hugetlb/cgroup: add the cgroup pointer to page lru
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57         bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59         spin_unlock(&spool->lock);
60
61         /* If no pages are used, and no other handles to the subpool
62          * remain, free the subpool the subpool remain */
63         if (free)
64                 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69         struct hugepage_subpool *spool;
70
71         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72         if (!spool)
73                 return NULL;
74
75         spin_lock_init(&spool->lock);
76         spool->count = 1;
77         spool->max_hpages = nr_blocks;
78         spool->used_hpages = 0;
79
80         return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85         spin_lock(&spool->lock);
86         BUG_ON(!spool->count);
87         spool->count--;
88         unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92                                       long delta)
93 {
94         int ret = 0;
95
96         if (!spool)
97                 return 0;
98
99         spin_lock(&spool->lock);
100         if ((spool->used_hpages + delta) <= spool->max_hpages) {
101                 spool->used_hpages += delta;
102         } else {
103                 ret = -ENOMEM;
104         }
105         spin_unlock(&spool->lock);
106
107         return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111                                        long delta)
112 {
113         if (!spool)
114                 return;
115
116         spin_lock(&spool->lock);
117         spool->used_hpages -= delta;
118         /* If hugetlbfs_put_super couldn't free spool due to
119         * an outstanding quota reference, free it now. */
120         unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125         return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130         return subpool_inode(vma->vm_file->f_dentry->d_inode);
131 }
132
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation mutex:
141  *
142  *      down_write(&mm->mmap_sem);
143  * or
144  *      down_read(&mm->mmap_sem);
145  *      mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148         struct list_head link;
149         long from;
150         long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155         struct file_region *rg, *nrg, *trg;
156
157         /* Locate the region we are either in or before. */
158         list_for_each_entry(rg, head, link)
159                 if (f <= rg->to)
160                         break;
161
162         /* Round our left edge to the current segment if it encloses us. */
163         if (f > rg->from)
164                 f = rg->from;
165
166         /* Check for and consume any regions we now overlap with. */
167         nrg = rg;
168         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169                 if (&rg->link == head)
170                         break;
171                 if (rg->from > t)
172                         break;
173
174                 /* If this area reaches higher then extend our area to
175                  * include it completely.  If this is not the first area
176                  * which we intend to reuse, free it. */
177                 if (rg->to > t)
178                         t = rg->to;
179                 if (rg != nrg) {
180                         list_del(&rg->link);
181                         kfree(rg);
182                 }
183         }
184         nrg->from = f;
185         nrg->to = t;
186         return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191         struct file_region *rg, *nrg;
192         long chg = 0;
193
194         /* Locate the region we are before or in. */
195         list_for_each_entry(rg, head, link)
196                 if (f <= rg->to)
197                         break;
198
199         /* If we are below the current region then a new region is required.
200          * Subtle, allocate a new region at the position but make it zero
201          * size such that we can guarantee to record the reservation. */
202         if (&rg->link == head || t < rg->from) {
203                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204                 if (!nrg)
205                         return -ENOMEM;
206                 nrg->from = f;
207                 nrg->to   = f;
208                 INIT_LIST_HEAD(&nrg->link);
209                 list_add(&nrg->link, rg->link.prev);
210
211                 return t - f;
212         }
213
214         /* Round our left edge to the current segment if it encloses us. */
215         if (f > rg->from)
216                 f = rg->from;
217         chg = t - f;
218
219         /* Check for and consume any regions we now overlap with. */
220         list_for_each_entry(rg, rg->link.prev, link) {
221                 if (&rg->link == head)
222                         break;
223                 if (rg->from > t)
224                         return chg;
225
226                 /* We overlap with this area, if it extends further than
227                  * us then we must extend ourselves.  Account for its
228                  * existing reservation. */
229                 if (rg->to > t) {
230                         chg += rg->to - t;
231                         t = rg->to;
232                 }
233                 chg -= rg->to - rg->from;
234         }
235         return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240         struct file_region *rg, *trg;
241         long chg = 0;
242
243         /* Locate the region we are either in or before. */
244         list_for_each_entry(rg, head, link)
245                 if (end <= rg->to)
246                         break;
247         if (&rg->link == head)
248                 return 0;
249
250         /* If we are in the middle of a region then adjust it. */
251         if (end > rg->from) {
252                 chg = rg->to - end;
253                 rg->to = end;
254                 rg = list_entry(rg->link.next, typeof(*rg), link);
255         }
256
257         /* Drop any remaining regions. */
258         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259                 if (&rg->link == head)
260                         break;
261                 chg += rg->to - rg->from;
262                 list_del(&rg->link);
263                 kfree(rg);
264         }
265         return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270         struct file_region *rg;
271         long chg = 0;
272
273         /* Locate each segment we overlap with, and count that overlap. */
274         list_for_each_entry(rg, head, link) {
275                 long seg_from;
276                 long seg_to;
277
278                 if (rg->to <= f)
279                         continue;
280                 if (rg->from >= t)
281                         break;
282
283                 seg_from = max(rg->from, f);
284                 seg_to = min(rg->to, t);
285
286                 chg += seg_to - seg_from;
287         }
288
289         return chg;
290 }
291
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297                         struct vm_area_struct *vma, unsigned long address)
298 {
299         return ((address - vma->vm_start) >> huge_page_shift(h)) +
300                         (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304                                      unsigned long address)
305 {
306         return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315         struct hstate *hstate;
316
317         if (!is_vm_hugetlb_page(vma))
318                 return PAGE_SIZE;
319
320         hstate = hstate_vma(vma);
321
322         return 1UL << (hstate->order + PAGE_SHIFT);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335         return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369         return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373                                                         unsigned long value)
374 {
375         vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379         struct kref refs;
380         struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386         if (!resv_map)
387                 return NULL;
388
389         kref_init(&resv_map->refs);
390         INIT_LIST_HEAD(&resv_map->regions);
391
392         return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399         /* Clear out any active regions before we release the map. */
400         region_truncate(&resv_map->regions, 0);
401         kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406         VM_BUG_ON(!is_vm_hugetlb_page(vma));
407         if (!(vma->vm_flags & VM_MAYSHARE))
408                 return (struct resv_map *)(get_vma_private_data(vma) &
409                                                         ~HPAGE_RESV_MASK);
410         return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415         VM_BUG_ON(!is_vm_hugetlb_page(vma));
416         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418         set_vma_private_data(vma, (get_vma_private_data(vma) &
419                                 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432         VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434         return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Decrement the reserved pages in the hugepage pool by one */
438 static void decrement_hugepage_resv_vma(struct hstate *h,
439                         struct vm_area_struct *vma)
440 {
441         if (vma->vm_flags & VM_NORESERVE)
442                 return;
443
444         if (vma->vm_flags & VM_MAYSHARE) {
445                 /* Shared mappings always use reserves */
446                 h->resv_huge_pages--;
447         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448                 /*
449                  * Only the process that called mmap() has reserves for
450                  * private mappings.
451                  */
452                 h->resv_huge_pages--;
453         }
454 }
455
456 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458 {
459         VM_BUG_ON(!is_vm_hugetlb_page(vma));
460         if (!(vma->vm_flags & VM_MAYSHARE))
461                 vma->vm_private_data = (void *)0;
462 }
463
464 /* Returns true if the VMA has associated reserve pages */
465 static int vma_has_reserves(struct vm_area_struct *vma)
466 {
467         if (vma->vm_flags & VM_MAYSHARE)
468                 return 1;
469         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470                 return 1;
471         return 0;
472 }
473
474 static void copy_gigantic_page(struct page *dst, struct page *src)
475 {
476         int i;
477         struct hstate *h = page_hstate(src);
478         struct page *dst_base = dst;
479         struct page *src_base = src;
480
481         for (i = 0; i < pages_per_huge_page(h); ) {
482                 cond_resched();
483                 copy_highpage(dst, src);
484
485                 i++;
486                 dst = mem_map_next(dst, dst_base, i);
487                 src = mem_map_next(src, src_base, i);
488         }
489 }
490
491 void copy_huge_page(struct page *dst, struct page *src)
492 {
493         int i;
494         struct hstate *h = page_hstate(src);
495
496         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497                 copy_gigantic_page(dst, src);
498                 return;
499         }
500
501         might_sleep();
502         for (i = 0; i < pages_per_huge_page(h); i++) {
503                 cond_resched();
504                 copy_highpage(dst + i, src + i);
505         }
506 }
507
508 static void enqueue_huge_page(struct hstate *h, struct page *page)
509 {
510         int nid = page_to_nid(page);
511         list_move(&page->lru, &h->hugepage_freelists[nid]);
512         h->free_huge_pages++;
513         h->free_huge_pages_node[nid]++;
514 }
515
516 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517 {
518         struct page *page;
519
520         if (list_empty(&h->hugepage_freelists[nid]))
521                 return NULL;
522         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523         list_move(&page->lru, &h->hugepage_activelist);
524         set_page_refcounted(page);
525         h->free_huge_pages--;
526         h->free_huge_pages_node[nid]--;
527         return page;
528 }
529
530 static struct page *dequeue_huge_page_vma(struct hstate *h,
531                                 struct vm_area_struct *vma,
532                                 unsigned long address, int avoid_reserve)
533 {
534         struct page *page = NULL;
535         struct mempolicy *mpol;
536         nodemask_t *nodemask;
537         struct zonelist *zonelist;
538         struct zone *zone;
539         struct zoneref *z;
540         unsigned int cpuset_mems_cookie;
541
542 retry_cpuset:
543         cpuset_mems_cookie = get_mems_allowed();
544         zonelist = huge_zonelist(vma, address,
545                                         htlb_alloc_mask, &mpol, &nodemask);
546         /*
547          * A child process with MAP_PRIVATE mappings created by their parent
548          * have no page reserves. This check ensures that reservations are
549          * not "stolen". The child may still get SIGKILLed
550          */
551         if (!vma_has_reserves(vma) &&
552                         h->free_huge_pages - h->resv_huge_pages == 0)
553                 goto err;
554
555         /* If reserves cannot be used, ensure enough pages are in the pool */
556         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557                 goto err;
558
559         for_each_zone_zonelist_nodemask(zone, z, zonelist,
560                                                 MAX_NR_ZONES - 1, nodemask) {
561                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
563                         if (page) {
564                                 if (!avoid_reserve)
565                                         decrement_hugepage_resv_vma(h, vma);
566                                 break;
567                         }
568                 }
569         }
570
571         mpol_cond_put(mpol);
572         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573                 goto retry_cpuset;
574         return page;
575
576 err:
577         mpol_cond_put(mpol);
578         return NULL;
579 }
580
581 static void update_and_free_page(struct hstate *h, struct page *page)
582 {
583         int i;
584
585         VM_BUG_ON(h->order >= MAX_ORDER);
586
587         h->nr_huge_pages--;
588         h->nr_huge_pages_node[page_to_nid(page)]--;
589         for (i = 0; i < pages_per_huge_page(h); i++) {
590                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591                                 1 << PG_referenced | 1 << PG_dirty |
592                                 1 << PG_active | 1 << PG_reserved |
593                                 1 << PG_private | 1 << PG_writeback);
594         }
595         VM_BUG_ON(hugetlb_cgroup_from_page(page));
596         set_compound_page_dtor(page, NULL);
597         set_page_refcounted(page);
598         arch_release_hugepage(page);
599         __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604         struct hstate *h;
605
606         for_each_hstate(h) {
607                 if (huge_page_size(h) == size)
608                         return h;
609         }
610         return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615         /*
616          * Can't pass hstate in here because it is called from the
617          * compound page destructor.
