock);
2570         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2571         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2572                 /* Break COW */
2573                 mmu_notifier_invalidate_range_start(mm,
2574                         address & huge_page_mask(h),
2575                         (address & huge_page_mask(h)) + huge_page_size(h));
2576                 huge_ptep_clear_flush(vma, address, ptep);
2577                 set_huge_pte_at(mm, address, ptep,
2578                                 make_huge_pte(vma, new_page, 1));
2579                 page_remove_rmap(old_page);
2580                 hugepage_add_new_anon_rmap(new_page, vma, address);
2581                 /* Make the old page be freed below */
2582                 new_page = old_page;
2583                 mmu_notifier_invalidate_range_end(mm,
2584                         address & huge_page_mask(h),
2585                         (address & huge_page_mask(h)) + huge_page_size(h));
2586         }
2587         page_cache_release(new_page);
2588         page_cache_release(old_page);
2589         return 0;
2590 }
2591
2592 /* Return the pagecache page at a given address within a VMA */
2593 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2594                         struct vm_area_struct *vma, unsigned long address)
2595 {
2596         struct address_space *mapping;
2597         pgoff_t idx;
2598
2599         mapping = vma->vm_file->f_mapping;
2600         idx = vma_hugecache_offset(h, vma, address);
2601
2602         return find_lock_page(mapping, idx);
2603 }
2604
2605 /*
2606  * Return whether there is a pagecache page to back given address within VMA.
2607  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2608  */
2609 static bool hugetlbfs_pagecache_present(struct hstate *h,
2610                         struct vm_area_struct *vma, unsigned long address)
2611 {
2612         struct address_space *mapping;
2613         pgoff_t idx;
2614         struct page *page;
2615
2616         mapping = vma->vm_file->f_mapping;
2617         idx = vma_hugecache_offset(h, vma, address);
2618
2619         page = find_get_page(mapping, idx);
2620         if (page)
2621                 put_page(page);
2622         return page != NULL;
2623 }
2624
2625 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2626                         unsigned long address, pte_t *ptep, unsigned int flags)
2627 {
2628         struct hstate *h = hstate_vma(vma);
2629         int ret = VM_FAULT_SIGBUS;
2630         int anon_rmap = 0;
2631         pgoff_t idx;
2632         unsigned long size;
2633         struct page *page;
2634         struct address_space *mapping;
2635         pte_t new_pte;
2636
2637         /*
2638          * Currently, we are forced to kill the process in the event the
2639          * original mapper has unmapped pages from the child due to a failed
2640          * COW. Warn that such a situation has occurred as it may not be obvious
2641          */
2642         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2643                 printk(KERN_WARNING
2644                         "PID %d killed due to inadequate hugepage pool\n",
2645                         current->pid);
2646                 return ret;
2647         }
2648
2649         mapping = vma->vm_file->f_mapping;
2650         idx = vma_hugecache_offset(h, vma, address);
2651
2652         /*
2653          * Use page lock to guard against racing truncation
2654          * before we get page_table_lock.
2655          */
2656 retry:
2657         page = find_lock_page(mapping, idx);
2658         if (!page) {
2659                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2660                 if (idx >= size)
2661                         goto out;
2662                 page = alloc_huge_page(vma, address, 0);
2663                 if (IS_ERR(page)) {
2664                         ret = PTR_ERR(page);
2665                         if (ret == -ENOMEM)
2666                                 ret = VM_FAULT_OOM;
2667                         else
2668                                 ret = VM_FAULT_SIGBUS;
2669                         goto out;
2670                 }
2671                 clear_huge_page(page, address, pages_per_huge_page(h));
2672                 __SetPageUptodate(page);
2673
2674                 if (vma->vm_flags & VM_MAYSHARE) {
2675                         int err;
2676                         struct inode *inode = mapping->host;
2677
2678                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2679                         if (err) {
2680                                 put_page(page);
2681                                 if (err == -EEXIST)
2682                                         goto retry;
2683                                 goto out;
2684                         }
2685
2686                         spin_lock(&inode->i_lock);
2687                         inode->i_blocks += blocks_per_huge_page(h);
2688                         spin_unlock(&inode->i_lock);
2689                 } else {
2690                         lock_page(page);
2691                         if (unlikely(anon_vma_prepare(vma))) {
2692                                 ret = VM_FAULT_OOM;
2693                                 goto backout_unlocked;
2694                         }
2695                         anon_rmap = 1;
2696                 }
2697         } else {
2698                 /*
2699                  * If memory error occurs between mmap() and fault, some process
2700                  * don't have hwpoisoned swap entry for errored virtual address.
