hugetlb/cgroup: add hugetlb cgroup control files
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_move(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         if (list_empty(&h->hugepage_freelists[nid]))
522                 return NULL;
523         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524         list_move(&page->lru, &h->hugepage_activelist);
525         set_page_refcounted(page);
526         h->free_huge_pages--;
527         h->free_huge_pages_node[nid]--;
528         return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532                                 struct vm_area_struct *vma,
533                                 unsigned long address, int avoid_reserve)
534 {
535         struct page *page = NULL;
536         struct mempolicy *mpol;
537         nodemask_t *nodemask;
538         struct zonelist *zonelist;
539         struct zone *zone;
540         struct zoneref *z;
541         unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544         cpuset_mems_cookie = get_mems_allowed();
545         zonelist = huge_zonelist(vma, address,
546                                         htlb_alloc_mask, &mpol, &nodemask);
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560         for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                                                 MAX_NR_ZONES - 1, nodemask) {
562                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
564                         if (page) {
565                                 if (!avoid_reserve)
566                                         decrement_hugepage_resv_vma(h, vma);
567                                 break;
568                         }
569                 }
570         }
571
572         mpol_cond_put(mpol);
573         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574                 goto retry_cpuset;
575         return page;
576
577 err:
578         mpol_cond_put(mpol);
579         return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584         int i;
585
586         VM_BUG_ON(h->order >= MAX_ORDER);
587
588         h->nr_huge_pages--;
589         h->nr_huge_pages_node[page_to_nid(page)]--;
590         for (i = 0; i < pages_per_huge_page(h); i++) {
591                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592                                 1 << PG_referenced | 1 << PG_dirty |
593                                 1 << PG_active | 1 << PG_reserved |
594                                 1 << PG_private | 1 << PG_writeback);
595         }
596         VM_BUG_ON(hugetlb_cgroup_from_page(page));
597         set_compound_page_dtor(page, NULL);
598         set_page_refcounted(page);
599         arch_release_hugepage(page);
600         __free_pages(page, huge_page_order(h));
601 }
602
603 struct hstate *size_to_hstate(unsigned long size)
604 {
605         struct hstate *h;
606
607         for_each_hstate(h) {
608                 if (huge_page_size(h) == size)
609                         return h;
610         }
611         return NULL;
612 }
613
614 static void free_huge_page(struct page *page)
615 {
616         /*
617          * Can't pass hstate in here because it is called from the
618          * compound page destructor.
619          */
620         struct hstate *h = page_hstate(page);
621         int nid = page_to_nid(page);
622         struct hugepage_subpool *spool =
623                 (struct hugepage_subpool *)page_private(page);
624
625         set_page_private(page, 0);
626         page->mapping = NULL;
627         BUG_ON(page_count(page));
628         BUG_ON(page_mapcount(page));
629
630         spin_lock(&hugetlb_lock);
631         hugetlb_cgroup_uncharge_page(hstate_index(h),
632                                      pages_per_huge_page(h), page);
633         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634                 /* remove the page from active list */
635                 list_del(&page->lru);
636                 update_and_free_page(h, page);
637                 h->surplus_huge_pages--;
638                 h->surplus_huge_pages_node[nid]--;
639         } else {
640                 enqueue_huge_page(h, page);
641         }
642         spin_unlock(&hugetlb_lock);
643         hugepage_subpool_put_pages(spool, 1);
644 }
645
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647 {
648         INIT_LIST_HEAD(&page->lru);
649         set_compound_page_dtor(page, free_huge_page);
650         spin_lock(&hugetlb_lock);
651         set_hugetlb_cgroup(page, NULL);
652         h->nr_huge_pages++;
653         h->nr_huge_pages_node[nid]++;
654         spin_unlock(&hugetlb_lock);
655         put_page(page); /* free it into the hugepage allocator */
656 }
657
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 {
660         int i;
661         int nr_pages = 1 << order;
662         struct page *p = page + 1;
663
664         /* we rely on prep_new_huge_page to set the destructor */
665         set_compound_order(page, order);
666         __SetPageHead(page);
667         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668                 __SetPageTail(p);
669                 set_page_count(p, 0);
670                 p->first_page = page;
671         }
672 }
673
674 int PageHuge(struct page *page)
675 {
676         compound_page_dtor *dtor;
677
678         if (!PageCompound(page))
679                 return 0;
680
681         page = compound_head(page);
682         dtor = get_compound_page_dtor(page);
683
684         return dtor == free_huge_page;
685 }
686 EXPORT_SYMBOL_GPL(PageHuge);
687
688 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
689 {
690         struct page *page;
691
692         if (h->order >= MAX_ORDER)
693                 return NULL;
694
695         page = alloc_pages_exact_node(nid,
696                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
697                                                 __GFP_REPEAT|__GFP_NOWARN,
698                 huge_page_order(h));
699         if (page) {
700                 if (arch_prepare_hugepage(page)) {
701                         __free_pages(page, huge_page_order(h));
702                         return NULL;
703                 }
704                 prep_new_huge_page(h, page, nid);
705         }
706
707         return page;
708 }
709
710 /*
711  * common helper functions for hstate_next_node_to_{alloc|free}.
712  * We may have allocated or freed a huge page based on a different
713  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
714  * be outside of *nodes_allowed.  Ensure that we use an allowed
715  * node for alloc or free.
716  */
717 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
718 {
719         nid = next_node(nid, *nodes_allowed);
720         if (nid == MAX_NUMNODES)
721                 nid = first_node(*nodes_allowed);
722         VM_BUG_ON(nid >= MAX_NUMNODES);
723
724         return nid;
725 }
726
727 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
728 {
729         if (!node_isset(nid, *nodes_allowed))
730                 nid = next_node_allowed(nid, nodes_allowed);
731         return nid;
732 }
733
734 /*
735  * returns the previously saved node ["this node"] from which to
736  * allocate a persistent huge page for the pool and advance the
737  * next node from which to allocate, handling wrap at end of node
738  * mask.
739  */
740 static int hstate_next_node_to_alloc(struct hstate *h,
741                                         nodemask_t *nodes_allowed)
742 {
743         int nid;
744
745         VM_BUG_ON(!nodes_allowed);
746
747         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
748         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
749
750         return nid;
751 }
752
753 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
754 {
755         struct page *page;
756         int start_nid;
757         int next_nid;
758         int ret = 0;
759
760         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
761         next_nid = start_nid;
762
763         do {
764                 page = alloc_fresh_huge_page_node(h, next_nid);
765                 if (page) {
766                         ret = 1;
767                         break;
768                 }
769                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
770         } while (next_nid != start_nid);
771
772         if (ret)
773                 count_vm_event(HTLB_BUDDY_PGALLOC);
774         else
775                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
776
777         return ret;
778 }
779
780 /*
781  * helper for free_pool_huge_page() - return the previously saved
782  * node ["this node"] from which to free a huge page.  Advance the
783  * next node id whether or not we find a free huge page to free so
784  * that the next attempt to free addresses the next node.
785  */
786 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
787 {
788         int nid;
789
790         VM_BUG_ON(!nodes_allowed);
791
792         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
793         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
794
795         return nid;
796 }
797
798 /*
799  * Free huge page from pool from next node to free.
800  * Attempt to keep persistent huge pages more or less
801  * balanced over allowed nodes.
802  * Called with hugetlb_lock locked.
803  */
804 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
805                                                          bool acct_surplus)
806 {
807         int start_nid;
808         int next_nid;
809         int ret = 0;
810
811         start_nid = hstate_next_node_to_free(h, nodes_allowed);
812         next_nid = start_nid;
813
814         do {
815                 /*
816                  * If we're returning unused surplus pages, only examine
817                  * nodes with surplus pages.
818                  */
819                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
820                     !list_empty(&h->hugepage_freelists[next_nid])) {
821                         struct page *page =
822                                 list_entry(h->hugepage_freelists[next_nid].next,
823                                           struct page, lru);
824                         list_del(&page->lru);
825                         h->free_huge_pages--;
826                         h->free_huge_pages_node[next_nid]--;
827                         if (acct_surplus) {
828                                 h->surplus_huge_pages--;
829                                 h->surplus_huge_pages_node[next_nid]--;
830                         }
831                         update_and_free_page(h, page);
832                         ret = 1;
833                         break;
834                 }
835                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
836         } while (next_nid != start_nid);
837
838         return ret;
839 }
840
841 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
842 {
843         struct page *page;
844         unsigned int r_nid;
845
846         if (h->order >= MAX_ORDER)
847                 return NULL;
848
849         /*
850          * Assume we will successfully allocate the surplus page to
851          * prevent racing processes from causing the surplus to exceed
852          * overcommit
853          *
854          * This however introduces a different race, where a process B
855          * tries to grow the static hugepage pool while alloc_pages() is
856          * called by process A. B will only examine the per-node
857          * counters in determining if surplus huge pages can be
858          * converted to normal huge pages in adjust_pool_surplus(). A
859          * won't be able to increment the per-node counter, until the
860          * lock is dropped by B, but B doesn't drop hugetlb_lock until
861          * no more huge pages can be converted from surplus to normal
862          * state (and doesn't try to convert again). Thus, we have a
863          * case where a surplus huge page exists, the pool is grown, and
864          * the surplus huge page still exists after, even though it
865          * should just have been converted to a normal huge page. This
866          * does not leak memory, though, as the hugepage will be freed
867          * once it is out of use. It also does not allow the counters to
868          * go out of whack in adjust_pool_surplus() as we don't modify
869          * the node values until we've gotten the hugepage and only the
870          * per-node value is checked there.