618          */
619         struct hstate *h = page_hstate(page);
620         int nid = page_to_nid(page);
621         struct hugepage_subpool *spool =
622                 (struct hugepage_subpool *)page_private(page);
623
624         set_page_private(page, 0);
625         page->mapping = NULL;
626         BUG_ON(page_count(page));
627         BUG_ON(page_mapcount(page));
628
629         spin_lock(&hugetlb_lock);
630         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631                 /* remove the page from active list */
632                 list_del(&page->lru);
633                 update_and_free_page(h, page);
634                 h->surplus_huge_pages--;
635                 h->surplus_huge_pages_node[nid]--;
636         } else {
637                 enqueue_huge_page(h, page);
638         }
639         spin_unlock(&hugetlb_lock);
640         hugepage_subpool_put_pages(spool, 1);
641 }
642
643 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 {
645         INIT_LIST_HEAD(&page->lru);
646         set_compound_page_dtor(page, free_huge_page);
647         spin_lock(&hugetlb_lock);
648         set_hugetlb_cgroup(page, NULL);
649         h->nr_huge_pages++;
650         h->nr_huge_pages_node[nid]++;
651         spin_unlock(&hugetlb_lock);
652         put_page(page); /* free it into the hugepage allocator */
653 }
654
655 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
656 {
657         int i;
658         int nr_pages = 1 << order;
659         struct page *p = page + 1;
660
661         /* we rely on prep_new_huge_page to set the destructor */
662         set_compound_order(page, order);
663         __SetPageHead(page);
664         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
665                 __SetPageTail(p);
666                 set_page_count(p, 0);
667                 p->first_page = page;
668         }
669 }
670
671 int PageHuge(struct page *page)
672 {
673         compound_page_dtor *dtor;
674
675         if (!PageCompound(page))
676                 return 0;
677
678         page = compound_head(page);
679         dtor = get_compound_page_dtor(page);
680
681         return dtor == free_huge_page;
682 }
683 EXPORT_SYMBOL_GPL(PageHuge);
684
685 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
686 {
687         struct page *page;
688
689         if (h->order >= MAX_ORDER)
690                 return NULL;
691
692         page = alloc_pages_exact_node(nid,
693                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
694                                                 __GFP_REPEAT|__GFP_NOWARN,
695                 huge_page_order(h));
696         if (page) {
697                 if (arch_prepare_hugepage(page)) {
698                         __free_pages(page, huge_page_order(h));
699                         return NULL;
700                 }
701                 prep_new_huge_page(h, page, nid);
702         }
703
704         return page;
705 }
706
707 /*
708  * common helper functions for hstate_next_node_to_{alloc|free}.
709  * We may have allocated or freed a huge page based on a different
710  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
711  * be outside of *nodes_allowed.  Ensure that we use an allowed
712  * node for alloc or free.
713  */
714 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
715 {
716         nid = next_node(nid, *nodes_allowed);
717         if (nid == MAX_NUMNODES)
718                 nid = first_node(*nodes_allowed);
719         VM_BUG_ON(nid >= MAX_NUMNODES);
720
721         return nid;
722 }
723
724 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
725 {
726         if (!node_isset(nid, *nodes_allowed))
727                 nid = next_node_allowed(nid, nodes_allowed);
728         return nid;
729 }
730
731 /*
732  * returns the previously saved node ["this node"] from which to
733  * allocate a persistent huge page for the pool and advance the
734  * next node from which to allocate, handling wrap at end of node
735  * mask.
736  */
737 static int hstate_next_node_to_alloc(struct hstate *h,
738                                         nodemask_t *nodes_allowed)
739 {
740         int nid;
741
742         VM_BUG_ON(!nodes_allowed);
743
744         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
745         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
746
747         return nid;
748 }
749
750 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
751 {
752         struct page *page;
753         int start_nid;
754         int next_nid;
755         int ret = 0;
756
757         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
758         next_nid = start_nid;
759
760         do {
761                 page = alloc_fresh_huge_page_node(h, next_nid);
762                 if (page) {
763                         ret = 1;
764                         break;
765                 }
766                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
767         } while (next_nid != start_nid);
768
769         if (ret)
770                 count_vm_event(HTLB_BUDDY_PGALLOC);
771         else
772                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
773
774         return ret;
775 }
776
777 /*
778  * helper for free_pool_huge_page() - return the previously saved
779  * node ["this node"] from which to free a huge page.  Advance the
780  * next node id whether or not we find a free huge page to free so
781  * that the next attempt to free addresses the next node.
782  */
783 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
784 {
785         int nid;
786
787         VM_BUG_ON(!nodes_allowed);
788
789         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
790         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
791
792         return nid;
793 }
794
795 /*
796  * Free huge page from pool from next node to free.
797  * Attempt to keep persistent huge pages more or less
798  * balanced over allowed nodes.
799  * Called with hugetlb_lock locked.
800  */
801 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
802                                                          bool acct_surplus)
803 {
804         int start_nid;
805         int next_nid;
806         int ret = 0;
807
808         start_nid = hstate_next_node_to_free(h, nodes_allowed);
809         next_nid = start_nid;
810
811         do {
812                 /*
813                  * If we're returning unused surplus pages, only examine
814                  * nodes with surplus pages.
815                  */
816                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
817                     !list_empty(&h->hugepage_freelists[next_nid])) {
818                         struct page *page =
819                                 list_entry(h->hugepage_freelists[next_nid].next,
820                                           struct page, lru);
821                         list_del(&page->lru);
822                         h->free_huge_pages--;
823                         h->free_huge_pages_node[next_nid]--;
824                         if (acct_surplus) {
825                                 h->surplus_huge_pages--;
826                                 h->surplus_huge_pages_node[next_nid]--;
827                         }
828                         update_and_free_page(h, page);
829                         ret = 1;
830                         break;
831                 }
832                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
833         } while (next_nid != start_nid);
834
835         return ret;
836 }
837
838 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
839 {
840         struct page *page;
841         unsigned int r_nid;
842
843         if (h->order >= MAX_ORDER)
844                 return NULL;
845
846         /*
847          * Assume we will successfully allocate the surplus page to
848          * prevent racing processes from causing the surplus to exceed
849          * overcommit
850          *
851          * This however introduces a different race, where a process B
852          * tries to grow the static hugepage pool while alloc_pages() is
853          * called by process A. B will only examine the per-node
854          * counters in determining if surplus huge pages can be
855          * converted to normal huge pages in adjust_pool_surplus(). A
856          * won't be able to increment the per-node counter, until the
857          * lock is dropped by B, but B doesn't drop hugetlb_lock until
858          * no more huge pages can be converted from surplus to normal
859          * state (and doesn't try to convert again). Thus, we have a
860          * case where a surplus huge page exists, the pool is grown, and
861          * the surplus huge page still exists after, even though it
862          * should just have been converted to a normal huge page. This
863          * does not leak memory, though, as the hugepage will be freed
864          * once it is out of use. It also does not allow the counters to
865          * go out of whack in adjust_pool_surplus() as we don't modify
866          * the node values until we've gotten the hugepage and only the
867          * per-node value is checked there.
868          */
869         spin_lock(&hugetlb_lock);
870         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
871                 spin_unlock(&hugetlb_lock);
872                 return NULL;
873         } else {
874                 h->nr_huge_pages++;
875                 h->surplus_huge_pages++;
876         }
877         spin_unlock(&hugetlb_lock);
878
879         if (nid == NUMA_NO_NODE)
880                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
881                                    __GFP_REPEAT|__GFP_NOWARN,
882                                    huge_page_order(h));
883         else
884                 page = alloc_pages_exact_node(nid,
885                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
886                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
887
888         if (page && arch_prepare_hugepage(page)) {
889                 __free_pages(page, huge_page_order(h));
890                 page = NULL;
891         }
892
893         spin_lock(&hugetlb_lock);
894         if (page) {
895                 INIT_LIST_HEAD(&page->lru);
896                 r_nid = page_to_nid(page);
897                 set_compound_page_dtor(page, free_huge_page);
898                 set_hugetlb_cgroup(page, NULL);
899                 /*
900                  * We incremented the global counters already
901                  */
902                 h->nr_huge_pages_node[r_nid]++;
903                 h->surplus_huge_pages_node[r_nid]++;
904                 __count_vm_event(HTLB_BUDDY_PGALLOC);
905         } else {
906                 h->nr_huge_pages--;
907                 h->surplus_huge_pages--;
908                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
909         }
910         spin_unlock(&hugetlb_lock);
911
912         return page;
913 }
914
915 /*
916  * This allocation function is useful in the context where vma is irrelevant.
917  * E.g. soft-offlining uses this function because it only cares physical
918  * address of error page.
919  */
920 struct page *alloc_huge_page_node(struct hstate *h, int nid)
921 {
922         struct page *page;
923
924         spin_lock(&hugetlb_lock);
925         page = dequeue_huge_page_node(h, nid);
926         spin_unlock(&hugetlb_lock);
927
928         if (!page)
929                 page = alloc_buddy_huge_page(h, nid);
930
931         return page;
932 }
933
934 /*
935  * Increase the hugetlb pool such that it can accommodate a reservation
936  * of size 'delta'.
937  */
938 static int gather_surplus_pages(struct hstate *h, int delta)
939 {
940         struct list_head surplus_list;
941         struct page *page, *tmp;
942         int ret, i;
943         int needed, allocated;
944         bool alloc_ok = true;
945
946         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
947         if (needed <= 0) {
948                 h->resv_huge_pages += delta;
949                 return 0;
950         }
951
952         allocated = 0;
953         INIT_LIST_HEAD(&surplus_list);
954
955         ret = -ENOMEM;
956 retry:
957         spin_unlock(&hugetlb_lock);
958         for (i = 0; i < needed; i++) {
959                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
960                 if (!page) {
961                         alloc_ok = false;
962                         break;
963                 }
964                 list_add(&page->lru, &surplus_list);
965         }
966         allocated += i;
967
968         /*
969          * After retaking hugetlb_lock, we need to recalculate 'needed'
970          * because either resv_huge_pages or free_huge_pages may have changed.
971          */
972         spin_lock(&hugetlb_lock);
973         needed = (h->resv_huge_pages + delta) -
974                         (h->free_huge_pages + allocated);
975         if (needed > 0) {
976                 if (alloc_ok)
977                         goto retry;
978                 /*
979                  * We were not able to allocate enough pages to
980                  * satisfy the entire reservation so we free what
981                  * we've allocated so far.
982                  */
983                 goto free;
984         }
985         /*
986          * The surplus_list now contains _at_least_ the number of extra pages
987          * needed to accommodate the reservation.  Add the appropriate number
988          * of pages to the hugetlb pool and free the extras back to the buddy
989          * allocator.  Commit the entire reservation here to prevent another
990          * process from stealing the pages as they are added to the pool but
991          * before they are reserved.
