cpuset: mm: reduce large amounts of memory barrier related damage v3
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 /*
57  * Region tracking -- allows tracking of reservations and instantiated pages
58  *                    across the pages in a mapping.
59  *
60  * The region data structures are protected by a combination of the mmap_sem
61  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62  * must either hold the mmap_sem for write, or the mmap_sem for read and
63  * the hugetlb_instantiation mutex:
64  *
65  *      down_write(&mm->mmap_sem);
66  * or
67  *      down_read(&mm->mmap_sem);
68  *      mutex_lock(&hugetlb_instantiation_mutex);
69  */
70 struct file_region {
71         struct list_head link;
72         long from;
73         long to;
74 };
75
76 static long region_add(struct list_head *head, long f, long t)
77 {
78         struct file_region *rg, *nrg, *trg;
79
80         /* Locate the region we are either in or before. */
81         list_for_each_entry(rg, head, link)
82                 if (f <= rg->to)
83                         break;
84
85         /* Round our left edge to the current segment if it encloses us. */
86         if (f > rg->from)
87                 f = rg->from;
88
89         /* Check for and consume any regions we now overlap with. */
90         nrg = rg;
91         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92                 if (&rg->link == head)
93                         break;
94                 if (rg->from > t)
95                         break;
96
97                 /* If this area reaches higher then extend our area to
98                  * include it completely.  If this is not the first area
99                  * which we intend to reuse, free it. */
100                 if (rg->to > t)
101                         t = rg->to;
102                 if (rg != nrg) {
103                         list_del(&rg->link);
104                         kfree(rg);
105                 }
106         }
107         nrg->from = f;
108         nrg->to = t;
109         return 0;
110 }
111
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114         struct file_region *rg, *nrg;
115         long chg = 0;
116
117         /* Locate the region we are before or in. */
118         list_for_each_entry(rg, head, link)
119                 if (f <= rg->to)
120                         break;
121
122         /* If we are below the current region then a new region is required.
123          * Subtle, allocate a new region at the position but make it zero
124          * size such that we can guarantee to record the reservation. */
125         if (&rg->link == head || t < rg->from) {
126                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127                 if (!nrg)
128                         return -ENOMEM;
129                 nrg->from = f;
130                 nrg->to   = f;
131                 INIT_LIST_HEAD(&nrg->link);
132                 list_add(&nrg->link, rg->link.prev);
133
134                 return t - f;
135         }
136
137         /* Round our left edge to the current segment if it encloses us. */
138         if (f > rg->from)
139                 f = rg->from;
140         chg = t - f;
141
142         /* Check for and consume any regions we now overlap with. */
143         list_for_each_entry(rg, rg->link.prev, link) {
144                 if (&rg->link == head)
145                         break;
146                 if (rg->from > t)
147                         return chg;
148
149                 /* We overlap with this area, if it extends further than
150                  * us then we must extend ourselves.  Account for its
151                  * existing reservation. */
152                 if (rg->to > t) {
153                         chg += rg->to - t;
154                         t = rg->to;
155                 }
156                 chg -= rg->to - rg->from;
157         }
158         return chg;
159 }
160
161 static long region_truncate(struct list_head *head, long end)
162 {
163         struct file_region *rg, *trg;
164         long chg = 0;
165
166         /* Locate the region we are either in or before. */
167         list_for_each_entry(rg, head, link)
168                 if (end <= rg->to)
169                         break;
170         if (&rg->link == head)
171                 return 0;
172
173         /* If we are in the middle of a region then adjust it. */
174         if (end > rg->from) {
175                 chg = rg->to - end;
176                 rg->to = end;
177                 rg = list_entry(rg->link.next, typeof(*rg), link);
178         }
179
180         /* Drop any remaining regions. */
181         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182                 if (&rg->link == head)
183                         break;
184                 chg += rg->to - rg->from;
185                 list_del(&rg->link);
186                 kfree(rg);
187         }
188         return chg;
189 }
190
191 static long region_count(struct list_head *head, long f, long t)
192 {
193         struct file_region *rg;
194         long chg = 0;
195
196         /* Locate each segment we overlap with, and count that overlap. */
197         list_for_each_entry(rg, head, link) {
198                 int seg_from;
199                 int seg_to;
200
201                 if (rg->to <= f)
202                         continue;
203                 if (rg->from >= t)
204                         break;
205
206                 seg_from = max(rg->from, f);
207                 seg_to = min(rg->to, t);
208
209                 chg += seg_to - seg_from;
210         }
211
212         return chg;
213 }
214
215 /*
216  * Convert the address within this vma to the page offset within
217  * the mapping, in pagecache page units; huge pages here.
218  */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220                         struct vm_area_struct *vma, unsigned long address)
221 {
222         return ((address - vma->vm_start) >> huge_page_shift(h)) +
223                         (vma->vm_pgoff >> huge_page_order(h));
224 }
225
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227                                      unsigned long address)
228 {
229         return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231
232 /*
233  * Return the size of the pages allocated when backing a VMA. In the majority
234  * cases this will be same size as used by the page table entries.
235  */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238         struct hstate *hstate;
239
240         if (!is_vm_hugetlb_page(vma))
241                 return PAGE_SIZE;
242
243         hstate = hstate_vma(vma);
244
245         return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249 /*
250  * Return the page size being used by the MMU to back a VMA. In the majority
251  * of cases, the page size used by the kernel matches the MMU size. On
252  * architectures where it differs, an architecture-specific version of this
253  * function is required.
254  */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258         return vma_kernel_pagesize(vma);
259 }
260 #endif
261
262 /*
263  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264  * bits of the reservation map pointer, which are always clear due to
265  * alignment.
266  */
267 #define HPAGE_RESV_OWNER    (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271 /*
272  * These helpers are used to track how many pages are reserved for
273  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274  * is guaranteed to have their future faults succeed.
275  *
276  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277  * the reserve counters are updated with the hugetlb_lock held. It is safe
278  * to reset the VMA at fork() time as it is not in use yet and there is no
279  * chance of the global counters getting corrupted as a result of the values.
280  *
281  * The private mapping reservation is represented in a subtly different
282  * manner to a shared mapping.  A shared mapping has a region map associated
283  * with the underlying file, this region map represents the backing file
284  * pages which have ever had a reservation assigned which this persists even
285  * after the page is instantiated.  A private mapping has a region map
286  * associated with the original mmap which is attached to all VMAs which
287  * reference it, this region map represents those offsets which have consumed
288  * reservation ie. where pages have been instantiated.
289  */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292         return (unsigned long)vma->vm_private_data;
293 }
294
295 static void set_vma_private_data(struct vm_area_struct *vma,
296                                                         unsigned long value)
297 {
298         vma->vm_private_data = (void *)value;
299 }
300
301 struct resv_map {
302         struct kref refs;
303         struct list_head regions;
304 };
305
306 static struct resv_map *resv_map_alloc(void)
307 {
308         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309         if (!resv_map)
310                 return NULL;
311
312         kref_init(&resv_map->refs);
313         INIT_LIST_HEAD(&resv_map->regions);
314
315         return resv_map;
316 }
317
318 static void resv_map_release(struct kref *ref)
319 {
320         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322         /* Clear out any active regions before we release the map. */
323         region_truncate(&resv_map->regions, 0);
324         kfree(resv_map);
325 }
326
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329         VM_BUG_ON(!is_vm_hugetlb_page(vma));
330         if (!(vma->vm_flags & VM_MAYSHARE))
331                 return (struct resv_map *)(get_vma_private_data(vma) &
332                                                         ~HPAGE_RESV_MASK);
333         return NULL;
334 }
335
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338         VM_BUG_ON(!is_vm_hugetlb_page(vma));
339         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341         set_vma_private_data(vma, (get_vma_private_data(vma) &
342                                 HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347         VM_BUG_ON(!is_vm_hugetlb_page(vma));
348         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355         VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357         return (get_vma_private_data(vma) & flag) != 0;
358 }
359
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362                         struct vm_area_struct *vma)
363 {
364         if (vma->vm_flags & VM_NORESERVE)
365                 return;
366
367         if (vma->vm_flags & VM_MAYSHARE) {
368                 /* Shared mappings always use reserves */
369                 h->resv_huge_pages--;
370         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371                 /*
372                  * Only the process that called mmap() has reserves for
373                  * private mappings.
374                  */
375                 h->resv_huge_pages--;
376         }
377 }
378
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382         VM_BUG_ON(!is_vm_hugetlb_page(vma));
383         if (!(vma->vm_flags & VM_MAYSHARE))
384                 vma->vm_private_data = (void *)0;
385 }
386
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390         if (vma->vm_flags & VM_MAYSHARE)
391                 return 1;
392         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393                 return 1;
394         return 0;
395 }
396
397 static void copy_gigantic_page(struct page *dst, struct page *src)
398 {
399         int i;
400         struct hstate *h = page_hstate(src);
401         struct page *dst_base = dst;
402         struct page *src_base = src;
403
404         for (i = 0; i < pages_per_huge_page(h); ) {
405                 cond_resched();
406                 copy_highpage(dst, src);
407
408                 i++;
409                 dst = mem_map_next(dst, dst_base, i);
410                 src = mem_map_next(src, src_base, i);
411         }
412 }
413
414 void copy_huge_page(struct page *dst, struct page *src)
415 {
416         int i;
417         struct hstate *h = page_hstate(src);
418
419         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420                 copy_gigantic_page(dst, src);
421                 return;
422         }
423
424         might_sleep();
425         for (i = 0; i < pages_per_huge_page(h); i++) {
426                 cond_resched();
427                 copy_highpage(dst + i, src + i);
428         }
429 }
430
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
432 {
433         int nid = page_to_nid(page);
434         list_add(&page->lru, &h->hugepage_freelists[nid]);
435         h->free_huge_pages++;
436         h->free_huge_pages_node[nid]++;
437 }
438
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440 {
441         struct page *page;
442
443         if (list_empty(&h->hugepage_freelists[nid]))
444                 return NULL;
445         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446         list_del(&page->lru);
447         set_page_refcounted(page);
448         h->free_huge_pages--;
449         h->free_huge_pages_node[nid]--;
450         return page;
451 }
452
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454                                 struct vm_area_struct *vma,
455                                 unsigned long address, int avoid_reserve)
456 {
457         struct page *page;
458         struct mempolicy *mpol;
459         nodemask_t *nodemask;
460         struct zonelist *zonelist;
461         struct zone *zone;
462         struct zoneref *z;
463         unsigned int cpuset_mems_cookie;
464
465 retry_cpuset:
466         cpuset_mems_cookie = get_mems_allowed();
467         zonelist = huge_zonelist(vma, address,
468                                         htlb_alloc_mask, &mpol, &nodemask);
469         /*
470          * A child process with MAP_PRIVATE mappings created by their parent
471          * have no page reserves. This check ensures that reservations are
472          * not "stolen". The child may still get SIGKILLed
473          */
474         if (!vma_has_reserves(vma) &&
475                         h->free_huge_pages - h->resv_huge_pages == 0)
476                 goto err;
477
478         /* If reserves cannot be used, ensure enough pages are in the pool */
479         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
480                 goto err;
481
482         for_each_zone_zonelist_nodemask(zone, z, zonelist,
483                                                 MAX_NR_ZONES - 1, nodemask) {
484                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
485                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
486                         if (page) {
487                                 if (!avoid_reserve)
488                                         decrement_hugepage_resv_vma(h, vma);
489                                 break;
490                         }
491                 }
492         }
493
494         mpol_cond_put(mpol);
495         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
496                 goto retry_cpuset;
497         return page;
498
499 err:
500         mpol_cond_put(mpol);
501         return NULL;
502 }
503
504 static void update_and_free_page(struct hstate *h, struct page *page)
505 {
506         int i;
507
508         VM_BUG_ON(h->order >= MAX_ORDER);
509
510         h->nr_huge_pages--;
511         h->nr_huge_pages_node[page_to_nid(page)]--;
512         for (i = 0; i < pages_per_huge_page(h); i++) {
513                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
514                                 1 << PG_referenced | 1 << PG_dirty |
515                                 1 << PG_active | 1 << PG_reserved |
516                                 1 << PG_private | 1 << PG_writeback);
517         }
518         set_compound_page_dtor(page, NULL);
519         set_page_refcounted(page);
520         arch_release_hugepage(page);
521         __free_pages(page, huge_page_order(h));
522 }
523
524 struct hstate *size_to_hstate(unsigned long size)
525 {
526         struct hstate *h;
527
528         for_each_hstate(h) {
529                 if (huge_page_size(h) == size)
530                         return h;
531         }
532         return NULL;
533 }
534
535 static void free_huge_page(struct page *page)
536 {
537         /*
538          * Can't pass hstate in here because it is called from the
539          * compound page destructor.