871          */
872         spin_lock(&hugetlb_lock);
873         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
874                 spin_unlock(&hugetlb_lock);
875                 return NULL;
876         } else {
877                 h->nr_huge_pages++;
878                 h->surplus_huge_pages++;
879         }
880         spin_unlock(&hugetlb_lock);
881
882         if (nid == NUMA_NO_NODE)
883                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
884                                    __GFP_REPEAT|__GFP_NOWARN,
885                                    huge_page_order(h));
886         else
887                 page = alloc_pages_exact_node(nid,
888                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
889                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
890
891         if (page && arch_prepare_hugepage(page)) {
892                 __free_pages(page, huge_page_order(h));
893                 page = NULL;
894         }
895
896         spin_lock(&hugetlb_lock);
897         if (page) {
898                 INIT_LIST_HEAD(&page->lru);
899                 r_nid = page_to_nid(page);
900                 set_compound_page_dtor(page, free_huge_page);
901                 set_hugetlb_cgroup(page, NULL);
902                 /*
903                  * We incremented the global counters already
904                  */
905                 h->nr_huge_pages_node[r_nid]++;
906                 h->surplus_huge_pages_node[r_nid]++;
907                 __count_vm_event(HTLB_BUDDY_PGALLOC);
908         } else {
909                 h->nr_huge_pages--;
910                 h->surplus_huge_pages--;
911                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
912         }
913         spin_unlock(&hugetlb_lock);
914
915         return page;
916 }
917
918 /*
919  * This allocation function is useful in the context where vma is irrelevant.
920  * E.g. soft-offlining uses this function because it only cares physical
921  * address of error page.
922  */
923 struct page *alloc_huge_page_node(struct hstate *h, int nid)
924 {
925         struct page *page;
926
927         spin_lock(&hugetlb_lock);
928         page = dequeue_huge_page_node(h, nid);
929         spin_unlock(&hugetlb_lock);
930
931         if (!page)
932                 page = alloc_buddy_huge_page(h, nid);
933
934         return page;
935 }
936
937 /*
938  * Increase the hugetlb pool such that it can accommodate a reservation
939  * of size 'delta'.
940  */
941 static int gather_surplus_pages(struct hstate *h, int delta)
942 {
943         struct list_head surplus_list;
944         struct page *page, *tmp;
945         int ret, i;
946         int needed, allocated;
947         bool alloc_ok = true;
948
949         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
950         if (needed <= 0) {
951                 h->resv_huge_pages += delta;
952                 return 0;
953         }
954
955         allocated = 0;
956         INIT_LIST_HEAD(&surplus_list);
957
958         ret = -ENOMEM;
959 retry:
960         spin_unlock(&hugetlb_lock);
961         for (i = 0; i < needed; i++) {
962                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
963                 if (!page) {
964                         alloc_ok = false;
965                         break;
966                 }
967                 list_add(&page->lru, &surplus_list);
968         }
969         allocated += i;
970
971         /*
972          * After retaking hugetlb_lock, we need to recalculate 'needed'
973          * because either resv_huge_pages or free_huge_pages may have changed.
974          */
975         spin_lock(&hugetlb_lock);
976         needed = (h->resv_huge_pages + delta) -
977                         (h->free_huge_pages + allocated);
978         if (needed > 0) {
979                 if (alloc_ok)
980                         goto retry;
981                 /*
982                  * We were not able to allocate enough pages to
983                  * satisfy the entire reservation so we free what
984                  * we've allocated so far.
985                  */
986                 goto free;
987         }
988         /*
989          * The surplus_list now contains _at_least_ the number of extra pages
990          * needed to accommodate the reservation.  Add the appropriate number
991          * of pages to the hugetlb pool and free the extras back to the buddy
992          * allocator.  Commit the entire reservation here to prevent another
993          * process from stealing the pages as they are added to the pool but
994          * before they are reserved.
995          */
996         needed += allocated;
997         h->resv_huge_pages += delta;
998         ret = 0;
999
1000         /* Free the needed pages to the hugetlb pool */
1001         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1002                 if ((--needed) < 0)
1003                         break;
1004                 /*
1005                  * This page is now managed by the hugetlb allocator and has
1006                  * no users -- drop the buddy allocator's reference.
1007                  */
1008                 put_page_testzero(page);
1009                 VM_BUG_ON(page_count(page));
1010                 enqueue_huge_page(h, page);
1011         }
1012 free:
1013         spin_unlock(&hugetlb_lock);
1014
1015         /* Free unnecessary surplus pages to the buddy allocator */
1016         if (!list_empty(&surplus_list)) {
1017                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1018                         put_page(page);
1019                 }
1020         }
1021         spin_lock(&hugetlb_lock);
1022
1023         return ret;
1024 }
1025
1026 /*
1027  * When releasing a hugetlb pool reservation, any surplus pages that were
1028  * allocated to satisfy the reservation must be explicitly freed if they were
1029  * never used.
1030  * Called with hugetlb_lock held.
1031  */
1032 static void return_unused_surplus_pages(struct hstate *h,
1033                                         unsigned long unused_resv_pages)
1034 {
1035         unsigned long nr_pages;
1036
1037         /* Uncommit the reservation */
1038         h->resv_huge_pages -= unused_resv_pages;
1039
1040         /* Cannot return gigantic pages currently */
1041         if (h->order >= MAX_ORDER)
1042                 return;
1043
1044         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1045
1046         /*
1047          * We want to release as many surplus pages as possible, spread
1048          * evenly across all nodes with memory. Iterate across these nodes
1049          * until we can no longer free unreserved surplus pages. This occurs
1050          * when the nodes with surplus pages have no free pages.
1051          * free_pool_huge_page() will balance the the freed pages across the
1052          * on-line nodes with memory and will handle the hstate accounting.
1053          */
1054         while (nr_pages--) {
1055                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1056                         break;
1057         }
1058 }
1059
1060 /*
1061  * Determine if the huge page at addr within the vma has an associated
1062  * reservation.  Where it does not we will need to logically increase
1063  * reservation and actually increase subpool usage before an allocation
1064  * can occur.  Where any new reservation would be required the
1065  * reservation change is prepared, but not committed.  Once the page
1066  * has been allocated from the subpool and instantiated the change should
1067  * be committed via vma_commit_reservation.  No action is required on
1068  * failure.
1069  */
1070 static long vma_needs_reservation(struct hstate *h,
1071                         struct vm_area_struct *vma, unsigned long addr)
1072 {
1073         struct address_space *mapping = vma->vm_file->f_mapping;
1074         struct inode *inode = mapping->host;
1075
1076         if (vma->vm_flags & VM_MAYSHARE) {
1077                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1078                 return region_chg(&inode->i_mapping->private_list,
1079                                                         idx, idx + 1);
1080
1081         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1082                 return 1;
1083
1084         } else  {
1085                 long err;
1086                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1087                 struct resv_map *reservations = vma_resv_map(vma);
1088
1089                 err = region_chg(&reservations->regions, idx, idx + 1);
1090                 if (err < 0)
1091                         return err;
1092                 return 0;
1093         }
1094 }
1095 static void vma_commit_reservation(struct hstate *h,
1096                         struct vm_area_struct *vma, unsigned long addr)
1097 {
1098         struct address_space *mapping = vma->vm_file->f_mapping;
1099         struct inode *inode = mapping->host;
1100
1101         if (vma->vm_flags & VM_MAYSHARE) {
1102                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1104
1105         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1107                 struct resv_map *reservations = vma_resv_map(vma);
1108
1109                 /* Mark this page used in the map. */
1110                 region_add(&reservations->regions, idx, idx + 1);
1111         }
1112 }
1113
1114 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1115                                     unsigned long addr, int avoid_reserve)
1116 {
1117         struct hugepage_subpool *spool = subpool_vma(vma);
1118         struct hstate *h = hstate_vma(vma);
1119         struct page *page;
1120         long chg;
1121         int ret, idx;
1122         struct hugetlb_cgroup *h_cg;
1123
1124         idx = hstate_index(h);
1125         /*
1126          * Processes that did not create the mapping will have no
1127          * reserves and will not have accounted against subpool
1128          * limit. Check that the subpool limit can be made before
1129          * satisfying the allocation MAP_NORESERVE mappings may also
1130          * need pages and subpool limit allocated allocated if no reserve
1131          * mapping overlaps.
1132          */
1133         chg = vma_needs_reservation(h, vma, addr);
1134         if (chg < 0)
1135                 return ERR_PTR(-ENOMEM);
1136         if (chg)
1137                 if (hugepage_subpool_get_pages(spool, chg))
1138                         return ERR_PTR(-ENOSPC);
1139
1140         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1141         if (ret) {
1142                 hugepage_subpool_put_pages(spool, chg);
1143                 return ERR_PTR(-ENOSPC);
1144         }
1145         spin_lock(&hugetlb_lock);
1146         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1147         spin_unlock(&hugetlb_lock);
1148
1149         if (!page) {
1150                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1151                 if (!page) {
1152                         hugetlb_cgroup_uncharge_cgroup(idx,
1153                                                        pages_per_huge_page(h),
1154                                                        h_cg);
1155                         hugepage_subpool_put_pages(spool, chg);
1156                         return ERR_PTR(-ENOSPC);
1157                 }
1158         }
1159
1160         set_page_private(page, (unsigned long)spool);
1161
1162         vma_commit_reservation(h, vma, addr);
1163         /* update page cgroup details */
1164         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1165         return page;
1166 }
1167
1168 int __weak alloc_bootmem_huge_page(struct hstate *h)
1169 {
1170         struct huge_bootmem_page *m;
1171         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1172
1173         while (nr_nodes) {
1174                 void *addr;
1175
1176                 addr = __alloc_bootmem_node_nopanic(
1177                                 NODE_DATA(hstate_next_node_to_alloc(h,
1178                                                 &node_states[N_HIGH_MEMORY])),
1179                                 huge_page_size(h), huge_page_size(h), 0);
1180
1181                 if (addr) {
1182                         /*
1183                          * Use the beginning of the huge page to store the
1184                          * huge_bootmem_page struct (until gather_bootmem
1185                          * puts them into the mem_map).