2701                  * So we need to block hugepage fault by PG_hwpoison bit check.
2702                  */
2703                 if (unlikely(PageHWPoison(page))) {
2704                         ret = VM_FAULT_HWPOISON |
2705                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2706                         goto backout_unlocked;
2707                 }
2708         }
2709
2710         /*
2711          * If we are going to COW a private mapping later, we examine the
2712          * pending reservations for this page now. This will ensure that
2713          * any allocations necessary to record that reservation occur outside
2714          * the spinlock.
2715          */
2716         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2717                 if (vma_needs_reservation(h, vma, address) < 0) {
2718                         ret = VM_FAULT_OOM;
2719                         goto backout_unlocked;
2720                 }
2721
2722         spin_lock(&mm->page_table_lock);
2723         size = i_size_read(mapping->host) >> huge_page_shift(h);
2724         if (idx >= size)
2725                 goto backout;
2726
2727         ret = 0;
2728         if (!huge_pte_none(huge_ptep_get(ptep)))
2729                 goto backout;
2730
2731         if (anon_rmap)
2732                 hugepage_add_new_anon_rmap(page, vma, address);
2733         else
2734                 page_dup_rmap(page);
2735         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2736                                 && (vma->vm_flags & VM_SHARED)));
2737         set_huge_pte_at(mm, address, ptep, new_pte);
2738
2739         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2740                 /* Optimization, do the COW without a second fault */
2741                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2742         }
2743
2744         spin_unlock(&mm->page_table_lock);
2745         unlock_page(page);
2746 out:
2747         return ret;
2748
2749 backout:
2750         spin_unlock(&mm->page_table_lock);
2751 backout_unlocked:
2752         unlock_page(page);
2753         put_page(page);
2754         goto out;
2755 }
2756
2757 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2758                         unsigned long address, unsigned int flags)
2759 {
2760         pte_t *ptep;
2761         pte_t entry;
2762         int ret;
2763         struct page *page = NULL;
2764         struct page *pagecache_page = NULL;
2765         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2766         struct hstate *h = hstate_vma(vma);
2767
2768         address &= huge_page_mask(h);
2769
2770         ptep = huge_pte_offset(mm, address);
2771         if (ptep) {
2772                 entry = huge_ptep_get(ptep);
2773                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2774                         migration_entry_wait(mm, (pmd_t *)ptep, address);
2775                         return 0;
2776                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2777                         return VM_FAULT_HWPOISON_LARGE |
2778                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2779         }
2780
2781         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2782         if (!ptep)
2783                 return VM_FAULT_OOM;
2784
2785         /*
2786          * Serialize hugepage allocation and instantiation, so that we don't
2787          * get spurious allocation failures if two CPUs race to instantiate
2788          * the same page in the page cache.
2789          */
2790         mutex_lock(&hugetlb_instantiation_mutex);
2791         entry = huge_ptep_get(ptep);
2792         if (huge_pte_none(entry)) {
2793                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2794                 goto out_mutex;
2795         }
2796
2797         ret = 0;
2798
2799         /*
2800          * If we are going to COW the mapping later, we examine the pending
2801          * reservations for this page now. This will ensure that any
2802          * allocations necessary to record that reservation occur outside the
2803          * spinlock. For private mappings, we also lookup the pagecache
2804          * page now as it is used to determine if a reservation has been
2805          * consumed.
2806          */
2807         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2808                 if (vma_needs_reservation(h, vma, address) < 0) {
2809                         ret = VM_FAULT_OOM;
2810                         goto out_mutex;
2811                 }
2812
2813                 if (!(vma->vm_flags & VM_MAYSHARE))
2814                         pagecache_page = hugetlbfs_pagecache_page(h,
2815                                                                 vma, address);
2816         }
2817
2818         /*
2819          * hugetlb_cow() requires page locks of pte_page(entry) and
2820          * pagecache_page, so here we need take the former one
2821          * when page != pagecache_page or !pagecache_page.
2822          * Note that locking order is always pagecache_page -> page,
2823          * so no worry about deadlock.