992          */
993         needed += allocated;
994         h->resv_huge_pages += delta;
995         ret = 0;
996
997         /* Free the needed pages to the hugetlb pool */
998         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
999                 if ((--needed) < 0)
1000                         break;
1001                 /*
1002                  * This page is now managed by the hugetlb allocator and has
1003                  * no users -- drop the buddy allocator's reference.
1004                  */
1005                 put_page_testzero(page);
1006                 VM_BUG_ON(page_count(page));
1007                 enqueue_huge_page(h, page);
1008         }
1009 free:
1010         spin_unlock(&hugetlb_lock);
1011
1012         /* Free unnecessary surplus pages to the buddy allocator */
1013         if (!list_empty(&surplus_list)) {
1014                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1015                         put_page(page);
1016                 }
1017         }
1018         spin_lock(&hugetlb_lock);
1019
1020         return ret;
1021 }
1022
1023 /*
1024  * When releasing a hugetlb pool reservation, any surplus pages that were
1025  * allocated to satisfy the reservation must be explicitly freed if they were
1026  * never used.
1027  * Called with hugetlb_lock held.
1028  */
1029 static void return_unused_surplus_pages(struct hstate *h,
1030                                         unsigned long unused_resv_pages)
1031 {
1032         unsigned long nr_pages;
1033
1034         /* Uncommit the reservation */
1035         h->resv_huge_pages -= unused_resv_pages;
1036
1037         /* Cannot return gigantic pages currently */
1038         if (h->order >= MAX_ORDER)
1039                 return;
1040
1041         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1042
1043         /*
1044          * We want to release as many surplus pages as possible, spread
1045          * evenly across all nodes with memory. Iterate across these nodes
1046          * until we can no longer free unreserved surplus pages. This occurs
1047          * when the nodes with surplus pages have no free pages.
1048          * free_pool_huge_page() will balance the the freed pages across the
1049          * on-line nodes with memory and will handle the hstate accounting.
1050          */
1051         while (nr_pages--) {
1052                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1053                         break;
1054         }
1055 }
1056
1057 /*
1058  * Determine if the huge page at addr within the vma has an associated
1059  * reservation.  Where it does not we will need to logically increase
1060  * reservation and actually increase subpool usage before an allocation
1061  * can occur.  Where any new reservation would be required the
1062  * reservation change is prepared, but not committed.  Once the page
1063  * has been allocated from the subpool and instantiated the change should
1064  * be committed via vma_commit_reservation.  No action is required on
1065  * failure.
1066  */
1067 static long vma_needs_reservation(struct hstate *h,
1068                         struct vm_area_struct *vma, unsigned long addr)
1069 {
1070         struct address_space *mapping = vma->vm_file->f_mapping;
1071         struct inode *inode = mapping->host;
1072
1073         if (vma->vm_flags & VM_MAYSHARE) {
1074                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1075                 return region_chg(&inode->i_mapping->private_list,
1076                                                         idx, idx + 1);
1077
1078         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1079                 return 1;
1080
1081         } else  {
1082                 long err;
1083                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1084                 struct resv_map *reservations = vma_resv_map(vma);
1085
1086                 err = region_chg(&reservations->regions, idx, idx + 1);
1087                 if (err < 0)
1088                         return err;
1089                 return 0;
1090         }
1091 }
1092 static void vma_commit_reservation(struct hstate *h,
1093                         struct vm_area_struct *vma, unsigned long addr)
1094 {
1095         struct address_space *mapping = vma->vm_file->f_mapping;
1096         struct inode *inode = mapping->host;
1097
1098         if (vma->vm_flags & VM_MAYSHARE) {
1099                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1100                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1101
1102         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1103                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1104                 struct resv_map *reservations = vma_resv_map(vma);
1105
1106                 /* Mark this page used in the map. */
1107                 region_add(&reservations->regions, idx, idx + 1);
1108         }
1109 }
1110
1111 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1112                                     unsigned long addr, int avoid_reserve)
1113 {
1114         struct hugepage_subpool *spool = subpool_vma(vma);
1115         struct hstate *h = hstate_vma(vma);
1116         struct page *page;
1117         long chg;
1118
1119         /*
1120          * Processes that did not create the mapping will have no
1121          * reserves and will not have accounted against subpool
1122          * limit. Check that the subpool limit can be made before
1123          * satisfying the allocation MAP_NORESERVE mappings may also
1124          * need pages and subpool limit allocated allocated if no reserve
1125          * mapping overlaps.
1126          */
1127         chg = vma_needs_reservation(h, vma, addr);
1128         if (chg < 0)
1129                 return ERR_PTR(-ENOMEM);
1130         if (chg)
1131                 if (hugepage_subpool_get_pages(spool, chg))
1132                         return ERR_PTR(-ENOSPC);
1133
1134         spin_lock(&hugetlb_lock);
1135         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1136         spin_unlock(&hugetlb_lock);
1137
1138         if (!page) {
1139                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1140                 if (!page) {
1141                         hugepage_subpool_put_pages(spool, chg);
1142                         return ERR_PTR(-ENOSPC);
1143                 }
1144         }
1145
1146         set_page_private(page, (unsigned long)spool);
1147
1148         vma_commit_reservation(h, vma, addr);
1149
1150         return page;
1151 }
1152
1153 int __weak alloc_bootmem_huge_page(struct hstate *h)
1154 {
1155         struct huge_bootmem_page *m;
1156         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1157
1158         while (nr_nodes) {
1159                 void *addr;
1160
1161                 addr = __alloc_bootmem_node_nopanic(
1162                                 NODE_DATA(hstate_next_node_to_alloc(h,
1163                                                 &node_states[N_HIGH_MEMORY])),
1164                                 huge_page_size(h), huge_page_size(h), 0);
1165
1166                 if (addr) {
1167                         /*
1168                          * Use the beginning of the huge page to store the
1169                          * huge_bootmem_page struct (until gather_bootmem
1170                          * puts them into the mem_map).
1171                          */
1172                         m = addr;
1173                         goto found;
1174                 }
1175                 nr_nodes--;
1176         }
1177         return 0;
1178
1179 found:
1180         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1181         /* Put them into a private list first because mem_map is not up yet */
1182         list_add(&m->list, &huge_boot_pages);
1183         m->hstate = h;
1184         return 1;
1185 }
1186
1187 static void prep_compound_huge_page(struct page *page, int order)
1188 {
1189         if (unlikely(order > (MAX_ORDER - 1)))
1190                 prep_compound_gigantic_page(page, order);
1191         else
1192                 prep_compound_page(page, order);
1193 }
1194
1195 /* Put bootmem huge pages into the standard lists after mem_map is up */
1196 static void __init gather_bootmem_prealloc(void)
1197 {
1198         struct huge_bootmem_page *m;
1199
1200         list_for_each_entry(m, &huge_boot_pages, list) {
1201                 struct hstate *h = m->hstate;
1202                 struct page *page;
1203
1204 #ifdef CONFIG_HIGHMEM
1205                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1206                 free_bootmem_late((unsigned long)m,
1207                                   sizeof(struct huge_bootmem_page));
1208 #else
1209                 page = virt_to_page(m);
1210 #endif
1211                 __ClearPageReserved(page);
1212                 WARN_ON(page_count(page) != 1);
1213                 prep_compound_huge_page(page, h->order);
1214                 prep_new_huge_page(h, page, page_to_nid(page));
1215                 /*
1216                  * If we had gigantic hugepages allocated at boot time, we need
1217                  * to restore the 'stolen' pages to totalram_pages in order to
1218                  * fix confusing memory reports from free(1) and another
1219                  * side-effects, like CommitLimit going negative.
1220                  */
1221                 if (h->order > (MAX_ORDER - 1))
1222                         totalram_pages += 1 << h->order;
1223         }
1224 }
1225
1226 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1227 {
1228         unsigned long i;
1229
1230         for (i = 0; i < h->max_huge_pages; ++i) {
1231                 if (h->order >= MAX_ORDER) {
1232                         if (!alloc_bootmem_huge_page(h))
1233                                 break;
1234                 } else if (!alloc_fresh_huge_page(h,
1235                                          &node_states[N_HIGH_MEMORY]))
1236                         break;
1237         }
1238         h->max_huge_pages = i;
1239 }
1240
1241 static void __init hugetlb_init_hstates(void)
1242 {
1243         struct hstate *h;
1244
1245         for_each_hstate(h) {
1246                 /* oversize hugepages were init'ed in early boot */
1247                 if (h->order < MAX_ORDER)
1248                         hugetlb_hstate_alloc_pages(h);
1249         }
1250 }
1251
1252 static char * __init memfmt(char *buf, unsigned long n)
1253 {
1254         if (n >= (1UL << 30))
1255                 sprintf(buf, "%lu GB", n >> 30);
1256         else if (n >= (1UL << 20))
1257                 sprintf(buf, "%lu MB", n >> 20);
1258         else
1259                 sprintf(buf, "%lu KB", n >> 10);
1260         return buf;
1261 }
1262
1263 static void __init report_hugepages(void)
1264 {
1265         struct hstate *h;
1266
1267         for_each_hstate(h) {
1268                 char buf[32];
1269                 printk(KERN_INFO "HugeTLB registered %s page size, "
1270                                  "pre-allocated %ld pages\n",
1271                         memfmt(buf, huge_page_size(h)),
1272                         h->free_huge_pages);
1273         }
1274 }
1275
1276 #ifdef CONFIG_HIGHMEM
1277 static void try_to_free_low(struct hstate *h, unsigned long count,
1278                                                 nodemask_t *nodes_allowed)
1279 {
1280         int i;
1281
1282         if (h->order >= MAX_ORDER)
1283                 return;
1284
1285         for_each_node_mask(i, *nodes_allowed) {
1286                 struct page *page, *next;
1287                 struct list_head *freel = &h->hugepage_freelists[i];
1288                 list_for_each_entry_safe(page, next, freel, lru) {
1289                         if (count >= h->nr_huge_pages)
1290                                 return;
1291                         if (PageHighMem(page))
1292                                 continue;
1293                         list_del(&page->lru);
1294                         update_and_free_page(h, page);
1295                         h->free_huge_pages--;
1296                         h->free_huge_pages_node[page_to_nid(page)]--;
1297                 }
1298         }
1299 }
1300 #else
1301 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1302                                                 nodemask_t *nodes_allowed)
1303 {
1304 }
1305 #endif
1306
1307 /*
1308  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1309  * balanced by operating on them in a round-robin fashion.
1310  * Returns 1 if an adjustment was made.
