uprobes/core: Decrement uprobe count before the pages are unmapped
[firefly-linux-kernel-4.4.55.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (current->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, current->rss_stat.count[i]);
135                         current->rss_stat.count[i] = 0;
136                 }
137         }
138         current->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170
171 #endif /* SPLIT_RSS_COUNTING */
172
173 #ifdef HAVE_GENERIC_MMU_GATHER
174
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177         struct mmu_gather_batch *batch;
178
179         batch = tlb->active;
180         if (batch->next) {
181                 tlb->active = batch->next;
182                 return 1;
183         }
184
185         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186         if (!batch)
187                 return 0;
188
189         batch->next = NULL;
190         batch->nr   = 0;
191         batch->max  = MAX_GATHER_BATCH;
192
193         tlb->active->next = batch;
194         tlb->active = batch;
195
196         return 1;
197 }
198
199 /* tlb_gather_mmu
200  *      Called to initialize an (on-stack) mmu_gather structure for page-table
201  *      tear-down from @mm. The @fullmm argument is used when @mm is without
202  *      users and we're going to destroy the full address space (exit/execve).
203  */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206         tlb->mm = mm;
207
208         tlb->fullmm     = fullmm;
209         tlb->need_flush = 0;
210         tlb->fast_mode  = (num_possible_cpus() == 1);
211         tlb->local.next = NULL;
212         tlb->local.nr   = 0;
213         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
214         tlb->active     = &tlb->local;
215
216 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
217         tlb->batch = NULL;
218 #endif
219 }
220
221 void tlb_flush_mmu(struct mmu_gather *tlb)
222 {
223         struct mmu_gather_batch *batch;
224
225         if (!tlb->need_flush)
226                 return;
227         tlb->need_flush = 0;
228         tlb_flush(tlb);
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb_table_flush(tlb);
231 #endif
232
233         if (tlb_fast_mode(tlb))
234                 return;
235
236         for (batch = &tlb->local; batch; batch = batch->next) {
237                 free_pages_and_swap_cache(batch->pages, batch->nr);
238                 batch->nr = 0;
239         }
240         tlb->active = &tlb->local;
241 }
242
243 /* tlb_finish_mmu
244  *      Called at the end of the shootdown operation to free up any resources
245  *      that were required.
246  */
247 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
248 {
249         struct mmu_gather_batch *batch, *next;
250
251         tlb_flush_mmu(tlb);
252
253         /* keep the page table cache within bounds */
254         check_pgt_cache();
255
256         for (batch = tlb->local.next; batch; batch = next) {
257                 next = batch->next;
258                 free_pages((unsigned long)batch, 0);
259         }
260         tlb->local.next = NULL;
261 }
262
263 /* __tlb_remove_page
264  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
265  *      handling the additional races in SMP caused by other CPUs caching valid
266  *      mappings in their TLBs. Returns the number of free page slots left.
267  *      When out of page slots we must call tlb_flush_mmu().
268  */
269 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
270 {
271         struct mmu_gather_batch *batch;
272
273         VM_BUG_ON(!tlb->need_flush);
274
275         if (tlb_fast_mode(tlb)) {
276                 free_page_and_swap_cache(page);
277                 return 1; /* avoid calling tlb_flush_mmu() */
278         }
279
280         batch = tlb->active;
281         batch->pages[batch->nr++] = page;
282         if (batch->nr == batch->max) {
283                 if (!tlb_next_batch(tlb))
284                         return 0;
285                 batch = tlb->active;
286         }
287         VM_BUG_ON(batch->nr > batch->max);
288
289         return batch->max - batch->nr;
290 }
291
292 #endif /* HAVE_GENERIC_MMU_GATHER */
293
294 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
295
296 /*
297  * See the comment near struct mmu_table_batch.
298  */
299
300 static void tlb_remove_table_smp_sync(void *arg)
301 {
302         /* Simply deliver the interrupt */
303 }
304
305 static void tlb_remove_table_one(void *table)
306 {
307         /*
308          * This isn't an RCU grace period and hence the page-tables cannot be
309          * assumed to be actually RCU-freed.
310          *
311          * It is however sufficient for software page-table walkers that rely on
312          * IRQ disabling. See the comment near struct mmu_table_batch.
313          */
314         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
315         __tlb_remove_table(table);
316 }
317
318 static void tlb_remove_table_rcu(struct rcu_head *head)
319 {
320         struct mmu_table_batch *batch;
321         int i;
322
323         batch = container_of(head, struct mmu_table_batch, rcu);
324
325         for (i = 0; i < batch->nr; i++)
326                 __tlb_remove_table(batch->tables[i]);
327
328         free_page((unsigned long)batch);
329 }
330
331 void tlb_table_flush(struct mmu_gather *tlb)
332 {
333         struct mmu_table_batch **batch = &tlb->batch;
334
335         if (*batch) {
336                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
337                 *batch = NULL;
338         }
339 }
340
341 void tlb_remove_table(struct mmu_gather *tlb, void *table)
342 {
343         struct mmu_table_batch **batch = &tlb->batch;
344
345         tlb->need_flush = 1;
346
347         /*
348          * When there's less then two users of this mm there cannot be a
349          * concurrent page-table walk.
350          */
351         if (atomic_read(&tlb->mm->mm_users) < 2) {
352                 __tlb_remove_table(table);
353                 return;
354         }
355
356         if (*batch == NULL) {
357                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
358                 if (*batch == NULL) {
359                         tlb_remove_table_one(table);
360                         return;
361                 }
362                 (*batch)->nr = 0;
363         }
364         (*batch)->tables[(*batch)->nr++] = table;
365         if ((*batch)->nr == MAX_TABLE_BATCH)
366                 tlb_table_flush(tlb);
367 }
368
369 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
370
371 /*
372  * If a p?d_bad entry is found while walking page tables, report
373  * the error, before resetting entry to p?d_none.  Usually (but
374  * very seldom) called out from the p?d_none_or_clear_bad macros.
375  */
376
377 void pgd_clear_bad(pgd_t *pgd)
378 {
379         pgd_ERROR(*pgd);
380         pgd_clear(pgd);
381 }
382
383 void pud_clear_bad(pud_t *pud)
384 {
385         pud_ERROR(*pud);
386         pud_clear(pud);
387 }
388
389 void pmd_clear_bad(pmd_t *pmd)
390 {
391         pmd_ERROR(*pmd);
392         pmd_clear(pmd);
393 }
394
395 /*
396  * Note: this doesn't free the actual pages themselves. That
397  * has been handled earlier when unmapping all the memory regions.
398  */
399 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
400                            unsigned long addr)
401 {
402         pgtable_t token = pmd_pgtable(*pmd);
403         pmd_clear(pmd);
404         pte_free_tlb(tlb, token, addr);
405         tlb->mm->nr_ptes--;
406 }
407
408 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
409                                 unsigned long addr, unsigned long end,
410                                 unsigned long floor, unsigned long ceiling)
411 {
412         pmd_t *pmd;
413         unsigned long next;
414         unsigned long start;
415
416         start = addr;
417         pmd = pmd_offset(pud, addr);
418         do {
419                 next = pmd_addr_end(addr, end);
420                 if (pmd_none_or_clear_bad(pmd))
421                         continue;
422                 free_pte_range(tlb, pmd, addr);
423         } while (pmd++, addr = next, addr != end);
424
425         start &= PUD_MASK;
426         if (start < floor)
427                 return;
428         if (ceiling) {
429                 ceiling &= PUD_MASK;
430                 if (!ceiling)
431                         return;
432         }
433         if (end - 1 > ceiling - 1)
434                 return;
435
436         pmd = pmd_offset(pud, start);
437         pud_clear(pud);
438         pmd_free_tlb(tlb, pmd, start);
439 }
440
441 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
442                                 unsigned long addr, unsigned long end,
443                                 unsigned long floor, unsigned long ceiling)
444 {
445         pud_t *pud;
446         unsigned long next;
447         unsigned long start;
448
449         start = addr;
450         pud = pud_offset(pgd, addr);
451         do {
452                 next = pud_addr_end(addr, end);
453                 if (pud_none_or_clear_bad(pud))
454                         continue;
455                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
456         } while (pud++, addr = next, addr != end);
457
458         start &= PGDIR_MASK;
459         if (start < floor)
460                 return;
461         if (ceiling) {
462                 ceiling &= PGDIR_MASK;
463                 if (!ceiling)
464                         return;
465         }
466         if (end - 1 > ceiling - 1)
467                 return;
468
469         pud = pud_offset(pgd, start);
470         pgd_clear(pgd);
471         pud_free_tlb(tlb, pud, start);
472 }
473
474 /*
475  * This function frees user-level page tables of a process.
476  *
477  * Must be called with pagetable lock held.
478  */
479 void free_pgd_range(struct mmu_gather *tlb,
480                         unsigned long addr, unsigned long end,
481                         unsigned long floor, unsigned long ceiling)
482 {
483         pgd_t *pgd;
484         unsigned long next;
485
486         /*
487          * The next few lines have given us lots of grief...
488          *
489          * Why are we testing PMD* at this top level?  Because often
490          * there will be no work to do at all, and we'd prefer not to
491          * go all the way down to the bottom just to discover that.
492          *
493          * Why all these "- 1"s?  Because 0 represents both the bottom
494          * of the address space and the top of it (using -1 for the
495          * top wouldn't help much: the masks would do the wrong thing).
496          * The rule is that addr 0 and floor 0 refer to the bottom of
497          * the address space, but end 0 and ceiling 0 refer to the top
498          * Comparisons need to use "end - 1" and "ceiling - 1" (though
499          * that end 0 case should be mythical).
500          *
501          * Wherever addr is brought up or ceiling brought down, we must
502          * be careful to reject "the opposite 0" before it confuses the
503          * subsequent tests.  But what about where end is brought down
504          * by PMD_SIZE below? no, end can't go down to 0 there.
505          *
506          * Whereas we round start (addr) and ceiling down, by different
507          * masks at different levels, in order to test whether a table
508          * now has no other vmas using it, so can be freed, we don't
509          * bother to round floor or end up - the tests don't need that.
510          */
511
512         addr &= PMD_MASK;
513         if (addr < floor) {
514                 addr += PMD_SIZE;
515                 if (!addr)
516                         return;
517         }
518         if (ceiling) {
519                 ceiling &= PMD_MASK;
520                 if (!ceiling)
521                         return;
522         }
523         if (end - 1 > ceiling - 1)
524                 end -= PMD_SIZE;
525         if (addr > end - 1)
526                 return;
527
528         pgd = pgd_offset(tlb->mm, addr);
529         do {
530                 next = pgd_addr_end(addr, end);
531                 if (pgd_none_or_clear_bad(pgd))
532                         continue;
533                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
534         } while (pgd++, addr = next, addr != end);
535 }
536
537 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
538                 unsigned long floor, unsigned long ceiling)
539 {
540         while (vma) {
541                 struct vm_area_struct *next = vma->vm_next;
542                 unsigned long addr = vma->vm_start;
543
544                 /*
545                  * Hide vma from rmap and truncate_pagecache before freeing
546                  * pgtables
547                  */
548                 unlink_anon_vmas(vma);
549                 unlink_file_vma(vma);
550
551                 if (is_vm_hugetlb_page(vma)) {
552                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
553                                 floor, next? next->vm_start: ceiling);
554                 } else {
555                         /*
556                          * Optimization: gather nearby vmas into one call down
557                          */
558                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
559                                && !is_vm_hugetlb_page(next)) {
560                                 vma = next;
561                                 next = vma->vm_next;
562                                 unlink_anon_vmas(vma);
563                                 unlink_file_vma(vma);
564                         }
565                         free_pgd_range(tlb, addr, vma->vm_end,
566                                 floor, next? next->vm_start: ceiling);
567                 }
568                 vma = next;
569         }
570 }
571
572 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
573                 pmd_t *pmd, unsigned long address)
574 {
575         pgtable_t new = pte_alloc_one(mm, address);
576         int wait_split_huge_page;
577         if (!new)
578                 return -ENOMEM;
579
580         /*
581          * Ensure all pte setup (eg. pte page lock and page clearing) are
582          * visible before the pte is made visible to other CPUs by being
583          * put into page tables.
584          *
585          * The other side of the story is the pointer chasing in the page
586          * table walking code (when walking the page table without locking;
587          * ie. most of the time). Fortunately, these data accesses consist
588          * of a chain of data-dependent loads, meaning most CPUs (alpha
589          * being the notable exception) will already guarantee loads are
590          * seen in-order. See the alpha page table accessors for the
591          * smp_read_barrier_depends() barriers in page table walking code.