540          */
541         struct hstate *h = page_hstate(page);
542         int nid = page_to_nid(page);
543         struct address_space *mapping;
544
545         mapping = (struct address_space *) page_private(page);
546         set_page_private(page, 0);
547         page->mapping = NULL;
548         BUG_ON(page_count(page));
549         BUG_ON(page_mapcount(page));
550         INIT_LIST_HEAD(&page->lru);
551
552         spin_lock(&hugetlb_lock);
553         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
554                 update_and_free_page(h, page);
555                 h->surplus_huge_pages--;
556                 h->surplus_huge_pages_node[nid]--;
557         } else {
558                 enqueue_huge_page(h, page);
559         }
560         spin_unlock(&hugetlb_lock);
561         if (mapping)
562                 hugetlb_put_quota(mapping, 1);
563 }
564
565 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
566 {
567         set_compound_page_dtor(page, free_huge_page);
568         spin_lock(&hugetlb_lock);
569         h->nr_huge_pages++;
570         h->nr_huge_pages_node[nid]++;
571         spin_unlock(&hugetlb_lock);
572         put_page(page); /* free it into the hugepage allocator */
573 }
574
575 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
576 {
577         int i;
578         int nr_pages = 1 << order;
579         struct page *p = page + 1;
580
581         /* we rely on prep_new_huge_page to set the destructor */
582         set_compound_order(page, order);
583         __SetPageHead(page);
584         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
585                 __SetPageTail(p);
586                 set_page_count(p, 0);
587                 p->first_page = page;
588         }
589 }
590
591 int PageHuge(struct page *page)
592 {
593         compound_page_dtor *dtor;
594
595         if (!PageCompound(page))
596                 return 0;
597
598         page = compound_head(page);
599         dtor = get_compound_page_dtor(page);
600
601         return dtor == free_huge_page;
602 }
603 EXPORT_SYMBOL_GPL(PageHuge);
604
605 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
606 {
607         struct page *page;
608
609         if (h->order >= MAX_ORDER)
610                 return NULL;
611
612         page = alloc_pages_exact_node(nid,
613                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
614                                                 __GFP_REPEAT|__GFP_NOWARN,
615                 huge_page_order(h));
616         if (page) {
617                 if (arch_prepare_hugepage(page)) {
618                         __free_pages(page, huge_page_order(h));
619                         return NULL;
620                 }
621                 prep_new_huge_page(h, page, nid);
622         }
623
624         return page;
625 }
626
627 /*
628  * common helper functions for hstate_next_node_to_{alloc|free}.
629  * We may have allocated or freed a huge page based on a different
630  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
631  * be outside of *nodes_allowed.  Ensure that we use an allowed
632  * node for alloc or free.
633  */
634 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
635 {
636         nid = next_node(nid, *nodes_allowed);
637         if (nid == MAX_NUMNODES)
638                 nid = first_node(*nodes_allowed);
639         VM_BUG_ON(nid >= MAX_NUMNODES);
640
641         return nid;
642 }
643
644 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
645 {
646         if (!node_isset(nid, *nodes_allowed))
647                 nid = next_node_allowed(nid, nodes_allowed);
648         return nid;
649 }
650
651 /*
652  * returns the previously saved node ["this node"] from which to
653  * allocate a persistent huge page for the pool and advance the
654  * next node from which to allocate, handling wrap at end of node
655  * mask.
656  */
657 static int hstate_next_node_to_alloc(struct hstate *h,
658                                         nodemask_t *nodes_allowed)
659 {
660         int nid;
661
662         VM_BUG_ON(!nodes_allowed);
663
664         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
665         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
666
667         return nid;
668 }
669
670 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
671 {
672         struct page *page;
673         int start_nid;
674         int next_nid;
675         int ret = 0;
676
677         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
678         next_nid = start_nid;
679
680         do {
681                 page = alloc_fresh_huge_page_node(h, next_nid);
682                 if (page) {
683                         ret = 1;
684                         break;
685                 }
686                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
687         } while (next_nid != start_nid);
688
689         if (ret)
690                 count_vm_event(HTLB_BUDDY_PGALLOC);
691         else
692                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
693
694         return ret;
695 }
696
697 /*
698  * helper for free_pool_huge_page() - return the previously saved
699  * node ["this node"] from which to free a huge page.  Advance the
700  * next node id whether or not we find a free huge page to free so
701  * that the next attempt to free addresses the next node.
702  */
703 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
704 {
705         int nid;
706
707         VM_BUG_ON(!nodes_allowed);
708
709         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
710         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
711
712         return nid;
713 }
714
715 /*
716  * Free huge page from pool from next node to free.
717  * Attempt to keep persistent huge pages more or less
718  * balanced over allowed nodes.
719  * Called with hugetlb_lock locked.
720  */
721 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
722                                                          bool acct_surplus)
723 {
724         int start_nid;
725         int next_nid;
726         int ret = 0;
727
728         start_nid = hstate_next_node_to_free(h, nodes_allowed);
729         next_nid = start_nid;
730
731         do {
732                 /*
733                  * If we're returning unused surplus pages, only examine
734                  * nodes with surplus pages.
735                  */
736                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
737                     !list_empty(&h->hugepage_freelists[next_nid])) {
738                         struct page *page =
739                                 list_entry(h->hugepage_freelists[next_nid].next,
740                                           struct page, lru);
741                         list_del(&page->lru);
742                         h->free_huge_pages--;
743                         h->free_huge_pages_node[next_nid]--;
744                         if (acct_surplus) {
745                                 h->surplus_huge_pages--;
746                                 h->surplus_huge_pages_node[next_nid]--;
747                         }
748                         update_and_free_page(h, page);
749                         ret = 1;
750                         break;
751                 }
752                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
753         } while (next_nid != start_nid);
754
755         return ret;
756 }
757
758 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
759 {
760         struct page *page;
761         unsigned int r_nid;
762
763         if (h->order >= MAX_ORDER)
764                 return NULL;
765
766         /*
767          * Assume we will successfully allocate the surplus page to
768          * prevent racing processes from causing the surplus to exceed
769          * overcommit
770          *
771          * This however introduces a different race, where a process B
772          * tries to grow the static hugepage pool while alloc_pages() is
773          * called by process A. B will only examine the per-node
774          * counters in determining if surplus huge pages can be
775          * converted to normal huge pages in adjust_pool_surplus(). A
776          * won't be able to increment the per-node counter, until the
777          * lock is dropped by B, but B doesn't drop hugetlb_lock until
778          * no more huge pages can be converted from surplus to normal
779          * state (and doesn't try to convert again). Thus, we have a
780          * case where a surplus huge page exists, the pool is grown, and
781          * the surplus huge page still exists after, even though it
782          * should just have been converted to a normal huge page. This
783          * does not leak memory, though, as the hugepage will be freed
784          * once it is out of use. It also does not allow the counters to
785          * go out of whack in adjust_pool_surplus() as we don't modify
786          * the node values until we've gotten the hugepage and only the
787          * per-node value is checked there.
788          */
789         spin_lock(&hugetlb_lock);
790         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
791                 spin_unlock(&hugetlb_lock);
792                 return NULL;
793         } else {
794                 h->nr_huge_pages++;
795                 h->surplus_huge_pages++;
796         }
797         spin_unlock(&hugetlb_lock);
798
799         if (nid == NUMA_NO_NODE)
800                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
801                                    __GFP_REPEAT|__GFP_NOWARN,
802                                    huge_page_order(h));
803         else
804                 page = alloc_pages_exact_node(nid,
805                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
806                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
807
808         if (page && arch_prepare_hugepage(page)) {
809                 __free_pages(page, huge_page_order(h));
810                 page = NULL;
811         }
812
813         spin_lock(&hugetlb_lock);
814         if (page) {
815                 r_nid = page_to_nid(page);
816                 set_compound_page_dtor(page, free_huge_page);
817                 /*
818                  * We incremented the global counters already
819                  */
820                 h->nr_huge_pages_node[r_nid]++;
821                 h->surplus_huge_pages_node[r_nid]++;
822                 __count_vm_event(HTLB_BUDDY_PGALLOC);
823         } else {
824                 h->nr_huge_pages--;
825                 h->surplus_huge_pages--;
826                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
827         }
828         spin_unlock(&hugetlb_lock);
829
830         return page;
831 }
832
833 /*
834  * This allocation function is useful in the context where vma is irrelevant.
835  * E.g. soft-offlining uses this function because it only cares physical
836  * address of error page.
837  */
838 struct page *alloc_huge_page_node(struct hstate *h, int nid)
839 {
840         struct page *page;
841
842         spin_lock(&hugetlb_lock);
843         page = dequeue_huge_page_node(h, nid);
844         spin_unlock(&hugetlb_lock);
845
846         if (!page)
847                 page = alloc_buddy_huge_page(h, nid);
848
849         return page;
850 }
851
852 /*
853  * Increase the hugetlb pool such that it can accommodate a reservation
854  * of size 'delta'.
855  */
856 static int gather_surplus_pages(struct hstate *h, int delta)
857 {
858         struct list_head surplus_list;
859         struct page *page, *tmp;
860         int ret, i;
861         int needed, allocated;
862         bool alloc_ok = true;
863
864         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
865         if (needed <= 0) {
866                 h->resv_huge_pages += delta;
867                 return 0;
868         }
869
870         allocated = 0;
871         INIT_LIST_HEAD(&surplus_list);
872
873         ret = -ENOMEM;
874 retry:
875         spin_unlock(&hugetlb_lock);
876         for (i = 0; i < needed; i++) {
877                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
878                 if (!page) {
879                         alloc_ok = false;
880                         break;
881                 }
882                 list_add(&page->lru, &surplus_list);
883         }
884         allocated += i;
885
886         /*
887          * After retaking hugetlb_lock, we need to recalculate 'needed'
888          * because either resv_huge_pages or free_huge_pages may have changed.
