2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
38 #include <linux/kernel.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
62 int sysctl_memory_failure_recovery __read_mostly = 1;
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
79 static int hwpoison_filter_dev(struct page *p)
81 struct address_space *mapping;
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
89 * page_mapping() does not accept slab pages.
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
109 static int hwpoison_filter_flags(struct page *p)
111 if (!hwpoison_filter_flags_mask)
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
131 #ifdef CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
140 if (!hwpoison_filter_memcg)
143 mem = try_get_mem_cgroup_from_page(p);
147 css = mem_cgroup_css(mem);
148 ino = cgroup_ino(css->cgroup);
151 if (ino != hwpoison_filter_memcg)
157 static int hwpoison_filter_task(struct page *p) { return 0; }
160 int hwpoison_filter(struct page *p)
162 if (!hwpoison_filter_enable)
165 if (hwpoison_filter_dev(p))
168 if (hwpoison_filter_flags(p))
171 if (hwpoison_filter_task(p))
177 int hwpoison_filter(struct page *p)
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page, int flags)
197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
201 si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 si.si_trapno = trapno;
205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
207 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 si.si_code = BUS_MCEERR_AR;
209 ret = force_sig_info(SIGBUS, &si, current);
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
217 si.si_code = BUS_MCEERR_AO;
218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 t->comm, t->pid, ret);
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
230 void shake_page(struct page *p, int access)
236 drain_all_pages(page_zone(p));
237 if (PageLRU(p) || is_free_buddy_page(p))
242 * Only call shrink_node_slabs here (which would also shrink
243 * other caches) if access is not potentially fatal.
246 drop_slab_node(page_to_nid(p));
248 EXPORT_SYMBOL_GPL(shake_page);
251 * Kill all processes that have a poisoned page mapped and then isolate
255 * Find all processes having the page mapped and kill them.
256 * But we keep a page reference around so that the page is not
257 * actually freed yet.
258 * Then stash the page away
260 * There's no convenient way to get back to mapped processes
261 * from the VMAs. So do a brute-force search over all
264 * Remember that machine checks are not common (or rather
265 * if they are common you have other problems), so this shouldn't
266 * be a performance issue.
268 * Also there are some races possible while we get from the
269 * error detection to actually handle it.
274 struct task_struct *tsk;
280 * Failure handling: if we can't find or can't kill a process there's
281 * not much we can do. We just print a message and ignore otherwise.
285 * Schedule a process for later kill.
286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287 * TBD would GFP_NOIO be enough?
289 static void add_to_kill(struct task_struct *tsk, struct page *p,
290 struct vm_area_struct *vma,
291 struct list_head *to_kill,
292 struct to_kill **tkc)
300 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
303 "MCE: Out of memory while machine check handling\n");
307 tk->addr = page_address_in_vma(p, vma);
311 * In theory we don't have to kill when the page was
312 * munmaped. But it could be also a mremap. Since that's
313 * likely very rare kill anyways just out of paranoia, but use
314 * a SIGKILL because the error is not contained anymore.
316 if (tk->addr == -EFAULT) {
317 pr_info("MCE: Unable to find user space address %lx in %s\n",
318 page_to_pfn(p), tsk->comm);
321 get_task_struct(tsk);
323 list_add_tail(&tk->nd, to_kill);
327 * Kill the processes that have been collected earlier.
329 * Only do anything when DOIT is set, otherwise just free the list
330 * (this is used for clean pages which do not need killing)
331 * Also when FAIL is set do a force kill because something went
334 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
335 int fail, struct page *page, unsigned long pfn,
338 struct to_kill *tk, *next;
340 list_for_each_entry_safe (tk, next, to_kill, nd) {
343 * In case something went wrong with munmapping
344 * make sure the process doesn't catch the
345 * signal and then access the memory. Just kill it.
347 if (fail || tk->addr_valid == 0) {
349 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
350 pfn, tk->tsk->comm, tk->tsk->pid);
351 force_sig(SIGKILL, tk->tsk);
355 * In theory the process could have mapped
356 * something else on the address in-between. We could
357 * check for that, but we need to tell the
360 else if (kill_proc(tk->tsk, tk->addr, trapno,
361 pfn, page, flags) < 0)
363 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
364 pfn, tk->tsk->comm, tk->tsk->pid);
366 put_task_struct(tk->tsk);
372 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
373 * on behalf of the thread group. Return task_struct of the (first found)
374 * dedicated thread if found, and return NULL otherwise.
376 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
377 * have to call rcu_read_lock/unlock() in this function.
379 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
381 struct task_struct *t;
383 for_each_thread(tsk, t)
384 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
390 * Determine whether a given process is "early kill" process which expects
391 * to be signaled when some page under the process is hwpoisoned.