592          */
593         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
594
595         spin_lock(&mm->page_table_lock);
596         wait_split_huge_page = 0;
597         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
598                 mm->nr_ptes++;
599                 pmd_populate(mm, pmd, new);
600                 new = NULL;
601         } else if (unlikely(pmd_trans_splitting(*pmd)))
602                 wait_split_huge_page = 1;
603         spin_unlock(&mm->page_table_lock);
604         if (new)
605                 pte_free(mm, new);
606         if (wait_split_huge_page)
607                 wait_split_huge_page(vma->anon_vma, pmd);
608         return 0;
609 }
610
611 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
612 {
613         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
614         if (!new)
615                 return -ENOMEM;
616
617         smp_wmb(); /* See comment in __pte_alloc */
618
619         spin_lock(&init_mm.page_table_lock);
620         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
621                 pmd_populate_kernel(&init_mm, pmd, new);
622                 new = NULL;
623         } else
624                 VM_BUG_ON(pmd_trans_splitting(*pmd));
625         spin_unlock(&init_mm.page_table_lock);
626         if (new)
627                 pte_free_kernel(&init_mm, new);
628         return 0;
629 }
630
631 static inline void init_rss_vec(int *rss)
632 {
633         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634 }
635
636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
637 {
638         int i;
639
640         if (current->mm == mm)
641                 sync_mm_rss(mm);
642         for (i = 0; i < NR_MM_COUNTERS; i++)
643                 if (rss[i])
644                         add_mm_counter(mm, i, rss[i]);
645 }
646
647 /*
648  * This function is called to print an error when a bad pte
649  * is found. For example, we might have a PFN-mapped pte in
650  * a region that doesn't allow it.
651  *
652  * The calling function must still handle the error.
653  */
654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655                           pte_t pte, struct page *page)
656 {
657         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658         pud_t *pud = pud_offset(pgd, addr);
659         pmd_t *pmd = pmd_offset(pud, addr);
660         struct address_space *mapping;
661         pgoff_t index;
662         static unsigned long resume;
663         static unsigned long nr_shown;
664         static unsigned long nr_unshown;
665
666         /*
667          * Allow a burst of 60 reports, then keep quiet for that minute;
668          * or allow a steady drip of one report per second.
669          */
670         if (nr_shown == 60) {
671                 if (time_before(jiffies, resume)) {
672                         nr_unshown++;
673                         return;
674                 }
675                 if (nr_unshown) {
676                         printk(KERN_ALERT
677                                 "BUG: Bad page map: %lu messages suppressed\n",
678                                 nr_unshown);
679                         nr_unshown = 0;
680                 }
681                 nr_shown = 0;
682         }
683         if (nr_shown++ == 0)
684                 resume = jiffies + 60 * HZ;
685
686         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687         index = linear_page_index(vma, addr);
688
689         printk(KERN_ALERT
690                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
691                 current->comm,
692                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
693         if (page)
694                 dump_page(page);
695         printk(KERN_ALERT
696                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
698         /*
699          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
700          */
701         if (vma->vm_ops)
702                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
703                                 (unsigned long)vma->vm_ops->fault);
704         if (vma->vm_file && vma->vm_file->f_op)
705                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
706                                 (unsigned long)vma->vm_file->f_op->mmap);
707         dump_stack();
708         add_taint(TAINT_BAD_PAGE);
709 }
710
711 static inline int is_cow_mapping(vm_flags_t flags)
712 {
713         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
714 }
715
716 #ifndef is_zero_pfn
717 static inline int is_zero_pfn(unsigned long pfn)
718 {
719         return pfn == zero_pfn;
720 }
721 #endif
722
723 #ifndef my_zero_pfn
724 static inline unsigned long my_zero_pfn(unsigned long addr)
725 {
726         return zero_pfn;
727 }
728 #endif
729
730 /*
731  * vm_normal_page -- This function gets the "struct page" associated with a pte.
732  *
733  * "Special" mappings do not wish to be associated with a "struct page" (either
734  * it doesn't exist, or it exists but they don't want to touch it). In this
735  * case, NULL is returned here. "Normal" mappings do have a struct page.
736  *
737  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
738  * pte bit, in which case this function is trivial. Secondly, an architecture
739  * may not have a spare pte bit, which requires a more complicated scheme,
740  * described below.
741  *
742  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
743  * special mapping (even if there are underlying and valid "struct pages").
744  * COWed pages of a VM_PFNMAP are always normal.
745  *
746  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
747  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
748  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
749  * mapping will always honor the rule
750  *
751  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
752  *
753  * And for normal mappings this is false.
754  *
755  * This restricts such mappings to be a linear translation from virtual address
756  * to pfn. To get around this restriction, we allow arbitrary mappings so long
757  * as the vma is not a COW mapping; in that case, we know that all ptes are
758  * special (because none can have been COWed).
759  *
760  *
761  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
762  *
763  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
764  * page" backing, however the difference is that _all_ pages with a struct
765  * page (that is, those where pfn_valid is true) are refcounted and considered
766  * normal pages by the VM. The disadvantage is that pages are refcounted
767  * (which can be slower and simply not an option for some PFNMAP users). The
768  * advantage is that we don't have to follow the strict linearity rule of
769  * PFNMAP mappings in order to support COWable mappings.
770  *
771  */
772 #ifdef __HAVE_ARCH_PTE_SPECIAL
773 # define HAVE_PTE_SPECIAL 1
774 #else
775 # define HAVE_PTE_SPECIAL 0
776 #endif
777 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
778                                 pte_t pte)
779 {
780         unsigned long pfn = pte_pfn(pte);
781
782         if (HAVE_PTE_SPECIAL) {
783                 if (likely(!pte_special(pte)))
784                         goto check_pfn;
785                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
786                         return NULL;
787                 if (!is_zero_pfn(pfn))
788                         print_bad_pte(vma, addr, pte, NULL);
789                 return NULL;
790         }
791
792         /* !HAVE_PTE_SPECIAL case follows: */
793
794         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
795                 if (vma->vm_flags & VM_MIXEDMAP) {
796                         if (!pfn_valid(pfn))
797                                 return NULL;
798                         goto out;
799                 } else {
800                         unsigned long off;
801                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
802                         if (pfn == vma->vm_pgoff + off)
803                                 return NULL;
804                         if (!is_cow_mapping(vma->vm_flags))
805                                 return NULL;
806                 }
807         }
808
809         if (is_zero_pfn(pfn))
810                 return NULL;
811 check_pfn:
812         if (unlikely(pfn > highest_memmap_pfn)) {
813                 print_bad_pte(vma, addr, pte, NULL);
814                 return NULL;
815         }
816
817         /*
818          * NOTE! We still have PageReserved() pages in the page tables.
819          * eg. VDSO mappings can cause them to exist.
820          */
821 out:
822         return pfn_to_page(pfn);
823 }
824
825 /*
826  * copy one vm_area from one task to the other. Assumes the page tables
827  * already present in the new task to be cleared in the whole range
828  * covered by this vma.
829  */
830
831 static inline unsigned long
832 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
833                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
834                 unsigned long addr, int *rss)
835 {
836         unsigned long vm_flags = vma->vm_flags;
837         pte_t pte = *src_pte;
838         struct page *page;
839
840         /* pte contains position in swap or file, so copy. */
841         if (unlikely(!pte_present(pte))) {
842                 if (!pte_file(pte)) {
843                         swp_entry_t entry = pte_to_swp_entry(pte);
844
845                         if (swap_duplicate(entry) < 0)
846                                 return entry.val;
847
848                         /* make sure dst_mm is on swapoff's mmlist. */
849                         if (unlikely(list_empty(&dst_mm->mmlist))) {
850                                 spin_lock(&mmlist_lock);
851                                 if (list_empty(&dst_mm->mmlist))
852                                         list_add(&dst_mm->mmlist,
853                                                  &src_mm->mmlist);
854                                 spin_unlock(&mmlist_lock);
855                         }
856                         if (likely(!non_swap_entry(entry)))
857                                 rss[MM_SWAPENTS]++;
858                         else if (is_migration_entry(entry)) {
859                                 page = migration_entry_to_page(entry);
860
861                                 if (PageAnon(page))
862                                         rss[MM_ANONPAGES]++;
863                                 else
864                                         rss[MM_FILEPAGES]++;
865
866                                 if (is_write_migration_entry(entry) &&
867                                     is_cow_mapping(vm_flags)) {
868                                         /*
869                                          * COW mappings require pages in both
870                                          * parent and child to be set to read.
871                                          */
872                                         make_migration_entry_read(&entry);
873                                         pte = swp_entry_to_pte(entry);
874                                         set_pte_at(src_mm, addr, src_pte, pte);
875                                 }
876                         }
877                 }
878                 goto out_set_pte;
879         }
880
881         /*
882          * If it's a COW mapping, write protect it both
883          * in the parent and the child
884          */
885         if (is_cow_mapping(vm_flags)) {
886                 ptep_set_wrprotect(src_mm, addr, src_pte);
887                 pte = pte_wrprotect(pte);
888         }
889
890         /*
891          * If it's a shared mapping, mark it clean in
892          * the child
893          */
894         if (vm_flags & VM_SHARED)
895                 pte = pte_mkclean(pte);
896         pte = pte_mkold(pte);
897
898         page = vm_normal_page(vma, addr, pte);
899         if (page) {
900                 get_page(page);
901                 page_dup_rmap(page);
902                 if (PageAnon(page))
903                         rss[MM_ANONPAGES]++;
904                 else
905                         rss[MM_FILEPAGES]++;
906         }
907
908 out_set_pte:
909         set_pte_at(dst_mm, addr, dst_pte, pte);
910         return 0;
911 }
912
913 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
915                    unsigned long addr, unsigned long end)
916 {
917         pte_t *orig_src_pte, *orig_dst_pte;
918         pte_t *src_pte, *dst_pte;
919         spinlock_t *src_ptl, *dst_ptl;
920         int progress = 0;
921         int rss[NR_MM_COUNTERS];
922         swp_entry_t entry = (swp_entry_t){0};
923
924 again:
925         init_rss_vec(rss);
926
927         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
928         if (!dst_pte)
929                 return -ENOMEM;
930         src_pte = pte_offset_map(src_pmd, addr);
931         src_ptl = pte_lockptr(src_mm, src_pmd);
932         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
933         orig_src_pte = src_pte;
934         orig_dst_pte = dst_pte;
935         arch_enter_lazy_mmu_mode();
936
937         do {
938                 /*
939                  * We are holding two locks at this point - either of them
940                  * could generate latencies in another task on another CPU.
941                  */
942                 if (progress >= 32) {
943                         progress = 0;
944                         if (need_resched() ||
945                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
946                                 break;
947                 }
948                 if (pte_none(*src_pte)) {
949                         progress++;
950                         continue;
951                 }
952                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
953                                                         vma, addr, rss);
954                 if (entry.val)
955                         break;
956                 progress += 8;
957         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
958
959         arch_leave_lazy_mmu_mode();
960         spin_unlock(src_ptl);
961         pte_unmap(orig_src_pte);
962         add_mm_rss_vec(dst_mm, rss);
963         pte_unmap_unlock(orig_dst_pte, dst_ptl);
964         cond_resched();
965
966         if (entry.val) {
967                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
968                         return -ENOMEM;
969                 progress = 0;
970         }
971         if (addr != end)
972                 goto again;
973         return 0;
974 }
975
976 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
977                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
978                 unsigned long addr, unsigned long end)
979 {
980         pmd_t *src_pmd, *dst_pmd;
981         unsigned long next;
982
983         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
984         if (!dst_pmd)
985                 return -ENOMEM;
986         src_pmd = pmd_offset(src_pud, addr);
987         do {
988                 next = pmd_addr_end(addr, end);
989                 if (pmd_trans_huge(*src_pmd)) {
990                         int err;
991                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
992                         err = copy_huge_pmd(dst_mm, src_mm,
993                                             dst_pmd, src_pmd, addr, vma);
994                         if (err == -ENOMEM)
995                                 return -ENOMEM;
996                         if (!err)
997                                 continue;
998                         /* fall through */
999                 }
1000                 if (pmd_none_or_clear_bad(src_pmd))
1001                         continue;
1002                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1003                                                 vma, addr, next))
1004                         return -ENOMEM;
1005         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1006         return 0;
1007 }
1008
1009 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1011                 unsigned long addr, unsigned long end)
1012 {
1013         pud_t *src_pud, *dst_pud;
1014         unsigned long next;
1015
1016         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1017         if (!dst_pud)
1018                 return -ENOMEM;
1019         src_pud = pud_offset(src_pgd, addr);
1020         do {
1021                 next = pud_addr_end(addr, end);
1022                 if (pud_none_or_clear_bad(src_pud))
1023                         continue;
1024                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1025                                                 vma, addr, next))
1026                         return -ENOMEM;
1027         } while (dst_pud++, src_pud++, addr = next, addr != end);
1028         return 0;
1029 }
1030
1031 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032                 struct vm_area_struct *vma)
1033 {
1034         pgd_t *src_pgd, *dst_pgd;
1035         unsigned long next;
1036         unsigned long addr = vma->vm_start;
1037         unsigned long end = vma->vm_end;
1038         int ret;
1039
1040         /*
1041          * Don't copy ptes where a page fault will fill them correctly.