889          */
890         spin_lock(&hugetlb_lock);
891         needed = (h->resv_huge_pages + delta) -
892                         (h->free_huge_pages + allocated);
893         if (needed > 0) {
894                 if (alloc_ok)
895                         goto retry;
896                 /*
897                  * We were not able to allocate enough pages to
898                  * satisfy the entire reservation so we free what
899                  * we've allocated so far.
900                  */
901                 goto free;
902         }
903         /*
904          * The surplus_list now contains _at_least_ the number of extra pages
905          * needed to accommodate the reservation.  Add the appropriate number
906          * of pages to the hugetlb pool and free the extras back to the buddy
907          * allocator.  Commit the entire reservation here to prevent another
908          * process from stealing the pages as they are added to the pool but
909          * before they are reserved.
910          */
911         needed += allocated;
912         h->resv_huge_pages += delta;
913         ret = 0;
914
915         /* Free the needed pages to the hugetlb pool */
916         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
917                 if ((--needed) < 0)
918                         break;
919                 list_del(&page->lru);
920                 /*
921                  * This page is now managed by the hugetlb allocator and has
922                  * no users -- drop the buddy allocator's reference.
923                  */
924                 put_page_testzero(page);
925                 VM_BUG_ON(page_count(page));
926                 enqueue_huge_page(h, page);
927         }
928 free:
929         spin_unlock(&hugetlb_lock);
930
931         /* Free unnecessary surplus pages to the buddy allocator */
932         if (!list_empty(&surplus_list)) {
933                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
934                         list_del(&page->lru);
935                         put_page(page);
936                 }
937         }
938         spin_lock(&hugetlb_lock);
939
940         return ret;
941 }
942
943 /*
944  * When releasing a hugetlb pool reservation, any surplus pages that were
945  * allocated to satisfy the reservation must be explicitly freed if they were
946  * never used.
947  * Called with hugetlb_lock held.
948  */
949 static void return_unused_surplus_pages(struct hstate *h,
950                                         unsigned long unused_resv_pages)
951 {
952         unsigned long nr_pages;
953
954         /* Uncommit the reservation */
955         h->resv_huge_pages -= unused_resv_pages;
956
957         /* Cannot return gigantic pages currently */
958         if (h->order >= MAX_ORDER)
959                 return;
960
961         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
962
963         /*
964          * We want to release as many surplus pages as possible, spread
965          * evenly across all nodes with memory. Iterate across these nodes
966          * until we can no longer free unreserved surplus pages. This occurs
967          * when the nodes with surplus pages have no free pages.
968          * free_pool_huge_page() will balance the the freed pages across the
969          * on-line nodes with memory and will handle the hstate accounting.
970          */
971         while (nr_pages--) {
972                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
973                         break;
974         }
975 }
976
977 /*
978  * Determine if the huge page at addr within the vma has an associated
979  * reservation.  Where it does not we will need to logically increase
980  * reservation and actually increase quota before an allocation can occur.
981  * Where any new reservation would be required the reservation change is
982  * prepared, but not committed.  Once the page has been quota'd allocated
983  * an instantiated the change should be committed via vma_commit_reservation.
984  * No action is required on failure.
985  */
986 static long vma_needs_reservation(struct hstate *h,
987                         struct vm_area_struct *vma, unsigned long addr)
988 {
989         struct address_space *mapping = vma->vm_file->f_mapping;
990         struct inode *inode = mapping->host;
991
992         if (vma->vm_flags & VM_MAYSHARE) {
993                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
994                 return region_chg(&inode->i_mapping->private_list,
995                                                         idx, idx + 1);
996
997         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
998                 return 1;
999
1000         } else  {
1001                 long err;
1002                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1003                 struct resv_map *reservations = vma_resv_map(vma);
1004
1005                 err = region_chg(&reservations->regions, idx, idx + 1);
1006                 if (err < 0)
1007                         return err;
1008                 return 0;
1009         }
1010 }
1011 static void vma_commit_reservation(struct hstate *h,
1012                         struct vm_area_struct *vma, unsigned long addr)
1013 {
1014         struct address_space *mapping = vma->vm_file->f_mapping;
1015         struct inode *inode = mapping->host;
1016
1017         if (vma->vm_flags & VM_MAYSHARE) {
1018                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1019                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1020
1021         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1022                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1023                 struct resv_map *reservations = vma_resv_map(vma);
1024
1025                 /* Mark this page used in the map. */
1026                 region_add(&reservations->regions, idx, idx + 1);
1027         }
1028 }
1029
1030 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1031                                     unsigned long addr, int avoid_reserve)
1032 {
1033         struct hstate *h = hstate_vma(vma);
1034         struct page *page;
1035         struct address_space *mapping = vma->vm_file->f_mapping;
1036         struct inode *inode = mapping->host;
1037         long chg;
1038
1039         /*
1040          * Processes that did not create the mapping will have no reserves and
1041          * will not have accounted against quota. Check that the quota can be
1042          * made before satisfying the allocation
1043          * MAP_NORESERVE mappings may also need pages and quota allocated
1044          * if no reserve mapping overlaps.
1045          */
1046         chg = vma_needs_reservation(h, vma, addr);
1047         if (chg < 0)
1048                 return ERR_PTR(-VM_FAULT_OOM);
1049         if (chg)
1050                 if (hugetlb_get_quota(inode->i_mapping, chg))
1051                         return ERR_PTR(-VM_FAULT_SIGBUS);
1052
1053         spin_lock(&hugetlb_lock);
1054         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1055         spin_unlock(&hugetlb_lock);
1056
1057         if (!page) {
1058                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1059                 if (!page) {
1060                         hugetlb_put_quota(inode->i_mapping, chg);
1061                         return ERR_PTR(-VM_FAULT_SIGBUS);
1062                 }
1063         }
1064
1065         set_page_private(page, (unsigned long) mapping);
1066
1067         vma_commit_reservation(h, vma, addr);
1068
1069         return page;
1070 }
1071
1072 int __weak alloc_bootmem_huge_page(struct hstate *h)
1073 {
1074         struct huge_bootmem_page *m;
1075         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1076
1077         while (nr_nodes) {
1078                 void *addr;
1079
1080                 addr = __alloc_bootmem_node_nopanic(
1081                                 NODE_DATA(hstate_next_node_to_alloc(h,
1082                                                 &node_states[N_HIGH_MEMORY])),
1083                                 huge_page_size(h), huge_page_size(h), 0);
1084
1085                 if (addr) {
1086                         /*
1087                          * Use the beginning of the huge page to store the
1088                          * huge_bootmem_page struct (until gather_bootmem
1089                          * puts them into the mem_map).
1090                          */
1091                         m = addr;
1092                         goto found;
1093                 }
1094                 nr_nodes--;
1095         }
1096         return 0;
1097
1098 found:
1099         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1100         /* Put them into a private list first because mem_map is not up yet */
1101         list_add(&m->list, &huge_boot_pages);
1102         m->hstate = h;
1103         return 1;
1104 }
1105
1106 static void prep_compound_huge_page(struct page *page, int order)
1107 {
1108         if (unlikely(order > (MAX_ORDER - 1)))
1109                 prep_compound_gigantic_page(page, order);
1110         else
1111                 prep_compound_page(page, order);
1112 }
1113
1114 /* Put bootmem huge pages into the standard lists after mem_map is up */
1115 static void __init gather_bootmem_prealloc(void)
1116 {
1117         struct huge_bootmem_page *m;
1118
1119         list_for_each_entry(m, &huge_boot_pages, list) {
1120                 struct hstate *h = m->hstate;
1121                 struct page *page;
1122
1123 #ifdef CONFIG_HIGHMEM
1124                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1125                 free_bootmem_late((unsigned long)m,
1126                                   sizeof(struct huge_bootmem_page));
1127 #else
1128                 page = virt_to_page(m);
1129 #endif
1130                 __ClearPageReserved(page);
1131                 WARN_ON(page_count(page) != 1);
1132                 prep_compound_huge_page(page, h->order);
1133                 prep_new_huge_page(h, page, page_to_nid(page));
1134                 /*
1135                  * If we had gigantic hugepages allocated at boot time, we need
1136                  * to restore the 'stolen' pages to totalram_pages in order to
1137                  * fix confusing memory reports from free(1) and another
1138                  * side-effects, like CommitLimit going negative.
1139                  */
1140                 if (h->order > (MAX_ORDER - 1))
1141                         totalram_pages += 1 << h->order;
1142         }
1143 }
1144
1145 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1146 {
1147         unsigned long i;
1148
1149         for (i = 0; i < h->max_huge_pages; ++i) {
1150                 if (h->order >= MAX_ORDER) {
1151                         if (!alloc_bootmem_huge_page(h))
1152                                 break;
1153                 } else if (!alloc_fresh_huge_page(h,
1154                                          &node_states[N_HIGH_MEMORY]))
1155                         break;
1156         }
1157         h->max_huge_pages = i;
1158 }
1159
1160 static void __init hugetlb_init_hstates(void)
1161 {
1162         struct hstate *h;
1163
1164         for_each_hstate(h) {
1165                 /* oversize hugepages were init'ed in early boot */
1166                 if (h->order < MAX_ORDER)
1167                         hugetlb_hstate_alloc_pages(h);
1168         }
1169 }
1170
1171 static char * __init memfmt(char *buf, unsigned long n)
1172 {
1173         if (n >= (1UL << 30))
1174                 sprintf(buf, "%lu GB", n >> 30);
1175         else if (n >= (1UL << 20))
1176                 sprintf(buf, "%lu MB", n >> 20);
1177         else
1178                 sprintf(buf, "%lu KB", n >> 10);
1179         return buf;
1180 }
1181
1182 static void __init report_hugepages(void)
1183 {
1184         struct hstate *h;
1185
1186         for_each_hstate(h) {
1187                 char buf[32];
1188                 printk(KERN_INFO "HugeTLB registered %s page size, "
1189                                  "pre-allocated %ld pages\n",
1190                         memfmt(buf, huge_page_size(h)),
1191                         h->free_huge_pages);
1192         }
1193 }
1194
1195 #ifdef CONFIG_HIGHMEM
1196 static void try_to_free_low(struct hstate *h, unsigned long count,
1197                                                 nodemask_t *nodes_allowed)
1198 {
1199         int i;
1200
1201         if (h->order >= MAX_ORDER)
1202                 return;
1203
1204         for_each_node_mask(i, *nodes_allowed) {
1205                 struct page *page, *next;
1206                 struct list_head *freel = &h->hugepage_freelists[i];
1207                 list_for_each_entry_safe(page, next, freel, lru) {
1208                         if (count >= h->nr_huge_pages)
1209                                 return;
1210                         if (PageHighMem(page))
1211                                 continue;
1212                         list_del(&page->lru);
1213                         update_and_free_page(h, page);
1214                         h->free_huge_pages--;
1215                         h->free_huge_pages_node[page_to_nid(page)]--;
1216                 }
1217         }
1218 }
1219 #else
1220 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1221                                                 nodemask_t *nodes_allowed)
1222 {
1223 }
1224 #endif
1225
1226 /*
1227  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1228  * balanced by operating on them in a round-robin fashion.