1311  */
1312 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1313                                 int delta)
1314 {
1315         int start_nid, next_nid;
1316         int ret = 0;
1317
1318         VM_BUG_ON(delta != -1 && delta != 1);
1319
1320         if (delta < 0)
1321                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1322         else
1323                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1324         next_nid = start_nid;
1325
1326         do {
1327                 int nid = next_nid;
1328                 if (delta < 0)  {
1329                         /*
1330                          * To shrink on this node, there must be a surplus page
1331                          */
1332                         if (!h->surplus_huge_pages_node[nid]) {
1333                                 next_nid = hstate_next_node_to_alloc(h,
1334                                                                 nodes_allowed);
1335                                 continue;
1336                         }
1337                 }
1338                 if (delta > 0) {
1339                         /*
1340                          * Surplus cannot exceed the total number of pages
1341                          */
1342                         if (h->surplus_huge_pages_node[nid] >=
1343                                                 h->nr_huge_pages_node[nid]) {
1344                                 next_nid = hstate_next_node_to_free(h,
1345                                                                 nodes_allowed);
1346                                 continue;
1347                         }
1348                 }
1349
1350                 h->surplus_huge_pages += delta;
1351                 h->surplus_huge_pages_node[nid] += delta;
1352                 ret = 1;
1353                 break;
1354         } while (next_nid != start_nid);
1355
1356         return ret;
1357 }
1358
1359 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1360 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1361                                                 nodemask_t *nodes_allowed)
1362 {
1363         unsigned long min_count, ret;
1364
1365         if (h->order >= MAX_ORDER)
1366                 return h->max_huge_pages;
1367
1368         /*
1369          * Increase the pool size
1370          * First take pages out of surplus state.  Then make up the
1371          * remaining difference by allocating fresh huge pages.
1372          *
1373          * We might race with alloc_buddy_huge_page() here and be unable
1374          * to convert a surplus huge page to a normal huge page. That is
1375          * not critical, though, it just means the overall size of the
1376          * pool might be one hugepage larger than it needs to be, but
1377          * within all the constraints specified by the sysctls.
1378          */
1379         spin_lock(&hugetlb_lock);
1380         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1381                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1382                         break;
1383         }
1384
1385         while (count > persistent_huge_pages(h)) {
1386                 /*
1387                  * If this allocation races such that we no longer need the
1388                  * page, free_huge_page will handle it by freeing the page
1389                  * and reducing the surplus.
1390                  */
1391                 spin_unlock(&hugetlb_lock);
1392                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1393                 spin_lock(&hugetlb_lock);
1394                 if (!ret)
1395                         goto out;
1396
1397                 /* Bail for signals. Probably ctrl-c from user */
1398                 if (signal_pending(current))
1399                         goto out;
1400         }
1401
1402         /*
1403          * Decrease the pool size
1404          * First return free pages to the buddy allocator (being careful
1405          * to keep enough around to satisfy reservations).  Then place
1406          * pages into surplus state as needed so the pool will shrink
1407          * to the desired size as pages become free.
1408          *
1409          * By placing pages into the surplus state independent of the
1410          * overcommit value, we are allowing the surplus pool size to
1411          * exceed overcommit. There are few sane options here. Since
1412          * alloc_buddy_huge_page() is checking the global counter,
1413          * though, we'll note that we're not allowed to exceed surplus
1414          * and won't grow the pool anywhere else. Not until one of the
1415          * sysctls are changed, or the surplus pages go out of use.
1416          */
1417         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1418         min_count = max(count, min_count);
1419         try_to_free_low(h, min_count, nodes_allowed);
1420         while (min_count < persistent_huge_pages(h)) {
1421                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1422                         break;
1423         }
1424         while (count < persistent_huge_pages(h)) {
1425                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1426                         break;
1427         }
1428 out:
1429         ret = persistent_huge_pages(h);
1430         spin_unlock(&hugetlb_lock);
1431         return ret;
1432 }
1433
1434 #define HSTATE_ATTR_RO(_name) \
1435         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1436
1437 #define HSTATE_ATTR(_name) \
1438         static struct kobj_attribute _name##_attr = \
1439                 __ATTR(_name, 0644, _name##_show, _name##_store)
1440
1441 static struct kobject *hugepages_kobj;
1442 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1443
1444 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1445
1446 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1447 {
1448         int i;
1449
1450         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1451                 if (hstate_kobjs[i] == kobj) {
1452                         if (nidp)
1453                                 *nidp = NUMA_NO_NODE;
1454                         return &hstates[i];
1455                 }
1456
1457         return kobj_to_node_hstate(kobj, nidp);
1458 }
1459
1460 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1461                                         struct kobj_attribute *attr, char *buf)
1462 {
1463         struct hstate *h;
1464         unsigned long nr_huge_pages;
1465         int nid;
1466
1467         h = kobj_to_hstate(kobj, &nid);
1468         if (nid == NUMA_NO_NODE)
1469                 nr_huge_pages = h->nr_huge_pages;
1470         else
1471                 nr_huge_pages = h->nr_huge_pages_node[nid];
1472
1473         return sprintf(buf, "%lu\n", nr_huge_pages);
1474 }
1475
1476 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1477                         struct kobject *kobj, struct kobj_attribute *attr,
1478                         const char *buf, size_t len)
1479 {
1480         int err;
1481         int nid;
1482         unsigned long count;
1483         struct hstate *h;
1484         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1485
1486         err = strict_strtoul(buf, 10, &count);
1487         if (err)
1488                 goto out;
1489
1490         h = kobj_to_hstate(kobj, &nid);
1491         if (h->order >= MAX_ORDER) {
1492                 err = -EINVAL;
1493                 goto out;
1494         }
1495
1496         if (nid == NUMA_NO_NODE) {
1497                 /*
1498                  * global hstate attribute
1499                  */
1500                 if (!(obey_mempolicy &&
1501                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1502                         NODEMASK_FREE(nodes_allowed);
1503                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1504                 }
1505         } else if (nodes_allowed) {
1506                 /*
1507                  * per node hstate attribute: adjust count to global,
1508                  * but restrict alloc/free to the specified node.
1509                  */
1510                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1511                 init_nodemask_of_node(nodes_allowed, nid);
1512         } else
1513                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1514
1515         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1516
1517         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1518                 NODEMASK_FREE(nodes_allowed);
1519
1520         return len;
1521 out:
1522         NODEMASK_FREE(nodes_allowed);
1523         return err;
1524 }
1525
1526 static ssize_t nr_hugepages_show(struct kobject *kobj,
1527                                        struct kobj_attribute *attr, char *buf)
1528 {
1529         return nr_hugepages_show_common(kobj, attr, buf);
1530 }
1531
1532 static ssize_t nr_hugepages_store(struct kobject *kobj,
1533                struct kobj_attribute *attr, const char *buf, size_t len)
1534 {
1535         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1536 }
1537 HSTATE_ATTR(nr_hugepages);
1538
1539 #ifdef CONFIG_NUMA
1540
1541 /*
1542  * hstate attribute for optionally mempolicy-based constraint on persistent
1543  * huge page alloc/free.
1544  */
1545 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1546                                        struct kobj_attribute *attr, char *buf)
1547 {
1548         return nr_hugepages_show_common(kobj, attr, buf);
1549 }
1550
1551 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1552                struct kobj_attribute *attr, const char *buf, size_t len)
1553 {
1554         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1555 }
1556 HSTATE_ATTR(nr_hugepages_mempolicy);
1557 #endif
1558
1559
1560 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1561                                         struct kobj_attribute *attr, char *buf)
1562 {
1563         struct hstate *h = kobj_to_hstate(kobj, NULL);
1564         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1565 }
1566
1567 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1568                 struct kobj_attribute *attr, const char *buf, size_t count)
1569 {
1570         int err;
1571         unsigned long input;
1572         struct hstate *h = kobj_to_hstate(kobj, NULL);
1573
1574         if (h->order >= MAX_ORDER)
1575                 return -EINVAL;
1576
1577         err = strict_strtoul(buf, 10, &input);
1578         if (err)
1579                 return err;
1580
1581         spin_lock(&hugetlb_lock);
1582         h->nr_overcommit_huge_pages = input;
1583         spin_unlock(&hugetlb_lock);
1584
1585         return count;
1586 }
1587 HSTATE_ATTR(nr_overcommit_hugepages);
1588
1589 static ssize_t free_hugepages_show(struct kobject *kobj,
1590                                         struct kobj_attribute *attr, char *buf)
1591 {
1592         struct hstate *h;
1593         unsigned long free_huge_pages;
1594         int nid;
1595
1596         h = kobj_to_hstate(kobj, &nid);
1597         if (nid == NUMA_NO_NODE)
1598                 free_huge_pages = h->free_huge_pages;
1599         else
1600                 free_huge_pages = h->free_huge_pages_node[nid];
1601
1602         return sprintf(buf, "%lu\n", free_huge_pages);
1603 }
1604 HSTATE_ATTR_RO(free_hugepages);
1605
1606 static ssize_t resv_hugepages_show(struct kobject *kobj,
1607                                         struct kobj_attribute *attr, char *buf)
1608 {
1609         struct hstate *h = kobj_to_hstate(kobj, NULL);
1610         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1611 }
1612 HSTATE_ATTR_RO(resv_hugepages);
1613
1614 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1615                                         struct kobj_attribute *attr, char *buf)
1616 {
1617         struct hstate *h;
1618         unsigned long surplus_huge_pages;
1619         int nid;
1620
1621         h = kobj_to_hstate(kobj, &nid);
1622         if (nid == NUMA_NO_NODE)
1623                 surplus_huge_pages = h->surplus_huge_pages;
1624         else
1625                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1626
1627         return sprintf(buf, "%lu\n", surplus_huge_pages);
1628 }
1629 HSTATE_ATTR_RO(surplus_hugepages);
1630
1631 static struct attribute *hstate_attrs[] = {
1632         &nr_hugepages_attr.attr,
1633         &nr_overcommit_hugepages_attr.attr,
1634         &free_hugepages_attr.attr,
1635         &resv_hugepages_attr.attr,
1636         &surplus_hugepages_attr.attr,
1637 #ifdef CONFIG_NUMA
1638         &nr_hugepages_mempolicy_attr.attr,
1639 #endif
1640         NULL,
1641 };
1642
1643 static struct attribute_group hstate_attr_group = {
1644         .attrs = hstate_attrs,
1645 };
1646
1647 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1648                                     struct kobject **hstate_kobjs,
1649                                     struct attribute_group *hstate_attr_group)
1650 {
1651         int retval;
1652         int hi = hstate_index(h);
1653
1654         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1655         if (!hstate_kobjs[hi])
1656                 return -ENOMEM;
1657
1658         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1659         if (retval)
1660                 kobject_put(hstate_kobjs[hi]);
1661
1662         return retval;
1663 }
1664
1665 static void __init hugetlb_sysfs_init(void)
1666 {
1667         struct hstate *h;
1668         int err;
1669
1670         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1671         if (!hugepages_kobj)
1672                 return;
1673
1674         for_each_hstate(h) {
1675                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1676                                          hstate_kobjs, &hstate_attr_group);
1677                 if (err)
1678                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1679                                                                 h->name);
1680         }
1681 }
1682
1683 #ifdef CONFIG_NUMA
1684
1685 /*
1686  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1687  * with node devices in node_devices[] using a parallel array.  The array
1688  * index of a node device or _hstate == node id.
1689  * This is here to avoid any static dependency of the node device driver, in
1690  * the base kernel, on the hugetlb module.
1691  */
1692 struct node_hstate {
1693         struct kobject          *hugepages_kobj;
1694         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1695 };
1696 struct node_hstate node_hstates[MAX_NUMNODES];
1697
1698 /*
1699  * A subset of global hstate attributes for node devices
1700  */
1701 static struct attribute *per_node_hstate_attrs[] = {
1702         &nr_hugepages_attr.attr,
1703         &free_hugepages_attr.attr,
1704         &surplus_hugepages_attr.attr,
1705         NULL,
1706 };
1707
1708 static struct attribute_group per_node_hstate_attr_group = {
1709         .attrs = per_node_hstate_attrs,
1710 };
1711
1712 /*
1713  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1714  * Returns node id via non-NULL nidp.