1042          * Fork becomes much lighter when there are big shared or private
1043          * readonly mappings. The tradeoff is that copy_page_range is more
1044          * efficient than faulting.
1045          */
1046         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1047                 if (!vma->anon_vma)
1048                         return 0;
1049         }
1050
1051         if (is_vm_hugetlb_page(vma))
1052                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1053
1054         if (unlikely(is_pfn_mapping(vma))) {
1055                 /*
1056                  * We do not free on error cases below as remove_vma
1057                  * gets called on error from higher level routine
1058                  */
1059                 ret = track_pfn_vma_copy(vma);
1060                 if (ret)
1061                         return ret;
1062         }
1063
1064         /*
1065          * We need to invalidate the secondary MMU mappings only when
1066          * there could be a permission downgrade on the ptes of the
1067          * parent mm. And a permission downgrade will only happen if
1068          * is_cow_mapping() returns true.
1069          */
1070         if (is_cow_mapping(vma->vm_flags))
1071                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1072
1073         ret = 0;
1074         dst_pgd = pgd_offset(dst_mm, addr);
1075         src_pgd = pgd_offset(src_mm, addr);
1076         do {
1077                 next = pgd_addr_end(addr, end);
1078                 if (pgd_none_or_clear_bad(src_pgd))
1079                         continue;
1080                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081                                             vma, addr, next))) {
1082                         ret = -ENOMEM;
1083                         break;
1084                 }
1085         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087         if (is_cow_mapping(vma->vm_flags))
1088                 mmu_notifier_invalidate_range_end(src_mm,
1089                                                   vma->vm_start, end);
1090         return ret;
1091 }
1092
1093 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094                                 struct vm_area_struct *vma, pmd_t *pmd,
1095                                 unsigned long addr, unsigned long end,
1096                                 struct zap_details *details)
1097 {
1098         struct mm_struct *mm = tlb->mm;
1099         int force_flush = 0;
1100         int rss[NR_MM_COUNTERS];
1101         spinlock_t *ptl;
1102         pte_t *start_pte;
1103         pte_t *pte;
1104
1105 again:
1106         init_rss_vec(rss);
1107         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108         pte = start_pte;
1109         arch_enter_lazy_mmu_mode();
1110         do {
1111                 pte_t ptent = *pte;
1112                 if (pte_none(ptent)) {
1113                         continue;
1114                 }
1115
1116                 if (pte_present(ptent)) {
1117                         struct page *page;
1118
1119                         page = vm_normal_page(vma, addr, ptent);
1120                         if (unlikely(details) && page) {
1121                                 /*
1122                                  * unmap_shared_mapping_pages() wants to
1123                                  * invalidate cache without truncating:
1124                                  * unmap shared but keep private pages.
1125                                  */
1126                                 if (details->check_mapping &&
1127                                     details->check_mapping != page->mapping)
1128                                         continue;
1129                                 /*
1130                                  * Each page->index must be checked when
1131                                  * invalidating or truncating nonlinear.
1132                                  */
1133                                 if (details->nonlinear_vma &&
1134                                     (page->index < details->first_index ||
1135                                      page->index > details->last_index))
1136                                         continue;
1137                         }
1138                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1139                                                         tlb->fullmm);
1140                         tlb_remove_tlb_entry(tlb, pte, addr);
1141                         if (unlikely(!page))
1142                                 continue;
1143                         if (unlikely(details) && details->nonlinear_vma
1144                             && linear_page_index(details->nonlinear_vma,
1145                                                 addr) != page->index)
1146                                 set_pte_at(mm, addr, pte,
1147                                            pgoff_to_pte(page->index));
1148                         if (PageAnon(page))
1149                                 rss[MM_ANONPAGES]--;
1150                         else {
1151                                 if (pte_dirty(ptent))
1152                                         set_page_dirty(page);
1153                                 if (pte_young(ptent) &&
1154                                     likely(!VM_SequentialReadHint(vma)))
1155                                         mark_page_accessed(page);
1156                                 rss[MM_FILEPAGES]--;
1157                         }
1158                         page_remove_rmap(page);
1159                         if (unlikely(page_mapcount(page) < 0))
1160                                 print_bad_pte(vma, addr, ptent, page);
1161                         force_flush = !__tlb_remove_page(tlb, page);
1162                         if (force_flush)
1163                                 break;
1164                         continue;
1165                 }
1166                 /*
1167                  * If details->check_mapping, we leave swap entries;
1168                  * if details->nonlinear_vma, we leave file entries.
1169                  */
1170                 if (unlikely(details))
1171                         continue;
1172                 if (pte_file(ptent)) {
1173                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174                                 print_bad_pte(vma, addr, ptent, NULL);
1175                 } else {
1176                         swp_entry_t entry = pte_to_swp_entry(ptent);
1177
1178                         if (!non_swap_entry(entry))
1179                                 rss[MM_SWAPENTS]--;
1180                         else if (is_migration_entry(entry)) {
1181                                 struct page *page;
1182
1183                                 page = migration_entry_to_page(entry);
1184
1185                                 if (PageAnon(page))
1186                                         rss[MM_ANONPAGES]--;
1187                                 else
1188                                         rss[MM_FILEPAGES]--;
1189                         }
1190                         if (unlikely(!free_swap_and_cache(entry)))
1191                                 print_bad_pte(vma, addr, ptent, NULL);
1192                 }
1193                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194         } while (pte++, addr += PAGE_SIZE, addr != end);
1195
1196         add_mm_rss_vec(mm, rss);
1197         arch_leave_lazy_mmu_mode();
1198         pte_unmap_unlock(start_pte, ptl);
1199
1200         /*
1201          * mmu_gather ran out of room to batch pages, we break out of
1202          * the PTE lock to avoid doing the potential expensive TLB invalidate
1203          * and page-free while holding it.
1204          */
1205         if (force_flush) {
1206                 force_flush = 0;
1207                 tlb_flush_mmu(tlb);
1208                 if (addr != end)
1209                         goto again;
1210         }
1211
1212         return addr;
1213 }
1214
1215 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1216                                 struct vm_area_struct *vma, pud_t *pud,
1217                                 unsigned long addr, unsigned long end,
1218                                 struct zap_details *details)
1219 {
1220         pmd_t *pmd;
1221         unsigned long next;
1222
1223         pmd = pmd_offset(pud, addr);
1224         do {
1225                 next = pmd_addr_end(addr, end);
1226                 if (pmd_trans_huge(*pmd)) {
1227                         if (next - addr != HPAGE_PMD_SIZE) {
1228                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1229                                 split_huge_page_pmd(vma->vm_mm, pmd);
1230                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1231                                 goto next;
1232                         /* fall through */
1233                 }
1234                 /*
1235                  * Here there can be other concurrent MADV_DONTNEED or
1236                  * trans huge page faults running, and if the pmd is
1237                  * none or trans huge it can change under us. This is
1238                  * because MADV_DONTNEED holds the mmap_sem in read
1239                  * mode.
1240                  */
1241                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1242                         goto next;
1243                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1244 next:
1245                 cond_resched();
1246         } while (pmd++, addr = next, addr != end);
1247
1248         return addr;
1249 }
1250
1251 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1252                                 struct vm_area_struct *vma, pgd_t *pgd,
1253                                 unsigned long addr, unsigned long end,
1254                                 struct zap_details *details)
1255 {
1256         pud_t *pud;
1257         unsigned long next;
1258
1259         pud = pud_offset(pgd, addr);
1260         do {
1261                 next = pud_addr_end(addr, end);
1262                 if (pud_none_or_clear_bad(pud))
1263                         continue;
1264                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1265         } while (pud++, addr = next, addr != end);
1266
1267         return addr;
1268 }
1269
1270 static void unmap_page_range(struct mmu_gather *tlb,
1271                              struct vm_area_struct *vma,
1272                              unsigned long addr, unsigned long end,
1273                              struct zap_details *details)
1274 {
1275         pgd_t *pgd;
1276         unsigned long next;
1277
1278         if (details && !details->check_mapping && !details->nonlinear_vma)
1279                 details = NULL;
1280
1281         BUG_ON(addr >= end);
1282         mem_cgroup_uncharge_start();
1283         tlb_start_vma(tlb, vma);
1284         pgd = pgd_offset(vma->vm_mm, addr);
1285         do {
1286                 next = pgd_addr_end(addr, end);
1287                 if (pgd_none_or_clear_bad(pgd))
1288                         continue;
1289                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290         } while (pgd++, addr = next, addr != end);
1291         tlb_end_vma(tlb, vma);
1292         mem_cgroup_uncharge_end();
1293 }
1294
1295
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297                 struct vm_area_struct *vma, unsigned long start_addr,
1298                 unsigned long end_addr, unsigned long *nr_accounted,
1299                 struct zap_details *details)
1300 {
1301         unsigned long start = max(vma->vm_start, start_addr);
1302         unsigned long end;
1303
1304         if (start >= vma->vm_end)
1305                 return;
1306         end = min(vma->vm_end, end_addr);
1307         if (end <= vma->vm_start)
1308                 return;
1309
1310         if (vma->vm_file)
1311                 uprobe_munmap(vma, start, end);
1312
1313         if (vma->vm_flags & VM_ACCOUNT)
1314                 *nr_accounted += (end - start) >> PAGE_SHIFT;
1315
1316         if (unlikely(is_pfn_mapping(vma)))
1317                 untrack_pfn_vma(vma, 0, 0);
1318
1319         if (start != end) {
1320                 if (unlikely(is_vm_hugetlb_page(vma))) {
1321                         /*
1322                          * It is undesirable to test vma->vm_file as it
1323                          * should be non-null for valid hugetlb area.
1324                          * However, vm_file will be NULL in the error
1325                          * cleanup path of do_mmap_pgoff. When
1326                          * hugetlbfs ->mmap method fails,
1327                          * do_mmap_pgoff() nullifies vma->vm_file
1328                          * before calling this function to clean up.
1329                          * Since no pte has actually been setup, it is
1330                          * safe to do nothing in this case.
1331                          */
1332                         if (vma->vm_file)
1333                                 unmap_hugepage_range(vma, start, end, NULL);
1334                 } else
1335                         unmap_page_range(tlb, vma, start, end, details);
1336         }
1337 }
1338
1339 /**
1340  * unmap_vmas - unmap a range of memory covered by a list of vma's
1341  * @tlb: address of the caller's struct mmu_gather
1342  * @vma: the starting vma
1343  * @start_addr: virtual address at which to start unmapping
1344  * @end_addr: virtual address at which to end unmapping
1345  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1346  * @details: details of nonlinear truncation or shared cache invalidation
1347  *
1348  * Unmap all pages in the vma list.
1349  *
1350  * Only addresses between `start' and `end' will be unmapped.
1351  *
1352  * The VMA list must be sorted in ascending virtual address order.
1353  *
1354  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1355  * range after unmap_vmas() returns.  So the only responsibility here is to
1356  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1357  * drops the lock and schedules.
1358  */
1359 void unmap_vmas(struct mmu_gather *tlb,
1360                 struct vm_area_struct *vma, unsigned long start_addr,
1361                 unsigned long end_addr, unsigned long *nr_accounted,
1362                 struct zap_details *details)
1363 {
1364         struct mm_struct *mm = vma->vm_mm;
1365
1366         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1367         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1368                 unmap_single_vma(tlb, vma, start_addr, end_addr, nr_accounted,
1369                                  details);
1370         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1371 }
1372
1373 /**
1374  * zap_page_range - remove user pages in a given range
1375  * @vma: vm_area_struct holding the applicable pages
1376  * @address: starting address of pages to zap
1377  * @size: number of bytes to zap
1378  * @details: details of nonlinear truncation or shared cache invalidation
1379  *
1380  * Caller must protect the VMA list
1381  */
1382 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1383                 unsigned long size, struct zap_details *details)
1384 {
1385         struct mm_struct *mm = vma->vm_mm;
1386         struct mmu_gather tlb;
1387         unsigned long end = address + size;
1388         unsigned long nr_accounted = 0;
1389
1390         lru_add_drain();
1391         tlb_gather_mmu(&tlb, mm, 0);
1392         update_hiwater_rss(mm);
1393         unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1394         tlb_finish_mmu(&tlb, address, end);
1395 }
1396
1397 /**
1398  * zap_page_range_single - remove user pages in a given range
1399  * @vma: vm_area_struct holding the applicable pages
1400  * @address: starting address of pages to zap
1401  * @size: number of bytes to zap
1402  * @details: details of nonlinear truncation or shared cache invalidation
1403  *
1404  * The range must fit into one VMA.