392 * Return task_struct of the dedicated thread (main thread unless explicitly
393 * specified) if the process is "early kill," and otherwise returns NULL.
395 static struct task_struct *task_early_kill(struct task_struct *tsk,
398 struct task_struct *t;
403 t = find_early_kill_thread(tsk);
406 if (sysctl_memory_failure_early_kill)
412 * Collect processes when the error hit an anonymous page.
414 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
415 struct to_kill **tkc, int force_early)
417 struct vm_area_struct *vma;
418 struct task_struct *tsk;
422 av = page_lock_anon_vma_read(page);
423 if (av == NULL) /* Not actually mapped anymore */
426 pgoff = page_to_pgoff(page);
427 read_lock(&tasklist_lock);
428 for_each_process (tsk) {
429 struct anon_vma_chain *vmac;
430 struct task_struct *t = task_early_kill(tsk, force_early);
434 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
437 if (!page_mapped_in_vma(page, vma))
439 if (vma->vm_mm == t->mm)
440 add_to_kill(t, page, vma, to_kill, tkc);
443 read_unlock(&tasklist_lock);
444 page_unlock_anon_vma_read(av);
448 * Collect processes when the error hit a file mapped page.
450 static void collect_procs_file(struct page *page, struct list_head *to_kill,
451 struct to_kill **tkc, int force_early)
453 struct vm_area_struct *vma;
454 struct task_struct *tsk;
455 struct address_space *mapping = page->mapping;
457 i_mmap_lock_read(mapping);
458 read_lock(&tasklist_lock);
459 for_each_process(tsk) {
460 pgoff_t pgoff = page_to_pgoff(page);
461 struct task_struct *t = task_early_kill(tsk, force_early);
465 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
468 * Send early kill signal to tasks where a vma covers
469 * the page but the corrupted page is not necessarily
470 * mapped it in its pte.
471 * Assume applications who requested early kill want
472 * to be informed of all such data corruptions.
474 if (vma->vm_mm == t->mm)
475 add_to_kill(t, page, vma, to_kill, tkc);
478 read_unlock(&tasklist_lock);
479 i_mmap_unlock_read(mapping);
483 * Collect the processes who have the corrupted page mapped to kill.
484 * This is done in two steps for locking reasons.
485 * First preallocate one tokill structure outside the spin locks,
486 * so that we can kill at least one process reasonably reliable.
488 static void collect_procs(struct page *page, struct list_head *tokill,
496 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
500 collect_procs_anon(page, tokill, &tk, force_early);
502 collect_procs_file(page, tokill, &tk, force_early);
507 * Error handlers for various types of pages.
511 IGNORED, /* Error: cannot be handled */
512 FAILED, /* Error: handling failed */
513 DELAYED, /* Will be handled later */
514 RECOVERED, /* Successfully recovered */
517 static const char *action_name[] = {
518 [IGNORED] = "Ignored",
520 [DELAYED] = "Delayed",
521 [RECOVERED] = "Recovered",
524 enum action_page_type {
526 MSG_KERNEL_HIGH_ORDER,
528 MSG_DIFFERENT_COMPOUND,
535 MSG_DIRTY_MLOCKED_LRU,
536 MSG_CLEAN_MLOCKED_LRU,
537 MSG_DIRTY_UNEVICTABLE_LRU,
538 MSG_CLEAN_UNEVICTABLE_LRU,
547 static const char * const action_page_types[] = {
548 [MSG_KERNEL] = "reserved kernel page",
549 [MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
550 [MSG_SLAB] = "kernel slab page",
551 [MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
552 [MSG_POISONED_HUGE] = "huge page already hardware poisoned",
553 [MSG_HUGE] = "huge page",
554 [MSG_FREE_HUGE] = "free huge page",
555 [MSG_UNMAP_FAILED] = "unmapping failed page",
556 [MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
557 [MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
558 [MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
559 [MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
560 [MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
561 [MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
562 [MSG_DIRTY_LRU] = "dirty LRU page",
563 [MSG_CLEAN_LRU] = "clean LRU page",
564 [MSG_TRUNCATED_LRU] = "already truncated LRU page",
565 [MSG_BUDDY] = "free buddy page",
566 [MSG_BUDDY_2ND] = "free buddy page (2nd try)",
567 [MSG_UNKNOWN] = "unknown page",
571 * XXX: It is possible that a page is isolated from LRU cache,
572 * and then kept in swap cache or failed to remove from page cache.
573 * The page count will stop it from being freed by unpoison.
574 * Stress tests should be aware of this memory leak problem.
576 static int delete_from_lru_cache(struct page *p)
578 if (!isolate_lru_page(p)) {
580 * Clear sensible page flags, so that the buddy system won't
581 * complain when the page is unpoison-and-freed.