1229  * Returns 1 if an adjustment was made.
1230  */
1231 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1232                                 int delta)
1233 {
1234         int start_nid, next_nid;
1235         int ret = 0;
1236
1237         VM_BUG_ON(delta != -1 && delta != 1);
1238
1239         if (delta < 0)
1240                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1241         else
1242                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1243         next_nid = start_nid;
1244
1245         do {
1246                 int nid = next_nid;
1247                 if (delta < 0)  {
1248                         /*
1249                          * To shrink on this node, there must be a surplus page
1250                          */
1251                         if (!h->surplus_huge_pages_node[nid]) {
1252                                 next_nid = hstate_next_node_to_alloc(h,
1253                                                                 nodes_allowed);
1254                                 continue;
1255                         }
1256                 }
1257                 if (delta > 0) {
1258                         /*
1259                          * Surplus cannot exceed the total number of pages
1260                          */
1261                         if (h->surplus_huge_pages_node[nid] >=
1262                                                 h->nr_huge_pages_node[nid]) {
1263                                 next_nid = hstate_next_node_to_free(h,
1264                                                                 nodes_allowed);
1265                                 continue;
1266                         }
1267                 }
1268
1269                 h->surplus_huge_pages += delta;
1270                 h->surplus_huge_pages_node[nid] += delta;
1271                 ret = 1;
1272                 break;
1273         } while (next_nid != start_nid);
1274
1275         return ret;
1276 }
1277
1278 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1279 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1280                                                 nodemask_t *nodes_allowed)
1281 {
1282         unsigned long min_count, ret;
1283
1284         if (h->order >= MAX_ORDER)
1285                 return h->max_huge_pages;
1286
1287         /*
1288          * Increase the pool size
1289          * First take pages out of surplus state.  Then make up the
1290          * remaining difference by allocating fresh huge pages.
1291          *
1292          * We might race with alloc_buddy_huge_page() here and be unable
1293          * to convert a surplus huge page to a normal huge page. That is
1294          * not critical, though, it just means the overall size of the
1295          * pool might be one hugepage larger than it needs to be, but
1296          * within all the constraints specified by the sysctls.
1297          */
1298         spin_lock(&hugetlb_lock);
1299         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1300                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1301                         break;
1302         }
1303
1304         while (count > persistent_huge_pages(h)) {
1305                 /*
1306                  * If this allocation races such that we no longer need the
1307                  * page, free_huge_page will handle it by freeing the page
1308                  * and reducing the surplus.
1309                  */
1310                 spin_unlock(&hugetlb_lock);
1311                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1312                 spin_lock(&hugetlb_lock);
1313                 if (!ret)
1314                         goto out;
1315
1316                 /* Bail for signals. Probably ctrl-c from user */
1317                 if (signal_pending(current))
1318                         goto out;
1319         }
1320
1321         /*
1322          * Decrease the pool size
1323          * First return free pages to the buddy allocator (being careful
1324          * to keep enough around to satisfy reservations).  Then place
1325          * pages into surplus state as needed so the pool will shrink
1326          * to the desired size as pages become free.
1327          *
1328          * By placing pages into the surplus state independent of the
1329          * overcommit value, we are allowing the surplus pool size to
1330          * exceed overcommit. There are few sane options here. Since
1331          * alloc_buddy_huge_page() is checking the global counter,
1332          * though, we'll note that we're not allowed to exceed surplus
1333          * and won't grow the pool anywhere else. Not until one of the
1334          * sysctls are changed, or the surplus pages go out of use.
1335          */
1336         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1337         min_count = max(count, min_count);
1338         try_to_free_low(h, min_count, nodes_allowed);
1339         while (min_count < persistent_huge_pages(h)) {
1340                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1341                         break;
1342         }
1343         while (count < persistent_huge_pages(h)) {
1344                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1345                         break;
1346         }
1347 out:
1348         ret = persistent_huge_pages(h);
1349         spin_unlock(&hugetlb_lock);
1350         return ret;
1351 }
1352
1353 #define HSTATE_ATTR_RO(_name) \
1354         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1355
1356 #define HSTATE_ATTR(_name) \
1357         static struct kobj_attribute _name##_attr = \
1358                 __ATTR(_name, 0644, _name##_show, _name##_store)
1359
1360 static struct kobject *hugepages_kobj;
1361 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1362
1363 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1364
1365 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1366 {
1367         int i;
1368
1369         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1370                 if (hstate_kobjs[i] == kobj) {
1371                         if (nidp)
1372                                 *nidp = NUMA_NO_NODE;
1373                         return &hstates[i];
1374                 }
1375
1376         return kobj_to_node_hstate(kobj, nidp);
1377 }
1378
1379 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1380                                         struct kobj_attribute *attr, char *buf)
1381 {
1382         struct hstate *h;
1383         unsigned long nr_huge_pages;
1384         int nid;
1385
1386         h = kobj_to_hstate(kobj, &nid);
1387         if (nid == NUMA_NO_NODE)
1388                 nr_huge_pages = h->nr_huge_pages;
1389         else
1390                 nr_huge_pages = h->nr_huge_pages_node[nid];
1391
1392         return sprintf(buf, "%lu\n", nr_huge_pages);
1393 }
1394
1395 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1396                         struct kobject *kobj, struct kobj_attribute *attr,
1397                         const char *buf, size_t len)
1398 {
1399         int err;
1400         int nid;
1401         unsigned long count;
1402         struct hstate *h;
1403         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1404
1405         err = strict_strtoul(buf, 10, &count);
1406         if (err)
1407                 goto out;
1408
1409         h = kobj_to_hstate(kobj, &nid);
1410         if (h->order >= MAX_ORDER) {
1411                 err = -EINVAL;
1412                 goto out;
1413         }
1414
1415         if (nid == NUMA_NO_NODE) {
1416                 /*
1417                  * global hstate attribute
1418                  */
1419                 if (!(obey_mempolicy &&
1420                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1421                         NODEMASK_FREE(nodes_allowed);
1422                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1423                 }
1424         } else if (nodes_allowed) {
1425                 /*
1426                  * per node hstate attribute: adjust count to global,
1427                  * but restrict alloc/free to the specified node.
1428                  */
1429                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1430                 init_nodemask_of_node(nodes_allowed, nid);
1431         } else
1432                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1433
1434         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1435
1436         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1437                 NODEMASK_FREE(nodes_allowed);
1438
1439         return len;
1440 out:
1441         NODEMASK_FREE(nodes_allowed);
1442         return err;
1443 }
1444
1445 static ssize_t nr_hugepages_show(struct kobject *kobj,
1446                                        struct kobj_attribute *attr, char *buf)
1447 {
1448         return nr_hugepages_show_common(kobj, attr, buf);
1449 }
1450
1451 static ssize_t nr_hugepages_store(struct kobject *kobj,
1452                struct kobj_attribute *attr, const char *buf, size_t len)
1453 {
1454         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1455 }
1456 HSTATE_ATTR(nr_hugepages);
1457
1458 #ifdef CONFIG_NUMA
1459
1460 /*
1461  * hstate attribute for optionally mempolicy-based constraint on persistent
1462  * huge page alloc/free.
1463  */
1464 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1465                                        struct kobj_attribute *attr, char *buf)
1466 {
1467         return nr_hugepages_show_common(kobj, attr, buf);
1468 }
1469
1470 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1471                struct kobj_attribute *attr, const char *buf, size_t len)
1472 {
1473         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1474 }
1475 HSTATE_ATTR(nr_hugepages_mempolicy);
1476 #endif
1477
1478
1479 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1480                                         struct kobj_attribute *attr, char *buf)
1481 {
1482         struct hstate *h = kobj_to_hstate(kobj, NULL);
1483         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1484 }
1485
1486 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1487                 struct kobj_attribute *attr, const char *buf, size_t count)
1488 {
1489         int err;
1490         unsigned long input;
1491         struct hstate *h = kobj_to_hstate(kobj, NULL);
1492
1493         if (h->order >= MAX_ORDER)
1494                 return -EINVAL;
1495
1496         err = strict_strtoul(buf, 10, &input);
1497         if (err)
1498                 return err;
1499
1500         spin_lock(&hugetlb_lock);
1501         h->nr_overcommit_huge_pages = input;
1502         spin_unlock(&hugetlb_lock);
1503
1504         return count;
1505 }
1506 HSTATE_ATTR(nr_overcommit_hugepages);
1507
1508 static ssize_t free_hugepages_show(struct kobject *kobj,
1509                                         struct kobj_attribute *attr, char *buf)
1510 {
1511         struct hstate *h;
1512         unsigned long free_huge_pages;
1513         int nid;
1514
1515         h = kobj_to_hstate(kobj, &nid);
1516         if (nid == NUMA_NO_NODE)
1517                 free_huge_pages = h->free_huge_pages;
1518         else
1519                 free_huge_pages = h->free_huge_pages_node[nid];
1520
1521         return sprintf(buf, "%lu\n", free_huge_pages);
1522 }
1523 HSTATE_ATTR_RO(free_hugepages);
1524
1525 static ssize_t resv_hugepages_show(struct kobject *kobj,
1526                                         struct kobj_attribute *attr, char *buf)
1527 {
1528         struct hstate *h = kobj_to_hstate(kobj, NULL);
1529         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1530 }
1531 HSTATE_ATTR_RO(resv_hugepages);
1532
1533 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1534                                         struct kobj_attribute *attr, char *buf)
1535 {
1536         struct hstate *h;
1537         unsigned long surplus_huge_pages;
1538         int nid;
1539
1540         h = kobj_to_hstate(kobj, &nid);
1541         if (nid == NUMA_NO_NODE)
1542                 surplus_huge_pages = h->surplus_huge_pages;
1543         else
1544                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1545
1546         return sprintf(buf, "%lu\n", surplus_huge_pages);
1547 }
1548 HSTATE_ATTR_RO(surplus_hugepages);
1549
1550 static struct attribute *hstate_attrs[] = {
1551         &nr_hugepages_attr.attr,
1552         &nr_overcommit_hugepages_attr.attr,
1553         &free_hugepages_attr.attr,
1554         &resv_hugepages_attr.attr,
1555         &surplus_hugepages_attr.attr,
1556 #ifdef CONFIG_NUMA
1557         &nr_hugepages_mempolicy_attr.attr,
1558 #endif
1559         NULL,
1560 };
1561
1562 static struct attribute_group hstate_attr_group = {
1563         .attrs = hstate_attrs,
1564 };
1565
1566 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1567                                     struct kobject **hstate_kobjs,
1568                                     struct attribute_group *hstate_attr_group)
1569 {
1570         int retval;
1571         int hi = h - hstates;
1572
1573         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1574         if (!hstate_kobjs[hi])
1575                 return -ENOMEM;
1576
1577         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1578         if (retval)
1579                 kobject_put(hstate_kobjs[hi]);
1580
1581         return retval;
1582 }
1583
1584 static void __init hugetlb_sysfs_init(void)
1585 {
1586         struct hstate *h;
1587         int err;
1588
1589         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1590         if (!hugepages_kobj)
1591                 return;
1592
1593         for_each_hstate(h) {
1594                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1595                                          hstate_kobjs, &hstate_attr_group);
1596                 if (err)
1597                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1598                                                                 h->name);
1599         }
1600 }
1601
1602 #ifdef CONFIG_NUMA
1603
1604 /*
1605  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1606  * with node devices in node_devices[] using a parallel array.  The array
1607  * index of a node device or _hstate == node id.