1405  */
1406 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1407                 unsigned long size, struct zap_details *details)
1408 {
1409         struct mm_struct *mm = vma->vm_mm;
1410         struct mmu_gather tlb;
1411         unsigned long end = address + size;
1412         unsigned long nr_accounted = 0;
1413
1414         lru_add_drain();
1415         tlb_gather_mmu(&tlb, mm, 0);
1416         update_hiwater_rss(mm);
1417         mmu_notifier_invalidate_range_start(mm, address, end);
1418         unmap_single_vma(&tlb, vma, address, end, &nr_accounted, details);
1419         mmu_notifier_invalidate_range_end(mm, address, end);
1420         tlb_finish_mmu(&tlb, address, end);
1421 }
1422
1423 /**
1424  * zap_vma_ptes - remove ptes mapping the vma
1425  * @vma: vm_area_struct holding ptes to be zapped
1426  * @address: starting address of pages to zap
1427  * @size: number of bytes to zap
1428  *
1429  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1430  *
1431  * The entire address range must be fully contained within the vma.
1432  *
1433  * Returns 0 if successful.
1434  */
1435 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1436                 unsigned long size)
1437 {
1438         if (address < vma->vm_start || address + size > vma->vm_end ||
1439                         !(vma->vm_flags & VM_PFNMAP))
1440                 return -1;
1441         zap_page_range_single(vma, address, size, NULL);
1442         return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1445
1446 /**
1447  * follow_page - look up a page descriptor from a user-virtual address
1448  * @vma: vm_area_struct mapping @address
1449  * @address: virtual address to look up
1450  * @flags: flags modifying lookup behaviour
1451  *
1452  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1453  *
1454  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1455  * an error pointer if there is a mapping to something not represented
1456  * by a page descriptor (see also vm_normal_page()).
1457  */
1458 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1459                         unsigned int flags)
1460 {
1461         pgd_t *pgd;
1462         pud_t *pud;
1463         pmd_t *pmd;
1464         pte_t *ptep, pte;
1465         spinlock_t *ptl;
1466         struct page *page;
1467         struct mm_struct *mm = vma->vm_mm;
1468
1469         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1470         if (!IS_ERR(page)) {
1471                 BUG_ON(flags & FOLL_GET);
1472                 goto out;
1473         }
1474
1475         page = NULL;
1476         pgd = pgd_offset(mm, address);
1477         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1478                 goto no_page_table;
1479
1480         pud = pud_offset(pgd, address);
1481         if (pud_none(*pud))
1482                 goto no_page_table;
1483         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1484                 BUG_ON(flags & FOLL_GET);
1485                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1486                 goto out;
1487         }
1488         if (unlikely(pud_bad(*pud)))
1489                 goto no_page_table;
1490
1491         pmd = pmd_offset(pud, address);
1492         if (pmd_none(*pmd))
1493                 goto no_page_table;
1494         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1495                 BUG_ON(flags & FOLL_GET);
1496                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1497                 goto out;
1498         }
1499         if (pmd_trans_huge(*pmd)) {
1500                 if (flags & FOLL_SPLIT) {
1501                         split_huge_page_pmd(mm, pmd);
1502                         goto split_fallthrough;
1503                 }
1504                 spin_lock(&mm->page_table_lock);
1505                 if (likely(pmd_trans_huge(*pmd))) {
1506                         if (unlikely(pmd_trans_splitting(*pmd))) {
1507                                 spin_unlock(&mm->page_table_lock);
1508                                 wait_split_huge_page(vma->anon_vma, pmd);
1509                         } else {
1510                                 page = follow_trans_huge_pmd(mm, address,
1511                                                              pmd, flags);
1512                                 spin_unlock(&mm->page_table_lock);
1513                                 goto out;
1514                         }
1515                 } else
1516                         spin_unlock(&mm->page_table_lock);
1517                 /* fall through */
1518         }
1519 split_fallthrough:
1520         if (unlikely(pmd_bad(*pmd)))
1521                 goto no_page_table;
1522
1523         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1524
1525         pte = *ptep;
1526         if (!pte_present(pte))
1527                 goto no_page;
1528         if ((flags & FOLL_WRITE) && !pte_write(pte))
1529                 goto unlock;
1530
1531         page = vm_normal_page(vma, address, pte);
1532         if (unlikely(!page)) {
1533                 if ((flags & FOLL_DUMP) ||
1534                     !is_zero_pfn(pte_pfn(pte)))
1535                         goto bad_page;
1536                 page = pte_page(pte);
1537         }
1538
1539         if (flags & FOLL_GET)
1540                 get_page_foll(page);
1541         if (flags & FOLL_TOUCH) {
1542                 if ((flags & FOLL_WRITE) &&
1543                     !pte_dirty(pte) && !PageDirty(page))
1544                         set_page_dirty(page);
1545                 /*
1546                  * pte_mkyoung() would be more correct here, but atomic care
1547                  * is needed to avoid losing the dirty bit: it is easier to use
1548                  * mark_page_accessed().
1549                  */
1550                 mark_page_accessed(page);
1551         }
1552         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1553                 /*
1554                  * The preliminary mapping check is mainly to avoid the
1555                  * pointless overhead of lock_page on the ZERO_PAGE
1556                  * which might bounce very badly if there is contention.
1557                  *
1558                  * If the page is already locked, we don't need to
1559                  * handle it now - vmscan will handle it later if and
1560                  * when it attempts to reclaim the page.
1561                  */
1562                 if (page->mapping && trylock_page(page)) {
1563                         lru_add_drain();  /* push cached pages to LRU */
1564                         /*
1565                          * Because we lock page here and migration is
1566                          * blocked by the pte's page reference, we need
1567                          * only check for file-cache page truncation.
1568                          */
1569                         if (page->mapping)
1570                                 mlock_vma_page(page);
1571                         unlock_page(page);
1572                 }
1573         }
1574 unlock:
1575         pte_unmap_unlock(ptep, ptl);
1576 out:
1577         return page;
1578
1579 bad_page:
1580         pte_unmap_unlock(ptep, ptl);
1581         return ERR_PTR(-EFAULT);
1582
1583 no_page:
1584         pte_unmap_unlock(ptep, ptl);
1585         if (!pte_none(pte))
1586                 return page;
1587
1588 no_page_table:
1589         /*
1590          * When core dumping an enormous anonymous area that nobody
1591          * has touched so far, we don't want to allocate unnecessary pages or
1592          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1593          * then get_dump_page() will return NULL to leave a hole in the dump.
1594          * But we can only make this optimization where a hole would surely
1595          * be zero-filled if handle_mm_fault() actually did handle it.
1596          */
1597         if ((flags & FOLL_DUMP) &&
1598             (!vma->vm_ops || !vma->vm_ops->fault))
1599                 return ERR_PTR(-EFAULT);
1600         return page;
1601 }
1602
1603 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1604 {
1605         return stack_guard_page_start(vma, addr) ||
1606                stack_guard_page_end(vma, addr+PAGE_SIZE);
1607 }
1608
1609 /**
1610  * __get_user_pages() - pin user pages in memory
1611  * @tsk:        task_struct of target task
1612  * @mm:         mm_struct of target mm
1613  * @start:      starting user address
1614  * @nr_pages:   number of pages from start to pin
1615  * @gup_flags:  flags modifying pin behaviour
1616  * @pages:      array that receives pointers to the pages pinned.
1617  *              Should be at least nr_pages long. Or NULL, if caller
1618  *              only intends to ensure the pages are faulted in.
1619  * @vmas:       array of pointers to vmas corresponding to each page.
1620  *              Or NULL if the caller does not require them.
1621  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1622  *
1623  * Returns number of pages pinned. This may be fewer than the number
1624  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1625  * were pinned, returns -errno. Each page returned must be released
1626  * with a put_page() call when it is finished with. vmas will only
1627  * remain valid while mmap_sem is held.
1628  *
1629  * Must be called with mmap_sem held for read or write.
1630  *
1631  * __get_user_pages walks a process's page tables and takes a reference to
1632  * each struct page that each user address corresponds to at a given
1633  * instant. That is, it takes the page that would be accessed if a user
1634  * thread accesses the given user virtual address at that instant.
1635  *
1636  * This does not guarantee that the page exists in the user mappings when
1637  * __get_user_pages returns, and there may even be a completely different
1638  * page there in some cases (eg. if mmapped pagecache has been invalidated
1639  * and subsequently re faulted). However it does guarantee that the page
1640  * won't be freed completely. And mostly callers simply care that the page
1641  * contains data that was valid *at some point in time*. Typically, an IO
1642  * or similar operation cannot guarantee anything stronger anyway because
1643  * locks can't be held over the syscall boundary.
1644  *
1645  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1646  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1647  * appropriate) must be called after the page is finished with, and
1648  * before put_page is called.
1649  *
1650  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1651  * or mmap_sem contention, and if waiting is needed to pin all pages,
1652  * *@nonblocking will be set to 0.
1653  *
1654  * In most cases, get_user_pages or get_user_pages_fast should be used
1655  * instead of __get_user_pages. __get_user_pages should be used only if
1656  * you need some special @gup_flags.
1657  */
1658 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1659                      unsigned long start, int nr_pages, unsigned int gup_flags,
1660                      struct page **pages, struct vm_area_struct **vmas,
1661                      int *nonblocking)
1662 {
1663         int i;
1664         unsigned long vm_flags;
1665
1666         if (nr_pages <= 0)
1667                 return 0;
1668
1669         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1670
1671         /* 
1672          * Require read or write permissions.
1673          * If FOLL_FORCE is set, we only require the "MAY" flags.
1674          */
1675         vm_flags  = (gup_flags & FOLL_WRITE) ?
1676                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1677         vm_flags &= (gup_flags & FOLL_FORCE) ?
1678                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1679         i = 0;
1680
1681         do {
1682                 struct vm_area_struct *vma;
1683
1684                 vma = find_extend_vma(mm, start);
1685                 if (!vma && in_gate_area(mm, start)) {
1686                         unsigned long pg = start & PAGE_MASK;
1687                         pgd_t *pgd;
1688                         pud_t *pud;
1689                         pmd_t *pmd;
1690                         pte_t *pte;
1691
1692                         /* user gate pages are read-only */
1693                         if (gup_flags & FOLL_WRITE)
1694                                 return i ? : -EFAULT;
1695                         if (pg > TASK_SIZE)
1696                                 pgd = pgd_offset_k(pg);
1697                         else
1698                                 pgd = pgd_offset_gate(mm, pg);
1699                         BUG_ON(pgd_none(*pgd));
1700                         pud = pud_offset(pgd, pg);
1701                         BUG_ON(pud_none(*pud));
1702                         pmd = pmd_offset(pud, pg);
1703                         if (pmd_none(*pmd))
1704                                 return i ? : -EFAULT;
1705                         VM_BUG_ON(pmd_trans_huge(*pmd));
1706                         pte = pte_offset_map(pmd, pg);
1707                         if (pte_none(*pte)) {
1708                                 pte_unmap(pte);
1709                                 return i ? : -EFAULT;
1710                         }
1711                         vma = get_gate_vma(mm);
1712                         if (pages) {
1713                                 struct page *page;
1714
1715                                 page = vm_normal_page(vma, start, *pte);
1716                                 if (!page) {
1717                                         if (!(gup_flags & FOLL_DUMP) &&
1718                                              is_zero_pfn(pte_pfn(*pte)))
1719                                                 page = pte_page(*pte);
1720                                         else {
1721                                                 pte_unmap(pte);
1722                                                 return i ? : -EFAULT;
1723                                         }
1724                                 }
1725                                 pages[i] = page;
1726                                 get_page(page);
1727                         }
1728                         pte_unmap(pte);
1729                         goto next_page;
1730                 }
1731
1732                 if (!vma ||
1733                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1734                     !(vm_flags & vma->vm_flags))
1735                         return i ? : -EFAULT;
1736
1737                 if (is_vm_hugetlb_page(vma)) {
1738                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1739                                         &start, &nr_pages, i, gup_flags);
1740                         continue;
1741                 }
1742
1743                 do {
1744                         struct page *page;
1745                         unsigned int foll_flags = gup_flags;
1746
1747                         /*
1748                          * If we have a pending SIGKILL, don't keep faulting
1749                          * pages and potentially allocating memory.