584 ClearPageUnevictable(p);
586 * drop the page count elevated by isolate_lru_page()
588 page_cache_release(p);
595 * Error hit kernel page.
596 * Do nothing, try to be lucky and not touch this instead. For a few cases we
597 * could be more sophisticated.
599 static int me_kernel(struct page *p, unsigned long pfn)
605 * Page in unknown state. Do nothing.
607 static int me_unknown(struct page *p, unsigned long pfn)
609 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
614 * Clean (or cleaned) page cache page.
616 static int me_pagecache_clean(struct page *p, unsigned long pfn)
620 struct address_space *mapping;
622 delete_from_lru_cache(p);
625 * For anonymous pages we're done the only reference left
626 * should be the one m_f() holds.
632 * Now truncate the page in the page cache. This is really
633 * more like a "temporary hole punch"
634 * Don't do this for block devices when someone else
635 * has a reference, because it could be file system metadata
636 * and that's not safe to truncate.
638 mapping = page_mapping(p);
641 * Page has been teared down in the meanwhile
647 * Truncation is a bit tricky. Enable it per file system for now.
649 * Open: to take i_mutex or not for this? Right now we don't.
651 if (mapping->a_ops->error_remove_page) {
652 err = mapping->a_ops->error_remove_page(mapping, p);
654 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
656 } else if (page_has_private(p) &&
657 !try_to_release_page(p, GFP_NOIO)) {
658 pr_info("MCE %#lx: failed to release buffers\n", pfn);
664 * If the file system doesn't support it just invalidate
665 * This fails on dirty or anything with private pages
667 if (invalidate_inode_page(p))
670 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
677 * Dirty pagecache page
678 * Issues: when the error hit a hole page the error is not properly
681 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
683 struct address_space *mapping = page_mapping(p);
686 /* TBD: print more information about the file. */
689 * IO error will be reported by write(), fsync(), etc.
690 * who check the mapping.
691 * This way the application knows that something went
692 * wrong with its dirty file data.
694 * There's one open issue:
696 * The EIO will be only reported on the next IO
697 * operation and then cleared through the IO map.
698 * Normally Linux has two mechanisms to pass IO error
699 * first through the AS_EIO flag in the address space
700 * and then through the PageError flag in the page.
701 * Since we drop pages on memory failure handling the
702 * only mechanism open to use is through AS_AIO.
704 * This has the disadvantage that it gets cleared on
705 * the first operation that returns an error, while
706 * the PageError bit is more sticky and only cleared
707 * when the page is reread or dropped. If an
708 * application assumes it will always get error on
709 * fsync, but does other operations on the fd before
710 * and the page is dropped between then the error
711 * will not be properly reported.
713 * This can already happen even without hwpoisoned
714 * pages: first on metadata IO errors (which only
715 * report through AS_EIO) or when the page is dropped
718 * So right now we assume that the application DTRT on
719 * the first EIO, but we're not worse than other parts
722 mapping_set_error(mapping, EIO);
725 return me_pagecache_clean(p, pfn);
729 * Clean and dirty swap cache.
731 * Dirty swap cache page is tricky to handle. The page could live both in page
732 * cache and swap cache(ie. page is freshly swapped in). So it could be
733 * referenced concurrently by 2 types of PTEs:
734 * normal PTEs and swap PTEs. We try to handle them consistently by calling
735 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
737 * - clear dirty bit to prevent IO
739 * - but keep in the swap cache, so that when we return to it on
740 * a later page fault, we know the application is accessing
741 * corrupted data and shall be killed (we installed simple
742 * interception code in do_swap_page to catch it).
744 * Clean swap cache pages can be directly isolated. A later page fault will
745 * bring in the known good data from disk.
747 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
750 /* Trigger EIO in shmem: */
751 ClearPageUptodate(p);
753 if (!delete_from_lru_cache(p))
759 static int me_swapcache_clean(struct page *p, unsigned long pfn)
761 delete_from_swap_cache(p);
763 if (!delete_from_lru_cache(p))
770 * Huge pages. Needs work.
772 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
773 * To narrow down kill region to one page, we need to break up pmd.
775 static int me_huge_page(struct page *p, unsigned long pfn)
778 struct page *hpage = compound_head(p);
780 * We can safely recover from error on free or reserved (i.e.
781 * not in-use) hugepage by dequeuing it from freelist.
782 * To check whether a hugepage is in-use or not, we can't use
783 * page->lru because it can be used in other hugepage operations,
784 * such as __unmap_hugepage_range() and gather_surplus_pages().
785 * So instead we use page_mapping() and PageAnon().
786 * We assume that this function is called with page lock held,
787 * so there is no race between isolation and mapping/unmapping.
789 if (!(page_mapping(hpage) || PageAnon(hpage))) {
790 res = dequeue_hwpoisoned_huge_page(hpage);
798 * Various page states we can handle.