1608  * This is here to avoid any static dependency of the node device driver, in
1609  * the base kernel, on the hugetlb module.
1610  */
1611 struct node_hstate {
1612         struct kobject          *hugepages_kobj;
1613         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1614 };
1615 struct node_hstate node_hstates[MAX_NUMNODES];
1616
1617 /*
1618  * A subset of global hstate attributes for node devices
1619  */
1620 static struct attribute *per_node_hstate_attrs[] = {
1621         &nr_hugepages_attr.attr,
1622         &free_hugepages_attr.attr,
1623         &surplus_hugepages_attr.attr,
1624         NULL,
1625 };
1626
1627 static struct attribute_group per_node_hstate_attr_group = {
1628         .attrs = per_node_hstate_attrs,
1629 };
1630
1631 /*
1632  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1633  * Returns node id via non-NULL nidp.
1634  */
1635 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1636 {
1637         int nid;
1638
1639         for (nid = 0; nid < nr_node_ids; nid++) {
1640                 struct node_hstate *nhs = &node_hstates[nid];
1641                 int i;
1642                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1643                         if (nhs->hstate_kobjs[i] == kobj) {
1644                                 if (nidp)
1645                                         *nidp = nid;
1646                                 return &hstates[i];
1647                         }
1648         }
1649
1650         BUG();
1651         return NULL;
1652 }
1653
1654 /*
1655  * Unregister hstate attributes from a single node device.
1656  * No-op if no hstate attributes attached.
1657  */
1658 void hugetlb_unregister_node(struct node *node)
1659 {
1660         struct hstate *h;
1661         struct node_hstate *nhs = &node_hstates[node->dev.id];
1662
1663         if (!nhs->hugepages_kobj)
1664                 return;         /* no hstate attributes */
1665
1666         for_each_hstate(h)
1667                 if (nhs->hstate_kobjs[h - hstates]) {
1668                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1669                         nhs->hstate_kobjs[h - hstates] = NULL;
1670                 }
1671
1672         kobject_put(nhs->hugepages_kobj);
1673         nhs->hugepages_kobj = NULL;
1674 }
1675
1676 /*
1677  * hugetlb module exit:  unregister hstate attributes from node devices
1678  * that have them.
1679  */
1680 static void hugetlb_unregister_all_nodes(void)
1681 {
1682         int nid;
1683
1684         /*
1685          * disable node device registrations.
1686          */
1687         register_hugetlbfs_with_node(NULL, NULL);
1688
1689         /*
1690          * remove hstate attributes from any nodes that have them.
1691          */
1692         for (nid = 0; nid < nr_node_ids; nid++)
1693                 hugetlb_unregister_node(&node_devices[nid]);
1694 }
1695
1696 /*
1697  * Register hstate attributes for a single node device.
1698  * No-op if attributes already registered.
1699  */
1700 void hugetlb_register_node(struct node *node)
1701 {
1702         struct hstate *h;
1703         struct node_hstate *nhs = &node_hstates[node->dev.id];
1704         int err;
1705
1706         if (nhs->hugepages_kobj)
1707                 return;         /* already allocated */
1708
1709         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1710                                                         &node->dev.kobj);
1711         if (!nhs->hugepages_kobj)
1712                 return;
1713
1714         for_each_hstate(h) {
1715                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1716                                                 nhs->hstate_kobjs,
1717                                                 &per_node_hstate_attr_group);
1718                 if (err) {
1719                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1720                                         " for node %d\n",
1721                                                 h->name, node->dev.id);
1722                         hugetlb_unregister_node(node);
1723                         break;
1724                 }
1725         }
1726 }
1727
1728 /*
1729  * hugetlb init time:  register hstate attributes for all registered node
1730  * devices of nodes that have memory.  All on-line nodes should have
1731  * registered their associated device by this time.
1732  */
1733 static void hugetlb_register_all_nodes(void)
1734 {
1735         int nid;
1736
1737         for_each_node_state(nid, N_HIGH_MEMORY) {
1738                 struct node *node = &node_devices[nid];
1739                 if (node->dev.id == nid)
1740                         hugetlb_register_node(node);
1741         }
1742
1743         /*
1744          * Let the node device driver know we're here so it can
1745          * [un]register hstate attributes on node hotplug.
1746          */
1747         register_hugetlbfs_with_node(hugetlb_register_node,
1748                                      hugetlb_unregister_node);
1749 }
1750 #else   /* !CONFIG_NUMA */
1751
1752 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1753 {
1754         BUG();
1755         if (nidp)
1756                 *nidp = -1;
1757         return NULL;
1758 }
1759
1760 static void hugetlb_unregister_all_nodes(void) { }
1761
1762 static void hugetlb_register_all_nodes(void) { }
1763
1764 #endif
1765
1766 static void __exit hugetlb_exit(void)
1767 {
1768         struct hstate *h;
1769
1770         hugetlb_unregister_all_nodes();
1771
1772         for_each_hstate(h) {
1773                 kobject_put(hstate_kobjs[h - hstates]);
1774         }
1775
1776         kobject_put(hugepages_kobj);
1777 }
1778 module_exit(hugetlb_exit);
1779
1780 static int __init hugetlb_init(void)
1781 {
1782         /* Some platform decide whether they support huge pages at boot
1783          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1784          * there is no such support
1785          */
1786         if (HPAGE_SHIFT == 0)
1787                 return 0;
1788
1789         if (!size_to_hstate(default_hstate_size)) {
1790                 default_hstate_size = HPAGE_SIZE;
1791                 if (!size_to_hstate(default_hstate_size))
1792                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1793         }
1794         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1795         if (default_hstate_max_huge_pages)
1796                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1797
1798         hugetlb_init_hstates();
1799
1800         gather_bootmem_prealloc();
1801
1802         report_hugepages();
1803
1804         hugetlb_sysfs_init();
1805
1806         hugetlb_register_all_nodes();
1807
1808         return 0;
1809 }
1810 module_init(hugetlb_init);
1811
1812 /* Should be called on processing a hugepagesz=... option */
1813 void __init hugetlb_add_hstate(unsigned order)
1814 {
1815         struct hstate *h;
1816         unsigned long i;
1817
1818         if (size_to_hstate(PAGE_SIZE << order)) {
1819                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1820                 return;
1821         }
1822         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1823         BUG_ON(order == 0);
1824         h = &hstates[max_hstate++];
1825         h->order = order;
1826         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1827         h->nr_huge_pages = 0;
1828         h->free_huge_pages = 0;
1829         for (i = 0; i < MAX_NUMNODES; ++i)
1830                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1831         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1832         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1833         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1834                                         huge_page_size(h)/1024);
1835
1836         parsed_hstate = h;
1837 }
1838
1839 static int __init hugetlb_nrpages_setup(char *s)
1840 {
1841         unsigned long *mhp;
1842         static unsigned long *last_mhp;
1843
1844         /*
1845          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1846          * so this hugepages= parameter goes to the "default hstate".
1847          */
1848         if (!max_hstate)
1849                 mhp = &default_hstate_max_huge_pages;
1850         else
1851                 mhp = &parsed_hstate->max_huge_pages;
1852
1853         if (mhp == last_mhp) {
1854                 printk(KERN_WARNING "hugepages= specified twice without "
1855                         "interleaving hugepagesz=, ignoring\n");
1856                 return 1;
1857         }
1858
1859         if (sscanf(s, "%lu", mhp) <= 0)
1860                 *mhp = 0;
1861
1862         /*
1863          * Global state is always initialized later in hugetlb_init.
1864          * But we need to allocate >= MAX_ORDER hstates here early to still
1865          * use the bootmem allocator.
1866          */
1867         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1868                 hugetlb_hstate_alloc_pages(parsed_hstate);
1869
1870         last_mhp = mhp;
1871
1872         return 1;
1873 }
1874 __setup("hugepages=", hugetlb_nrpages_setup);
1875
1876 static int __init hugetlb_default_setup(char *s)
1877 {
1878         default_hstate_size = memparse(s, &s);
1879         return 1;
1880 }
1881 __setup("default_hugepagesz=", hugetlb_default_setup);
1882
1883 static unsigned int cpuset_mems_nr(unsigned int *array)
1884 {
1885         int node;
1886         unsigned int nr = 0;
1887
1888         for_each_node_mask(node, cpuset_current_mems_allowed)
1889                 nr += array[node];
1890
1891         return nr;
1892 }
1893
1894 #ifdef CONFIG_SYSCTL
1895 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1896                          struct ctl_table *table, int write,
1897                          void __user *buffer, size_t *length, loff_t *ppos)
1898 {
1899         struct hstate *h = &default_hstate;
1900         unsigned long tmp;
1901         int ret;
1902
1903         tmp = h->max_huge_pages;
1904
1905         if (write && h->order >= MAX_ORDER)
1906                 return -EINVAL;
1907
1908         table->data = &tmp;
1909         table->maxlen = sizeof(unsigned long);
1910         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1911         if (ret)
1912                 goto out;
1913
1914         if (write) {
1915                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1916                                                 GFP_KERNEL | __GFP_NORETRY);
1917                 if (!(obey_mempolicy &&
1918                                init_nodemask_of_mempolicy(nodes_allowed))) {
1919                         NODEMASK_FREE(nodes_allowed);
1920                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1921                 }
1922                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1923
1924                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1925                         NODEMASK_FREE(nodes_allowed);
1926         }
1927 out:
1928         return ret;
1929 }
1930
1931 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1932                           void __user *buffer, size_t *length, loff_t *ppos)
1933 {
1934
1935         return hugetlb_sysctl_handler_common(false, table, write,
1936                                                         buffer, length, ppos);
1937 }
1938
1939 #ifdef CONFIG_NUMA
1940 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1941                           void __user *buffer, size_t *length, loff_t *ppos)
1942 {
1943         return hugetlb_sysctl_handler_common(true, table, write,
1944                                                         buffer, length, ppos);
1945 }
1946 #endif /* CONFIG_NUMA */
1947
1948 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1949                         void __user *buffer,
1950                         size_t *length, loff_t *ppos)
1951 {
1952         proc_dointvec(table, write, buffer, length, ppos);
1953         if (hugepages_treat_as_movable)
1954                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1955         else
1956                 htlb_alloc_mask = GFP_HIGHUSER;
1957         return 0;
1958 }
1959
1960 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1961                         void __user *buffer,
1962                         size_t *length, loff_t *ppos)
1963 {
1964         struct hstate *h = &default_hstate;
1965         unsigned long tmp;
1966         int ret;
1967
1968         tmp = h->nr_overcommit_huge_pages;
1969
1970         if (write && h->order >= MAX_ORDER)
1971                 return -EINVAL;
1972
1973         table->data = &tmp;
1974         table->maxlen = sizeof(unsigned long);
1975         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1976         if (ret)
1977                 goto out;
1978
1979         if (write) {
1980                 spin_lock(&hugetlb_lock);
1981                 h->nr_overcommit_huge_pages = tmp;
1982                 spin_unlock(&hugetlb_lock);
1983         }
1984 out:
1985         return ret;
1986 }
1987
1988 #endif /* CONFIG_SYSCTL */
1989
1990 void hugetlb_report_meminfo(struct seq_file *m)
1991 {
1992         struct hstate *h = &default_hstate;
1993         seq_printf(m,
1994                         "HugePages_Total:   %5lu\n"
1995                         "HugePages_Free:    %5lu\n"
1996                         "HugePages_Rsvd:    %5lu\n"
1997                         "HugePages_Surp:    %5lu\n"
1998                         "Hugepagesize:   %8lu kB\n",
1999                         h->nr_huge_pages,
2000                         h->free_huge_pages,
2001                         h->resv_huge_pages,
2002                         h->surplus_huge_pages,
2003                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2004 }
2005
2006 int hugetlb_report_node_meminfo(int nid, char *buf)
2007 {
2008         struct hstate *h = &default_hstate;
2009         return sprintf(buf,
2010                 "Node %d HugePages_Total: %5u\n"
2011                 "Node %d HugePages_Free:  %5u\n"
2012                 "Node %d HugePages_Surp:  %5u\n",
2013                 nid, h->nr_huge_pages_node[nid],
2014                 nid, h->free_huge_pages_node[nid],
2015                 nid, h->surplus_huge_pages_node[nid]);
2016 }
2017
2018 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2019 unsigned long hugetlb_total_pages(void)
2020 {
2021         struct hstate *h = &default_hstate;
2022         return h->nr_huge_pages * pages_per_huge_page(h);
2023 }
2024
2025 static int hugetlb_acct_memory(struct hstate *h, long delta)
2026 {
2027         int ret = -ENOMEM;
2028
2029         spin_lock(&hugetlb_lock);
2030         /*
2031          * When cpuset is configured, it breaks the strict hugetlb page
2032          * reservation as the accounting is done on a global variable. Such
2033          * reservation is completely rubbish in the presence of cpuset because
2034          * the reservation is not checked against page availability for the
2035          * current cpuset. Application can still potentially OOM'ed by kernel
2036          * with lack of free htlb page in cpuset that the task is in.