1750                          */
1751                         if (unlikely(fatal_signal_pending(current)))
1752                                 return i ? i : -ERESTARTSYS;
1753
1754                         cond_resched();
1755                         while (!(page = follow_page(vma, start, foll_flags))) {
1756                                 int ret;
1757                                 unsigned int fault_flags = 0;
1758
1759                                 /* For mlock, just skip the stack guard page. */
1760                                 if (foll_flags & FOLL_MLOCK) {
1761                                         if (stack_guard_page(vma, start))
1762                                                 goto next_page;
1763                                 }
1764                                 if (foll_flags & FOLL_WRITE)
1765                                         fault_flags |= FAULT_FLAG_WRITE;
1766                                 if (nonblocking)
1767                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1768                                 if (foll_flags & FOLL_NOWAIT)
1769                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1770
1771                                 ret = handle_mm_fault(mm, vma, start,
1772                                                         fault_flags);
1773
1774                                 if (ret & VM_FAULT_ERROR) {
1775                                         if (ret & VM_FAULT_OOM)
1776                                                 return i ? i : -ENOMEM;
1777                                         if (ret & (VM_FAULT_HWPOISON |
1778                                                    VM_FAULT_HWPOISON_LARGE)) {
1779                                                 if (i)
1780                                                         return i;
1781                                                 else if (gup_flags & FOLL_HWPOISON)
1782                                                         return -EHWPOISON;
1783                                                 else
1784                                                         return -EFAULT;
1785                                         }
1786                                         if (ret & VM_FAULT_SIGBUS)
1787                                                 return i ? i : -EFAULT;
1788                                         BUG();
1789                                 }
1790
1791                                 if (tsk) {
1792                                         if (ret & VM_FAULT_MAJOR)
1793                                                 tsk->maj_flt++;
1794                                         else
1795                                                 tsk->min_flt++;
1796                                 }
1797
1798                                 if (ret & VM_FAULT_RETRY) {
1799                                         if (nonblocking)
1800                                                 *nonblocking = 0;
1801                                         return i;
1802                                 }
1803
1804                                 /*
1805                                  * The VM_FAULT_WRITE bit tells us that
1806                                  * do_wp_page has broken COW when necessary,
1807                                  * even if maybe_mkwrite decided not to set
1808                                  * pte_write. We can thus safely do subsequent
1809                                  * page lookups as if they were reads. But only
1810                                  * do so when looping for pte_write is futile:
1811                                  * in some cases userspace may also be wanting
1812                                  * to write to the gotten user page, which a
1813                                  * read fault here might prevent (a readonly
1814                                  * page might get reCOWed by userspace write).
1815                                  */
1816                                 if ((ret & VM_FAULT_WRITE) &&
1817                                     !(vma->vm_flags & VM_WRITE))
1818                                         foll_flags &= ~FOLL_WRITE;
1819
1820                                 cond_resched();
1821                         }
1822                         if (IS_ERR(page))
1823                                 return i ? i : PTR_ERR(page);
1824                         if (pages) {
1825                                 pages[i] = page;
1826
1827                                 flush_anon_page(vma, page, start);
1828                                 flush_dcache_page(page);
1829                         }
1830 next_page:
1831                         if (vmas)
1832                                 vmas[i] = vma;
1833                         i++;
1834                         start += PAGE_SIZE;
1835                         nr_pages--;
1836                 } while (nr_pages && start < vma->vm_end);
1837         } while (nr_pages);
1838         return i;
1839 }
1840 EXPORT_SYMBOL(__get_user_pages);
1841
1842 /*
1843  * fixup_user_fault() - manually resolve a user page fault
1844  * @tsk:        the task_struct to use for page fault accounting, or
1845  *              NULL if faults are not to be recorded.
1846  * @mm:         mm_struct of target mm
1847  * @address:    user address
1848  * @fault_flags:flags to pass down to handle_mm_fault()
1849  *
1850  * This is meant to be called in the specific scenario where for locking reasons
1851  * we try to access user memory in atomic context (within a pagefault_disable()
1852  * section), this returns -EFAULT, and we want to resolve the user fault before
1853  * trying again.
1854  *
1855  * Typically this is meant to be used by the futex code.
1856  *
1857  * The main difference with get_user_pages() is that this function will
1858  * unconditionally call handle_mm_fault() which will in turn perform all the
1859  * necessary SW fixup of the dirty and young bits in the PTE, while
1860  * handle_mm_fault() only guarantees to update these in the struct page.
1861  *
1862  * This is important for some architectures where those bits also gate the
1863  * access permission to the page because they are maintained in software.  On
1864  * such architectures, gup() will not be enough to make a subsequent access
1865  * succeed.
1866  *
1867  * This should be called with the mm_sem held for read.
1868  */
1869 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1870                      unsigned long address, unsigned int fault_flags)
1871 {
1872         struct vm_area_struct *vma;
1873         int ret;
1874
1875         vma = find_extend_vma(mm, address);
1876         if (!vma || address < vma->vm_start)
1877                 return -EFAULT;
1878
1879         ret = handle_mm_fault(mm, vma, address, fault_flags);
1880         if (ret & VM_FAULT_ERROR) {
1881                 if (ret & VM_FAULT_OOM)
1882                         return -ENOMEM;
1883                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1884                         return -EHWPOISON;
1885                 if (ret & VM_FAULT_SIGBUS)
1886                         return -EFAULT;
1887                 BUG();
1888         }
1889         if (tsk) {
1890                 if (ret & VM_FAULT_MAJOR)
1891                         tsk->maj_flt++;
1892                 else
1893                         tsk->min_flt++;
1894         }
1895         return 0;
1896 }
1897
1898 /*
1899  * get_user_pages() - pin user pages in memory
1900  * @tsk:        the task_struct to use for page fault accounting, or
1901  *              NULL if faults are not to be recorded.
1902  * @mm:         mm_struct of target mm
1903  * @start:      starting user address
1904  * @nr_pages:   number of pages from start to pin
1905  * @write:      whether pages will be written to by the caller
1906  * @force:      whether to force write access even if user mapping is
1907  *              readonly. This will result in the page being COWed even
1908  *              in MAP_SHARED mappings. You do not want this.
1909  * @pages:      array that receives pointers to the pages pinned.
1910  *              Should be at least nr_pages long. Or NULL, if caller
1911  *              only intends to ensure the pages are faulted in.
1912  * @vmas:       array of pointers to vmas corresponding to each page.
1913  *              Or NULL if the caller does not require them.
1914  *
1915  * Returns number of pages pinned. This may be fewer than the number
1916  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1917  * were pinned, returns -errno. Each page returned must be released
1918  * with a put_page() call when it is finished with. vmas will only
1919  * remain valid while mmap_sem is held.
1920  *
1921  * Must be called with mmap_sem held for read or write.
1922  *
1923  * get_user_pages walks a process's page tables and takes a reference to
1924  * each struct page that each user address corresponds to at a given
1925  * instant. That is, it takes the page that would be accessed if a user
1926  * thread accesses the given user virtual address at that instant.
1927  *
1928  * This does not guarantee that the page exists in the user mappings when
1929  * get_user_pages returns, and there may even be a completely different
1930  * page there in some cases (eg. if mmapped pagecache has been invalidated
1931  * and subsequently re faulted). However it does guarantee that the page
1932  * won't be freed completely. And mostly callers simply care that the page
1933  * contains data that was valid *at some point in time*. Typically, an IO
1934  * or similar operation cannot guarantee anything stronger anyway because
1935  * locks can't be held over the syscall boundary.
1936  *
1937  * If write=0, the page must not be written to. If the page is written to,
1938  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1939  * after the page is finished with, and before put_page is called.
1940  *
1941  * get_user_pages is typically used for fewer-copy IO operations, to get a
1942  * handle on the memory by some means other than accesses via the user virtual
1943  * addresses. The pages may be submitted for DMA to devices or accessed via
1944  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1945  * use the correct cache flushing APIs.
1946  *
1947  * See also get_user_pages_fast, for performance critical applications.
1948  */
1949 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1950                 unsigned long start, int nr_pages, int write, int force,
1951                 struct page **pages, struct vm_area_struct **vmas)
1952 {
1953         int flags = FOLL_TOUCH;
1954
1955         if (pages)
1956                 flags |= FOLL_GET;
1957         if (write)
1958                 flags |= FOLL_WRITE;
1959         if (force)
1960                 flags |= FOLL_FORCE;
1961
1962         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1963                                 NULL);
1964 }
1965 EXPORT_SYMBOL(get_user_pages);
1966
1967 /**
1968  * get_dump_page() - pin user page in memory while writing it to core dump
1969  * @addr: user address
1970  *
1971  * Returns struct page pointer of user page pinned for dump,
1972  * to be freed afterwards by page_cache_release() or put_page().
1973  *
1974  * Returns NULL on any kind of failure - a hole must then be inserted into
1975  * the corefile, to preserve alignment with its headers; and also returns
1976  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1977  * allowing a hole to be left in the corefile to save diskspace.
1978  *
1979  * Called without mmap_sem, but after all other threads have been killed.
1980  */
1981 #ifdef CONFIG_ELF_CORE
1982 struct page *get_dump_page(unsigned long addr)
1983 {
1984         struct vm_area_struct *vma;
1985         struct page *page;
1986
1987         if (__get_user_pages(current, current->mm, addr, 1,
1988                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1989                              NULL) < 1)
1990                 return NULL;
1991         flush_cache_page(vma, addr, page_to_pfn(page));
1992         return page;
1993 }
1994 #endif /* CONFIG_ELF_CORE */
1995
1996 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1997                         spinlock_t **ptl)
1998 {
1999         pgd_t * pgd = pgd_offset(mm, addr);
2000         pud_t * pud = pud_alloc(mm, pgd, addr);
2001         if (pud) {
2002                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2003                 if (pmd) {
2004                         VM_BUG_ON(pmd_trans_huge(*pmd));
2005                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2006                 }
2007         }
2008         return NULL;
2009 }
2010
2011 /*
2012  * This is the old fallback for page remapping.
2013  *
2014  * For historical reasons, it only allows reserved pages. Only
2015  * old drivers should use this, and they needed to mark their
2016  * pages reserved for the old functions anyway.
2017  */
2018 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2019                         struct page *page, pgprot_t prot)
2020 {
2021         struct mm_struct *mm = vma->vm_mm;
2022         int retval;
2023         pte_t *pte;
2024         spinlock_t *ptl;
2025
2026         retval = -EINVAL;
2027         if (PageAnon(page))
2028                 goto out;
2029         retval = -ENOMEM;
2030         flush_dcache_page(page);
2031         pte = get_locked_pte(mm, addr, &ptl);
2032         if (!pte)
2033                 goto out;
2034         retval = -EBUSY;
2035         if (!pte_none(*pte))
2036                 goto out_unlock;
2037
2038         /* Ok, finally just insert the thing.. */
2039         get_page(page);
2040         inc_mm_counter_fast(mm, MM_FILEPAGES);
2041         page_add_file_rmap(page);
2042         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2043
2044         retval = 0;
2045         pte_unmap_unlock(pte, ptl);
2046         return retval;
2047 out_unlock:
2048         pte_unmap_unlock(pte, ptl);
2049 out:
2050         return retval;
2051 }
2052
2053 /**
2054  * vm_insert_page - insert single page into user vma
2055  * @vma: user vma to map to
2056  * @addr: target user address of this page
2057  * @page: source kernel page
2058  *
2059  * This allows drivers to insert individual pages they've allocated
2060  * into a user vma.
2061  *
2062  * The page has to be a nice clean _individual_ kernel allocation.
2063  * If you allocate a compound page, you need to have marked it as
2064  * such (__GFP_COMP), or manually just split the page up yourself
2065  * (see split_page()).
2066  *
2067  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2068  * took an arbitrary page protection parameter. This doesn't allow
2069  * that. Your vma protection will have to be set up correctly, which
2070  * means that if you want a shared writable mapping, you'd better
2071  * ask for a shared writable mapping!
2072  *
2073  * The page does not need to be reserved.
2074  */
2075 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2076                         struct page *page)
2077 {
2078         if (addr < vma->vm_start || addr >= vma->vm_end)
2079                 return -EFAULT;
2080         if (!page_count(page))
2081                 return -EINVAL;
2082         vma->vm_flags |= VM_INSERTPAGE;
2083         return insert_page(vma, addr, page, vma->vm_page_prot);
2084 }
2085 EXPORT_SYMBOL(vm_insert_page);
2086
2087 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2088                         unsigned long pfn, pgprot_t prot)
2089 {
2090         struct mm_struct *mm = vma->vm_mm;
2091         int retval;
2092         pte_t *pte, entry;
2093         spinlock_t *ptl;
2094
2095         retval = -ENOMEM;
2096         pte = get_locked_pte(mm, addr, &ptl);
2097         if (!pte)
2098                 goto out;
2099         retval = -EBUSY;
2100         if (!pte_none(*pte))
2101                 goto out_unlock;
2102
2103         /* Ok, finally just insert the thing.. */
2104         entry = pte_mkspecial(pfn_pte(pfn, prot));
2105         set_pte_at(mm, addr, pte, entry);
2106         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2107
2108         retval = 0;
2109 out_unlock:
2110         pte_unmap_unlock(pte, ptl);
2111 out:
2112         return retval;
2113 }
2114
2115 /**
2116  * vm_insert_pfn - insert single pfn into user vma
2117  * @vma: user vma to map to
2118  * @addr: target user address of this page
2119  * @pfn: source kernel pfn
2120  *
2121  * Similar to vm_inert_page, this allows drivers to insert individual pages
2122  * they've allocated into a user vma. Same comments apply.