1715  */
1716 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1717 {
1718         int nid;
1719
1720         for (nid = 0; nid < nr_node_ids; nid++) {
1721                 struct node_hstate *nhs = &node_hstates[nid];
1722                 int i;
1723                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1724                         if (nhs->hstate_kobjs[i] == kobj) {
1725                                 if (nidp)
1726                                         *nidp = nid;
1727                                 return &hstates[i];
1728                         }
1729         }
1730
1731         BUG();
1732         return NULL;
1733 }
1734
1735 /*
1736  * Unregister hstate attributes from a single node device.
1737  * No-op if no hstate attributes attached.
1738  */
1739 void hugetlb_unregister_node(struct node *node)
1740 {
1741         struct hstate *h;
1742         struct node_hstate *nhs = &node_hstates[node->dev.id];
1743
1744         if (!nhs->hugepages_kobj)
1745                 return;         /* no hstate attributes */
1746
1747         for_each_hstate(h) {
1748                 int idx = hstate_index(h);
1749                 if (nhs->hstate_kobjs[idx]) {
1750                         kobject_put(nhs->hstate_kobjs[idx]);
1751                         nhs->hstate_kobjs[idx] = NULL;
1752                 }
1753         }
1754
1755         kobject_put(nhs->hugepages_kobj);
1756         nhs->hugepages_kobj = NULL;
1757 }
1758
1759 /*
1760  * hugetlb module exit:  unregister hstate attributes from node devices
1761  * that have them.
1762  */
1763 static void hugetlb_unregister_all_nodes(void)
1764 {
1765         int nid;
1766
1767         /*
1768          * disable node device registrations.
1769          */
1770         register_hugetlbfs_with_node(NULL, NULL);
1771
1772         /*
1773          * remove hstate attributes from any nodes that have them.
1774          */
1775         for (nid = 0; nid < nr_node_ids; nid++)
1776                 hugetlb_unregister_node(&node_devices[nid]);
1777 }
1778
1779 /*
1780  * Register hstate attributes for a single node device.
1781  * No-op if attributes already registered.
1782  */
1783 void hugetlb_register_node(struct node *node)
1784 {
1785         struct hstate *h;
1786         struct node_hstate *nhs = &node_hstates[node->dev.id];
1787         int err;
1788
1789         if (nhs->hugepages_kobj)
1790                 return;         /* already allocated */
1791
1792         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1793                                                         &node->dev.kobj);
1794         if (!nhs->hugepages_kobj)
1795                 return;
1796
1797         for_each_hstate(h) {
1798                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1799                                                 nhs->hstate_kobjs,
1800                                                 &per_node_hstate_attr_group);
1801                 if (err) {
1802                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1803                                         " for node %d\n",
1804                                                 h->name, node->dev.id);
1805                         hugetlb_unregister_node(node);
1806                         break;
1807                 }
1808         }
1809 }
1810
1811 /*
1812  * hugetlb init time:  register hstate attributes for all registered node
1813  * devices of nodes that have memory.  All on-line nodes should have
1814  * registered their associated device by this time.
1815  */
1816 static void hugetlb_register_all_nodes(void)
1817 {
1818         int nid;
1819
1820         for_each_node_state(nid, N_HIGH_MEMORY) {
1821                 struct node *node = &node_devices[nid];
1822                 if (node->dev.id == nid)
1823                         hugetlb_register_node(node);
1824         }
1825
1826         /*
1827          * Let the node device driver know we're here so it can
1828          * [un]register hstate attributes on node hotplug.
1829          */
1830         register_hugetlbfs_with_node(hugetlb_register_node,
1831                                      hugetlb_unregister_node);
1832 }
1833 #else   /* !CONFIG_NUMA */
1834
1835 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1836 {
1837         BUG();
1838         if (nidp)
1839                 *nidp = -1;
1840         return NULL;
1841 }
1842
1843 static void hugetlb_unregister_all_nodes(void) { }
1844
1845 static void hugetlb_register_all_nodes(void) { }
1846
1847 #endif
1848
1849 static void __exit hugetlb_exit(void)
1850 {
1851         struct hstate *h;
1852
1853         hugetlb_unregister_all_nodes();
1854
1855         for_each_hstate(h) {
1856                 kobject_put(hstate_kobjs[hstate_index(h)]);
1857         }
1858
1859         kobject_put(hugepages_kobj);
1860 }
1861 module_exit(hugetlb_exit);
1862
1863 static int __init hugetlb_init(void)
1864 {
1865         /* Some platform decide whether they support huge pages at boot
1866          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1867          * there is no such support
1868          */
1869         if (HPAGE_SHIFT == 0)
1870                 return 0;
1871
1872         if (!size_to_hstate(default_hstate_size)) {
1873                 default_hstate_size = HPAGE_SIZE;
1874                 if (!size_to_hstate(default_hstate_size))
1875                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1876         }
1877         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1878         if (default_hstate_max_huge_pages)
1879                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1880
1881         hugetlb_init_hstates();
1882
1883         gather_bootmem_prealloc();
1884
1885         report_hugepages();
1886
1887         hugetlb_sysfs_init();
1888
1889         hugetlb_register_all_nodes();
1890
1891         return 0;
1892 }
1893 module_init(hugetlb_init);
1894
1895 /* Should be called on processing a hugepagesz=... option */
1896 void __init hugetlb_add_hstate(unsigned order)
1897 {
1898         struct hstate *h;
1899         unsigned long i;
1900
1901         if (size_to_hstate(PAGE_SIZE << order)) {
1902                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1903                 return;
1904         }
1905         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1906         BUG_ON(order == 0);
1907         h = &hstates[hugetlb_max_hstate++];
1908         h->order = order;
1909         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1910         h->nr_huge_pages = 0;
1911         h->free_huge_pages = 0;
1912         for (i = 0; i < MAX_NUMNODES; ++i)
1913                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1914         INIT_LIST_HEAD(&h->hugepage_activelist);
1915         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1916         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1917         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1918                                         huge_page_size(h)/1024);
1919
1920         parsed_hstate = h;
1921 }
1922
1923 static int __init hugetlb_nrpages_setup(char *s)
1924 {
1925         unsigned long *mhp;
1926         static unsigned long *last_mhp;
1927
1928         /*
1929          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1930          * so this hugepages= parameter goes to the "default hstate".
1931          */
1932         if (!hugetlb_max_hstate)
1933                 mhp = &default_hstate_max_huge_pages;
1934         else
1935                 mhp = &parsed_hstate->max_huge_pages;
1936
1937         if (mhp == last_mhp) {
1938                 printk(KERN_WARNING "hugepages= specified twice without "
1939                         "interleaving hugepagesz=, ignoring\n");
1940                 return 1;
1941         }
1942
1943         if (sscanf(s, "%lu", mhp) <= 0)
1944                 *mhp = 0;
1945
1946         /*
1947          * Global state is always initialized later in hugetlb_init.
1948          * But we need to allocate >= MAX_ORDER hstates here early to still
1949          * use the bootmem allocator.
1950          */
1951         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1952                 hugetlb_hstate_alloc_pages(parsed_hstate);
1953
1954         last_mhp = mhp;
1955
1956         return 1;
1957 }
1958 __setup("hugepages=", hugetlb_nrpages_setup);
1959
1960 static int __init hugetlb_default_setup(char *s)
1961 {
1962         default_hstate_size = memparse(s, &s);
1963         return 1;
1964 }
1965 __setup("default_hugepagesz=", hugetlb_default_setup);
1966
1967 static unsigned int cpuset_mems_nr(unsigned int *array)
1968 {
1969         int node;
1970         unsigned int nr = 0;
1971
1972         for_each_node_mask(node, cpuset_current_mems_allowed)
1973                 nr += array[node];
1974
1975         return nr;
1976 }
1977
1978 #ifdef CONFIG_SYSCTL
1979 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1980                          struct ctl_table *table, int write,
1981                          void __user *buffer, size_t *length, loff_t *ppos)
1982 {
1983         struct hstate *h = &default_hstate;
1984         unsigned long tmp;
1985         int ret;
1986
1987         tmp = h->max_huge_pages;
1988
1989         if (write && h->order >= MAX_ORDER)
1990                 return -EINVAL;
1991
1992         table->data = &tmp;
1993         table->maxlen = sizeof(unsigned long);
1994         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1995         if (ret)
1996                 goto out;
1997
1998         if (write) {
1999                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2000                                                 GFP_KERNEL | __GFP_NORETRY);
2001                 if (!(obey_mempolicy &&
2002                                init_nodemask_of_mempolicy(nodes_allowed))) {
2003                         NODEMASK_FREE(nodes_allowed);
2004                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2005                 }
2006                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2007
2008                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2009                         NODEMASK_FREE(nodes_allowed);
2010         }
2011 out:
2012         return ret;
2013 }
2014
2015 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2016                           void __user *buffer, size_t *length, loff_t *ppos)
2017 {
2018
2019         return hugetlb_sysctl_handler_common(false, table, write,
2020                                                         buffer, length, ppos);
2021 }
2022
2023 #ifdef CONFIG_NUMA
2024 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2025                           void __user *buffer, size_t *length, loff_t *ppos)
2026 {
2027         return hugetlb_sysctl_handler_common(true, table, write,
2028                                                         buffer, length, ppos);
2029 }
2030 #endif /* CONFIG_NUMA */
2031
2032 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2033                         void __user *buffer,
2034                         size_t *length, loff_t *ppos)
2035 {
2036         proc_dointvec(table, write, buffer, length, ppos);
2037         if (hugepages_treat_as_movable)
2038                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2039         else
2040                 htlb_alloc_mask = GFP_HIGHUSER;
2041         return 0;
2042 }
2043
2044 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2045                         void __user *buffer,
2046                         size_t *length, loff_t *ppos)
2047 {
2048         struct hstate *h = &default_hstate;
2049         unsigned long tmp;
2050         int ret;
2051
2052         tmp = h->nr_overcommit_huge_pages;
2053
2054         if (write && h->order >= MAX_ORDER)
2055                 return -EINVAL;
2056
2057         table->data = &tmp;
2058         table->maxlen = sizeof(unsigned long);
2059         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2060         if (ret)
2061                 goto out;
2062
2063         if (write) {
2064                 spin_lock(&hugetlb_lock);
2065                 h->nr_overcommit_huge_pages = tmp;
2066                 spin_unlock(&hugetlb_lock);
2067         }
2068 out:
2069         return ret;
2070 }
2071
2072 #endif /* CONFIG_SYSCTL */
2073
2074 void hugetlb_report_meminfo(struct seq_file *m)
2075 {
2076         struct hstate *h = &default_hstate;
2077         seq_printf(m,
2078                         "HugePages_Total:   %5lu\n"
2079                         "HugePages_Free:    %5lu\n"
2080                         "HugePages_Rsvd:    %5lu\n"
2081                         "HugePages_Surp:    %5lu\n"
2082                         "Hugepagesize:   %8lu kB\n",
2083                         h->nr_huge_pages,
2084                         h->free_huge_pages,
2085                         h->resv_huge_pages,
2086                         h->surplus_huge_pages,
2087                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2088 }
2089
2090 int hugetlb_report_node_meminfo(int nid, char *buf)
2091 {
2092         struct hstate *h = &default_hstate;
2093         return sprintf(buf,
2094                 "Node %d HugePages_Total: %5u\n"
2095                 "Node %d HugePages_Free:  %5u\n"
2096                 "Node %d HugePages_Surp:  %5u\n",
2097                 nid, h->nr_huge_pages_node[nid],
2098                 nid, h->free_huge_pages_node[nid],
2099                 nid, h->surplus_huge_pages_node[nid]);
2100 }
2101
2102 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2103 unsigned long hugetlb_total_pages(void)
2104 {
2105         struct hstate *h = &default_hstate;
2106         return h->nr_huge_pages * pages_per_huge_page(h);
2107 }
2108
2109 static int hugetlb_acct_memory(struct hstate *h, long delta)
2110 {
2111         int ret = -ENOMEM;
2112
2113         spin_lock(&hugetlb_lock);
2114         /*
2115          * When cpuset is configured, it breaks the strict hugetlb page
2116          * reservation as the accounting is done on a global variable. Such
2117          * reservation is completely rubbish in the presence of cpuset because
2118          * the reservation is not checked against page availability for the
2119          * current cpuset. Application can still potentially OOM'ed by kernel
2120          * with lack of free htlb page in cpuset that the task is in.