1186                          */
1187                         m = addr;
1188                         goto found;
1189                 }
1190                 nr_nodes--;
1191         }
1192         return 0;
1193
1194 found:
1195         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1196         /* Put them into a private list first because mem_map is not up yet */
1197         list_add(&m->list, &huge_boot_pages);
1198         m->hstate = h;
1199         return 1;
1200 }
1201
1202 static void prep_compound_huge_page(struct page *page, int order)
1203 {
1204         if (unlikely(order > (MAX_ORDER - 1)))
1205                 prep_compound_gigantic_page(page, order);
1206         else
1207                 prep_compound_page(page, order);
1208 }
1209
1210 /* Put bootmem huge pages into the standard lists after mem_map is up */
1211 static void __init gather_bootmem_prealloc(void)
1212 {
1213         struct huge_bootmem_page *m;
1214
1215         list_for_each_entry(m, &huge_boot_pages, list) {
1216                 struct hstate *h = m->hstate;
1217                 struct page *page;
1218
1219 #ifdef CONFIG_HIGHMEM
1220                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1221                 free_bootmem_late((unsigned long)m,
1222                                   sizeof(struct huge_bootmem_page));
1223 #else
1224                 page = virt_to_page(m);
1225 #endif
1226                 __ClearPageReserved(page);
1227                 WARN_ON(page_count(page) != 1);
1228                 prep_compound_huge_page(page, h->order);
1229                 prep_new_huge_page(h, page, page_to_nid(page));
1230                 /*
1231                  * If we had gigantic hugepages allocated at boot time, we need
1232                  * to restore the 'stolen' pages to totalram_pages in order to
1233                  * fix confusing memory reports from free(1) and another
1234                  * side-effects, like CommitLimit going negative.
1235                  */
1236                 if (h->order > (MAX_ORDER - 1))
1237                         totalram_pages += 1 << h->order;
1238         }
1239 }
1240
1241 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1242 {
1243         unsigned long i;
1244
1245         for (i = 0; i < h->max_huge_pages; ++i) {
1246                 if (h->order >= MAX_ORDER) {
1247                         if (!alloc_bootmem_huge_page(h))
1248                                 break;
1249                 } else if (!alloc_fresh_huge_page(h,
1250                                          &node_states[N_HIGH_MEMORY]))
1251                         break;
1252         }
1253         h->max_huge_pages = i;
1254 }
1255
1256 static void __init hugetlb_init_hstates(void)
1257 {
1258         struct hstate *h;
1259
1260         for_each_hstate(h) {
1261                 /* oversize hugepages were init'ed in early boot */
1262                 if (h->order < MAX_ORDER)
1263                         hugetlb_hstate_alloc_pages(h);
1264         }
1265 }
1266
1267 static char * __init memfmt(char *buf, unsigned long n)
1268 {
1269         if (n >= (1UL << 30))
1270                 sprintf(buf, "%lu GB", n >> 30);
1271         else if (n >= (1UL << 20))
1272                 sprintf(buf, "%lu MB", n >> 20);
1273         else
1274                 sprintf(buf, "%lu KB", n >> 10);
1275         return buf;
1276 }
1277
1278 static void __init report_hugepages(void)
1279 {
1280         struct hstate *h;
1281
1282         for_each_hstate(h) {
1283                 char buf[32];
1284                 printk(KERN_INFO "HugeTLB registered %s page size, "
1285                                  "pre-allocated %ld pages\n",
1286                         memfmt(buf, huge_page_size(h)),
1287                         h->free_huge_pages);
1288         }
1289 }
1290
1291 #ifdef CONFIG_HIGHMEM
1292 static void try_to_free_low(struct hstate *h, unsigned long count,
1293                                                 nodemask_t *nodes_allowed)
1294 {
1295         int i;
1296
1297         if (h->order >= MAX_ORDER)
1298                 return;
1299
1300         for_each_node_mask(i, *nodes_allowed) {
1301                 struct page *page, *next;
1302                 struct list_head *freel = &h->hugepage_freelists[i];
1303                 list_for_each_entry_safe(page, next, freel, lru) {
1304                         if (count >= h->nr_huge_pages)
1305                                 return;
1306                         if (PageHighMem(page))
1307                                 continue;
1308                         list_del(&page->lru);
1309                         update_and_free_page(h, page);
1310                         h->free_huge_pages--;
1311                         h->free_huge_pages_node[page_to_nid(page)]--;
1312                 }
1313         }
1314 }
1315 #else
1316 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1317                                                 nodemask_t *nodes_allowed)
1318 {
1319 }
1320 #endif
1321
1322 /*
1323  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1324  * balanced by operating on them in a round-robin fashion.
1325  * Returns 1 if an adjustment was made.
1326  */
1327 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1328                                 int delta)
1329 {
1330         int start_nid, next_nid;
1331         int ret = 0;
1332
1333         VM_BUG_ON(delta != -1 && delta != 1);
1334
1335         if (delta < 0)
1336                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1337         else
1338                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1339         next_nid = start_nid;
1340
1341         do {
1342                 int nid = next_nid;
1343                 if (delta < 0)  {
1344                         /*
1345                          * To shrink on this node, there must be a surplus page
1346                          */
1347                         if (!h->surplus_huge_pages_node[nid]) {
1348                                 next_nid = hstate_next_node_to_alloc(h,
1349                                                                 nodes_allowed);
1350                                 continue;
1351                         }
1352                 }
1353                 if (delta > 0) {
1354                         /*
1355                          * Surplus cannot exceed the total number of pages
1356                          */
1357                         if (h->surplus_huge_pages_node[nid] >=
1358                                                 h->nr_huge_pages_node[nid]) {
1359                                 next_nid = hstate_next_node_to_free(h,
1360                                                                 nodes_allowed);
1361                                 continue;
1362                         }
1363                 }
1364
1365                 h->surplus_huge_pages += delta;
1366                 h->surplus_huge_pages_node[nid] += delta;
1367                 ret = 1;
1368                 break;
1369         } while (next_nid != start_nid);
1370
1371         return ret;
1372 }
1373
1374 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1375 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1376                                                 nodemask_t *nodes_allowed)
1377 {
1378         unsigned long min_count, ret;
1379
1380         if (h->order >= MAX_ORDER)
1381                 return h->max_huge_pages;
1382
1383         /*
1384          * Increase the pool size
1385          * First take pages out of surplus state.  Then make up the
1386          * remaining difference by allocating fresh huge pages.
1387          *
1388          * We might race with alloc_buddy_huge_page() here and be unable
1389          * to convert a surplus huge page to a normal huge page. That is
1390          * not critical, though, it just means the overall size of the
1391          * pool might be one hugepage larger than it needs to be, but
1392          * within all the constraints specified by the sysctls.
1393          */
1394         spin_lock(&hugetlb_lock);
1395         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1396                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1397                         break;
1398         }
1399
1400         while (count > persistent_huge_pages(h)) {
1401                 /*
1402                  * If this allocation races such that we no longer need the
1403                  * page, free_huge_page will handle it by freeing the page
1404                  * and reducing the surplus.
1405                  */
1406                 spin_unlock(&hugetlb_lock);
1407                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1408                 spin_lock(&hugetlb_lock);
1409                 if (!ret)
1410                         goto out;
1411
1412                 /* Bail for signals. Probably ctrl-c from user */
1413                 if (signal_pending(current))
1414                         goto out;
1415         }
1416
1417         /*
1418          * Decrease the pool size
1419          * First return free pages to the buddy allocator (being careful
1420          * to keep enough around to satisfy reservations).  Then place
1421          * pages into surplus state as needed so the pool will shrink
1422          * to the desired size as pages become free.
1423          *
1424          * By placing pages into the surplus state independent of the
1425          * overcommit value, we are allowing the surplus pool size to
1426          * exceed overcommit. There are few sane options here. Since
1427          * alloc_buddy_huge_page() is checking the global counter,
1428          * though, we'll note that we're not allowed to exceed surplus
1429          * and won't grow the pool anywhere else. Not until one of the
1430          * sysctls are changed, or the surplus pages go out of use.
1431          */
1432         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1433         min_count = max(count, min_count);
1434         try_to_free_low(h, min_count, nodes_allowed);
1435         while (min_count < persistent_huge_pages(h)) {
1436                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1437                         break;
1438         }
1439         while (count < persistent_huge_pages(h)) {
1440                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1441                         break;
1442         }
1443 out:
1444         ret = persistent_huge_pages(h);
1445         spin_unlock(&hugetlb_lock);
1446         return ret;
1447 }
1448
1449 #define HSTATE_ATTR_RO(_name) \
1450         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1451
1452 #define HSTATE_ATTR(_name) \
1453         static struct kobj_attribute _name##_attr = \
1454                 __ATTR(_name, 0644, _name##_show, _name##_store)
1455
1456 static struct kobject *hugepages_kobj;
1457 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1458
1459 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1460
1461 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1462 {
1463         int i;
1464
1465         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1466                 if (hstate_kobjs[i] == kobj) {
1467                         if (nidp)
1468                                 *nidp = NUMA_NO_NODE;
1469                         return &hstates[i];
1470                 }
1471
1472         return kobj_to_node_hstate(kobj, nidp);
1473 }
1474
1475 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1476                                         struct kobj_attribute *attr, char *buf)
1477 {
1478         struct hstate *h;
1479         unsigned long nr_huge_pages;
1480         int nid;
1481
1482         h = kobj_to_hstate(kobj, &nid);
1483         if (nid == NUMA_NO_NODE)
1484                 nr_huge_pages = h->nr_huge_pages;
1485         else
1486                 nr_huge_pages = h->nr_huge_pages_node[nid];
1487
1488         return sprintf(buf, "%lu\n", nr_huge_pages);
1489 }
1490
1491 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1492                         struct kobject *kobj, struct kobj_attribute *attr,
1493                         const char *buf, size_t len)
1494 {
1495         int err;
1496         int nid;
1497         unsigned long count;
1498         struct hstate *h;
1499         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1500
1501         err = strict_strtoul(buf, 10, &count);
1502         if (err)
1503                 goto out;
1504
1505         h = kobj_to_hstate(kobj, &nid);
1506         if (h->order >= MAX_ORDER) {
1507                 err = -EINVAL;
1508                 goto out;
1509         }
1510
1511         if (nid == NUMA_NO_NODE) {
1512                 /*
1513                  * global hstate attribute
1514                  */
1515                 if (!(obey_mempolicy &&
1516                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1517                         NODEMASK_FREE(nodes_allowed);
1518                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1519                 }
1520         } else if (nodes_allowed) {
1521                 /*
1522                  * per node hstate attribute: adjust count to global,
1523                  * but restrict alloc/free to the specified node.