2037          * Attempt to enforce strict accounting with cpuset is almost
2038          * impossible (or too ugly) because cpuset is too fluid that
2039          * task or memory node can be dynamically moved between cpusets.
2040          *
2041          * The change of semantics for shared hugetlb mapping with cpuset is
2042          * undesirable. However, in order to preserve some of the semantics,
2043          * we fall back to check against current free page availability as
2044          * a best attempt and hopefully to minimize the impact of changing
2045          * semantics that cpuset has.
2046          */
2047         if (delta > 0) {
2048                 if (gather_surplus_pages(h, delta) < 0)
2049                         goto out;
2050
2051                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2052                         return_unused_surplus_pages(h, delta);
2053                         goto out;
2054                 }
2055         }
2056
2057         ret = 0;
2058         if (delta < 0)
2059                 return_unused_surplus_pages(h, (unsigned long) -delta);
2060
2061 out:
2062         spin_unlock(&hugetlb_lock);
2063         return ret;
2064 }
2065
2066 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2067 {
2068         struct resv_map *reservations = vma_resv_map(vma);
2069
2070         /*
2071          * This new VMA should share its siblings reservation map if present.
2072          * The VMA will only ever have a valid reservation map pointer where
2073          * it is being copied for another still existing VMA.  As that VMA
2074          * has a reference to the reservation map it cannot disappear until
2075          * after this open call completes.  It is therefore safe to take a
2076          * new reference here without additional locking.
2077          */
2078         if (reservations)
2079                 kref_get(&reservations->refs);
2080 }
2081
2082 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2083 {
2084         struct hstate *h = hstate_vma(vma);
2085         struct resv_map *reservations = vma_resv_map(vma);
2086         unsigned long reserve;
2087         unsigned long start;
2088         unsigned long end;
2089
2090         if (reservations) {
2091                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2092                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2093
2094                 reserve = (end - start) -
2095                         region_count(&reservations->regions, start, end);
2096
2097                 kref_put(&reservations->refs, resv_map_release);
2098
2099                 if (reserve) {
2100                         hugetlb_acct_memory(h, -reserve);
2101                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2102                 }
2103         }
2104 }
2105
2106 /*
2107  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2108  * handle_mm_fault() to try to instantiate regular-sized pages in the
2109  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2110  * this far.
2111  */
2112 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2113 {
2114         BUG();
2115         return 0;
2116 }
2117
2118 const struct vm_operations_struct hugetlb_vm_ops = {
2119         .fault = hugetlb_vm_op_fault,
2120         .open = hugetlb_vm_op_open,
2121         .close = hugetlb_vm_op_close,
2122 };
2123
2124 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2125                                 int writable)
2126 {
2127         pte_t entry;
2128
2129         if (writable) {
2130                 entry =
2131                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2132         } else {
2133                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2134         }
2135         entry = pte_mkyoung(entry);
2136         entry = pte_mkhuge(entry);
2137
2138         return entry;
2139 }
2140
2141 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2142                                    unsigned long address, pte_t *ptep)
2143 {
2144         pte_t entry;
2145
2146         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2147         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2148                 update_mmu_cache(vma, address, ptep);
2149 }
2150
2151
2152 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2153                             struct vm_area_struct *vma)
2154 {
2155         pte_t *src_pte, *dst_pte, entry;
2156         struct page *ptepage;
2157         unsigned long addr;
2158         int cow;
2159         struct hstate *h = hstate_vma(vma);
2160         unsigned long sz = huge_page_size(h);
2161
2162         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2163
2164         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2165                 src_pte = huge_pte_offset(src, addr);
2166                 if (!src_pte)
2167                         continue;
2168                 dst_pte = huge_pte_alloc(dst, addr, sz);
2169                 if (!dst_pte)
2170                         goto nomem;
2171
2172                 /* If the pagetables are shared don't copy or take references */
2173                 if (dst_pte == src_pte)
2174                         continue;
2175
2176                 spin_lock(&dst->page_table_lock);
2177                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2178                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2179                         if (cow)
2180                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2181                         entry = huge_ptep_get(src_pte);
2182                         ptepage = pte_page(entry);
2183                         get_page(ptepage);
2184                         page_dup_rmap(ptepage);
2185                         set_huge_pte_at(dst, addr, dst_pte, entry);
2186                 }
2187                 spin_unlock(&src->page_table_lock);
2188                 spin_unlock(&dst->page_table_lock);
2189         }
2190         return 0;
2191
2192 nomem:
2193         return -ENOMEM;
2194 }
2195
2196 static int is_hugetlb_entry_migration(pte_t pte)
2197 {
2198         swp_entry_t swp;
2199
2200         if (huge_pte_none(pte) || pte_present(pte))
2201                 return 0;
2202         swp = pte_to_swp_entry(pte);
2203         if (non_swap_entry(swp) && is_migration_entry(swp))
2204                 return 1;
2205         else
2206                 return 0;
2207 }
2208
2209 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2210 {
2211         swp_entry_t swp;
2212
2213         if (huge_pte_none(pte) || pte_present(pte))
2214                 return 0;
2215         swp = pte_to_swp_entry(pte);
2216         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2217                 return 1;
2218         else
2219                 return 0;
2220 }
2221
2222 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2223                             unsigned long end, struct page *ref_page)
2224 {
2225         struct mm_struct *mm = vma->vm_mm;
2226         unsigned long address;
2227         pte_t *ptep;
2228         pte_t pte;
2229         struct page *page;
2230         struct page *tmp;
2231         struct hstate *h = hstate_vma(vma);
2232         unsigned long sz = huge_page_size(h);
2233
2234         /*
2235          * A page gathering list, protected by per file i_mmap_mutex. The
2236          * lock is used to avoid list corruption from multiple unmapping
2237          * of the same page since we are using page->lru.
2238          */
2239         LIST_HEAD(page_list);
2240
2241         WARN_ON(!is_vm_hugetlb_page(vma));
2242         BUG_ON(start & ~huge_page_mask(h));
2243         BUG_ON(end & ~huge_page_mask(h));
2244
2245         mmu_notifier_invalidate_range_start(mm, start, end);
2246         spin_lock(&mm->page_table_lock);
2247         for (address = start; address < end; address += sz) {
2248                 ptep = huge_pte_offset(mm, address);
2249                 if (!ptep)
2250                         continue;
2251
2252                 if (huge_pmd_unshare(mm, &address, ptep))
2253                         continue;
2254
2255                 /*
2256                  * If a reference page is supplied, it is because a specific
2257                  * page is being unmapped, not a range. Ensure the page we
2258                  * are about to unmap is the actual page of interest.
2259                  */
2260                 if (ref_page) {
2261                         pte = huge_ptep_get(ptep);
2262                         if (huge_pte_none(pte))
2263                                 continue;
2264                         page = pte_page(pte);
2265                         if (page != ref_page)
2266                                 continue;
2267
2268                         /*
2269                          * Mark the VMA as having unmapped its page so that
2270                          * future faults in this VMA will fail rather than
2271                          * looking like data was lost
2272                          */
2273                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2274                 }
2275
2276                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2277                 if (huge_pte_none(pte))
2278                         continue;
2279
2280                 /*
2281                  * HWPoisoned hugepage is already unmapped and dropped reference
2282                  */
2283                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2284                         continue;
2285
2286                 page = pte_page(pte);
2287                 if (pte_dirty(pte))
2288                         set_page_dirty(page);
2289                 list_add(&page->lru, &page_list);
2290
2291                 /* Bail out after unmapping reference page if supplied */
2292                 if (ref_page)
2293                         break;
2294         }
2295         flush_tlb_range(vma, start, end);
2296         spin_unlock(&mm->page_table_lock);
2297         mmu_notifier_invalidate_range_end(mm, start, end);
2298         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2299                 page_remove_rmap(page);
2300                 list_del(&page->lru);
2301                 put_page(page);
2302         }
2303 }
2304
2305 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2306                           unsigned long end, struct page *ref_page)
2307 {
2308         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2309         __unmap_hugepage_range(vma, start, end, ref_page);
2310         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2311 }
2312
2313 /*
2314  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2315  * mappping it owns the reserve page for. The intention is to unmap the page
2316  * from other VMAs and let the children be SIGKILLed if they are faulting the
2317  * same region.
2318  */
2319 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2320                                 struct page *page, unsigned long address)
2321 {
2322         struct hstate *h = hstate_vma(vma);
2323         struct vm_area_struct *iter_vma;
2324         struct address_space *mapping;
2325         struct prio_tree_iter iter;
2326         pgoff_t pgoff;
2327
2328         /*
2329          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2330          * from page cache lookup which is in HPAGE_SIZE units.