800 * A page state is defined by its current page->flags bits.
801 * The table matches them in order and calls the right handler.
803 * This is quite tricky because we can access page at any time
804 * in its live cycle, so all accesses have to be extremely careful.
806 * This is not complete. More states could be added.
807 * For any missing state don't attempt recovery.
810 #define dirty (1UL << PG_dirty)
811 #define sc (1UL << PG_swapcache)
812 #define unevict (1UL << PG_unevictable)
813 #define mlock (1UL << PG_mlocked)
814 #define writeback (1UL << PG_writeback)
815 #define lru (1UL << PG_lru)
816 #define swapbacked (1UL << PG_swapbacked)
817 #define head (1UL << PG_head)
818 #define tail (1UL << PG_tail)
819 #define compound (1UL << PG_compound)
820 #define slab (1UL << PG_slab)
821 #define reserved (1UL << PG_reserved)
823 static struct page_state {
826 enum action_page_type type;
827 int (*action)(struct page *p, unsigned long pfn);
829 { reserved, reserved, MSG_KERNEL, me_kernel },
831 * free pages are specially detected outside this table:
832 * PG_buddy pages only make a small fraction of all free pages.
836 * Could in theory check if slab page is free or if we can drop
837 * currently unused objects without touching them. But just
838 * treat it as standard kernel for now.
840 { slab, slab, MSG_SLAB, me_kernel },
842 #ifdef CONFIG_PAGEFLAGS_EXTENDED
843 { head, head, MSG_HUGE, me_huge_page },
844 { tail, tail, MSG_HUGE, me_huge_page },
846 { compound, compound, MSG_HUGE, me_huge_page },
849 { sc|dirty, sc|dirty, MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
850 { sc|dirty, sc, MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
852 { mlock|dirty, mlock|dirty, MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
853 { mlock|dirty, mlock, MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
855 { unevict|dirty, unevict|dirty, MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
856 { unevict|dirty, unevict, MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
858 { lru|dirty, lru|dirty, MSG_DIRTY_LRU, me_pagecache_dirty },
859 { lru|dirty, lru, MSG_CLEAN_LRU, me_pagecache_clean },
862 * Catchall entry: must be at end.
864 { 0, 0, MSG_UNKNOWN, me_unknown },
881 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
882 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
884 static void action_result(unsigned long pfn, enum action_page_type type, int result)
886 pr_err("MCE %#lx: recovery action for %s: %s\n",
887 pfn, action_page_types[type], action_name[result]);
890 static int page_action(struct page_state *ps, struct page *p,
896 result = ps->action(p, pfn);
898 count = page_count(p) - 1;
899 if (ps->action == me_swapcache_dirty && result == DELAYED)
903 "MCE %#lx: %s still referenced by %d users\n",
904 pfn, action_page_types[ps->type], count);
907 action_result(pfn, ps->type, result);
909 /* Could do more checks here if page looks ok */
911 * Could adjust zone counters here to correct for the missing page.
914 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
918 * Do all that is necessary to remove user space mappings. Unmap
919 * the pages and send SIGBUS to the processes if the data was dirty.
921 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
922 int trapno, int flags, struct page **hpagep)
924 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
925 struct address_space *mapping;
928 int kill = 1, forcekill;
929 struct page *hpage = *hpagep;
933 * Here we are interested only in user-mapped pages, so skip any
934 * other types of pages.
936 if (PageReserved(p) || PageSlab(p))
938 if (!(PageLRU(hpage) || PageHuge(p)))
942 * This check implies we don't kill processes if their pages
943 * are in the swap cache early. Those are always late kills.
945 if (!page_mapped(hpage))
949 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
953 if (PageSwapCache(p)) {
955 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
956 ttu |= TTU_IGNORE_HWPOISON;
960 * Propagate the dirty bit from PTEs to struct page first, because we
961 * need this to decide if we should kill or just drop the page.
962 * XXX: the dirty test could be racy: set_page_dirty() may not always
963 * be called inside page lock (it's recommended but not enforced).
965 mapping = page_mapping(hpage);
966 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
967 mapping_cap_writeback_dirty(mapping)) {
968 if (page_mkclean(hpage)) {
972 ttu |= TTU_IGNORE_HWPOISON;
974 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
980 * ppage: poisoned page
981 * if p is regular page(4k page)
982 * ppage == real poisoned page;
983 * else p is hugetlb or THP, ppage == head page.
987 if (PageTransHuge(hpage)) {
989 * Verify that this isn't a hugetlbfs head page, the check for
990 * PageAnon is just for avoid tripping a split_huge_page
991 * internal debug check, as split_huge_page refuses to deal with
992 * anything that isn't an anon page. PageAnon can't go away fro
993 * under us because we hold a refcount on the hpage, without a
994 * refcount on the hpage. split_huge_page can't be safely called
995 * in the first place, having a refcount on the tail isn't
996 * enough * to be safe.