1524                  */
1525                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1526                 init_nodemask_of_node(nodes_allowed, nid);
1527         } else
1528                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1529
1530         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1531
1532         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1533                 NODEMASK_FREE(nodes_allowed);
1534
1535         return len;
1536 out:
1537         NODEMASK_FREE(nodes_allowed);
1538         return err;
1539 }
1540
1541 static ssize_t nr_hugepages_show(struct kobject *kobj,
1542                                        struct kobj_attribute *attr, char *buf)
1543 {
1544         return nr_hugepages_show_common(kobj, attr, buf);
1545 }
1546
1547 static ssize_t nr_hugepages_store(struct kobject *kobj,
1548                struct kobj_attribute *attr, const char *buf, size_t len)
1549 {
1550         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1551 }
1552 HSTATE_ATTR(nr_hugepages);
1553
1554 #ifdef CONFIG_NUMA
1555
1556 /*
1557  * hstate attribute for optionally mempolicy-based constraint on persistent
1558  * huge page alloc/free.
1559  */
1560 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1561                                        struct kobj_attribute *attr, char *buf)
1562 {
1563         return nr_hugepages_show_common(kobj, attr, buf);
1564 }
1565
1566 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1567                struct kobj_attribute *attr, const char *buf, size_t len)
1568 {
1569         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1570 }
1571 HSTATE_ATTR(nr_hugepages_mempolicy);
1572 #endif
1573
1574
1575 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1576                                         struct kobj_attribute *attr, char *buf)
1577 {
1578         struct hstate *h = kobj_to_hstate(kobj, NULL);
1579         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1580 }
1581
1582 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1583                 struct kobj_attribute *attr, const char *buf, size_t count)
1584 {
1585         int err;
1586         unsigned long input;
1587         struct hstate *h = kobj_to_hstate(kobj, NULL);
1588
1589         if (h->order >= MAX_ORDER)
1590                 return -EINVAL;
1591
1592         err = strict_strtoul(buf, 10, &input);
1593         if (err)
1594                 return err;
1595
1596         spin_lock(&hugetlb_lock);
1597         h->nr_overcommit_huge_pages = input;
1598         spin_unlock(&hugetlb_lock);
1599
1600         return count;
1601 }
1602 HSTATE_ATTR(nr_overcommit_hugepages);
1603
1604 static ssize_t free_hugepages_show(struct kobject *kobj,
1605                                         struct kobj_attribute *attr, char *buf)
1606 {
1607         struct hstate *h;
1608         unsigned long free_huge_pages;
1609         int nid;
1610
1611         h = kobj_to_hstate(kobj, &nid);
1612         if (nid == NUMA_NO_NODE)
1613                 free_huge_pages = h->free_huge_pages;
1614         else
1615                 free_huge_pages = h->free_huge_pages_node[nid];
1616
1617         return sprintf(buf, "%lu\n", free_huge_pages);
1618 }
1619 HSTATE_ATTR_RO(free_hugepages);
1620
1621 static ssize_t resv_hugepages_show(struct kobject *kobj,
1622                                         struct kobj_attribute *attr, char *buf)
1623 {
1624         struct hstate *h = kobj_to_hstate(kobj, NULL);
1625         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1626 }
1627 HSTATE_ATTR_RO(resv_hugepages);
1628
1629 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1630                                         struct kobj_attribute *attr, char *buf)
1631 {
1632         struct hstate *h;
1633         unsigned long surplus_huge_pages;
1634         int nid;
1635
1636         h = kobj_to_hstate(kobj, &nid);
1637         if (nid == NUMA_NO_NODE)
1638                 surplus_huge_pages = h->surplus_huge_pages;
1639         else
1640                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1641
1642         return sprintf(buf, "%lu\n", surplus_huge_pages);
1643 }
1644 HSTATE_ATTR_RO(surplus_hugepages);
1645
1646 static struct attribute *hstate_attrs[] = {
1647         &nr_hugepages_attr.attr,
1648         &nr_overcommit_hugepages_attr.attr,
1649         &free_hugepages_attr.attr,
1650         &resv_hugepages_attr.attr,
1651         &surplus_hugepages_attr.attr,
1652 #ifdef CONFIG_NUMA
1653         &nr_hugepages_mempolicy_attr.attr,
1654 #endif
1655         NULL,
1656 };
1657
1658 static struct attribute_group hstate_attr_group = {
1659         .attrs = hstate_attrs,
1660 };
1661
1662 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1663                                     struct kobject **hstate_kobjs,
1664                                     struct attribute_group *hstate_attr_group)
1665 {
1666         int retval;
1667         int hi = hstate_index(h);
1668
1669         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1670         if (!hstate_kobjs[hi])
1671                 return -ENOMEM;
1672
1673         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1674         if (retval)
1675                 kobject_put(hstate_kobjs[hi]);
1676
1677         return retval;
1678 }
1679
1680 static void __init hugetlb_sysfs_init(void)
1681 {
1682         struct hstate *h;
1683         int err;
1684
1685         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1686         if (!hugepages_kobj)
1687                 return;
1688
1689         for_each_hstate(h) {
1690                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1691                                          hstate_kobjs, &hstate_attr_group);
1692                 if (err)
1693                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1694                                                                 h->name);
1695         }
1696 }
1697
1698 #ifdef CONFIG_NUMA
1699
1700 /*
1701  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1702  * with node devices in node_devices[] using a parallel array.  The array
1703  * index of a node device or _hstate == node id.
1704  * This is here to avoid any static dependency of the node device driver, in
1705  * the base kernel, on the hugetlb module.
1706  */
1707 struct node_hstate {
1708         struct kobject          *hugepages_kobj;
1709         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1710 };
1711 struct node_hstate node_hstates[MAX_NUMNODES];
1712
1713 /*
1714  * A subset of global hstate attributes for node devices
1715  */
1716 static struct attribute *per_node_hstate_attrs[] = {
1717         &nr_hugepages_attr.attr,
1718         &free_hugepages_attr.attr,
1719         &surplus_hugepages_attr.attr,
1720         NULL,
1721 };
1722
1723 static struct attribute_group per_node_hstate_attr_group = {
1724         .attrs = per_node_hstate_attrs,
1725 };
1726
1727 /*
1728  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1729  * Returns node id via non-NULL nidp.
1730  */
1731 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1732 {
1733         int nid;
1734
1735         for (nid = 0; nid < nr_node_ids; nid++) {
1736                 struct node_hstate *nhs = &node_hstates[nid];
1737                 int i;
1738                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1739                         if (nhs->hstate_kobjs[i] == kobj) {
1740                                 if (nidp)
1741                                         *nidp = nid;
1742                                 return &hstates[i];
1743                         }
1744         }
1745
1746         BUG();
1747         return NULL;
1748 }
1749
1750 /*
1751  * Unregister hstate attributes from a single node device.
1752  * No-op if no hstate attributes attached.
1753  */
1754 void hugetlb_unregister_node(struct node *node)
1755 {
1756         struct hstate *h;
1757         struct node_hstate *nhs = &node_hstates[node->dev.id];
1758
1759         if (!nhs->hugepages_kobj)
1760                 return;         /* no hstate attributes */
1761
1762         for_each_hstate(h) {
1763                 int idx = hstate_index(h);
1764                 if (nhs->hstate_kobjs[idx]) {
1765                         kobject_put(nhs->hstate_kobjs[idx]);
1766                         nhs->hstate_kobjs[idx] = NULL;
1767                 }
1768         }
1769
1770         kobject_put(nhs->hugepages_kobj);
1771         nhs->hugepages_kobj = NULL;
1772 }
1773
1774 /*
1775  * hugetlb module exit:  unregister hstate attributes from node devices
1776  * that have them.
1777  */
1778 static void hugetlb_unregister_all_nodes(void)
1779 {
1780         int nid;
1781
1782         /*
1783          * disable node device registrations.
1784          */
1785         register_hugetlbfs_with_node(NULL, NULL);
1786
1787         /*
1788          * remove hstate attributes from any nodes that have them.
1789          */
1790         for (nid = 0; nid < nr_node_ids; nid++)
1791                 hugetlb_unregister_node(&node_devices[nid]);
1792 }
1793
1794 /*
1795  * Register hstate attributes for a single node device.
1796  * No-op if attributes already registered.
1797  */
1798 void hugetlb_register_node(struct node *node)
1799 {
1800         struct hstate *h;
1801         struct node_hstate *nhs = &node_hstates[node->dev.id];
1802         int err;
1803
1804         if (nhs->hugepages_kobj)
1805                 return;         /* already allocated */
1806
1807         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1808                                                         &node->dev.kobj);
1809         if (!nhs->hugepages_kobj)
1810                 return;
1811
1812         for_each_hstate(h) {
1813                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1814                                                 nhs->hstate_kobjs,
1815                                                 &per_node_hstate_attr_group);
1816                 if (err) {
1817                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1818                                         " for node %d\n",
1819                                                 h->name, node->dev.id);
1820                         hugetlb_unregister_node(node);
1821                         break;
1822                 }
1823         }
1824 }
1825
1826 /*
1827  * hugetlb init time:  register hstate attributes for all registered node
1828  * devices of nodes that have memory.  All on-line nodes should have
1829  * registered their associated device by this time.
1830  */
1831 static void hugetlb_register_all_nodes(void)
1832 {
1833         int nid;
1834
1835         for_each_node_state(nid, N_HIGH_MEMORY) {
1836                 struct node *node = &node_devices[nid];
1837                 if (node->dev.id == nid)
1838                         hugetlb_register_node(node);
1839         }
1840
1841         /*
1842          * Let the node device driver know we're here so it can
1843          * [un]register hstate attributes on node hotplug.