2123  *
2124  * This function should only be called from a vm_ops->fault handler, and
2125  * in that case the handler should return NULL.
2126  *
2127  * vma cannot be a COW mapping.
2128  *
2129  * As this is called only for pages that do not currently exist, we
2130  * do not need to flush old virtual caches or the TLB.
2131  */
2132 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2133                         unsigned long pfn)
2134 {
2135         int ret;
2136         pgprot_t pgprot = vma->vm_page_prot;
2137         /*
2138          * Technically, architectures with pte_special can avoid all these
2139          * restrictions (same for remap_pfn_range).  However we would like
2140          * consistency in testing and feature parity among all, so we should
2141          * try to keep these invariants in place for everybody.
2142          */
2143         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2144         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2145                                                 (VM_PFNMAP|VM_MIXEDMAP));
2146         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2147         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2148
2149         if (addr < vma->vm_start || addr >= vma->vm_end)
2150                 return -EFAULT;
2151         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2152                 return -EINVAL;
2153
2154         ret = insert_pfn(vma, addr, pfn, pgprot);
2155
2156         if (ret)
2157                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2158
2159         return ret;
2160 }
2161 EXPORT_SYMBOL(vm_insert_pfn);
2162
2163 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2164                         unsigned long pfn)
2165 {
2166         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2167
2168         if (addr < vma->vm_start || addr >= vma->vm_end)
2169                 return -EFAULT;
2170
2171         /*
2172          * If we don't have pte special, then we have to use the pfn_valid()
2173          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2174          * refcount the page if pfn_valid is true (hence insert_page rather
2175          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2176          * without pte special, it would there be refcounted as a normal page.
2177          */
2178         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2179                 struct page *page;
2180
2181                 page = pfn_to_page(pfn);
2182                 return insert_page(vma, addr, page, vma->vm_page_prot);
2183         }
2184         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2185 }
2186 EXPORT_SYMBOL(vm_insert_mixed);
2187
2188 /*
2189  * maps a range of physical memory into the requested pages. the old
2190  * mappings are removed. any references to nonexistent pages results
2191  * in null mappings (currently treated as "copy-on-access")
2192  */
2193 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2194                         unsigned long addr, unsigned long end,
2195                         unsigned long pfn, pgprot_t prot)
2196 {
2197         pte_t *pte;
2198         spinlock_t *ptl;
2199
2200         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2201         if (!pte)
2202                 return -ENOMEM;
2203         arch_enter_lazy_mmu_mode();
2204         do {
2205                 BUG_ON(!pte_none(*pte));
2206                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2207                 pfn++;
2208         } while (pte++, addr += PAGE_SIZE, addr != end);
2209         arch_leave_lazy_mmu_mode();
2210         pte_unmap_unlock(pte - 1, ptl);
2211         return 0;
2212 }
2213
2214 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2215                         unsigned long addr, unsigned long end,
2216                         unsigned long pfn, pgprot_t prot)
2217 {
2218         pmd_t *pmd;
2219         unsigned long next;
2220
2221         pfn -= addr >> PAGE_SHIFT;
2222         pmd = pmd_alloc(mm, pud, addr);
2223         if (!pmd)
2224                 return -ENOMEM;
2225         VM_BUG_ON(pmd_trans_huge(*pmd));
2226         do {
2227                 next = pmd_addr_end(addr, end);
2228                 if (remap_pte_range(mm, pmd, addr, next,
2229                                 pfn + (addr >> PAGE_SHIFT), prot))
2230                         return -ENOMEM;
2231         } while (pmd++, addr = next, addr != end);
2232         return 0;
2233 }
2234
2235 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2236                         unsigned long addr, unsigned long end,
2237                         unsigned long pfn, pgprot_t prot)
2238 {
2239         pud_t *pud;
2240         unsigned long next;
2241
2242         pfn -= addr >> PAGE_SHIFT;
2243         pud = pud_alloc(mm, pgd, addr);
2244         if (!pud)
2245                 return -ENOMEM;
2246         do {
2247                 next = pud_addr_end(addr, end);
2248                 if (remap_pmd_range(mm, pud, addr, next,
2249                                 pfn + (addr >> PAGE_SHIFT), prot))
2250                         return -ENOMEM;
2251         } while (pud++, addr = next, addr != end);
2252         return 0;
2253 }
2254
2255 /**
2256  * remap_pfn_range - remap kernel memory to userspace
2257  * @vma: user vma to map to
2258  * @addr: target user address to start at
2259  * @pfn: physical address of kernel memory
2260  * @size: size of map area
2261  * @prot: page protection flags for this mapping
2262  *
2263  *  Note: this is only safe if the mm semaphore is held when called.
2264  */
2265 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2266                     unsigned long pfn, unsigned long size, pgprot_t prot)
2267 {
2268         pgd_t *pgd;
2269         unsigned long next;
2270         unsigned long end = addr + PAGE_ALIGN(size);
2271         struct mm_struct *mm = vma->vm_mm;
2272         int err;
2273
2274         /*
2275          * Physically remapped pages are special. Tell the
2276          * rest of the world about it:
2277          *   VM_IO tells people not to look at these pages
2278          *      (accesses can have side effects).
2279          *   VM_RESERVED is specified all over the place, because
2280          *      in 2.4 it kept swapout's vma scan off this vma; but
2281          *      in 2.6 the LRU scan won't even find its pages, so this
2282          *      flag means no more than count its pages in reserved_vm,
2283          *      and omit it from core dump, even when VM_IO turned off.
2284          *   VM_PFNMAP tells the core MM that the base pages are just
2285          *      raw PFN mappings, and do not have a "struct page" associated
2286          *      with them.
2287          *
2288          * There's a horrible special case to handle copy-on-write
2289          * behaviour that some programs depend on. We mark the "original"
2290          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2291          */
2292         if (addr == vma->vm_start && end == vma->vm_end) {
2293                 vma->vm_pgoff = pfn;
2294                 vma->vm_flags |= VM_PFN_AT_MMAP;
2295         } else if (is_cow_mapping(vma->vm_flags))
2296                 return -EINVAL;
2297
2298         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2299
2300         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2301         if (err) {
2302                 /*
2303                  * To indicate that track_pfn related cleanup is not
2304                  * needed from higher level routine calling unmap_vmas
2305                  */
2306                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2307                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2308                 return -EINVAL;
2309         }
2310
2311         BUG_ON(addr >= end);
2312         pfn -= addr >> PAGE_SHIFT;
2313         pgd = pgd_offset(mm, addr);
2314         flush_cache_range(vma, addr, end);
2315         do {
2316                 next = pgd_addr_end(addr, end);
2317                 err = remap_pud_range(mm, pgd, addr, next,
2318                                 pfn + (addr >> PAGE_SHIFT), prot);
2319                 if (err)
2320                         break;
2321         } while (pgd++, addr = next, addr != end);
2322
2323         if (err)
2324                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2325
2326         return err;
2327 }
2328 EXPORT_SYMBOL(remap_pfn_range);
2329
2330 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2331                                      unsigned long addr, unsigned long end,
2332                                      pte_fn_t fn, void *data)
2333 {
2334         pte_t *pte;
2335         int err;
2336         pgtable_t token;
2337         spinlock_t *uninitialized_var(ptl);
2338
2339         pte = (mm == &init_mm) ?
2340                 pte_alloc_kernel(pmd, addr) :
2341                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2342         if (!pte)
2343                 return -ENOMEM;
2344
2345         BUG_ON(pmd_huge(*pmd));
2346
2347         arch_enter_lazy_mmu_mode();
2348
2349         token = pmd_pgtable(*pmd);
2350
2351         do {
2352                 err = fn(pte++, token, addr, data);
2353                 if (err)
2354                         break;
2355         } while (addr += PAGE_SIZE, addr != end);
2356
2357         arch_leave_lazy_mmu_mode();
2358
2359         if (mm != &init_mm)
2360                 pte_unmap_unlock(pte-1, ptl);
2361         return err;
2362 }
2363
2364 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2365                                      unsigned long addr, unsigned long end,
2366                                      pte_fn_t fn, void *data)
2367 {
2368         pmd_t *pmd;
2369         unsigned long next;
2370         int err;
2371
2372         BUG_ON(pud_huge(*pud));
2373
2374         pmd = pmd_alloc(mm, pud, addr);
2375         if (!pmd)
2376                 return -ENOMEM;
2377         do {
2378                 next = pmd_addr_end(addr, end);
2379                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2380                 if (err)
2381                         break;
2382         } while (pmd++, addr = next, addr != end);
2383         return err;
2384 }
2385
2386 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2387                                      unsigned long addr, unsigned long end,
2388                                      pte_fn_t fn, void *data)
2389 {
2390         pud_t *pud;
2391         unsigned long next;
2392         int err;
2393
2394         pud = pud_alloc(mm, pgd, addr);
2395         if (!pud)
2396                 return -ENOMEM;
2397         do {
2398                 next = pud_addr_end(addr, end);
2399                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2400                 if (err)
2401                         break;
2402         } while (pud++, addr = next, addr != end);
2403         return err;
2404 }
2405
2406 /*
2407  * Scan a region of virtual memory, filling in page tables as necessary
2408  * and calling a provided function on each leaf page table.
2409  */
2410 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2411                         unsigned long size, pte_fn_t fn, void *data)
2412 {
2413         pgd_t *pgd;
2414         unsigned long next;
2415         unsigned long end = addr + size;
2416         int err;
2417
2418         BUG_ON(addr >= end);
2419         pgd = pgd_offset(mm, addr);
2420         do {
2421                 next = pgd_addr_end(addr, end);
2422                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2423                 if (err)
2424                         break;
2425         } while (pgd++, addr = next, addr != end);
2426
2427         return err;
2428 }
2429 EXPORT_SYMBOL_GPL(apply_to_page_range);
2430
2431 /*
2432  * handle_pte_fault chooses page fault handler according to an entry
2433  * which was read non-atomically.  Before making any commitment, on
2434  * those architectures or configurations (e.g. i386 with PAE) which
2435  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2436  * must check under lock before unmapping the pte and proceeding
2437  * (but do_wp_page is only called after already making such a check;
2438  * and do_anonymous_page can safely check later on).
2439  */
2440 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2441                                 pte_t *page_table, pte_t orig_pte)
2442 {
2443         int same = 1;
2444 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2445         if (sizeof(pte_t) > sizeof(unsigned long)) {
2446                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2447                 spin_lock(ptl);
2448                 same = pte_same(*page_table, orig_pte);
2449                 spin_unlock(ptl);
2450         }
2451 #endif
2452         pte_unmap(page_table);
2453         return same;
2454 }
2455
2456 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2457 {
2458         /*
2459          * If the source page was a PFN mapping, we don't have
2460          * a "struct page" for it. We do a best-effort copy by
2461          * just copying from the original user address. If that
2462          * fails, we just zero-fill it. Live with it.
2463          */
2464         if (unlikely(!src)) {
2465                 void *kaddr = kmap_atomic(dst);
2466                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2467
2468                 /*
2469                  * This really shouldn't fail, because the page is there
2470                  * in the page tables. But it might just be unreadable,
2471                  * in which case we just give up and fill the result with
2472                  * zeroes.
2473                  */
2474                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2475                         clear_page(kaddr);
2476                 kunmap_atomic(kaddr);
2477                 flush_dcache_page(dst);
2478         } else
2479                 copy_user_highpage(dst, src, va, vma);
2480 }
2481
2482 /*
2483  * This routine handles present pages, when users try to write
2484  * to a shared page. It is done by copying the page to a new address
2485  * and decrementing the shared-page counter for the old page.
2486  *
2487  * Note that this routine assumes that the protection checks have been
2488  * done by the caller (the low-level page fault routine in most cases).
2489  * Thus we can safely just mark it writable once we've done any necessary
2490  * COW.
2491  *
2492  * We also mark the page dirty at this point even though the page will
2493  * change only once the write actually happens. This avoids a few races,
2494  * and potentially makes it more efficient.
2495  *
2496  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2497  * but allow concurrent faults), with pte both mapped and locked.
2498  * We return with mmap_sem still held, but pte unmapped and unlocked.
2499  */
2500 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2501                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2502                 spinlock_t *ptl, pte_t orig_pte)
2503         __releases(ptl)
2504 {
2505         struct page *old_page, *new_page;
2506         pte_t entry;
2507         int ret = 0;
2508         int page_mkwrite = 0;
2509         struct page *dirty_page = NULL;
2510
2511         old_page = vm_normal_page(vma, address, orig_pte);
2512         if (!old_page) {
2513                 /*
2514                  * VM_MIXEDMAP !pfn_valid() case
2515                  *
2516                  * We should not cow pages in a shared writeable mapping.