998 if (!PageHuge(hpage) && PageAnon(hpage)) {
999 if (unlikely(split_huge_page(hpage))) {
1001 * FIXME: if splitting THP is failed, it is
1002 * better to stop the following operation rather
1003 * than causing panic by unmapping. System might
1004 * survive if the page is freed later.
1007 "MCE %#lx: failed to split THP\n", pfn);
1009 BUG_ON(!PageHWPoison(p));
1013 * We pinned the head page for hwpoison handling,
1014 * now we split the thp and we are interested in
1015 * the hwpoisoned raw page, so move the refcount
1016 * to it. Similarly, page lock is shifted.
1019 if (!(flags & MF_COUNT_INCREASED)) {
1027 /* THP is split, so ppage should be the real poisoned page. */
1033 * First collect all the processes that have the page
1034 * mapped in dirty form. This has to be done before try_to_unmap,
1035 * because ttu takes the rmap data structures down.
1037 * Error handling: We ignore errors here because
1038 * there's nothing that can be done.
1041 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1043 ret = try_to_unmap(ppage, ttu);
1044 if (ret != SWAP_SUCCESS)
1045 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1046 pfn, page_mapcount(ppage));
1049 * Now that the dirty bit has been propagated to the
1050 * struct page and all unmaps done we can decide if
1051 * killing is needed or not. Only kill when the page
1052 * was dirty or the process is not restartable,
1053 * otherwise the tokill list is merely
1054 * freed. When there was a problem unmapping earlier
1055 * use a more force-full uncatchable kill to prevent
1056 * any accesses to the poisoned memory.
1058 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1059 kill_procs(&tokill, forcekill, trapno,
1060 ret != SWAP_SUCCESS, p, pfn, flags);
1065 static void set_page_hwpoison_huge_page(struct page *hpage)
1068 int nr_pages = 1 << compound_order(hpage);
1069 for (i = 0; i < nr_pages; i++)
1070 SetPageHWPoison(hpage + i);
1073 static void clear_page_hwpoison_huge_page(struct page *hpage)
1076 int nr_pages = 1 << compound_order(hpage);
1077 for (i = 0; i < nr_pages; i++)
1078 ClearPageHWPoison(hpage + i);
1082 * memory_failure - Handle memory failure of a page.
1083 * @pfn: Page Number of the corrupted page
1084 * @trapno: Trap number reported in the signal to user space.
1085 * @flags: fine tune action taken
1087 * This function is called by the low level machine check code
1088 * of an architecture when it detects hardware memory corruption
1089 * of a page. It tries its best to recover, which includes
1090 * dropping pages, killing processes etc.
1092 * The function is primarily of use for corruptions that
1093 * happen outside the current execution context (e.g. when
1094 * detected by a background scrubber)
1096 * Must run in process context (e.g. a work queue) with interrupts
1097 * enabled and no spinlocks hold.
1099 int memory_failure(unsigned long pfn, int trapno, int flags)
1101 struct page_state *ps;
1105 unsigned int nr_pages;
1106 unsigned long page_flags;
1108 if (!sysctl_memory_failure_recovery)
1109 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1111 if (!pfn_valid(pfn)) {
1113 "MCE %#lx: memory outside kernel control\n",
1118 p = pfn_to_page(pfn);
1119 hpage = compound_head(p);
1120 if (TestSetPageHWPoison(p)) {
1121 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1126 * Currently errors on hugetlbfs pages are measured in hugepage units,
1127 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1128 * transparent hugepages, they are supposed to be split and error
1129 * measurement is done in normal page units. So nr_pages should be one
1133 nr_pages = 1 << compound_order(hpage);
1134 else /* normal page or thp */
1136 atomic_long_add(nr_pages, &num_poisoned_pages);
1139 * We need/can do nothing about count=0 pages.
1140 * 1) it's a free page, and therefore in safe hand:
1141 * prep_new_page() will be the gate keeper.
1142 * 2) it's a free hugepage, which is also safe:
1143 * an affected hugepage will be dequeued from hugepage freelist,
1144 * so there's no concern about reusing it ever after.
1145 * 3) it's part of a non-compound high order page.
1146 * Implies some kernel user: cannot stop them from
1147 * R/W the page; let's pray that the page has been
1148 * used and will be freed some time later.
1149 * In fact it's dangerous to directly bump up page count from 0,
1150 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1152 if (!(flags & MF_COUNT_INCREASED) &&
1153 !get_page_unless_zero(hpage)) {
1154 if (is_free_buddy_page(p)) {
1155 action_result(pfn, MSG_BUDDY, DELAYED);
1157 } else if (PageHuge(hpage)) {
1159 * Check "filter hit" and "race with other subpage."