2824          */
2825         page = pte_page(entry);
2826         get_page(page);
2827         if (page != pagecache_page)
2828                 lock_page(page);
2829
2830         spin_lock(&mm->page_table_lock);
2831         /* Check for a racing update before calling hugetlb_cow */
2832         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2833                 goto out_page_table_lock;
2834
2835
2836         if (flags & FAULT_FLAG_WRITE) {
2837                 if (!pte_write(entry)) {
2838                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2839                                                         pagecache_page);
2840                         goto out_page_table_lock;
2841                 }
2842                 entry = pte_mkdirty(entry);
2843         }
2844         entry = pte_mkyoung(entry);
2845         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2846                                                 flags & FAULT_FLAG_WRITE))
2847                 update_mmu_cache(vma, address, ptep);
2848
2849 out_page_table_lock:
2850         spin_unlock(&mm->page_table_lock);
2851
2852         if (pagecache_page) {
2853                 unlock_page(pagecache_page);
2854                 put_page(pagecache_page);
2855         }
2856         if (page != pagecache_page)
2857                 unlock_page(page);
2858         put_page(page);
2859
2860 out_mutex:
2861         mutex_unlock(&hugetlb_instantiation_mutex);
2862
2863         return ret;
2864 }
2865
2866 /* Can be overriden by architectures */
2867 __attribute__((weak)) struct page *
2868 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2869                pud_t *pud, int write)
2870 {
2871         BUG();
2872         return NULL;
2873 }
2874
2875 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2876                         struct page **pages, struct vm_area_struct **vmas,
2877                         unsigned long *position, int *length, int i,
2878                         unsigned int flags)
2879 {
2880         unsigned long pfn_offset;
2881         unsigned long vaddr = *position;
2882         int remainder = *length;
2883         struct hstate *h = hstate_vma(vma);
2884
2885         spin_lock(&mm->page_table_lock);
2886         while (vaddr < vma->vm_end && remainder) {
2887                 pte_t *pte;
2888                 int absent;
2889                 struct page *page;
2890
2891                 /*
2892                  * Some archs (sparc64, sh*) have multiple pte_ts to
2893                  * each hugepage.  We have to make sure we get the
2894                  * first, for the page indexing below to work.
2895                  */
2896                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2897                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2898
2899                 /*
2900                  * When coredumping, it suits get_dump_page if we just return
2901                  * an error where there's an empty slot with no huge pagecache
2902                  * to back it.  This way, we avoid allocating a hugepage, and
2903                  * the sparse dumpfile avoids allocating disk blocks, but its
2904                  * huge holes still show up with zeroes where they need to be.
2905                  */
2906                 if (absent && (flags & FOLL_DUMP) &&
2907                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2908                         remainder = 0;
2909                         break;
2910                 }
2911
2912                 if (absent ||
2913                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2914                         int ret;
2915
2916                         spin_unlock(&mm->page_table_lock);
2917                         ret = hugetlb_fault(mm, vma, vaddr,
2918                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2919                         spin_lock(&mm->page_table_lock);
2920                         if (!(ret & VM_FAULT_ERROR))
2921                                 continue;
2922
2923                         remainder = 0;
2924                         break;
2925                 }
2926
2927                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2928                 page = pte_page(huge_ptep_get(pte));
2929 same_page:
2930                 if (pages) {
2931                         pages[i] = mem_map_offset(page, pfn_offset);
2932                         get_page(pages[i]);
2933                 }
2934
2935                 if (vmas)
2936                         vmas[i] = vma;
2937
2938                 vaddr += PAGE_SIZE;
2939                 ++pfn_offset;
2940                 --remainder;
2941                 ++i;
2942                 if (vaddr < vma->vm_end && remainder &&
2943                                 pfn_offset < pages_per_huge_page(h)) {
2944                         /*
2945                          * We use pfn_offset to avoid touching the pageframes
2946                          * of this compound page.