2517                  * Just mark the pages writable as we can't do any dirty
2518                  * accounting on raw pfn maps.
2519                  */
2520                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2521                                      (VM_WRITE|VM_SHARED))
2522                         goto reuse;
2523                 goto gotten;
2524         }
2525
2526         /*
2527          * Take out anonymous pages first, anonymous shared vmas are
2528          * not dirty accountable.
2529          */
2530         if (PageAnon(old_page) && !PageKsm(old_page)) {
2531                 if (!trylock_page(old_page)) {
2532                         page_cache_get(old_page);
2533                         pte_unmap_unlock(page_table, ptl);
2534                         lock_page(old_page);
2535                         page_table = pte_offset_map_lock(mm, pmd, address,
2536                                                          &ptl);
2537                         if (!pte_same(*page_table, orig_pte)) {
2538                                 unlock_page(old_page);
2539                                 goto unlock;
2540                         }
2541                         page_cache_release(old_page);
2542                 }
2543                 if (reuse_swap_page(old_page)) {
2544                         /*
2545                          * The page is all ours.  Move it to our anon_vma so
2546                          * the rmap code will not search our parent or siblings.
2547                          * Protected against the rmap code by the page lock.
2548                          */
2549                         page_move_anon_rmap(old_page, vma, address);
2550                         unlock_page(old_page);
2551                         goto reuse;
2552                 }
2553                 unlock_page(old_page);
2554         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2555                                         (VM_WRITE|VM_SHARED))) {
2556                 /*
2557                  * Only catch write-faults on shared writable pages,
2558                  * read-only shared pages can get COWed by
2559                  * get_user_pages(.write=1, .force=1).
2560                  */
2561                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2562                         struct vm_fault vmf;
2563                         int tmp;
2564
2565                         vmf.virtual_address = (void __user *)(address &
2566                                                                 PAGE_MASK);
2567                         vmf.pgoff = old_page->index;
2568                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2569                         vmf.page = old_page;
2570
2571                         /*
2572                          * Notify the address space that the page is about to
2573                          * become writable so that it can prohibit this or wait
2574                          * for the page to get into an appropriate state.
2575                          *
2576                          * We do this without the lock held, so that it can
2577                          * sleep if it needs to.
2578                          */
2579                         page_cache_get(old_page);
2580                         pte_unmap_unlock(page_table, ptl);
2581
2582                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2583                         if (unlikely(tmp &
2584                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2585                                 ret = tmp;
2586                                 goto unwritable_page;
2587                         }
2588                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2589                                 lock_page(old_page);
2590                                 if (!old_page->mapping) {
2591                                         ret = 0; /* retry the fault */
2592                                         unlock_page(old_page);
2593                                         goto unwritable_page;
2594                                 }
2595                         } else
2596                                 VM_BUG_ON(!PageLocked(old_page));
2597
2598                         /*
2599                          * Since we dropped the lock we need to revalidate
2600                          * the PTE as someone else may have changed it.  If
2601                          * they did, we just return, as we can count on the
2602                          * MMU to tell us if they didn't also make it writable.
2603                          */
2604                         page_table = pte_offset_map_lock(mm, pmd, address,
2605                                                          &ptl);
2606                         if (!pte_same(*page_table, orig_pte)) {
2607                                 unlock_page(old_page);
2608                                 goto unlock;
2609                         }
2610
2611                         page_mkwrite = 1;
2612                 }
2613                 dirty_page = old_page;
2614                 get_page(dirty_page);
2615
2616 reuse:
2617                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2618                 entry = pte_mkyoung(orig_pte);
2619                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2620                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2621                         update_mmu_cache(vma, address, page_table);
2622                 pte_unmap_unlock(page_table, ptl);
2623                 ret |= VM_FAULT_WRITE;
2624
2625                 if (!dirty_page)
2626                         return ret;
2627
2628                 /*
2629                  * Yes, Virginia, this is actually required to prevent a race
2630                  * with clear_page_dirty_for_io() from clearing the page dirty
2631                  * bit after it clear all dirty ptes, but before a racing
2632                  * do_wp_page installs a dirty pte.
2633                  *
2634                  * __do_fault is protected similarly.
2635                  */
2636                 if (!page_mkwrite) {
2637                         wait_on_page_locked(dirty_page);
2638                         set_page_dirty_balance(dirty_page, page_mkwrite);
2639                 }
2640                 put_page(dirty_page);
2641                 if (page_mkwrite) {
2642                         struct address_space *mapping = dirty_page->mapping;
2643
2644                         set_page_dirty(dirty_page);
2645                         unlock_page(dirty_page);
2646                         page_cache_release(dirty_page);
2647                         if (mapping)    {
2648                                 /*
2649                                  * Some device drivers do not set page.mapping
2650                                  * but still dirty their pages
2651                                  */
2652                                 balance_dirty_pages_ratelimited(mapping);
2653                         }
2654                 }
2655
2656                 /* file_update_time outside page_lock */
2657                 if (vma->vm_file)
2658                         file_update_time(vma->vm_file);
2659
2660                 return ret;
2661         }
2662
2663         /*
2664          * Ok, we need to copy. Oh, well..
2665          */
2666         page_cache_get(old_page);
2667 gotten:
2668         pte_unmap_unlock(page_table, ptl);
2669
2670         if (unlikely(anon_vma_prepare(vma)))
2671                 goto oom;
2672
2673         if (is_zero_pfn(pte_pfn(orig_pte))) {
2674                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2675                 if (!new_page)
2676                         goto oom;
2677         } else {
2678                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2679                 if (!new_page)
2680                         goto oom;
2681                 cow_user_page(new_page, old_page, address, vma);
2682         }
2683         __SetPageUptodate(new_page);
2684
2685         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2686                 goto oom_free_new;
2687
2688         /*
2689          * Re-check the pte - we dropped the lock
2690          */
2691         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2692         if (likely(pte_same(*page_table, orig_pte))) {
2693                 if (old_page) {
2694                         if (!PageAnon(old_page)) {
2695                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2696                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2697                         }
2698                 } else
2699                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2700                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2701                 entry = mk_pte(new_page, vma->vm_page_prot);
2702                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2703                 /*
2704                  * Clear the pte entry and flush it first, before updating the
2705                  * pte with the new entry. This will avoid a race condition
2706                  * seen in the presence of one thread doing SMC and another
2707                  * thread doing COW.
2708                  */
2709                 ptep_clear_flush(vma, address, page_table);
2710                 page_add_new_anon_rmap(new_page, vma, address);
2711                 /*
2712                  * We call the notify macro here because, when using secondary
2713                  * mmu page tables (such as kvm shadow page tables), we want the
2714                  * new page to be mapped directly into the secondary page table.
2715                  */
2716                 set_pte_at_notify(mm, address, page_table, entry);
2717                 update_mmu_cache(vma, address, page_table);
2718                 if (old_page) {
2719                         /*
2720                          * Only after switching the pte to the new page may
2721                          * we remove the mapcount here. Otherwise another
2722                          * process may come and find the rmap count decremented
2723                          * before the pte is switched to the new page, and
2724                          * "reuse" the old page writing into it while our pte
2725                          * here still points into it and can be read by other
2726                          * threads.
2727                          *
2728                          * The critical issue is to order this
2729                          * page_remove_rmap with the ptp_clear_flush above.
2730                          * Those stores are ordered by (if nothing else,)
2731                          * the barrier present in the atomic_add_negative
2732                          * in page_remove_rmap.
2733                          *
2734                          * Then the TLB flush in ptep_clear_flush ensures that
2735                          * no process can access the old page before the
2736                          * decremented mapcount is visible. And the old page
2737                          * cannot be reused until after the decremented
2738                          * mapcount is visible. So transitively, TLBs to
2739                          * old page will be flushed before it can be reused.
2740                          */
2741                         page_remove_rmap(old_page);
2742                 }
2743
2744                 /* Free the old page.. */
2745                 new_page = old_page;
2746                 ret |= VM_FAULT_WRITE;
2747         } else
2748                 mem_cgroup_uncharge_page(new_page);
2749
2750         if (new_page)
2751                 page_cache_release(new_page);
2752 unlock:
2753         pte_unmap_unlock(page_table, ptl);
2754         if (old_page) {
2755                 /*
2756                  * Don't let another task, with possibly unlocked vma,
2757                  * keep the mlocked page.
2758                  */
2759                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2760                         lock_page(old_page);    /* LRU manipulation */
2761                         munlock_vma_page(old_page);
2762                         unlock_page(old_page);
2763                 }
2764                 page_cache_release(old_page);
2765         }
2766         return ret;
2767 oom_free_new:
2768         page_cache_release(new_page);
2769 oom:
2770         if (old_page) {
2771                 if (page_mkwrite) {
2772                         unlock_page(old_page);
2773                         page_cache_release(old_page);
2774                 }
2775                 page_cache_release(old_page);
2776         }
2777         return VM_FAULT_OOM;
2778
2779 unwritable_page:
2780         page_cache_release(old_page);
2781         return ret;
2782 }
2783
2784 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2785                 unsigned long start_addr, unsigned long end_addr,
2786                 struct zap_details *details)
2787 {
2788         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2789 }
2790
2791 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2792                                             struct zap_details *details)
2793 {
2794         struct vm_area_struct *vma;
2795         struct prio_tree_iter iter;
2796         pgoff_t vba, vea, zba, zea;
2797
2798         vma_prio_tree_foreach(vma, &iter, root,
2799                         details->first_index, details->last_index) {
2800
2801                 vba = vma->vm_pgoff;
2802                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2803                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2804                 zba = details->first_index;
2805                 if (zba < vba)
2806                         zba = vba;
2807                 zea = details->last_index;
2808                 if (zea > vea)
2809                         zea = vea;
2810
2811                 unmap_mapping_range_vma(vma,
2812                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2813                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2814                                 details);
2815         }
2816 }
2817
2818 static inline void unmap_mapping_range_list(struct list_head *head,
2819                                             struct zap_details *details)
2820 {
2821         struct vm_area_struct *vma;
2822
2823         /*
2824          * In nonlinear VMAs there is no correspondence between virtual address
2825          * offset and file offset.  So we must perform an exhaustive search
2826          * across *all* the pages in each nonlinear VMA, not just the pages
2827          * whose virtual address lies outside the file truncation point.
2828          */
2829         list_for_each_entry(vma, head, shared.vm_set.list) {
2830                 details->nonlinear_vma = vma;
2831                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2832         }
2833 }
2834
2835 /**
2836  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2837  * @mapping: the address space containing mmaps to be unmapped.
2838  * @holebegin: byte in first page to unmap, relative to the start of
2839  * the underlying file.  This will be rounded down to a PAGE_SIZE
2840  * boundary.  Note that this is different from truncate_pagecache(), which
2841  * must keep the partial page.  In contrast, we must get rid of
2842  * partial pages.
2843  * @holelen: size of prospective hole in bytes.  This will be rounded
2844  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2845  * end of the file.
2846  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2847  * but 0 when invalidating pagecache, don't throw away private data.
2848  */
2849 void unmap_mapping_range(struct address_space *mapping,
2850                 loff_t const holebegin, loff_t const holelen, int even_cows)
2851 {
2852         struct zap_details details;
2853         pgoff_t hba = holebegin >> PAGE_SHIFT;
2854         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2855
2856         /* Check for overflow. */
2857         if (sizeof(holelen) > sizeof(hlen)) {
2858                 long long holeend =
2859                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2860                 if (holeend & ~(long long)ULONG_MAX)
2861                         hlen = ULONG_MAX - hba + 1;
2862         }
2863
2864         details.check_mapping = even_cows? NULL: mapping;
2865         details.nonlinear_vma = NULL;
2866         details.first_index = hba;
2867         details.last_index = hba + hlen - 1;
2868         if (details.last_index < details.first_index)
2869                 details.last_index = ULONG_MAX;
2870
2871
2872         mutex_lock(&mapping->i_mmap_mutex);
2873         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2874                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2875         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2876                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2877         mutex_unlock(&mapping->i_mmap_mutex);
2878 }
2879 EXPORT_SYMBOL(unmap_mapping_range);
2880
2881 /*
2882  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2883  * but allow concurrent faults), and pte mapped but not yet locked.
2884  * We return with mmap_sem still held, but pte unmapped and unlocked.