1162 if (PageHWPoison(hpage)) {
1163 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1164 || (p != hpage && TestSetPageHWPoison(hpage))) {
1165 atomic_long_sub(nr_pages, &num_poisoned_pages);
1170 set_page_hwpoison_huge_page(hpage);
1171 res = dequeue_hwpoisoned_huge_page(hpage);
1172 action_result(pfn, MSG_FREE_HUGE,
1173 res ? IGNORED : DELAYED);
1177 action_result(pfn, MSG_KERNEL_HIGH_ORDER, IGNORED);
1183 * We ignore non-LRU pages for good reasons.
1184 * - PG_locked is only well defined for LRU pages and a few others
1185 * - to avoid races with __set_page_locked()
1186 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1187 * The check (unnecessarily) ignores LRU pages being isolated and
1188 * walked by the page reclaim code, however that's not a big loss.
1190 if (!PageHuge(p) && !PageTransTail(p)) {
1195 * shake_page could have turned it free.
1197 if (is_free_buddy_page(p)) {
1198 if (flags & MF_COUNT_INCREASED)
1199 action_result(pfn, MSG_BUDDY, DELAYED);
1201 action_result(pfn, MSG_BUDDY_2ND,
1211 * The page could have changed compound pages during the locking.
1212 * If this happens just bail out.
1214 if (compound_head(p) != hpage) {
1215 action_result(pfn, MSG_DIFFERENT_COMPOUND, IGNORED);
1221 * We use page flags to determine what action should be taken, but
1222 * the flags can be modified by the error containment action. One
1223 * example is an mlocked page, where PG_mlocked is cleared by
1224 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1225 * correctly, we save a copy of the page flags at this time.
1227 page_flags = p->flags;
1230 * unpoison always clear PG_hwpoison inside page lock
1232 if (!PageHWPoison(p)) {
1233 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1234 atomic_long_sub(nr_pages, &num_poisoned_pages);
1239 if (hwpoison_filter(p)) {
1240 if (TestClearPageHWPoison(p))
1241 atomic_long_sub(nr_pages, &num_poisoned_pages);
1247 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1248 goto identify_page_state;
1251 * For error on the tail page, we should set PG_hwpoison
1252 * on the head page to show that the hugepage is hwpoisoned
1254 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1255 action_result(pfn, MSG_POISONED_HUGE, IGNORED);
1261 * Set PG_hwpoison on all pages in an error hugepage,
1262 * because containment is done in hugepage unit for now.
1263 * Since we have done TestSetPageHWPoison() for the head page with
1264 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1267 set_page_hwpoison_huge_page(hpage);
1270 * It's very difficult to mess with pages currently under IO
1271 * and in many cases impossible, so we just avoid it here.
1273 wait_on_page_writeback(p);
1276 * Now take care of user space mappings.
1277 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1279 * When the raw error page is thp tail page, hpage points to the raw
1280 * page after thp split.
1282 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1284 action_result(pfn, MSG_UNMAP_FAILED, IGNORED);
1290 * Torn down by someone else?
1292 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1293 action_result(pfn, MSG_TRUNCATED_LRU, IGNORED);
1298 identify_page_state:
1301 * The first check uses the current page flags which may not have any
1302 * relevant information. The second check with the saved page flagss is
1303 * carried out only if the first check can't determine the page status.
1305 for (ps = error_states;; ps++)
1306 if ((p->flags & ps->mask) == ps->res)
1309 page_flags |= (p->flags & (1UL << PG_dirty));
1312 for (ps = error_states;; ps++)
1313 if ((page_flags & ps->mask) == ps->res)
1315 res = page_action(ps, p, pfn);
1320 EXPORT_SYMBOL_GPL(memory_failure);
1322 #define MEMORY_FAILURE_FIFO_ORDER 4
1323 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1325 struct memory_failure_entry {
1331 struct memory_failure_cpu {
1332 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1333 MEMORY_FAILURE_FIFO_SIZE);
1335 struct work_struct work;
1338 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1341 * memory_failure_queue - Schedule handling memory failure of a page.
1342 * @pfn: Page Number of the corrupted page
1343 * @trapno: Trap number reported in the signal to user space.
1344 * @flags: Flags for memory failure handling
1346 * This function is called by the low level hardware error handler
1347 * when it detects hardware memory corruption of a page. It schedules
1348 * the recovering of error page, including dropping pages, killing
1351 * The function is primarily of use for corruptions that
1352 * happen outside the current execution context (e.g. when
1353 * detected by a background scrubber)
1355 * Can run in IRQ context.