2947                          */
2948                         goto same_page;
2949                 }
2950         }
2951         spin_unlock(&mm->page_table_lock);
2952         *length = remainder;
2953         *position = vaddr;
2954
2955         return i ? i : -EFAULT;
2956 }
2957
2958 void hugetlb_change_protection(struct vm_area_struct *vma,
2959                 unsigned long address, unsigned long end, pgprot_t newprot)
2960 {
2961         struct mm_struct *mm = vma->vm_mm;
2962         unsigned long start = address;
2963         pte_t *ptep;
2964         pte_t pte;
2965         struct hstate *h = hstate_vma(vma);
2966
2967         BUG_ON(address >= end);
2968         flush_cache_range(vma, address, end);
2969
2970         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2971         spin_lock(&mm->page_table_lock);
2972         for (; address < end; address += huge_page_size(h)) {
2973                 ptep = huge_pte_offset(mm, address);
2974                 if (!ptep)
2975                         continue;
2976                 if (huge_pmd_unshare(mm, &address, ptep))
2977                         continue;
2978                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2979                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2980                         pte = pte_mkhuge(pte_modify(pte, newprot));
2981                         set_huge_pte_at(mm, address, ptep, pte);
2982                 }
2983         }
2984         spin_unlock(&mm->page_table_lock);
2985         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2986
2987         flush_tlb_range(vma, start, end);
2988 }
2989
2990 int hugetlb_reserve_pages(struct inode *inode,
2991                                         long from, long to,
2992                                         struct vm_area_struct *vma,
2993                                         vm_flags_t vm_flags)
2994 {
2995         long ret, chg;
2996         struct hstate *h = hstate_inode(inode);
2997         struct hugepage_subpool *spool = subpool_inode(inode);
2998
2999         /*
3000          * Only apply hugepage reservation if asked. At fault time, an
3001          * attempt will be made for VM_NORESERVE to allocate a page
3002          * without using reserves
3003          */
3004         if (vm_flags & VM_NORESERVE)
3005                 return 0;
3006
3007         /*
3008          * Shared mappings base their reservation on the number of pages that
3009          * are already allocated on behalf of the file. Private mappings need
3010          * to reserve the full area even if read-only as mprotect() may be
3011          * called to make the mapping read-write. Assume !vma is a shm mapping
3012          */
3013         if (!vma || vma->vm_flags & VM_MAYSHARE)
3014                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3015         else {
3016                 struct resv_map *resv_map = resv_map_alloc();
3017                 if (!resv_map)
3018                         return -ENOMEM;
3019
3020                 chg = to - from;
3021
3022                 set_vma_resv_map(vma, resv_map);
3023                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3024         }
3025
3026         if (chg < 0) {
3027                 ret = chg;
3028                 goto out_err;
3029         }
3030
3031         /* There must be enough pages in the subpool for the mapping */
3032         if (hugepage_subpool_get_pages(spool, chg)) {
3033                 ret = -ENOSPC;
3034                 goto out_err;
3035         }
3036
3037         /*
3038          * Check enough hugepages are available for the reservation.
3039          * Hand the pages back to the subpool if there are not
3040          */
3041         ret = hugetlb_acct_memory(h, chg);
3042         if (ret < 0) {
3043                 hugepage_subpool_put_pages(spool, chg);
3044                 goto out_err;
3045         }
3046
3047         /*
3048          * Account for the reservations made. Shared mappings record regions
3049          * that have reservations as they are shared by multiple VMAs.
3050          * When the last VMA disappears, the region map says how much
3051          * the reservation was and the page cache tells how much of
3052          * the reservation was consumed. Private mappings are per-VMA and
3053          * only the consumed reservations are tracked. When the VMA
3054          * disappears, the original reservation is the VMA size and the
3055          * consumed reservations are stored in the map. Hence, nothing
3056          * else has to be done for private mappings here
3057          */
3058         if (!vma || vma->vm_flags & VM_MAYSHARE)
3059                 region_add(&inode->i_mapping->private_list, from, to);
3060         return 0;
3061 out_err:
3062         if (vma)
3063                 resv_map_put(vma);
3064         return ret;
3065 }
3066
3067 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3068 {
3069         struct hstate *h = hstate_inode(inode);
3070         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3071         struct hugepage_subpool *spool = subpool_inode(inode);
3072
3073         spin_lock(&inode->i_lock);
3074         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3075         spin_unlock(&inode->i_lock);
3076
3077         hugepage_subpool_put_pages(spool, (chg - freed));
3078         hugetlb_acct_memory(h, -(chg - freed));
3079 }
3080
3081 #ifdef CONFIG_MEMORY_FAILURE
3082
3083 /* Should be called in hugetlb_lock */
3084 static int is_hugepage_on_freelist(struct page *hpage)
3085 {
3086         struct page *page;
3087         struct page *tmp;
3088         struct hstate *h = page_hstate(hpage);
3089         int nid = page_to_nid(hpage);
3090
3091         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3092                 if (page == hpage)
3093                         return 1;
3094         return 0;
3095 }
3096
3097 /*
3098  * This function is called from memory failure code.
3099  * Assume the caller holds page lock of the head page.
3100  */
3101 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3102 {
3103         struct hstate *h = page_hstate(hpage);
3104         int nid = page_to_nid(hpage);
3105         int ret = -EBUSY;
3106
3107         spin_lock(&hugetlb_lock);
3108         if (is_hugepage_on_freelist(hpage)) {
3109                 list_del(&hpage->lru);
3110                 set_page_refcounted(hpage);
3111                 h->free_huge_pages--;
3112                 h->free_huge_pages_node[nid]--;
3113                 ret = 0;
3114         }
3115         spin_unlock(&hugetlb_lock);
3116         return ret;
3117 }
3118 #endif