1844          */
1845         register_hugetlbfs_with_node(hugetlb_register_node,
1846                                      hugetlb_unregister_node);
1847 }
1848 #else   /* !CONFIG_NUMA */
1849
1850 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1851 {
1852         BUG();
1853         if (nidp)
1854                 *nidp = -1;
1855         return NULL;
1856 }
1857
1858 static void hugetlb_unregister_all_nodes(void) { }
1859
1860 static void hugetlb_register_all_nodes(void) { }
1861
1862 #endif
1863
1864 static void __exit hugetlb_exit(void)
1865 {
1866         struct hstate *h;
1867
1868         hugetlb_unregister_all_nodes();
1869
1870         for_each_hstate(h) {
1871                 kobject_put(hstate_kobjs[hstate_index(h)]);
1872         }
1873
1874         kobject_put(hugepages_kobj);
1875 }
1876 module_exit(hugetlb_exit);
1877
1878 static int __init hugetlb_init(void)
1879 {
1880         /* Some platform decide whether they support huge pages at boot
1881          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1882          * there is no such support
1883          */
1884         if (HPAGE_SHIFT == 0)
1885                 return 0;
1886
1887         if (!size_to_hstate(default_hstate_size)) {
1888                 default_hstate_size = HPAGE_SIZE;
1889                 if (!size_to_hstate(default_hstate_size))
1890                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1891         }
1892         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1893         if (default_hstate_max_huge_pages)
1894                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1895
1896         hugetlb_init_hstates();
1897
1898         gather_bootmem_prealloc();
1899
1900         report_hugepages();
1901
1902         hugetlb_sysfs_init();
1903
1904         hugetlb_register_all_nodes();
1905
1906         return 0;
1907 }
1908 module_init(hugetlb_init);
1909
1910 /* Should be called on processing a hugepagesz=... option */
1911 void __init hugetlb_add_hstate(unsigned order)
1912 {
1913         struct hstate *h;
1914         unsigned long i;
1915
1916         if (size_to_hstate(PAGE_SIZE << order)) {
1917                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1918                 return;
1919         }
1920         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1921         BUG_ON(order == 0);
1922         h = &hstates[hugetlb_max_hstate++];
1923         h->order = order;
1924         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1925         h->nr_huge_pages = 0;
1926         h->free_huge_pages = 0;
1927         for (i = 0; i < MAX_NUMNODES; ++i)
1928                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1929         INIT_LIST_HEAD(&h->hugepage_activelist);
1930         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1931         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1932         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1933                                         huge_page_size(h)/1024);
1934         /*
1935          * Add cgroup control files only if the huge page consists
1936          * of more than two normal pages. This is because we use
1937          * page[2].lru.next for storing cgoup details.
1938          */
1939         if (order >= HUGETLB_CGROUP_MIN_ORDER)
1940                 hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1941
1942         parsed_hstate = h;
1943 }
1944
1945 static int __init hugetlb_nrpages_setup(char *s)
1946 {
1947         unsigned long *mhp;
1948         static unsigned long *last_mhp;
1949
1950         /*
1951          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1952          * so this hugepages= parameter goes to the "default hstate".
1953          */
1954         if (!hugetlb_max_hstate)
1955                 mhp = &default_hstate_max_huge_pages;
1956         else
1957                 mhp = &parsed_hstate->max_huge_pages;
1958
1959         if (mhp == last_mhp) {
1960                 printk(KERN_WARNING "hugepages= specified twice without "
1961                         "interleaving hugepagesz=, ignoring\n");
1962                 return 1;
1963         }
1964
1965         if (sscanf(s, "%lu", mhp) <= 0)
1966                 *mhp = 0;
1967
1968         /*
1969          * Global state is always initialized later in hugetlb_init.
1970          * But we need to allocate >= MAX_ORDER hstates here early to still
1971          * use the bootmem allocator.
1972          */
1973         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1974                 hugetlb_hstate_alloc_pages(parsed_hstate);
1975
1976         last_mhp = mhp;
1977
1978         return 1;
1979 }
1980 __setup("hugepages=", hugetlb_nrpages_setup);
1981
1982 static int __init hugetlb_default_setup(char *s)
1983 {
1984         default_hstate_size = memparse(s, &s);
1985         return 1;
1986 }
1987 __setup("default_hugepagesz=", hugetlb_default_setup);
1988
1989 static unsigned int cpuset_mems_nr(unsigned int *array)
1990 {
1991         int node;
1992         unsigned int nr = 0;
1993
1994         for_each_node_mask(node, cpuset_current_mems_allowed)
1995                 nr += array[node];
1996
1997         return nr;
1998 }
1999
2000 #ifdef CONFIG_SYSCTL
2001 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2002                          struct ctl_table *table, int write,
2003                          void __user *buffer, size_t *length, loff_t *ppos)
2004 {
2005         struct hstate *h = &default_hstate;
2006         unsigned long tmp;
2007         int ret;
2008
2009         tmp = h->max_huge_pages;
2010
2011         if (write && h->order >= MAX_ORDER)
2012                 return -EINVAL;
2013
2014         table->data = &tmp;
2015         table->maxlen = sizeof(unsigned long);
2016         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2017         if (ret)
2018                 goto out;
2019
2020         if (write) {
2021                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2022                                                 GFP_KERNEL | __GFP_NORETRY);
2023                 if (!(obey_mempolicy &&
2024                                init_nodemask_of_mempolicy(nodes_allowed))) {
2025                         NODEMASK_FREE(nodes_allowed);
2026                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2027                 }
2028                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2029
2030                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2031                         NODEMASK_FREE(nodes_allowed);
2032         }
2033 out:
2034         return ret;
2035 }
2036
2037 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2038                           void __user *buffer, size_t *length, loff_t *ppos)
2039 {
2040
2041         return hugetlb_sysctl_handler_common(false, table, write,
2042                                                         buffer, length, ppos);
2043 }
2044
2045 #ifdef CONFIG_NUMA
2046 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2047                           void __user *buffer, size_t *length, loff_t *ppos)
2048 {
2049         return hugetlb_sysctl_handler_common(true, table, write,
2050                                                         buffer, length, ppos);
2051 }
2052 #endif /* CONFIG_NUMA */
2053
2054 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2055                         void __user *buffer,
2056                         size_t *length, loff_t *ppos)
2057 {
2058         proc_dointvec(table, write, buffer, length, ppos);
2059         if (hugepages_treat_as_movable)
2060                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2061         else
2062                 htlb_alloc_mask = GFP_HIGHUSER;
2063         return 0;
2064 }
2065
2066 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2067                         void __user *buffer,
2068                         size_t *length, loff_t *ppos)
2069 {
2070         struct hstate *h = &default_hstate;
2071         unsigned long tmp;
2072         int ret;
2073
2074         tmp = h->nr_overcommit_huge_pages;
2075
2076         if (write && h->order >= MAX_ORDER)
2077                 return -EINVAL;
2078
2079         table->data = &tmp;
2080         table->maxlen = sizeof(unsigned long);
2081         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2082         if (ret)
2083                 goto out;
2084
2085         if (write) {
2086                 spin_lock(&hugetlb_lock);
2087                 h->nr_overcommit_huge_pages = tmp;
2088                 spin_unlock(&hugetlb_lock);
2089         }
2090 out:
2091         return ret;
2092 }
2093
2094 #endif /* CONFIG_SYSCTL */
2095
2096 void hugetlb_report_meminfo(struct seq_file *m)
2097 {
2098         struct hstate *h = &default_hstate;
2099         seq_printf(m,
2100                         "HugePages_Total:   %5lu\n"
2101                         "HugePages_Free:    %5lu\n"
2102                         "HugePages_Rsvd:    %5lu\n"
2103                         "HugePages_Surp:    %5lu\n"
2104                         "Hugepagesize:   %8lu kB\n",
2105                         h->nr_huge_pages,
2106                         h->free_huge_pages,
2107                         h->resv_huge_pages,
2108                         h->surplus_huge_pages,
2109                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2110 }
2111
2112 int hugetlb_report_node_meminfo(int nid, char *buf)
2113 {
2114         struct hstate *h = &default_hstate;
2115         return sprintf(buf,
2116                 "Node %d HugePages_Total: %5u\n"
2117                 "Node %d HugePages_Free:  %5u\n"
2118                 "Node %d HugePages_Surp:  %5u\n",
2119                 nid, h->nr_huge_pages_node[nid],
2120                 nid, h->free_huge_pages_node[nid],
2121                 nid, h->surplus_huge_pages_node[nid]);
2122 }
2123
2124 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2125 unsigned long hugetlb_total_pages(void)
2126 {
2127         struct hstate *h = &default_hstate;
2128         return h->nr_huge_pages * pages_per_huge_page(h);
2129 }
2130
2131 static int hugetlb_acct_memory(struct hstate *h, long delta)
2132 {
2133         int ret = -ENOMEM;
2134
2135         spin_lock(&hugetlb_lock);
2136         /*
2137          * When cpuset is configured, it breaks the strict hugetlb page
2138          * reservation as the accounting is done on a global variable. Such
2139          * reservation is completely rubbish in the presence of cpuset because
2140          * the reservation is not checked against page availability for the
2141          * current cpuset. Application can still potentially OOM'ed by kernel
2142          * with lack of free htlb page in cpuset that the task is in.
2143          * Attempt to enforce strict accounting with cpuset is almost
2144          * impossible (or too ugly) because cpuset is too fluid that
2145          * task or memory node can be dynamically moved between cpusets.
2146          *
2147          * The change of semantics for shared hugetlb mapping with cpuset is
2148          * undesirable. However, in order to preserve some of the semantics,
2149          * we fall back to check against current free page availability as
2150          * a best attempt and hopefully to minimize the impact of changing
2151          * semantics that cpuset has.
2152          */
2153         if (delta > 0) {
2154                 if (gather_surplus_pages(h, delta) < 0)
2155                         goto out;
2156
2157                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2158                         return_unused_surplus_pages(h, delta);
2159                         goto out;
2160                 }
2161         }
2162
2163         ret = 0;
2164         if (delta < 0)
2165                 return_unused_surplus_pages(h, (unsigned long) -delta);
2166
2167 out:
2168         spin_unlock(&hugetlb_lock);
2169         return ret;
2170 }
2171
2172 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2173 {
2174         struct resv_map *reservations = vma_resv_map(vma);
2175
2176         /*
2177          * This new VMA should share its siblings reservation map if present.
2178          * The VMA will only ever have a valid reservation map pointer where
2179          * it is being copied for another still existing VMA.  As that VMA
2180          * has a reference to the reservation map it cannot disappear until
2181          * after this open call completes.  It is therefore safe to take a
2182          * new reference here without additional locking.