2121          * Attempt to enforce strict accounting with cpuset is almost
2122          * impossible (or too ugly) because cpuset is too fluid that
2123          * task or memory node can be dynamically moved between cpusets.
2124          *
2125          * The change of semantics for shared hugetlb mapping with cpuset is
2126          * undesirable. However, in order to preserve some of the semantics,
2127          * we fall back to check against current free page availability as
2128          * a best attempt and hopefully to minimize the impact of changing
2129          * semantics that cpuset has.
2130          */
2131         if (delta > 0) {
2132                 if (gather_surplus_pages(h, delta) < 0)
2133                         goto out;
2134
2135                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2136                         return_unused_surplus_pages(h, delta);
2137                         goto out;
2138                 }
2139         }
2140
2141         ret = 0;
2142         if (delta < 0)
2143                 return_unused_surplus_pages(h, (unsigned long) -delta);
2144
2145 out:
2146         spin_unlock(&hugetlb_lock);
2147         return ret;
2148 }
2149
2150 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2151 {
2152         struct resv_map *reservations = vma_resv_map(vma);
2153
2154         /*
2155          * This new VMA should share its siblings reservation map if present.
2156          * The VMA will only ever have a valid reservation map pointer where
2157          * it is being copied for another still existing VMA.  As that VMA
2158          * has a reference to the reservation map it cannot disappear until
2159          * after this open call completes.  It is therefore safe to take a
2160          * new reference here without additional locking.
2161          */
2162         if (reservations)
2163                 kref_get(&reservations->refs);
2164 }
2165
2166 static void resv_map_put(struct vm_area_struct *vma)
2167 {
2168         struct resv_map *reservations = vma_resv_map(vma);
2169
2170         if (!reservations)
2171                 return;
2172         kref_put(&reservations->refs, resv_map_release);
2173 }
2174
2175 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2176 {
2177         struct hstate *h = hstate_vma(vma);
2178         struct resv_map *reservations = vma_resv_map(vma);
2179         struct hugepage_subpool *spool = subpool_vma(vma);
2180         unsigned long reserve;
2181         unsigned long start;
2182         unsigned long end;
2183
2184         if (reservations) {
2185                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2186                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2187
2188                 reserve = (end - start) -
2189                         region_count(&reservations->regions, start, end);
2190
2191                 resv_map_put(vma);
2192
2193                 if (reserve) {
2194                         hugetlb_acct_memory(h, -reserve);
2195                         hugepage_subpool_put_pages(spool, reserve);
2196                 }
2197         }
2198 }
2199
2200 /*
2201  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2202  * handle_mm_fault() to try to instantiate regular-sized pages in the
2203  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2204  * this far.
2205  */
2206 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2207 {
2208         BUG();
2209         return 0;
2210 }
2211
2212 const struct vm_operations_struct hugetlb_vm_ops = {
2213         .fault = hugetlb_vm_op_fault,
2214         .open = hugetlb_vm_op_open,
2215         .close = hugetlb_vm_op_close,
2216 };
2217
2218 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2219                                 int writable)
2220 {
2221         pte_t entry;
2222
2223         if (writable) {
2224                 entry =
2225                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2226         } else {
2227                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2228         }
2229         entry = pte_mkyoung(entry);
2230         entry = pte_mkhuge(entry);
2231         entry = arch_make_huge_pte(entry, vma, page, writable);
2232
2233         return entry;
2234 }
2235
2236 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2237                                    unsigned long address, pte_t *ptep)
2238 {
2239         pte_t entry;
2240
2241         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2242         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2243                 update_mmu_cache(vma, address, ptep);
2244 }
2245
2246
2247 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2248                             struct vm_area_struct *vma)
2249 {
2250         pte_t *src_pte, *dst_pte, entry;
2251         struct page *ptepage;
2252         unsigned long addr;
2253         int cow;
2254         struct hstate *h = hstate_vma(vma);
2255         unsigned long sz = huge_page_size(h);
2256
2257         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2258
2259         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2260                 src_pte = huge_pte_offset(src, addr);
2261                 if (!src_pte)
2262                         continue;
2263                 dst_pte = huge_pte_alloc(dst, addr, sz);
2264                 if (!dst_pte)
2265                         goto nomem;
2266
2267                 /* If the pagetables are shared don't copy or take references */
2268                 if (dst_pte == src_pte)
2269                         continue;
2270
2271                 spin_lock(&dst->page_table_lock);
2272                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2273                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2274                         if (cow)
2275                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2276                         entry = huge_ptep_get(src_pte);
2277                         ptepage = pte_page(entry);
2278                         get_page(ptepage);
2279                         page_dup_rmap(ptepage);
2280                         set_huge_pte_at(dst, addr, dst_pte, entry);
2281                 }
2282                 spin_unlock(&src->page_table_lock);
2283                 spin_unlock(&dst->page_table_lock);
2284         }
2285         return 0;
2286
2287 nomem:
2288         return -ENOMEM;
2289 }
2290
2291 static int is_hugetlb_entry_migration(pte_t pte)
2292 {
2293         swp_entry_t swp;
2294
2295         if (huge_pte_none(pte) || pte_present(pte))
2296                 return 0;
2297         swp = pte_to_swp_entry(pte);
2298         if (non_swap_entry(swp) && is_migration_entry(swp))
2299                 return 1;
2300         else
2301                 return 0;
2302 }
2303
2304 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2305 {
2306         swp_entry_t swp;
2307
2308         if (huge_pte_none(pte) || pte_present(pte))
2309                 return 0;
2310         swp = pte_to_swp_entry(pte);
2311         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2312                 return 1;
2313         else
2314                 return 0;
2315 }
2316
2317 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2318                             unsigned long start, unsigned long end,
2319                             struct page *ref_page)
2320 {
2321         int force_flush = 0;
2322         struct mm_struct *mm = vma->vm_mm;
2323         unsigned long address;
2324         pte_t *ptep;
2325         pte_t pte;
2326         struct page *page;
2327         struct hstate *h = hstate_vma(vma);
2328         unsigned long sz = huge_page_size(h);
2329
2330         WARN_ON(!is_vm_hugetlb_page(vma));
2331         BUG_ON(start & ~huge_page_mask(h));
2332         BUG_ON(end & ~huge_page_mask(h));
2333
2334         tlb_start_vma(tlb, vma);
2335         mmu_notifier_invalidate_range_start(mm, start, end);
2336 again:
2337         spin_lock(&mm->page_table_lock);
2338         for (address = start; address < end; address += sz) {
2339                 ptep = huge_pte_offset(mm, address);
2340                 if (!ptep)
2341                         continue;
2342
2343                 if (huge_pmd_unshare(mm, &address, ptep))
2344                         continue;
2345
2346                 pte = huge_ptep_get(ptep);
2347                 if (huge_pte_none(pte))
2348                         continue;
2349
2350                 /*
2351                  * HWPoisoned hugepage is already unmapped and dropped reference
2352                  */
2353                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2354                         continue;
2355
2356                 page = pte_page(pte);
2357                 /*
2358                  * If a reference page is supplied, it is because a specific
2359                  * page is being unmapped, not a range. Ensure the page we
2360                  * are about to unmap is the actual page of interest.
2361                  */
2362                 if (ref_page) {
2363                         if (page != ref_page)
2364                                 continue;
2365
2366                         /*
2367                          * Mark the VMA as having unmapped its page so that
2368                          * future faults in this VMA will fail rather than
2369                          * looking like data was lost
2370                          */
2371                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2372                 }
2373
2374                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2375                 tlb_remove_tlb_entry(tlb, ptep, address);
2376                 if (pte_dirty(pte))
2377                         set_page_dirty(page);
2378
2379                 page_remove_rmap(page);
2380                 force_flush = !__tlb_remove_page(tlb, page);
2381                 if (force_flush)
2382                         break;
2383                 /* Bail out after unmapping reference page if supplied */
2384                 if (ref_page)
2385                         break;
2386         }
2387         spin_unlock(&mm->page_table_lock);
2388         /*
2389          * mmu_gather ran out of room to batch pages, we break out of
2390          * the PTE lock to avoid doing the potential expensive TLB invalidate
2391          * and page-free while holding it.
2392          */
2393         if (force_flush) {
2394                 force_flush = 0;
2395                 tlb_flush_mmu(tlb);
2396                 if (address < end && !ref_page)
2397                         goto again;
2398         }
2399         mmu_notifier_invalidate_range_end(mm, start, end);
2400         tlb_end_vma(tlb, vma);
2401 }
2402
2403 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2404                           unsigned long end, struct page *ref_page)
2405 {
2406         struct mm_struct *mm;
2407         struct mmu_gather tlb;
2408
2409         mm = vma->vm_mm;
2410
2411         tlb_gather_mmu(&tlb, mm, 0);
2412         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2413         tlb_finish_mmu(&tlb, start, end);
2414 }
2415
2416 /*
2417  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2418  * mappping it owns the reserve page for. The intention is to unmap the page
2419  * from other VMAs and let the children be SIGKILLed if they are faulting the
2420  * same region.
2421  */
2422 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2423                                 struct page *page, unsigned long address)
2424 {
2425         struct hstate *h = hstate_vma(vma);
2426         struct vm_area_struct *iter_vma;
2427         struct address_space *mapping;
2428         struct prio_tree_iter iter;
2429         pgoff_t pgoff;
2430
2431         /*
2432          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2433          * from page cache lookup which is in HPAGE_SIZE units.
2434          */
2435         address = address & huge_page_mask(h);
2436         pgoff = vma_hugecache_offset(h, vma, address);
2437         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2438
2439         /*
2440          * Take the mapping lock for the duration of the table walk. As
2441          * this mapping should be shared between all the VMAs,
2442          * __unmap_hugepage_range() is called as the lock is already held
2443          */
2444         mutex_lock(&mapping->i_mmap_mutex);
2445         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2446                 /* Do not unmap the current VMA */
2447                 if (iter_vma == vma)
2448                         continue;
2449
2450                 /*
2451                  * Unmap the page from other VMAs without their own reserves.