2331          */
2332         address = address & huge_page_mask(h);
2333         pgoff = vma_hugecache_offset(h, vma, address);
2334         mapping = (struct address_space *)page_private(page);
2335
2336         /*
2337          * Take the mapping lock for the duration of the table walk. As
2338          * this mapping should be shared between all the VMAs,
2339          * __unmap_hugepage_range() is called as the lock is already held
2340          */
2341         mutex_lock(&mapping->i_mmap_mutex);
2342         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2343                 /* Do not unmap the current VMA */
2344                 if (iter_vma == vma)
2345                         continue;
2346
2347                 /*
2348                  * Unmap the page from other VMAs without their own reserves.
2349                  * They get marked to be SIGKILLed if they fault in these
2350                  * areas. This is because a future no-page fault on this VMA
2351                  * could insert a zeroed page instead of the data existing
2352                  * from the time of fork. This would look like data corruption
2353                  */
2354                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2355                         __unmap_hugepage_range(iter_vma,
2356                                 address, address + huge_page_size(h),
2357                                 page);
2358         }
2359         mutex_unlock(&mapping->i_mmap_mutex);
2360
2361         return 1;
2362 }
2363
2364 /*
2365  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2366  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2367  * cannot race with other handlers or page migration.
2368  * Keep the pte_same checks anyway to make transition from the mutex easier.
2369  */
2370 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2371                         unsigned long address, pte_t *ptep, pte_t pte,
2372                         struct page *pagecache_page)
2373 {
2374         struct hstate *h = hstate_vma(vma);
2375         struct page *old_page, *new_page;
2376         int avoidcopy;
2377         int outside_reserve = 0;
2378
2379         old_page = pte_page(pte);
2380
2381 retry_avoidcopy:
2382         /* If no-one else is actually using this page, avoid the copy
2383          * and just make the page writable */
2384         avoidcopy = (page_mapcount(old_page) == 1);
2385         if (avoidcopy) {
2386                 if (PageAnon(old_page))
2387                         page_move_anon_rmap(old_page, vma, address);
2388                 set_huge_ptep_writable(vma, address, ptep);
2389                 return 0;
2390         }
2391
2392         /*
2393          * If the process that created a MAP_PRIVATE mapping is about to
2394          * perform a COW due to a shared page count, attempt to satisfy
2395          * the allocation without using the existing reserves. The pagecache
2396          * page is used to determine if the reserve at this address was
2397          * consumed or not. If reserves were used, a partial faulted mapping
2398          * at the time of fork() could consume its reserves on COW instead
2399          * of the full address range.
2400          */
2401         if (!(vma->vm_flags & VM_MAYSHARE) &&
2402                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2403                         old_page != pagecache_page)
2404                 outside_reserve = 1;
2405
2406         page_cache_get(old_page);
2407
2408         /* Drop page_table_lock as buddy allocator may be called */
2409         spin_unlock(&mm->page_table_lock);
2410         new_page = alloc_huge_page(vma, address, outside_reserve);
2411
2412         if (IS_ERR(new_page)) {
2413                 page_cache_release(old_page);
2414
2415                 /*
2416                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2417                  * it is due to references held by a child and an insufficient
2418                  * huge page pool. To guarantee the original mappers
2419                  * reliability, unmap the page from child processes. The child
2420                  * may get SIGKILLed if it later faults.
2421                  */
2422                 if (outside_reserve) {
2423                         BUG_ON(huge_pte_none(pte));
2424                         if (unmap_ref_private(mm, vma, old_page, address)) {
2425                                 BUG_ON(page_count(old_page) != 1);
2426                                 BUG_ON(huge_pte_none(pte));
2427                                 spin_lock(&mm->page_table_lock);
2428                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2429                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2430                                         goto retry_avoidcopy;
2431                                 /*
2432                                  * race occurs while re-acquiring page_table_lock, and
2433                                  * our job is done.
2434                                  */
2435                                 return 0;
2436                         }
2437                         WARN_ON_ONCE(1);
2438                 }
2439
2440                 /* Caller expects lock to be held */
2441                 spin_lock(&mm->page_table_lock);
2442                 return -PTR_ERR(new_page);
2443         }
2444
2445         /*
2446          * When the original hugepage is shared one, it does not have
2447          * anon_vma prepared.
2448          */
2449         if (unlikely(anon_vma_prepare(vma))) {
2450                 page_cache_release(new_page);
2451                 page_cache_release(old_page);
2452                 /* Caller expects lock to be held */
2453                 spin_lock(&mm->page_table_lock);
2454                 return VM_FAULT_OOM;
2455         }
2456
2457         copy_user_huge_page(new_page, old_page, address, vma,
2458                             pages_per_huge_page(h));
2459         __SetPageUptodate(new_page);
2460
2461         /*
2462          * Retake the page_table_lock to check for racing updates
2463          * before the page tables are altered
2464          */
2465         spin_lock(&mm->page_table_lock);
2466         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2467         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2468                 /* Break COW */
2469                 mmu_notifier_invalidate_range_start(mm,
2470                         address & huge_page_mask(h),
2471                         (address & huge_page_mask(h)) + huge_page_size(h));
2472                 huge_ptep_clear_flush(vma, address, ptep);
2473                 set_huge_pte_at(mm, address, ptep,
2474                                 make_huge_pte(vma, new_page, 1));
2475                 page_remove_rmap(old_page);
2476                 hugepage_add_new_anon_rmap(new_page, vma, address);
2477                 /* Make the old page be freed below */
2478                 new_page = old_page;
2479                 mmu_notifier_invalidate_range_end(mm,
2480                         address & huge_page_mask(h),
2481                         (address & huge_page_mask(h)) + huge_page_size(h));
2482         }
2483         page_cache_release(new_page);
2484         page_cache_release(old_page);
2485         return 0;
2486 }
2487
2488 /* Return the pagecache page at a given address within a VMA */
2489 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2490                         struct vm_area_struct *vma, unsigned long address)
2491 {
2492         struct address_space *mapping;
2493         pgoff_t idx;
2494
2495         mapping = vma->vm_file->f_mapping;
2496         idx = vma_hugecache_offset(h, vma, address);
2497
2498         return find_lock_page(mapping, idx);
2499 }
2500
2501 /*
2502  * Return whether there is a pagecache page to back given address within VMA.
2503  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2504  */
2505 static bool hugetlbfs_pagecache_present(struct hstate *h,
2506                         struct vm_area_struct *vma, unsigned long address)
2507 {
2508         struct address_space *mapping;
2509         pgoff_t idx;
2510         struct page *page;
2511
2512         mapping = vma->vm_file->f_mapping;
2513         idx = vma_hugecache_offset(h, vma, address);
2514
2515         page = find_get_page(mapping, idx);
2516         if (page)
2517                 put_page(page);
2518         return page != NULL;
2519 }
2520
2521 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2522                         unsigned long address, pte_t *ptep, unsigned int flags)
2523 {
2524         struct hstate *h = hstate_vma(vma);
2525         int ret = VM_FAULT_SIGBUS;
2526         int anon_rmap = 0;
2527         pgoff_t idx;
2528         unsigned long size;
2529         struct page *page;
2530         struct address_space *mapping;
2531         pte_t new_pte;
2532
2533         /*
2534          * Currently, we are forced to kill the process in the event the
2535          * original mapper has unmapped pages from the child due to a failed
2536          * COW. Warn that such a situation has occurred as it may not be obvious
2537          */
2538         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2539                 printk(KERN_WARNING
2540                         "PID %d killed due to inadequate hugepage pool\n",
2541                         current->pid);
2542                 return ret;
2543         }
2544
2545         mapping = vma->vm_file->f_mapping;
2546         idx = vma_hugecache_offset(h, vma, address);
2547
2548         /*
2549          * Use page lock to guard against racing truncation
2550          * before we get page_table_lock.
2551          */
2552 retry:
2553         page = find_lock_page(mapping, idx);
2554         if (!page) {
2555                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2556                 if (idx >= size)
2557                         goto out;
2558                 page = alloc_huge_page(vma, address, 0);
2559                 if (IS_ERR(page)) {
2560                         ret = -PTR_ERR(page);
2561                         goto out;
2562                 }
2563                 clear_huge_page(page, address, pages_per_huge_page(h));
2564                 __SetPageUptodate(page);
2565
2566                 if (vma->vm_flags & VM_MAYSHARE) {
2567                         int err;
2568                         struct inode *inode = mapping->host;
2569
2570                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2571                         if (err) {
2572                                 put_page(page);
2573                                 if (err == -EEXIST)
2574                                         goto retry;
2575                                 goto out;
2576                         }
2577
2578                         spin_lock(&inode->i_lock);
2579                         inode->i_blocks += blocks_per_huge_page(h);
2580                         spin_unlock(&inode->i_lock);
2581                 } else {
2582                         lock_page(page);
2583                         if (unlikely(anon_vma_prepare(vma))) {
2584                                 ret = VM_FAULT_OOM;
2585                                 goto backout_unlocked;
2586                         }
2587                         anon_rmap = 1;
2588                 }
2589         } else {
2590                 /*
2591                  * If memory error occurs between mmap() and fault, some process
2592                  * don't have hwpoisoned swap entry for errored virtual address.
2593                  * So we need to block hugepage fault by PG_hwpoison bit check.
2594                  */
2595                 if (unlikely(PageHWPoison(page))) {
2596                         ret = VM_FAULT_HWPOISON |
2597                               VM_FAULT_SET_HINDEX(h - hstates);
2598                         goto backout_unlocked;
2599                 }
2600         }
2601
2602         /*
2603          * If we are going to COW a private mapping later, we examine the
2604          * pending reservations for this page now. This will ensure that
2605          * any allocations necessary to record that reservation occur outside
2606          * the spinlock.
2607          */
2608         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2609                 if (vma_needs_reservation(h, vma, address) < 0) {
2610                         ret = VM_FAULT_OOM;
2611                         goto backout_unlocked;
2612                 }
2613
2614         spin_lock(&mm->page_table_lock);
2615         size = i_size_read(mapping->host) >> huge_page_shift(h);
2616         if (idx >= size)
2617                 goto backout;
2618
2619         ret = 0;
2620         if (!huge_pte_none(huge_ptep_get(ptep)))
2621                 goto backout;
2622
2623         if (anon_rmap)
2624                 hugepage_add_new_anon_rmap(page, vma, address);
2625         else
2626                 page_dup_rmap(page);
2627         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2628                                 && (vma->vm_flags & VM_SHARED)));
2629         set_huge_pte_at(mm, address, ptep, new_pte);
2630
2631         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2632                 /* Optimization, do the COW without a second fault */
2633                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2634         }
2635
2636         spin_unlock(&mm->page_table_lock);
2637         unlock_page(page);
2638 out:
2639         return ret;
2640
2641 backout:
2642         spin_unlock(&mm->page_table_lock);
2643 backout_unlocked:
2644         unlock_page(page);
2645         put_page(page);
2646         goto out;
2647 }
2648
2649 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2650                         unsigned long address, unsigned int flags)
2651 {
2652         pte_t *ptep;
2653         pte_t entry;
2654         int ret;
2655         struct page *page = NULL;
2656         struct page *pagecache_page = NULL;
2657         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2658         struct hstate *h = hstate_vma(vma);
2659
2660         address &= huge_page_mask(h);
2661
2662         ptep = huge_pte_offset(mm, address);
2663         if (ptep) {
2664                 entry = huge_ptep_get(ptep);
2665                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2666                         migration_entry_wait(mm, (pmd_t *)ptep, address);
2667                         return 0;
2668                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2669                         return VM_FAULT_HWPOISON_LARGE |
2670                                VM_FAULT_SET_HINDEX(h - hstates);
2671         }
2672
2673         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2674         if (!ptep)
2675                 return VM_FAULT_OOM;
2676
2677         /*
2678          * Serialize hugepage allocation and instantiation, so that we don't
2679          * get spurious allocation failures if two CPUs race to instantiate
2680          * the same page in the page cache.