2183          */
2184         if (reservations)
2185                 kref_get(&reservations->refs);
2186 }
2187
2188 static void resv_map_put(struct vm_area_struct *vma)
2189 {
2190         struct resv_map *reservations = vma_resv_map(vma);
2191
2192         if (!reservations)
2193                 return;
2194         kref_put(&reservations->refs, resv_map_release);
2195 }
2196
2197 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2198 {
2199         struct hstate *h = hstate_vma(vma);
2200         struct resv_map *reservations = vma_resv_map(vma);
2201         struct hugepage_subpool *spool = subpool_vma(vma);
2202         unsigned long reserve;
2203         unsigned long start;
2204         unsigned long end;
2205
2206         if (reservations) {
2207                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2208                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2209
2210                 reserve = (end - start) -
2211                         region_count(&reservations->regions, start, end);
2212
2213                 resv_map_put(vma);
2214
2215                 if (reserve) {
2216                         hugetlb_acct_memory(h, -reserve);
2217                         hugepage_subpool_put_pages(spool, reserve);
2218                 }
2219         }
2220 }
2221
2222 /*
2223  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2224  * handle_mm_fault() to try to instantiate regular-sized pages in the
2225  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2226  * this far.
2227  */
2228 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2229 {
2230         BUG();
2231         return 0;
2232 }
2233
2234 const struct vm_operations_struct hugetlb_vm_ops = {
2235         .fault = hugetlb_vm_op_fault,
2236         .open = hugetlb_vm_op_open,
2237         .close = hugetlb_vm_op_close,
2238 };
2239
2240 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2241                                 int writable)
2242 {
2243         pte_t entry;
2244
2245         if (writable) {
2246                 entry =
2247                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2248         } else {
2249                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2250         }
2251         entry = pte_mkyoung(entry);
2252         entry = pte_mkhuge(entry);
2253         entry = arch_make_huge_pte(entry, vma, page, writable);
2254
2255         return entry;
2256 }
2257
2258 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2259                                    unsigned long address, pte_t *ptep)
2260 {
2261         pte_t entry;
2262
2263         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2264         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2265                 update_mmu_cache(vma, address, ptep);
2266 }
2267
2268
2269 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2270                             struct vm_area_struct *vma)
2271 {
2272         pte_t *src_pte, *dst_pte, entry;
2273         struct page *ptepage;
2274         unsigned long addr;
2275         int cow;
2276         struct hstate *h = hstate_vma(vma);
2277         unsigned long sz = huge_page_size(h);
2278
2279         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2280
2281         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2282                 src_pte = huge_pte_offset(src, addr);
2283                 if (!src_pte)
2284                         continue;
2285                 dst_pte = huge_pte_alloc(dst, addr, sz);
2286                 if (!dst_pte)
2287                         goto nomem;
2288
2289                 /* If the pagetables are shared don't copy or take references */
2290                 if (dst_pte == src_pte)
2291                         continue;
2292
2293                 spin_lock(&dst->page_table_lock);
2294                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2295                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2296                         if (cow)
2297                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2298                         entry = huge_ptep_get(src_pte);
2299                         ptepage = pte_page(entry);
2300                         get_page(ptepage);
2301                         page_dup_rmap(ptepage);
2302                         set_huge_pte_at(dst, addr, dst_pte, entry);
2303                 }
2304                 spin_unlock(&src->page_table_lock);
2305                 spin_unlock(&dst->page_table_lock);
2306         }
2307         return 0;
2308
2309 nomem:
2310         return -ENOMEM;
2311 }
2312
2313 static int is_hugetlb_entry_migration(pte_t pte)
2314 {
2315         swp_entry_t swp;
2316
2317         if (huge_pte_none(pte) || pte_present(pte))
2318                 return 0;
2319         swp = pte_to_swp_entry(pte);
2320         if (non_swap_entry(swp) && is_migration_entry(swp))
2321                 return 1;
2322         else
2323                 return 0;
2324 }
2325
2326 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2327 {
2328         swp_entry_t swp;
2329
2330         if (huge_pte_none(pte) || pte_present(pte))
2331                 return 0;
2332         swp = pte_to_swp_entry(pte);
2333         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2334                 return 1;
2335         else
2336                 return 0;
2337 }
2338
2339 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2340                             unsigned long start, unsigned long end,
2341                             struct page *ref_page)
2342 {
2343         int force_flush = 0;
2344         struct mm_struct *mm = vma->vm_mm;
2345         unsigned long address;
2346         pte_t *ptep;
2347         pte_t pte;
2348         struct page *page;
2349         struct hstate *h = hstate_vma(vma);
2350         unsigned long sz = huge_page_size(h);
2351
2352         WARN_ON(!is_vm_hugetlb_page(vma));
2353         BUG_ON(start & ~huge_page_mask(h));
2354         BUG_ON(end & ~huge_page_mask(h));
2355
2356         tlb_start_vma(tlb, vma);
2357         mmu_notifier_invalidate_range_start(mm, start, end);
2358 again:
2359         spin_lock(&mm->page_table_lock);
2360         for (address = start; address < end; address += sz) {
2361                 ptep = huge_pte_offset(mm, address);
2362                 if (!ptep)
2363                         continue;
2364
2365                 if (huge_pmd_unshare(mm, &address, ptep))
2366                         continue;
2367
2368                 pte = huge_ptep_get(ptep);
2369                 if (huge_pte_none(pte))
2370                         continue;
2371
2372                 /*
2373                  * HWPoisoned hugepage is already unmapped and dropped reference
2374                  */
2375                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2376                         continue;
2377
2378                 page = pte_page(pte);
2379                 /*
2380                  * If a reference page is supplied, it is because a specific
2381                  * page is being unmapped, not a range. Ensure the page we
2382                  * are about to unmap is the actual page of interest.
2383                  */
2384                 if (ref_page) {
2385                         if (page != ref_page)
2386                                 continue;
2387
2388                         /*
2389                          * Mark the VMA as having unmapped its page so that
2390                          * future faults in this VMA will fail rather than
2391                          * looking like data was lost
2392                          */
2393                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2394                 }
2395
2396                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2397                 tlb_remove_tlb_entry(tlb, ptep, address);
2398                 if (pte_dirty(pte))
2399                         set_page_dirty(page);
2400
2401                 page_remove_rmap(page);
2402                 force_flush = !__tlb_remove_page(tlb, page);
2403                 if (force_flush)
2404                         break;
2405                 /* Bail out after unmapping reference page if supplied */
2406                 if (ref_page)
2407                         break;
2408         }
2409         spin_unlock(&mm->page_table_lock);
2410         /*
2411          * mmu_gather ran out of room to batch pages, we break out of
2412          * the PTE lock to avoid doing the potential expensive TLB invalidate
2413          * and page-free while holding it.
2414          */
2415         if (force_flush) {
2416                 force_flush = 0;
2417                 tlb_flush_mmu(tlb);
2418                 if (address < end && !ref_page)
2419                         goto again;
2420         }
2421         mmu_notifier_invalidate_range_end(mm, start, end);
2422         tlb_end_vma(tlb, vma);
2423 }
2424
2425 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2426                           unsigned long end, struct page *ref_page)
2427 {
2428         struct mm_struct *mm;
2429         struct mmu_gather tlb;
2430
2431         mm = vma->vm_mm;
2432
2433         tlb_gather_mmu(&tlb, mm, 0);
2434         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2435         tlb_finish_mmu(&tlb, start, end);
2436 }
2437
2438 /*
2439  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2440  * mappping it owns the reserve page for. The intention is to unmap the page
2441  * from other VMAs and let the children be SIGKILLed if they are faulting the
2442  * same region.
2443  */
2444 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2445                                 struct page *page, unsigned long address)
2446 {
2447         struct hstate *h = hstate_vma(vma);
2448         struct vm_area_struct *iter_vma;
2449         struct address_space *mapping;
2450         struct prio_tree_iter iter;
2451         pgoff_t pgoff;
2452
2453         /*
2454          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2455          * from page cache lookup which is in HPAGE_SIZE units.
2456          */
2457         address = address & huge_page_mask(h);
2458         pgoff = vma_hugecache_offset(h, vma, address);
2459         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2460
2461         /*
2462          * Take the mapping lock for the duration of the table walk. As
2463          * this mapping should be shared between all the VMAs,
2464          * __unmap_hugepage_range() is called as the lock is already held
2465          */
2466         mutex_lock(&mapping->i_mmap_mutex);
2467         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2468                 /* Do not unmap the current VMA */
2469                 if (iter_vma == vma)
2470                         continue;
2471
2472                 /*
2473                  * Unmap the page from other VMAs without their own reserves.
2474                  * They get marked to be SIGKILLed if they fault in these
2475                  * areas. This is because a future no-page fault on this VMA
2476                  * could insert a zeroed page instead of the data existing
2477                  * from the time of fork. This would look like data corruption
2478                  */
2479                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2480                         unmap_hugepage_range(iter_vma, address,
2481                                              address + huge_page_size(h), page);
2482         }
2483         mutex_unlock(&mapping->i_mmap_mutex);
2484
2485         return 1;
2486 }
2487
2488 /*
2489  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2490  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2491  * cannot race with other handlers or page migration.
2492  * Keep the pte_same checks anyway to make transition from the mutex easier.
2493  */
2494 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2495                         unsigned long address, pte_t *ptep, pte_t pte,
2496                         struct page *pagecache_page)
2497 {
2498         struct hstate *h = hstate_vma(vma);
2499         struct page *old_page, *new_page;
2500         int avoidcopy;
2501         int outside_reserve = 0;
2502
2503         old_page = pte_page(pte);
2504
2505 retry_avoidcopy:
2506         /* If no-one else is actually using this page, avoid the copy
2507          * and just make the page writable */
2508         avoidcopy = (page_mapcount(old_page) == 1);
2509         if (avoidcopy) {
2510                 if (PageAnon(old_page))
2511                         page_move_anon_rmap(old_page, vma, address);
2512                 set_huge_ptep_writable(vma, address, ptep);
2513                 return 0;
2514         }
2515
2516         /*
2517          * If the process that created a MAP_PRIVATE mapping is about to
2518          * perform a COW due to a shared page count, attempt to satisfy
2519          * the allocation without using the existing reserves. The pagecache
2520          * page is used to determine if the reserve at this address was
2521          * consumed or not. If reserves were used, a partial faulted mapping
2522          * at the time of fork() could consume its reserves on COW instead
2523          * of the full address range.