2452                  * They get marked to be SIGKILLed if they fault in these
2453                  * areas. This is because a future no-page fault on this VMA
2454                  * could insert a zeroed page instead of the data existing
2455                  * from the time of fork. This would look like data corruption
2456                  */
2457                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2458                         unmap_hugepage_range(iter_vma, address,
2459                                              address + huge_page_size(h), page);
2460         }
2461         mutex_unlock(&mapping->i_mmap_mutex);
2462
2463         return 1;
2464 }
2465
2466 /*
2467  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2468  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2469  * cannot race with other handlers or page migration.
2470  * Keep the pte_same checks anyway to make transition from the mutex easier.
2471  */
2472 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2473                         unsigned long address, pte_t *ptep, pte_t pte,
2474                         struct page *pagecache_page)
2475 {
2476         struct hstate *h = hstate_vma(vma);
2477         struct page *old_page, *new_page;
2478         int avoidcopy;
2479         int outside_reserve = 0;
2480
2481         old_page = pte_page(pte);
2482
2483 retry_avoidcopy:
2484         /* If no-one else is actually using this page, avoid the copy
2485          * and just make the page writable */
2486         avoidcopy = (page_mapcount(old_page) == 1);
2487         if (avoidcopy) {
2488                 if (PageAnon(old_page))
2489                         page_move_anon_rmap(old_page, vma, address);
2490                 set_huge_ptep_writable(vma, address, ptep);
2491                 return 0;
2492         }
2493
2494         /*
2495          * If the process that created a MAP_PRIVATE mapping is about to
2496          * perform a COW due to a shared page count, attempt to satisfy
2497          * the allocation without using the existing reserves. The pagecache
2498          * page is used to determine if the reserve at this address was
2499          * consumed or not. If reserves were used, a partial faulted mapping
2500          * at the time of fork() could consume its reserves on COW instead
2501          * of the full address range.
2502          */
2503         if (!(vma->vm_flags & VM_MAYSHARE) &&
2504                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2505                         old_page != pagecache_page)
2506                 outside_reserve = 1;
2507
2508         page_cache_get(old_page);
2509
2510         /* Drop page_table_lock as buddy allocator may be called */
2511         spin_unlock(&mm->page_table_lock);
2512         new_page = alloc_huge_page(vma, address, outside_reserve);
2513
2514         if (IS_ERR(new_page)) {
2515                 long err = PTR_ERR(new_page);
2516                 page_cache_release(old_page);
2517
2518                 /*
2519                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2520                  * it is due to references held by a child and an insufficient
2521                  * huge page pool. To guarantee the original mappers
2522                  * reliability, unmap the page from child processes. The child
2523                  * may get SIGKILLed if it later faults.
2524                  */
2525                 if (outside_reserve) {
2526                         BUG_ON(huge_pte_none(pte));
2527                         if (unmap_ref_private(mm, vma, old_page, address)) {
2528                                 BUG_ON(huge_pte_none(pte));
2529                                 spin_lock(&mm->page_table_lock);
2530                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2531                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2532                                         goto retry_avoidcopy;
2533                                 /*
2534                                  * race occurs while re-acquiring page_table_lock, and
2535                                  * our job is done.
2536                                  */
2537                                 return 0;
2538                         }
2539                         WARN_ON_ONCE(1);
2540                 }
2541
2542                 /* Caller expects lock to be held */
2543                 spin_lock(&mm->page_table_lock);
2544                 if (err == -ENOMEM)
2545                         return VM_FAULT_OOM;
2546                 else
2547                         return VM_FAULT_SIGBUS;
2548         }
2549
2550         /*
2551          * When the original hugepage is shared one, it does not have
2552          * anon_vma prepared.
2553          */
2554         if (unlikely(anon_vma_prepare(vma))) {
2555                 page_cache_release(new_page);
2556                 page_cache_release(old_page);
2557                 /* Caller expects lock to be held */
2558                 spin_lock(&mm->page_table_lock);
2559                 return VM_FAULT_OOM;
2560         }
2561
2562         copy_user_huge_page(new_page, old_page, address, vma,
2563                             pages_per_huge_page(h));
2564         __SetPageUptodate(new_page);
2565
2566         /*
2567          * Retake the page_table_lock to check for racing updates
2568          * before the page tables are altered
2569          */
2570         spin_lock(&mm->page_table_lock);
2571         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2572         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2573                 /* Break COW */
2574                 mmu_notifier_invalidate_range_start(mm,
2575                         address & huge_page_mask(h),
2576                         (address & huge_page_mask(h)) + huge_page_size(h));
2577                 huge_ptep_clear_flush(vma, address, ptep);
2578                 set_huge_pte_at(mm, address, ptep,
2579                                 make_huge_pte(vma, new_page, 1));
2580                 page_remove_rmap(old_page);
2581                 hugepage_add_new_anon_rmap(new_page, vma, address);
2582                 /* Make the old page be freed below */
2583                 new_page = old_page;
2584                 mmu_notifier_invalidate_range_end(mm,
2585                         address & huge_page_mask(h),
2586                         (address & huge_page_mask(h)) + huge_page_size(h));
2587         }
2588         page_cache_release(new_page);
2589         page_cache_release(old_page);
2590         return 0;
2591 }
2592
2593 /* Return the pagecache page at a given address within a VMA */
2594 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2595                         struct vm_area_struct *vma, unsigned long address)
2596 {
2597         struct address_space *mapping;
2598         pgoff_t idx;
2599
2600         mapping = vma->vm_file->f_mapping;
2601         idx = vma_hugecache_offset(h, vma, address);
2602
2603         return find_lock_page(mapping, idx);
2604 }
2605
2606 /*
2607  * Return whether there is a pagecache page to back given address within VMA.
2608  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2609  */
2610 static bool hugetlbfs_pagecache_present(struct hstate *h,
2611                         struct vm_area_struct *vma, unsigned long address)
2612 {
2613         struct address_space *mapping;
2614         pgoff_t idx;
2615         struct page *page;
2616
2617         mapping = vma->vm_file->f_mapping;
2618         idx = vma_hugecache_offset(h, vma, address);
2619
2620         page = find_get_page(mapping, idx);
2621         if (page)
2622                 put_page(page);
2623         return page != NULL;
2624 }
2625
2626 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2627                         unsigned long address, pte_t *ptep, unsigned int flags)
2628 {
2629         struct hstate *h = hstate_vma(vma);
2630         int ret = VM_FAULT_SIGBUS;
2631         int anon_rmap = 0;
2632         pgoff_t idx;
2633         unsigned long size;
2634         struct page *page;
2635         struct address_space *mapping;
2636         pte_t new_pte;
2637
2638         /*
2639          * Currently, we are forced to kill the process in the event the
2640          * original mapper has unmapped pages from the child due to a failed
2641          * COW. Warn that such a situation has occurred as it may not be obvious
2642          */
2643         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2644                 printk(KERN_WARNING
2645                         "PID %d killed due to inadequate hugepage pool\n",
2646                         current->pid);
2647                 return ret;
2648         }
2649
2650         mapping = vma->vm_file->f_mapping;
2651         idx = vma_hugecache_offset(h, vma, address);
2652
2653         /*
2654          * Use page lock to guard against racing truncation
2655          * before we get page_table_lock.
2656          */
2657 retry:
2658         page = find_lock_page(mapping, idx);
2659         if (!page) {
2660                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2661                 if (idx >= size)
2662                         goto out;
2663                 page = alloc_huge_page(vma, address, 0);
2664                 if (IS_ERR(page)) {
2665                         ret = PTR_ERR(page);
2666                         if (ret == -ENOMEM)
2667                                 ret = VM_FAULT_OOM;
2668                         else
2669                                 ret = VM_FAULT_SIGBUS;
2670                         goto out;
2671                 }
2672                 clear_huge_page(page, address, pages_per_huge_page(h));
2673                 __SetPageUptodate(page);
2674
2675                 if (vma->vm_flags & VM_MAYSHARE) {
2676                         int err;
2677                         struct inode *inode = mapping->host;
2678
2679                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2680                         if (err) {
2681                                 put_page(page);
2682                                 if (err == -EEXIST)
2683                                         goto retry;
2684                                 goto out;
2685                         }
2686
2687                         spin_lock(&inode->i_lock);
2688                         inode->i_blocks += blocks_per_huge_page(h);
2689                         spin_unlock(&inode->i_lock);
2690                 } else {
2691                         lock_page(page);
2692                         if (unlikely(anon_vma_prepare(vma))) {
2693                                 ret = VM_FAULT_OOM;
2694                                 goto backout_unlocked;
2695                         }
2696                         anon_rmap = 1;
2697                 }
2698         } else {
2699                 /*
2700                  * If memory error occurs between mmap() and fault, some process
2701                  * don't have hwpoisoned swap entry for errored virtual address.
2702                  * So we need to block hugepage fault by PG_hwpoison bit check.
2703                  */
2704                 if (unlikely(PageHWPoison(page))) {
2705                         ret = VM_FAULT_HWPOISON |
2706                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2707                         goto backout_unlocked;
2708                 }
2709         }
2710
2711         /*
2712          * If we are going to COW a private mapping later, we examine the
2713          * pending reservations for this page now. This will ensure that
2714          * any allocations necessary to record that reservation occur outside
2715          * the spinlock.
2716          */
2717         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2718                 if (vma_needs_reservation(h, vma, address) < 0) {
2719                         ret = VM_FAULT_OOM;
2720                         goto backout_unlocked;
2721                 }
2722
2723         spin_lock(&mm->page_table_lock);
2724         size = i_size_read(mapping->host) >> huge_page_shift(h);
2725         if (idx >= size)
2726                 goto backout;
2727
2728         ret = 0;
2729         if (!huge_pte_none(huge_ptep_get(ptep)))
2730                 goto backout;
2731
2732         if (anon_rmap)
2733                 hugepage_add_new_anon_rmap(page, vma, address);
2734         else
2735                 page_dup_rmap(page);
2736         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2737                                 && (vma->vm_flags & VM_SHARED)));
2738         set_huge_pte_at(mm, address, ptep, new_pte);
2739
2740         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2741                 /* Optimization, do the COW without a second fault */
2742                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2743         }
2744
2745         spin_unlock(&mm->page_table_lock);
2746         unlock_page(page);
2747 out:
2748         return ret;
2749
2750 backout:
2751         spin_unlock(&mm->page_table_lock);
2752 backout_unlocked:
2753         unlock_page(page);
2754         put_page(page);
2755         goto out;
2756 }
2757
2758 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2759                         unsigned long address, unsigned int flags)
2760 {
2761         pte_t *ptep;
2762         pte_t entry;
2763         int ret;
2764         struct page *page = NULL;
2765         struct page *pagecache_page = NULL;
2766         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2767         struct hstate *h = hstate_vma(vma);
2768
2769         address &= huge_page_mask(h);
2770
2771         ptep = huge_pte_offset(mm, address);
2772         if (ptep) {
2773                 entry = huge_ptep_get(ptep);
2774                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2775                         migration_entry_wait(mm, (pmd_t *)ptep, address);
2776                         return 0;
2777                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2778                         return VM_FAULT_HWPOISON_LARGE |
2779                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2780         }
2781
2782         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2783         if (!ptep)
2784                 return VM_FAULT_OOM;
2785
2786         /*
2787          * Serialize hugepage allocation and instantiation, so that we don't
2788          * get spurious allocation failures if two CPUs race to instantiate
2789          * the same page in the page cache.