2681          */
2682         mutex_lock(&hugetlb_instantiation_mutex);
2683         entry = huge_ptep_get(ptep);
2684         if (huge_pte_none(entry)) {
2685                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2686                 goto out_mutex;
2687         }
2688
2689         ret = 0;
2690
2691         /*
2692          * If we are going to COW the mapping later, we examine the pending
2693          * reservations for this page now. This will ensure that any
2694          * allocations necessary to record that reservation occur outside the
2695          * spinlock. For private mappings, we also lookup the pagecache
2696          * page now as it is used to determine if a reservation has been
2697          * consumed.
2698          */
2699         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2700                 if (vma_needs_reservation(h, vma, address) < 0) {
2701                         ret = VM_FAULT_OOM;
2702                         goto out_mutex;
2703                 }
2704
2705                 if (!(vma->vm_flags & VM_MAYSHARE))
2706                         pagecache_page = hugetlbfs_pagecache_page(h,
2707                                                                 vma, address);
2708         }
2709
2710         /*
2711          * hugetlb_cow() requires page locks of pte_page(entry) and
2712          * pagecache_page, so here we need take the former one
2713          * when page != pagecache_page or !pagecache_page.
2714          * Note that locking order is always pagecache_page -> page,
2715          * so no worry about deadlock.
2716          */
2717         page = pte_page(entry);
2718         if (page != pagecache_page)
2719                 lock_page(page);
2720
2721         spin_lock(&mm->page_table_lock);
2722         /* Check for a racing update before calling hugetlb_cow */
2723         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2724                 goto out_page_table_lock;
2725
2726
2727         if (flags & FAULT_FLAG_WRITE) {
2728                 if (!pte_write(entry)) {
2729                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2730                                                         pagecache_page);
2731                         goto out_page_table_lock;
2732                 }
2733                 entry = pte_mkdirty(entry);
2734         }
2735         entry = pte_mkyoung(entry);
2736         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2737                                                 flags & FAULT_FLAG_WRITE))
2738                 update_mmu_cache(vma, address, ptep);
2739
2740 out_page_table_lock:
2741         spin_unlock(&mm->page_table_lock);
2742
2743         if (pagecache_page) {
2744                 unlock_page(pagecache_page);
2745                 put_page(pagecache_page);
2746         }
2747         if (page != pagecache_page)
2748                 unlock_page(page);
2749
2750 out_mutex:
2751         mutex_unlock(&hugetlb_instantiation_mutex);
2752
2753         return ret;
2754 }
2755
2756 /* Can be overriden by architectures */
2757 __attribute__((weak)) struct page *
2758 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2759                pud_t *pud, int write)
2760 {
2761         BUG();
2762         return NULL;
2763 }
2764
2765 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2766                         struct page **pages, struct vm_area_struct **vmas,
2767                         unsigned long *position, int *length, int i,
2768                         unsigned int flags)
2769 {
2770         unsigned long pfn_offset;
2771         unsigned long vaddr = *position;
2772         int remainder = *length;
2773         struct hstate *h = hstate_vma(vma);
2774
2775         spin_lock(&mm->page_table_lock);
2776         while (vaddr < vma->vm_end && remainder) {
2777                 pte_t *pte;
2778                 int absent;
2779                 struct page *page;
2780
2781                 /*
2782                  * Some archs (sparc64, sh*) have multiple pte_ts to
2783                  * each hugepage.  We have to make sure we get the
2784                  * first, for the page indexing below to work.
2785                  */
2786                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2787                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2788
2789                 /*
2790                  * When coredumping, it suits get_dump_page if we just return
2791                  * an error where there's an empty slot with no huge pagecache
2792                  * to back it.  This way, we avoid allocating a hugepage, and
2793                  * the sparse dumpfile avoids allocating disk blocks, but its
2794                  * huge holes still show up with zeroes where they need to be.
2795                  */
2796                 if (absent && (flags & FOLL_DUMP) &&
2797                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2798                         remainder = 0;
2799                         break;
2800                 }
2801
2802                 if (absent ||
2803                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2804                         int ret;
2805
2806                         spin_unlock(&mm->page_table_lock);
2807                         ret = hugetlb_fault(mm, vma, vaddr,
2808                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2809                         spin_lock(&mm->page_table_lock);
2810                         if (!(ret & VM_FAULT_ERROR))
2811                                 continue;
2812
2813                         remainder = 0;
2814                         break;
2815                 }
2816
2817                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2818                 page = pte_page(huge_ptep_get(pte));
2819 same_page:
2820                 if (pages) {
2821                         pages[i] = mem_map_offset(page, pfn_offset);
2822                         get_page(pages[i]);
2823                 }
2824
2825                 if (vmas)
2826                         vmas[i] = vma;
2827
2828                 vaddr += PAGE_SIZE;
2829                 ++pfn_offset;
2830                 --remainder;
2831                 ++i;
2832                 if (vaddr < vma->vm_end && remainder &&
2833                                 pfn_offset < pages_per_huge_page(h)) {
2834                         /*
2835                          * We use pfn_offset to avoid touching the pageframes
2836                          * of this compound page.
2837                          */
2838                         goto same_page;
2839                 }
2840         }
2841         spin_unlock(&mm->page_table_lock);
2842         *length = remainder;
2843         *position = vaddr;
2844
2845         return i ? i : -EFAULT;
2846 }
2847
2848 void hugetlb_change_protection(struct vm_area_struct *vma,
2849                 unsigned long address, unsigned long end, pgprot_t newprot)
2850 {
2851         struct mm_struct *mm = vma->vm_mm;
2852         unsigned long start = address;
2853         pte_t *ptep;
2854         pte_t pte;
2855         struct hstate *h = hstate_vma(vma);
2856
2857         BUG_ON(address >= end);
2858         flush_cache_range(vma, address, end);
2859
2860         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2861         spin_lock(&mm->page_table_lock);
2862         for (; address < end; address += huge_page_size(h)) {
2863                 ptep = huge_pte_offset(mm, address);
2864                 if (!ptep)
2865                         continue;
2866                 if (huge_pmd_unshare(mm, &address, ptep))
2867                         continue;
2868                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2869                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2870                         pte = pte_mkhuge(pte_modify(pte, newprot));
2871                         set_huge_pte_at(mm, address, ptep, pte);
2872                 }
2873         }
2874         spin_unlock(&mm->page_table_lock);
2875         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2876
2877         flush_tlb_range(vma, start, end);
2878 }
2879
2880 int hugetlb_reserve_pages(struct inode *inode,
2881                                         long from, long to,
2882                                         struct vm_area_struct *vma,
2883                                         vm_flags_t vm_flags)
2884 {
2885         long ret, chg;
2886         struct hstate *h = hstate_inode(inode);
2887
2888         /*
2889          * Only apply hugepage reservation if asked. At fault time, an
2890          * attempt will be made for VM_NORESERVE to allocate a page
2891          * and filesystem quota without using reserves
2892          */
2893         if (vm_flags & VM_NORESERVE)
2894                 return 0;
2895
2896         /*
2897          * Shared mappings base their reservation on the number of pages that
2898          * are already allocated on behalf of the file. Private mappings need
2899          * to reserve the full area even if read-only as mprotect() may be
2900          * called to make the mapping read-write. Assume !vma is a shm mapping
2901          */
2902         if (!vma || vma->vm_flags & VM_MAYSHARE)
2903                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2904         else {
2905                 struct resv_map *resv_map = resv_map_alloc();
2906                 if (!resv_map)
2907                         return -ENOMEM;
2908
2909                 chg = to - from;
2910
2911                 set_vma_resv_map(vma, resv_map);
2912                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2913         }
2914
2915         if (chg < 0)
2916                 return chg;
2917
2918         /* There must be enough filesystem quota for the mapping */
2919         if (hugetlb_get_quota(inode->i_mapping, chg))
2920                 return -ENOSPC;
2921
2922         /*
2923          * Check enough hugepages are available for the reservation.
2924          * Hand back the quota if there are not
2925          */
2926         ret = hugetlb_acct_memory(h, chg);
2927         if (ret < 0) {
2928                 hugetlb_put_quota(inode->i_mapping, chg);
2929                 return ret;
2930         }
2931
2932         /*
2933          * Account for the reservations made. Shared mappings record regions
2934          * that have reservations as they are shared by multiple VMAs.
2935          * When the last VMA disappears, the region map says how much
2936          * the reservation was and the page cache tells how much of
2937          * the reservation was consumed. Private mappings are per-VMA and
2938          * only the consumed reservations are tracked. When the VMA
2939          * disappears, the original reservation is the VMA size and the
2940          * consumed reservations are stored in the map. Hence, nothing
2941          * else has to be done for private mappings here
2942          */
2943         if (!vma || vma->vm_flags & VM_MAYSHARE)
2944                 region_add(&inode->i_mapping->private_list, from, to);
2945         return 0;
2946 }
2947
2948 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2949 {
2950         struct hstate *h = hstate_inode(inode);
2951         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2952
2953         spin_lock(&inode->i_lock);
2954         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2955         spin_unlock(&inode->i_lock);
2956
2957         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2958         hugetlb_acct_memory(h, -(chg - freed));
2959 }
2960
2961 #ifdef CONFIG_MEMORY_FAILURE
2962
2963 /* Should be called in hugetlb_lock */
2964 static int is_hugepage_on_freelist(struct page *hpage)
2965 {
2966         struct page *page;
2967         struct page *tmp;
2968         struct hstate *h = page_hstate(hpage);
2969         int nid = page_to_nid(hpage);
2970
2971         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2972                 if (page == hpage)
2973                         return 1;
2974         return 0;
2975 }
2976
2977 /*
2978  * This function is called from memory failure code.
2979  * Assume the caller holds page lock of the head page.
2980  */
2981 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2982 {
2983         struct hstate *h = page_hstate(hpage);
2984         int nid = page_to_nid(hpage);
2985         int ret = -EBUSY;
2986
2987         spin_lock(&hugetlb_lock);
2988         if (is_hugepage_on_freelist(hpage)) {
2989                 list_del(&hpage->lru);
2990                 set_page_refcounted(hpage);
2991                 h->free_huge_pages--;
2992                 h->free_huge_pages_node[nid]--;
2993                 ret = 0;
2994         }
2995         spin_unlock(&hugetlb_lock);
2996         return ret;
2997 }
2998 #endif