1357 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1359 struct memory_failure_cpu *mf_cpu;
1360 unsigned long proc_flags;
1361 struct memory_failure_entry entry = {
1367 mf_cpu = &get_cpu_var(memory_failure_cpu);
1368 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1369 if (kfifo_put(&mf_cpu->fifo, entry))
1370 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1372 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1374 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1375 put_cpu_var(memory_failure_cpu);
1377 EXPORT_SYMBOL_GPL(memory_failure_queue);
1379 static void memory_failure_work_func(struct work_struct *work)
1381 struct memory_failure_cpu *mf_cpu;
1382 struct memory_failure_entry entry = { 0, };
1383 unsigned long proc_flags;
1386 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1388 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1389 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1390 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1393 if (entry.flags & MF_SOFT_OFFLINE)
1394 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1396 memory_failure(entry.pfn, entry.trapno, entry.flags);
1400 static int __init memory_failure_init(void)
1402 struct memory_failure_cpu *mf_cpu;
1405 for_each_possible_cpu(cpu) {
1406 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1407 spin_lock_init(&mf_cpu->lock);
1408 INIT_KFIFO(mf_cpu->fifo);
1409 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1414 core_initcall(memory_failure_init);
1417 * unpoison_memory - Unpoison a previously poisoned page
1418 * @pfn: Page number of the to be unpoisoned page
1420 * Software-unpoison a page that has been poisoned by
1421 * memory_failure() earlier.
1423 * This is only done on the software-level, so it only works
1424 * for linux injected failures, not real hardware failures
1426 * Returns 0 for success, otherwise -errno.
1428 int unpoison_memory(unsigned long pfn)
1433 unsigned int nr_pages;
1435 if (!pfn_valid(pfn))
1438 p = pfn_to_page(pfn);
1439 page = compound_head(p);
1441 if (!PageHWPoison(p)) {
1442 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1447 * unpoison_memory() can encounter thp only when the thp is being
1448 * worked by memory_failure() and the page lock is not held yet.
1449 * In such case, we yield to memory_failure() and make unpoison fail.
1451 if (!PageHuge(page) && PageTransHuge(page)) {
1452 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1456 nr_pages = 1 << compound_order(page);
1458 if (!get_page_unless_zero(page)) {
1460 * Since HWPoisoned hugepage should have non-zero refcount,
1461 * race between memory failure and unpoison seems to happen.
1462 * In such case unpoison fails and memory failure runs
1465 if (PageHuge(page)) {
1466 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1469 if (TestClearPageHWPoison(p))
1470 atomic_long_dec(&num_poisoned_pages);
1471 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1477 * This test is racy because PG_hwpoison is set outside of page lock.
1478 * That's acceptable because that won't trigger kernel panic. Instead,
1479 * the PG_hwpoison page will be caught and isolated on the entrance to
1480 * the free buddy page pool.
1482 if (TestClearPageHWPoison(page)) {
1483 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1484 atomic_long_sub(nr_pages, &num_poisoned_pages);
1487 clear_page_hwpoison_huge_page(page);
1492 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1497 EXPORT_SYMBOL(unpoison_memory);
1499 static struct page *new_page(struct page *p, unsigned long private, int **x)
1501 int nid = page_to_nid(p);
1503 return alloc_huge_page_node(page_hstate(compound_head(p)),
1506 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1510 * Safely get reference count of an arbitrary page.
1511 * Returns 0 for a free page, -EIO for a zero refcount page
1512 * that is not free, and 1 for any other page type.
1513 * For 1 the page is returned with increased page count, otherwise not.
1515 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1519 if (flags & MF_COUNT_INCREASED)
1523 * When the target page is a free hugepage, just remove it
1524 * from free hugepage list.
1526 if (!get_page_unless_zero(compound_head(p))) {
1528 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1530 } else if (is_free_buddy_page(p)) {
1531 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1534 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1535 __func__, pfn, p->flags);
1539 /* Not a free page */
1545 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1547 int ret = __get_any_page(page, pfn, flags);
1549 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1554 shake_page(page, 1);
1559 ret = __get_any_page(page, pfn, 0);
1560 if (!PageLRU(page)) {
1561 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1569 static int soft_offline_huge_page(struct page *page, int flags)
1572 unsigned long pfn = page_to_pfn(page);
1573 struct page *hpage = compound_head(page);
1574 LIST_HEAD(pagelist);
1577 * This double-check of PageHWPoison is to avoid the race with
1578 * memory_failure(). See also comment in __soft_offline_page().
1581 if (PageHWPoison(hpage)) {
1584 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1589 /* Keep page count to indicate a given hugepage is isolated. */
1590 list_move(&hpage->lru, &pagelist);
1591 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1592 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1594 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1595 pfn, ret, page->flags);
1597 * We know that soft_offline_huge_page() tries to migrate
1598 * only one hugepage pointed to by hpage, so we need not
1599 * run through the pagelist here.