2524          */
2525         if (!(vma->vm_flags & VM_MAYSHARE) &&
2526                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2527                         old_page != pagecache_page)
2528                 outside_reserve = 1;
2529
2530         page_cache_get(old_page);
2531
2532         /* Drop page_table_lock as buddy allocator may be called */
2533         spin_unlock(&mm->page_table_lock);
2534         new_page = alloc_huge_page(vma, address, outside_reserve);
2535
2536         if (IS_ERR(new_page)) {
2537                 long err = PTR_ERR(new_page);
2538                 page_cache_release(old_page);
2539
2540                 /*
2541                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2542                  * it is due to references held by a child and an insufficient
2543                  * huge page pool. To guarantee the original mappers
2544                  * reliability, unmap the page from child processes. The child
2545                  * may get SIGKILLed if it later faults.
2546                  */
2547                 if (outside_reserve) {
2548                         BUG_ON(huge_pte_none(pte));
2549                         if (unmap_ref_private(mm, vma, old_page, address)) {
2550                                 BUG_ON(huge_pte_none(pte));
2551                                 spin_lock(&mm->page_table_lock);
2552                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2553                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2554                                         goto retry_avoidcopy;
2555                                 /*
2556                                  * race occurs while re-acquiring page_table_lock, and
2557                                  * our job is done.
2558                                  */
2559                                 return 0;
2560                         }
2561                         WARN_ON_ONCE(1);
2562                 }
2563
2564                 /* Caller expects lock to be held */
2565                 spin_lock(&mm->page_table_lock);
2566                 if (err == -ENOMEM)
2567                         return VM_FAULT_OOM;
2568                 else
2569                         return VM_FAULT_SIGBUS;
2570         }
2571
2572         /*
2573          * When the original hugepage is shared one, it does not have
2574          * anon_vma prepared.
2575          */
2576         if (unlikely(anon_vma_prepare(vma))) {
2577                 page_cache_release(new_page);
2578                 page_cache_release(old_page);
2579                 /* Caller expects lock to be held */
2580                 spin_lock(&mm->page_table_lock);
2581                 return VM_FAULT_OOM;
2582         }
2583
2584         copy_user_huge_page(new_page, old_page, address, vma,
2585                             pages_per_huge_page(h));
2586         __SetPageUptodate(new_page);
2587
2588         /*
2589          * Retake the page_table_lock to check for racing updates
2590          * before the page tables are altered
2591          */
2592         spin_lock(&mm->page_table_lock);
2593         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2594         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2595                 /* Break COW */
2596                 mmu_notifier_invalidate_range_start(mm,
2597                         address & huge_page_mask(h),
2598                         (address & huge_page_mask(h)) + huge_page_size(h));
2599                 huge_ptep_clear_flush(vma, address, ptep);
2600                 set_huge_pte_at(mm, address, ptep,
2601                                 make_huge_pte(vma, new_page, 1));
2602                 page_remove_rmap(old_page);
2603                 hugepage_add_new_anon_rmap(new_page, vma, address);
2604                 /* Make the old page be freed below */
2605                 new_page = old_page;
2606                 mmu_notifier_invalidate_range_end(mm,
2607                         address & huge_page_mask(h),
2608                         (address & huge_page_mask(h)) + huge_page_size(h));
2609         }
2610         page_cache_release(new_page);
2611         page_cache_release(old_page);
2612         return 0;
2613 }
2614
2615 /* Return the pagecache page at a given address within a VMA */
2616 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2617                         struct vm_area_struct *vma, unsigned long address)
2618 {
2619         struct address_space *mapping;
2620         pgoff_t idx;
2621
2622         mapping = vma->vm_file->f_mapping;
2623         idx = vma_hugecache_offset(h, vma, address);
2624
2625         return find_lock_page(mapping, idx);
2626 }
2627
2628 /*
2629  * Return whether there is a pagecache page to back given address within VMA.
2630  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2631  */
2632 static bool hugetlbfs_pagecache_present(struct hstate *h,
2633                         struct vm_area_struct *vma, unsigned long address)
2634 {
2635         struct address_space *mapping;
2636         pgoff_t idx;
2637         struct page *page;
2638
2639         mapping = vma->vm_file->f_mapping;
2640         idx = vma_hugecache_offset(h, vma, address);
2641
2642         page = find_get_page(mapping, idx);
2643         if (page)
2644                 put_page(page);
2645         return page != NULL;
2646 }
2647
2648 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2649                         unsigned long address, pte_t *ptep, unsigned int flags)
2650 {
2651         struct hstate *h = hstate_vma(vma);
2652         int ret = VM_FAULT_SIGBUS;
2653         int anon_rmap = 0;
2654         pgoff_t idx;
2655         unsigned long size;
2656         struct page *page;
2657         struct address_space *mapping;
2658         pte_t new_pte;
2659
2660         /*
2661          * Currently, we are forced to kill the process in the event the
2662          * original mapper has unmapped pages from the child due to a failed
2663          * COW. Warn that such a situation has occurred as it may not be obvious
2664          */
2665         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2666                 printk(KERN_WARNING
2667                         "PID %d killed due to inadequate hugepage pool\n",
2668                         current->pid);
2669                 return ret;
2670         }
2671
2672         mapping = vma->vm_file->f_mapping;
2673         idx = vma_hugecache_offset(h, vma, address);
2674
2675         /*
2676          * Use page lock to guard against racing truncation
2677          * before we get page_table_lock.
2678          */
2679 retry:
2680         page = find_lock_page(mapping, idx);
2681         if (!page) {
2682                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2683                 if (idx >= size)
2684                         goto out;
2685                 page = alloc_huge_page(vma, address, 0);
2686                 if (IS_ERR(page)) {
2687                         ret = PTR_ERR(page);
2688                         if (ret == -ENOMEM)
2689                                 ret = VM_FAULT_OOM;
2690                         else
2691                                 ret = VM_FAULT_SIGBUS;
2692                         goto out;
2693                 }
2694                 clear_huge_page(page, address, pages_per_huge_page(h));
2695                 __SetPageUptodate(page);
2696
2697                 if (vma->vm_flags & VM_MAYSHARE) {
2698                         int err;
2699                         struct inode *inode = mapping->host;
2700
2701                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2702                         if (err) {
2703                                 put_page(page);
2704                                 if (err == -EEXIST)
2705                                         goto retry;
2706                                 goto out;
2707                         }
2708
2709                         spin_lock(&inode->i_lock);
2710                         inode->i_blocks += blocks_per_huge_page(h);
2711                         spin_unlock(&inode->i_lock);
2712                 } else {
2713                         lock_page(page);
2714                         if (unlikely(anon_vma_prepare(vma))) {
2715                                 ret = VM_FAULT_OOM;
2716                                 goto backout_unlocked;
2717                         }
2718                         anon_rmap = 1;
2719                 }
2720         } else {
2721                 /*
2722                  * If memory error occurs between mmap() and fault, some process
2723                  * don't have hwpoisoned swap entry for errored virtual address.
2724                  * So we need to block hugepage fault by PG_hwpoison bit check.
2725                  */
2726                 if (unlikely(PageHWPoison(page))) {
2727                         ret = VM_FAULT_HWPOISON |
2728                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2729                         goto backout_unlocked;
2730                 }
2731         }
2732
2733         /*
2734          * If we are going to COW a private mapping later, we examine the
2735          * pending reservations for this page now. This will ensure that
2736          * any allocations necessary to record that reservation occur outside
2737          * the spinlock.
2738          */
2739         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2740                 if (vma_needs_reservation(h, vma, address) < 0) {
2741                         ret = VM_FAULT_OOM;
2742                         goto backout_unlocked;
2743                 }
2744
2745         spin_lock(&mm->page_table_lock);
2746         size = i_size_read(mapping->host) >> huge_page_shift(h);
2747         if (idx >= size)
2748                 goto backout;
2749
2750         ret = 0;
2751         if (!huge_pte_none(huge_ptep_get(ptep)))
2752                 goto backout;
2753
2754         if (anon_rmap)
2755                 hugepage_add_new_anon_rmap(page, vma, address);
2756         else
2757                 page_dup_rmap(page);
2758         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2759                                 && (vma->vm_flags & VM_SHARED)));
2760         set_huge_pte_at(mm, address, ptep, new_pte);
2761
2762         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2763                 /* Optimization, do the COW without a second fault */
2764                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2765         }
2766
2767         spin_unlock(&mm->page_table_lock);
2768         unlock_page(page);
2769 out:
2770         return ret;
2771
2772 backout:
2773         spin_unlock(&mm->page_table_lock);
2774 backout_unlocked:
2775         unlock_page(page);
2776         put_page(page);
2777         goto out;
2778 }
2779
2780 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2781                         unsigned long address, unsigned int flags)
2782 {
2783         pte_t *ptep;
2784         pte_t entry;
2785         int ret;
2786         struct page *page = NULL;
2787         struct page *pagecache_page = NULL;
2788         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2789         struct hstate *h = hstate_vma(vma);
2790
2791         address &= huge_page_mask(h);
2792
2793         ptep = huge_pte_offset(mm, address);
2794         if (ptep) {
2795                 entry = huge_ptep_get(ptep);
2796                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2797                         migration_entry_wait(mm, (pmd_t *)ptep, address);
2798                         return 0;
2799                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2800                         return VM_FAULT_HWPOISON_LARGE |
2801                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2802         }
2803
2804         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2805         if (!ptep)
2806                 return VM_FAULT_OOM;
2807
2808         /*
2809          * Serialize hugepage allocation and instantiation, so that we don't
2810          * get spurious allocation failures if two CPUs race to instantiate
2811          * the same page in the page cache.
2812          */
2813         mutex_lock(&hugetlb_instantiation_mutex);
2814         entry = huge_ptep_get(ptep);
2815         if (huge_pte_none(entry)) {
2816                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2817                 goto out_mutex;
2818         }
2819
2820         ret = 0;
2821
2822         /*
2823          * If we are going to COW the mapping later, we examine the pending
2824          * reservations for this page now. This will ensure that any
2825          * allocations necessary to record that reservation occur outside the
2826          * spinlock. For private mappings, we also lookup the pagecache
2827          * page now as it is used to determine if a reservation has been
2828          * consumed.