2790          */
2791         mutex_lock(&hugetlb_instantiation_mutex);
2792         entry = huge_ptep_get(ptep);
2793         if (huge_pte_none(entry)) {
2794                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2795                 goto out_mutex;
2796         }
2797
2798         ret = 0;
2799
2800         /*
2801          * If we are going to COW the mapping later, we examine the pending
2802          * reservations for this page now. This will ensure that any
2803          * allocations necessary to record that reservation occur outside the
2804          * spinlock. For private mappings, we also lookup the pagecache
2805          * page now as it is used to determine if a reservation has been
2806          * consumed.
2807          */
2808         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2809                 if (vma_needs_reservation(h, vma, address) < 0) {
2810                         ret = VM_FAULT_OOM;
2811                         goto out_mutex;
2812                 }
2813
2814                 if (!(vma->vm_flags & VM_MAYSHARE))
2815                         pagecache_page = hugetlbfs_pagecache_page(h,
2816                                                                 vma, address);
2817         }
2818
2819         /*
2820          * hugetlb_cow() requires page locks of pte_page(entry) and
2821          * pagecache_page, so here we need take the former one
2822          * when page != pagecache_page or !pagecache_page.
2823          * Note that locking order is always pagecache_page -> page,
2824          * so no worry about deadlock.
2825          */
2826         page = pte_page(entry);
2827         get_page(page);
2828         if (page != pagecache_page)
2829                 lock_page(page);
2830
2831         spin_lock(&mm->page_table_lock);
2832         /* Check for a racing update before calling hugetlb_cow */
2833         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2834                 goto out_page_table_lock;
2835
2836
2837         if (flags & FAULT_FLAG_WRITE) {
2838                 if (!pte_write(entry)) {
2839                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2840                                                         pagecache_page);
2841                         goto out_page_table_lock;
2842                 }
2843                 entry = pte_mkdirty(entry);
2844         }
2845         entry = pte_mkyoung(entry);
2846         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2847                                                 flags & FAULT_FLAG_WRITE))
2848                 update_mmu_cache(vma, address, ptep);
2849
2850 out_page_table_lock:
2851         spin_unlock(&mm->page_table_lock);
2852
2853         if (pagecache_page) {
2854                 unlock_page(pagecache_page);
2855                 put_page(pagecache_page);
2856         }
2857         if (page != pagecache_page)
2858                 unlock_page(page);
2859         put_page(page);
2860
2861 out_mutex:
2862         mutex_unlock(&hugetlb_instantiation_mutex);
2863
2864         return ret;
2865 }
2866
2867 /* Can be overriden by architectures */
2868 __attribute__((weak)) struct page *
2869 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2870                pud_t *pud, int write)
2871 {
2872         BUG();
2873         return NULL;
2874 }
2875
2876 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2877                         struct page **pages, struct vm_area_struct **vmas,
2878                         unsigned long *position, int *length, int i,
2879                         unsigned int flags)
2880 {
2881         unsigned long pfn_offset;
2882         unsigned long vaddr = *position;
2883         int remainder = *length;
2884         struct hstate *h = hstate_vma(vma);
2885
2886         spin_lock(&mm->page_table_lock);
2887         while (vaddr < vma->vm_end && remainder) {
2888                 pte_t *pte;
2889                 int absent;
2890                 struct page *page;
2891
2892                 /*
2893                  * Some archs (sparc64, sh*) have multiple pte_ts to
2894                  * each hugepage.  We have to make sure we get the
2895                  * first, for the page indexing below to work.
2896                  */
2897                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2898                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2899
2900                 /*
2901                  * When coredumping, it suits get_dump_page if we just return
2902                  * an error where there's an empty slot with no huge pagecache
2903                  * to back it.  This way, we avoid allocating a hugepage, and
2904                  * the sparse dumpfile avoids allocating disk blocks, but its
2905                  * huge holes still show up with zeroes where they need to be.
2906                  */
2907                 if (absent && (flags & FOLL_DUMP) &&
2908                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2909                         remainder = 0;
2910                         break;
2911                 }
2912
2913                 if (absent ||
2914                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2915                         int ret;
2916
2917                         spin_unlock(&mm->page_table_lock);
2918                         ret = hugetlb_fault(mm, vma, vaddr,
2919                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2920                         spin_lock(&mm->page_table_lock);
2921                         if (!(ret & VM_FAULT_ERROR))
2922                                 continue;
2923
2924                         remainder = 0;
2925                         break;
2926                 }
2927
2928                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2929                 page = pte_page(huge_ptep_get(pte));
2930 same_page:
2931                 if (pages) {
2932                         pages[i] = mem_map_offset(page, pfn_offset);
2933                         get_page(pages[i]);
2934                 }
2935
2936                 if (vmas)
2937                         vmas[i] = vma;
2938
2939                 vaddr += PAGE_SIZE;
2940                 ++pfn_offset;
2941                 --remainder;
2942                 ++i;
2943                 if (vaddr < vma->vm_end && remainder &&
2944                                 pfn_offset < pages_per_huge_page(h)) {
2945                         /*
2946                          * We use pfn_offset to avoid touching the pageframes
2947                          * of this compound page.
2948                          */
2949                         goto same_page;
2950                 }
2951         }
2952         spin_unlock(&mm->page_table_lock);
2953         *length = remainder;
2954         *position = vaddr;
2955
2956         return i ? i : -EFAULT;
2957 }
2958
2959 void hugetlb_change_protection(struct vm_area_struct *vma,
2960                 unsigned long address, unsigned long end, pgprot_t newprot)
2961 {
2962         struct mm_struct *mm = vma->vm_mm;
2963         unsigned long start = address;
2964         pte_t *ptep;
2965         pte_t pte;
2966         struct hstate *h = hstate_vma(vma);
2967
2968         BUG_ON(address >= end);
2969         flush_cache_range(vma, address, end);
2970
2971         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2972         spin_lock(&mm->page_table_lock);
2973         for (; address < end; address += huge_page_size(h)) {
2974                 ptep = huge_pte_offset(mm, address);
2975                 if (!ptep)
2976                         continue;
2977                 if (huge_pmd_unshare(mm, &address, ptep))
2978                         continue;
2979                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2980                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2981                         pte = pte_mkhuge(pte_modify(pte, newprot));
2982                         set_huge_pte_at(mm, address, ptep, pte);
2983                 }
2984         }
2985         spin_unlock(&mm->page_table_lock);
2986         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2987
2988         flush_tlb_range(vma, start, end);
2989 }
2990
2991 int hugetlb_reserve_pages(struct inode *inode,
2992                                         long from, long to,
2993                                         struct vm_area_struct *vma,
2994                                         vm_flags_t vm_flags)
2995 {
2996         long ret, chg;
2997         struct hstate *h = hstate_inode(inode);
2998         struct hugepage_subpool *spool = subpool_inode(inode);
2999
3000         /*
3001          * Only apply hugepage reservation if asked. At fault time, an
3002          * attempt will be made for VM_NORESERVE to allocate a page
3003          * without using reserves
3004          */
3005         if (vm_flags & VM_NORESERVE)
3006                 return 0;
3007
3008         /*
3009          * Shared mappings base their reservation on the number of pages that
3010          * are already allocated on behalf of the file. Private mappings need
3011          * to reserve the full area even if read-only as mprotect() may be
3012          * called to make the mapping read-write. Assume !vma is a shm mapping
3013          */
3014         if (!vma || vma->vm_flags & VM_MAYSHARE)
3015                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3016         else {
3017                 struct resv_map *resv_map = resv_map_alloc();
3018                 if (!resv_map)
3019                         return -ENOMEM;
3020
3021                 chg = to - from;
3022
3023                 set_vma_resv_map(vma, resv_map);
3024                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3025         }
3026
3027         if (chg < 0) {
3028                 ret = chg;
3029                 goto out_err;
3030         }
3031
3032         /* There must be enough pages in the subpool for the mapping */
3033         if (hugepage_subpool_get_pages(spool, chg)) {
3034                 ret = -ENOSPC;
3035                 goto out_err;
3036         }
3037
3038         /*
3039          * Check enough hugepages are available for the reservation.
3040          * Hand the pages back to the subpool if there are not
3041          */
3042         ret = hugetlb_acct_memory(h, chg);
3043         if (ret < 0) {
3044                 hugepage_subpool_put_pages(spool, chg);
3045                 goto out_err;
3046         }
3047
3048         /*
3049          * Account for the reservations made. Shared mappings record regions
3050          * that have reservations as they are shared by multiple VMAs.
3051          * When the last VMA disappears, the region map says how much
3052          * the reservation was and the page cache tells how much of
3053          * the reservation was consumed. Private mappings are per-VMA and
3054          * only the consumed reservations are tracked. When the VMA
3055          * disappears, the original reservation is the VMA size and the
3056          * consumed reservations are stored in the map. Hence, nothing
3057          * else has to be done for private mappings here
3058          */
3059         if (!vma || vma->vm_flags & VM_MAYSHARE)
3060                 region_add(&inode->i_mapping->private_list, from, to);
3061         return 0;
3062 out_err:
3063         if (vma)
3064                 resv_map_put(vma);
3065         return ret;
3066 }
3067
3068 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3069 {
3070         struct hstate *h = hstate_inode(inode);
3071         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3072         struct hugepage_subpool *spool = subpool_inode(inode);
3073
3074         spin_lock(&inode->i_lock);
3075         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3076         spin_unlock(&inode->i_lock);
3077
3078         hugepage_subpool_put_pages(spool, (chg - freed));
3079         hugetlb_acct_memory(h, -(chg - freed));
3080 }
3081
3082 #ifdef CONFIG_MEMORY_FAILURE
3083
3084 /* Should be called in hugetlb_lock */
3085 static int is_hugepage_on_freelist(struct page *hpage)
3086 {
3087         struct page *page;
3088         struct page *tmp;
3089         struct hstate *h = page_hstate(hpage);
3090         int nid = page_to_nid(hpage);
3091
3092         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3093                 if (page == hpage)
3094                         return 1;
3095         return 0;
3096 }
3097
3098 /*
3099  * This function is called from memory failure code.
3100  * Assume the caller holds page lock of the head page.
3101  */
3102 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3103 {
3104         struct hstate *h = page_hstate(hpage);
3105         int nid = page_to_nid(hpage);
3106         int ret = -EBUSY;
3107
3108         spin_lock(&hugetlb_lock);
3109         if (is_hugepage_on_freelist(hpage)) {
3110                 list_del(&hpage->lru);
3111                 set_page_refcounted(hpage);
3112                 h->free_huge_pages--;
3113                 h->free_huge_pages_node[nid]--;
3114                 ret = 0;
3115         }
3116         spin_unlock(&hugetlb_lock);
3117         return ret;
3118 }
3119 #endif