1601 putback_active_hugepage(hpage);
1605 /* overcommit hugetlb page will be freed to buddy */
1606 if (PageHuge(page)) {
1607 set_page_hwpoison_huge_page(hpage);
1608 dequeue_hwpoisoned_huge_page(hpage);
1609 atomic_long_add(1 << compound_order(hpage),
1610 &num_poisoned_pages);
1612 SetPageHWPoison(page);
1613 atomic_long_inc(&num_poisoned_pages);
1619 static int __soft_offline_page(struct page *page, int flags)
1622 unsigned long pfn = page_to_pfn(page);
1625 * Check PageHWPoison again inside page lock because PageHWPoison
1626 * is set by memory_failure() outside page lock. Note that
1627 * memory_failure() also double-checks PageHWPoison inside page lock,
1628 * so there's no race between soft_offline_page() and memory_failure().
1631 wait_on_page_writeback(page);
1632 if (PageHWPoison(page)) {
1635 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1639 * Try to invalidate first. This should work for
1640 * non dirty unmapped page cache pages.
1642 ret = invalidate_inode_page(page);
1645 * RED-PEN would be better to keep it isolated here, but we
1646 * would need to fix isolation locking first.
1650 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1651 SetPageHWPoison(page);
1652 atomic_long_inc(&num_poisoned_pages);
1657 * Simple invalidation didn't work.
1658 * Try to migrate to a new page instead. migrate.c
1659 * handles a large number of cases for us.
1661 ret = isolate_lru_page(page);
1663 * Drop page reference which is came from get_any_page()
1664 * successful isolate_lru_page() already took another one.
1668 LIST_HEAD(pagelist);
1669 inc_zone_page_state(page, NR_ISOLATED_ANON +
1670 page_is_file_cache(page));
1671 list_add(&page->lru, &pagelist);
1672 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1673 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1675 if (!list_empty(&pagelist)) {
1676 list_del(&page->lru);
1677 dec_zone_page_state(page, NR_ISOLATED_ANON +
1678 page_is_file_cache(page));
1679 putback_lru_page(page);
1682 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1683 pfn, ret, page->flags);
1688 * After page migration succeeds, the source page can
1689 * be trapped in pagevec and actual freeing is delayed.
1690 * Freeing code works differently based on PG_hwpoison,
1691 * so there's a race. We need to make sure that the
1692 * source page should be freed back to buddy before
1693 * setting PG_hwpoison.
1695 if (!is_free_buddy_page(page))
1696 drain_all_pages(page_zone(page));
1697 SetPageHWPoison(page);
1698 if (!is_free_buddy_page(page))
1699 pr_info("soft offline: %#lx: page leaked\n",
1701 atomic_long_inc(&num_poisoned_pages);
1704 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1705 pfn, ret, page_count(page), page->flags);
1711 * soft_offline_page - Soft offline a page.
1712 * @page: page to offline
1713 * @flags: flags. Same as memory_failure().
1715 * Returns 0 on success, otherwise negated errno.
1717 * Soft offline a page, by migration or invalidation,
1718 * without killing anything. This is for the case when
1719 * a page is not corrupted yet (so it's still valid to access),
1720 * but has had a number of corrected errors and is better taken
1723 * The actual policy on when to do that is maintained by
1726 * This should never impact any application or cause data loss,
1727 * however it might take some time.
1729 * This is not a 100% solution for all memory, but tries to be
1730 * ``good enough'' for the majority of memory.
1732 int soft_offline_page(struct page *page, int flags)
1735 unsigned long pfn = page_to_pfn(page);
1736 struct page *hpage = compound_head(page);
1738 if (PageHWPoison(page)) {
1739 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1742 if (!PageHuge(page) && PageTransHuge(hpage)) {
1743 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1744 pr_info("soft offline: %#lx: failed to split THP\n",
1753 * Isolate the page, so that it doesn't get reallocated if it
1754 * was free. This flag should be kept set until the source page
1755 * is freed and PG_hwpoison on it is set.
1757 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1758 set_migratetype_isolate(page, true);
1760 ret = get_any_page(page, pfn, flags);
1762 if (ret > 0) { /* for in-use pages */
1764 ret = soft_offline_huge_page(page, flags);
1766 ret = __soft_offline_page(page, flags);
1767 } else if (ret == 0) { /* for free pages */
1768 if (PageHuge(page)) {
1769 set_page_hwpoison_huge_page(hpage);
1770 dequeue_hwpoisoned_huge_page(hpage);
1771 atomic_long_add(1 << compound_order(hpage),
1772 &num_poisoned_pages);
1774 SetPageHWPoison(page);
1775 atomic_long_inc(&num_poisoned_pages);
1778 unset_migratetype_isolate(page, MIGRATE_MOVABLE);