2829          */
2830         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2831                 if (vma_needs_reservation(h, vma, address) < 0) {
2832                         ret = VM_FAULT_OOM;
2833                         goto out_mutex;
2834                 }
2835
2836                 if (!(vma->vm_flags & VM_MAYSHARE))
2837                         pagecache_page = hugetlbfs_pagecache_page(h,
2838                                                                 vma, address);
2839         }
2840
2841         /*
2842          * hugetlb_cow() requires page locks of pte_page(entry) and
2843          * pagecache_page, so here we need take the former one
2844          * when page != pagecache_page or !pagecache_page.
2845          * Note that locking order is always pagecache_page -> page,
2846          * so no worry about deadlock.
2847          */
2848         page = pte_page(entry);
2849         get_page(page);
2850         if (page != pagecache_page)
2851                 lock_page(page);
2852
2853         spin_lock(&mm->page_table_lock);
2854         /* Check for a racing update before calling hugetlb_cow */
2855         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2856                 goto out_page_table_lock;
2857
2858
2859         if (flags & FAULT_FLAG_WRITE) {
2860                 if (!pte_write(entry)) {
2861                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2862                                                         pagecache_page);
2863                         goto out_page_table_lock;
2864                 }
2865                 entry = pte_mkdirty(entry);
2866         }
2867         entry = pte_mkyoung(entry);
2868         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2869                                                 flags & FAULT_FLAG_WRITE))
2870                 update_mmu_cache(vma, address, ptep);
2871
2872 out_page_table_lock:
2873         spin_unlock(&mm->page_table_lock);
2874
2875         if (pagecache_page) {
2876                 unlock_page(pagecache_page);
2877                 put_page(pagecache_page);
2878         }
2879         if (page != pagecache_page)
2880                 unlock_page(page);
2881         put_page(page);
2882
2883 out_mutex:
2884         mutex_unlock(&hugetlb_instantiation_mutex);
2885
2886         return ret;
2887 }
2888
2889 /* Can be overriden by architectures */
2890 __attribute__((weak)) struct page *
2891 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2892                pud_t *pud, int write)
2893 {
2894         BUG();
2895         return NULL;
2896 }
2897
2898 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2899                         struct page **pages, struct vm_area_struct **vmas,
2900                         unsigned long *position, int *length, int i,
2901                         unsigned int flags)
2902 {
2903         unsigned long pfn_offset;
2904         unsigned long vaddr = *position;
2905         int remainder = *length;
2906         struct hstate *h = hstate_vma(vma);
2907
2908         spin_lock(&mm->page_table_lock);
2909         while (vaddr < vma->vm_end && remainder) {
2910                 pte_t *pte;
2911                 int absent;
2912                 struct page *page;
2913
2914                 /*
2915                  * Some archs (sparc64, sh*) have multiple pte_ts to
2916                  * each hugepage.  We have to make sure we get the
2917                  * first, for the page indexing below to work.
2918                  */
2919                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2920                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2921
2922                 /*
2923                  * When coredumping, it suits get_dump_page if we just return
2924                  * an error where there's an empty slot with no huge pagecache
2925                  * to back it.  This way, we avoid allocating a hugepage, and
2926                  * the sparse dumpfile avoids allocating disk blocks, but its
2927                  * huge holes still show up with zeroes where they need to be.
2928                  */
2929                 if (absent && (flags & FOLL_DUMP) &&
2930                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2931                         remainder = 0;
2932                         break;
2933                 }
2934
2935                 if (absent ||
2936                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2937                         int ret;
2938
2939                         spin_unlock(&mm->page_table_lock);
2940                         ret = hugetlb_fault(mm, vma, vaddr,
2941                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2942                         spin_lock(&mm->page_table_lock);
2943                         if (!(ret & VM_FAULT_ERROR))
2944                                 continue;
2945
2946                         remainder = 0;
2947                         break;
2948                 }
2949
2950                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2951                 page = pte_page(huge_ptep_get(pte));
2952 same_page:
2953                 if (pages) {
2954                         pages[i] = mem_map_offset(page, pfn_offset);
2955                         get_page(pages[i]);
2956                 }
2957
2958                 if (vmas)
2959                         vmas[i] = vma;
2960
2961                 vaddr += PAGE_SIZE;
2962                 ++pfn_offset;
2963                 --remainder;
2964                 ++i;
2965                 if (vaddr < vma->vm_end && remainder &&
2966                                 pfn_offset < pages_per_huge_page(h)) {
2967                         /*
2968                          * We use pfn_offset to avoid touching the pageframes
2969                          * of this compound page.
2970                          */
2971                         goto same_page;
2972                 }
2973         }
2974         spin_unlock(&mm->page_table_lock);
2975         *length = remainder;
2976         *position = vaddr;
2977
2978         return i ? i : -EFAULT;
2979 }
2980
2981 void hugetlb_change_protection(struct vm_area_struct *vma,
2982                 unsigned long address, unsigned long end, pgprot_t newprot)
2983 {
2984         struct mm_struct *mm = vma->vm_mm;
2985         unsigned long start = address;
2986         pte_t *ptep;
2987         pte_t pte;
2988         struct hstate *h = hstate_vma(vma);
2989
2990         BUG_ON(address >= end);
2991         flush_cache_range(vma, address, end);
2992
2993         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2994         spin_lock(&mm->page_table_lock);
2995         for (; address < end; address += huge_page_size(h)) {
2996                 ptep = huge_pte_offset(mm, address);
2997                 if (!ptep)
2998                         continue;
2999                 if (huge_pmd_unshare(mm, &address, ptep))
3000                         continue;
3001                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3002                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3003                         pte = pte_mkhuge(pte_modify(pte, newprot));
3004                         set_huge_pte_at(mm, address, ptep, pte);
3005                 }
3006         }
3007         spin_unlock(&mm->page_table_lock);
3008         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3009
3010         flush_tlb_range(vma, start, end);
3011 }
3012
3013 int hugetlb_reserve_pages(struct inode *inode,
3014                                         long from, long to,
3015                                         struct vm_area_struct *vma,
3016                                         vm_flags_t vm_flags)
3017 {
3018         long ret, chg;
3019         struct hstate *h = hstate_inode(inode);
3020         struct hugepage_subpool *spool = subpool_inode(inode);
3021
3022         /*
3023          * Only apply hugepage reservation if asked. At fault time, an
3024          * attempt will be made for VM_NORESERVE to allocate a page
3025          * without using reserves
3026          */
3027         if (vm_flags & VM_NORESERVE)
3028                 return 0;
3029
3030         /*
3031          * Shared mappings base their reservation on the number of pages that
3032          * are already allocated on behalf of the file. Private mappings need
3033          * to reserve the full area even if read-only as mprotect() may be
3034          * called to make the mapping read-write. Assume !vma is a shm mapping
3035          */
3036         if (!vma || vma->vm_flags & VM_MAYSHARE)
3037                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3038         else {
3039                 struct resv_map *resv_map = resv_map_alloc();
3040                 if (!resv_map)
3041                         return -ENOMEM;
3042
3043                 chg = to - from;
3044
3045                 set_vma_resv_map(vma, resv_map);
3046                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3047         }
3048
3049         if (chg < 0) {
3050                 ret = chg;
3051                 goto out_err;
3052         }
3053
3054         /* There must be enough pages in the subpool for the mapping */
3055         if (hugepage_subpool_get_pages(spool, chg)) {
3056                 ret = -ENOSPC;
3057                 goto out_err;
3058         }
3059
3060         /*
3061          * Check enough hugepages are available for the reservation.
3062          * Hand the pages back to the subpool if there are not
3063          */
3064         ret = hugetlb_acct_memory(h, chg);
3065         if (ret < 0) {
3066                 hugepage_subpool_put_pages(spool, chg);
3067                 goto out_err;
3068         }
3069
3070         /*
3071          * Account for the reservations made. Shared mappings record regions
3072          * that have reservations as they are shared by multiple VMAs.
3073          * When the last VMA disappears, the region map says how much
3074          * the reservation was and the page cache tells how much of
3075          * the reservation was consumed. Private mappings are per-VMA and
3076          * only the consumed reservations are tracked. When the VMA
3077          * disappears, the original reservation is the VMA size and the
3078          * consumed reservations are stored in the map. Hence, nothing
3079          * else has to be done for private mappings here
3080          */
3081         if (!vma || vma->vm_flags & VM_MAYSHARE)
3082                 region_add(&inode->i_mapping->private_list, from, to);
3083         return 0;
3084 out_err:
3085         if (vma)
3086                 resv_map_put(vma);
3087         return ret;
3088 }
3089
3090 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3091 {
3092         struct hstate *h = hstate_inode(inode);
3093         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3094         struct hugepage_subpool *spool = subpool_inode(inode);
3095
3096         spin_lock(&inode->i_lock);
3097         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3098         spin_unlock(&inode->i_lock);
3099
3100         hugepage_subpool_put_pages(spool, (chg - freed));
3101         hugetlb_acct_memory(h, -(chg - freed));
3102 }
3103
3104 #ifdef CONFIG_MEMORY_FAILURE
3105
3106 /* Should be called in hugetlb_lock */
3107 static int is_hugepage_on_freelist(struct page *hpage)
3108 {
3109         struct page *page;
3110         struct page *tmp;
3111         struct hstate *h = page_hstate(hpage);
3112         int nid = page_to_nid(hpage);
3113
3114         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3115                 if (page == hpage)
3116                         return 1;
3117         return 0;
3118 }
3119
3120 /*
3121  * This function is called from memory failure code.
3122  * Assume the caller holds page lock of the head page.
3123  */
3124 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3125 {
3126         struct hstate *h = page_hstate(hpage);
3127         int nid = page_to_nid(hpage);
3128         int ret = -EBUSY;
3129
3130         spin_lock(&hugetlb_lock);
3131         if (is_hugepage_on_freelist(hpage)) {
3132                 list_del(&hpage->lru);
3133                 set_page_refcounted(hpage);
3134                 h->free_huge_pages--;
3135                 h->free_huge_pages_node[nid]--;
3136                 ret = 0;
3137         }
3138         spin_unlock(&hugetlb_lock);
3139         return ret;
3140 }
3141 #endif