2885  */
2886 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2887                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2888                 unsigned int flags, pte_t orig_pte)
2889 {
2890         spinlock_t *ptl;
2891         struct page *page, *swapcache = NULL;
2892         swp_entry_t entry;
2893         pte_t pte;
2894         int locked;
2895         struct mem_cgroup *ptr;
2896         int exclusive = 0;
2897         int ret = 0;
2898
2899         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2900                 goto out;
2901
2902         entry = pte_to_swp_entry(orig_pte);
2903         if (unlikely(non_swap_entry(entry))) {
2904                 if (is_migration_entry(entry)) {
2905                         migration_entry_wait(mm, pmd, address);
2906                 } else if (is_hwpoison_entry(entry)) {
2907                         ret = VM_FAULT_HWPOISON;
2908                 } else {
2909                         print_bad_pte(vma, address, orig_pte, NULL);
2910                         ret = VM_FAULT_SIGBUS;
2911                 }
2912                 goto out;
2913         }
2914         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2915         page = lookup_swap_cache(entry);
2916         if (!page) {
2917                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2918                 page = swapin_readahead(entry,
2919                                         GFP_HIGHUSER_MOVABLE, vma, address);
2920                 if (!page) {
2921                         /*
2922                          * Back out if somebody else faulted in this pte
2923                          * while we released the pte lock.
2924                          */
2925                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2926                         if (likely(pte_same(*page_table, orig_pte)))
2927                                 ret = VM_FAULT_OOM;
2928                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2929                         goto unlock;
2930                 }
2931
2932                 /* Had to read the page from swap area: Major fault */
2933                 ret = VM_FAULT_MAJOR;
2934                 count_vm_event(PGMAJFAULT);
2935                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2936         } else if (PageHWPoison(page)) {
2937                 /*
2938                  * hwpoisoned dirty swapcache pages are kept for killing
2939                  * owner processes (which may be unknown at hwpoison time)
2940                  */
2941                 ret = VM_FAULT_HWPOISON;
2942                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2943                 goto out_release;
2944         }
2945
2946         locked = lock_page_or_retry(page, mm, flags);
2947         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2948         if (!locked) {
2949                 ret |= VM_FAULT_RETRY;
2950                 goto out_release;
2951         }
2952
2953         /*
2954          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2955          * release the swapcache from under us.  The page pin, and pte_same
2956          * test below, are not enough to exclude that.  Even if it is still
2957          * swapcache, we need to check that the page's swap has not changed.
2958          */
2959         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2960                 goto out_page;
2961
2962         if (ksm_might_need_to_copy(page, vma, address)) {
2963                 swapcache = page;
2964                 page = ksm_does_need_to_copy(page, vma, address);
2965
2966                 if (unlikely(!page)) {
2967                         ret = VM_FAULT_OOM;
2968                         page = swapcache;
2969                         swapcache = NULL;
2970                         goto out_page;
2971                 }
2972         }
2973
2974         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2975                 ret = VM_FAULT_OOM;
2976                 goto out_page;
2977         }
2978
2979         /*
2980          * Back out if somebody else already faulted in this pte.
2981          */
2982         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2983         if (unlikely(!pte_same(*page_table, orig_pte)))
2984                 goto out_nomap;
2985
2986         if (unlikely(!PageUptodate(page))) {
2987                 ret = VM_FAULT_SIGBUS;
2988                 goto out_nomap;
2989         }
2990
2991         /*
2992          * The page isn't present yet, go ahead with the fault.
2993          *
2994          * Be careful about the sequence of operations here.
2995          * To get its accounting right, reuse_swap_page() must be called
2996          * while the page is counted on swap but not yet in mapcount i.e.
2997          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2998          * must be called after the swap_free(), or it will never succeed.
2999          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3000          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3001          * in page->private. In this case, a record in swap_cgroup  is silently
3002          * discarded at swap_free().
3003          */
3004
3005         inc_mm_counter_fast(mm, MM_ANONPAGES);
3006         dec_mm_counter_fast(mm, MM_SWAPENTS);
3007         pte = mk_pte(page, vma->vm_page_prot);
3008         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3009                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3010                 flags &= ~FAULT_FLAG_WRITE;
3011                 ret |= VM_FAULT_WRITE;
3012                 exclusive = 1;
3013         }
3014         flush_icache_page(vma, page);
3015         set_pte_at(mm, address, page_table, pte);
3016         do_page_add_anon_rmap(page, vma, address, exclusive);
3017         /* It's better to call commit-charge after rmap is established */
3018         mem_cgroup_commit_charge_swapin(page, ptr);
3019
3020         swap_free(entry);
3021         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3022                 try_to_free_swap(page);
3023         unlock_page(page);
3024         if (swapcache) {
3025                 /*
3026                  * Hold the lock to avoid the swap entry to be reused
3027                  * until we take the PT lock for the pte_same() check
3028                  * (to avoid false positives from pte_same). For
3029                  * further safety release the lock after the swap_free
3030                  * so that the swap count won't change under a
3031                  * parallel locked swapcache.
3032                  */
3033                 unlock_page(swapcache);
3034                 page_cache_release(swapcache);
3035         }
3036
3037         if (flags & FAULT_FLAG_WRITE) {
3038                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3039                 if (ret & VM_FAULT_ERROR)
3040                         ret &= VM_FAULT_ERROR;
3041                 goto out;
3042         }
3043
3044         /* No need to invalidate - it was non-present before */
3045         update_mmu_cache(vma, address, page_table);
3046 unlock:
3047         pte_unmap_unlock(page_table, ptl);
3048 out:
3049         return ret;
3050 out_nomap:
3051         mem_cgroup_cancel_charge_swapin(ptr);
3052         pte_unmap_unlock(page_table, ptl);
3053 out_page:
3054         unlock_page(page);
3055 out_release:
3056         page_cache_release(page);
3057         if (swapcache) {
3058                 unlock_page(swapcache);
3059                 page_cache_release(swapcache);
3060         }
3061         return ret;
3062 }
3063
3064 /*
3065  * This is like a special single-page "expand_{down|up}wards()",
3066  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3067  * doesn't hit another vma.
3068  */
3069 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3070 {
3071         address &= PAGE_MASK;
3072         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3073                 struct vm_area_struct *prev = vma->vm_prev;
3074
3075                 /*
3076                  * Is there a mapping abutting this one below?
3077                  *
3078                  * That's only ok if it's the same stack mapping
3079                  * that has gotten split..
3080                  */
3081                 if (prev && prev->vm_end == address)
3082                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3083
3084                 expand_downwards(vma, address - PAGE_SIZE);
3085         }
3086         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3087                 struct vm_area_struct *next = vma->vm_next;
3088
3089                 /* As VM_GROWSDOWN but s/below/above/ */
3090                 if (next && next->vm_start == address + PAGE_SIZE)
3091                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3092
3093                 expand_upwards(vma, address + PAGE_SIZE);
3094         }
3095         return 0;
3096 }
3097
3098 /*
3099  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3100  * but allow concurrent faults), and pte mapped but not yet locked.
3101  * We return with mmap_sem still held, but pte unmapped and unlocked.
3102  */
3103 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3104                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3105                 unsigned int flags)
3106 {
3107         struct page *page;
3108         spinlock_t *ptl;
3109         pte_t entry;
3110
3111         pte_unmap(page_table);
3112
3113         /* Check if we need to add a guard page to the stack */
3114         if (check_stack_guard_page(vma, address) < 0)
3115                 return VM_FAULT_SIGBUS;
3116
3117         /* Use the zero-page for reads */
3118         if (!(flags & FAULT_FLAG_WRITE)) {
3119                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3120                                                 vma->vm_page_prot));
3121                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3122                 if (!pte_none(*page_table))
3123                         goto unlock;
3124                 goto setpte;
3125         }
3126
3127         /* Allocate our own private page. */
3128         if (unlikely(anon_vma_prepare(vma)))
3129                 goto oom;
3130         page = alloc_zeroed_user_highpage_movable(vma, address);
3131         if (!page)
3132                 goto oom;
3133         __SetPageUptodate(page);
3134
3135         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3136                 goto oom_free_page;
3137
3138         entry = mk_pte(page, vma->vm_page_prot);
3139         if (vma->vm_flags & VM_WRITE)
3140                 entry = pte_mkwrite(pte_mkdirty(entry));
3141
3142         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3143         if (!pte_none(*page_table))
3144                 goto release;
3145
3146         inc_mm_counter_fast(mm, MM_ANONPAGES);
3147         page_add_new_anon_rmap(page, vma, address);
3148 setpte:
3149         set_pte_at(mm, address, page_table, entry);
3150
3151         /* No need to invalidate - it was non-present before */
3152         update_mmu_cache(vma, address, page_table);
3153 unlock:
3154         pte_unmap_unlock(page_table, ptl);
3155         return 0;
3156 release:
3157         mem_cgroup_uncharge_page(page);
3158         page_cache_release(page);
3159         goto unlock;
3160 oom_free_page:
3161         page_cache_release(page);
3162 oom:
3163         return VM_FAULT_OOM;
3164 }
3165
3166 /*
3167  * __do_fault() tries to create a new page mapping. It aggressively
3168  * tries to share with existing pages, but makes a separate copy if
3169  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3170  * the next page fault.
3171  *
3172  * As this is called only for pages that do not currently exist, we
3173  * do not need to flush old virtual caches or the TLB.
3174  *
3175  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3176  * but allow concurrent faults), and pte neither mapped nor locked.
3177  * We return with mmap_sem still held, but pte unmapped and unlocked.
3178  */
3179 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3180                 unsigned long address, pmd_t *pmd,
3181                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3182 {
3183         pte_t *page_table;
3184         spinlock_t *ptl;
3185         struct page *page;
3186         struct page *cow_page;
3187         pte_t entry;
3188         int anon = 0;
3189         struct page *dirty_page = NULL;
3190         struct vm_fault vmf;
3191         int ret;
3192         int page_mkwrite = 0;
3193
3194         /*
3195          * If we do COW later, allocate page befor taking lock_page()
3196          * on the file cache page. This will reduce lock holding time.
3197          */
3198         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3199
3200                 if (unlikely(anon_vma_prepare(vma)))
3201                         return VM_FAULT_OOM;
3202
3203                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3204                 if (!cow_page)
3205                         return VM_FAULT_OOM;
3206
3207                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3208                         page_cache_release(cow_page);
3209                         return VM_FAULT_OOM;
3210                 }
3211         } else
3212                 cow_page = NULL;
3213
3214         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3215         vmf.pgoff = pgoff;
3216         vmf.flags = flags;
3217         vmf.page = NULL;
3218
3219         ret = vma->vm_ops->fault(vma, &vmf);
3220         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3221                             VM_FAULT_RETRY)))
3222                 goto uncharge_out;
3223
3224         if (unlikely(PageHWPoison(vmf.page))) {
3225                 if (ret & VM_FAULT_LOCKED)
3226                         unlock_page(vmf.page);
3227                 ret = VM_FAULT_HWPOISON;
3228                 goto uncharge_out;
3229         }
3230
3231         /*
3232          * For consistency in subsequent calls, make the faulted page always
3233          * locked.
3234          */
3235         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3236                 lock_page(vmf.page);
3237         else
3238                 VM_BUG_ON(!PageLocked(vmf.page));
3239
3240         /*
3241          * Should we do an early C-O-W break?
3242          */
3243         page = vmf.page;
3244         if (flags & FAULT_FLAG_WRITE) {
3245                 if (!(vma->vm_flags & VM_SHARED)) {
3246                         page = cow_page;
3247                         anon = 1;
3248                         copy_user_highpage(page, vmf.page, address, vma);
3249                         __SetPageUptodate(page);
3250                 } else {
3251                         /*
3252                          * If the page will be shareable, see if the backing
3253                          * address space wants to know that the page is about
3254                          * to become writable
3255                          */
3256                         if (vma->vm_ops->page_mkwrite) {
3257                                 int tmp;
3258
3259                                 unlock_page(page);
3260                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3261                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3262                                 if (unlikely(tmp &
3263                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3264                                         ret = tmp;
3265                                         goto unwritable_page;
3266                                 }
3267                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3268                                         lock_page(page);
3269                                         if (!page->mapping) {
3270                                                 ret = 0; /* retry the fault */
3271                                                 unlock_page(page);
3272                                                 goto unwritable_page;
3273                                         }
3274                                 } else
3275                                         VM_BUG_ON(!PageLocked(page));
3276                                 page_mkwrite = 1;
3277                         }
3278                 }
3279
3280         }
3281
3282         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3283
3284         /*
3285          * This silly early PAGE_DIRTY setting removes a race
3286          * due to the bad i386 page protection. But it's valid
3287          * for other architectures too.
3288          *
3289          * Note that if FAULT_FLAG_WRITE is set, we either now have
3290          * an exclusive copy of the page, or this is a shared mapping,
3291          * so we can make it writable and dirty to avoid having to
3292          * handle that later.
3293          */
3294         /* Only go through if we didn't race with anybody else... */
3295         if (likely(pte_same(*page_table, orig_pte))) {
3296                 flush_icache_page(vma, page);
3297                 entry = mk_pte(page, vma->vm_page_prot);
3298                 if (flags & FAULT_FLAG_WRITE)
3299                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3300                 if (anon) {
3301                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3302                         page_add_new_anon_rmap(page, vma, address);
3303                 } else {
3304                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3305                         page_add_file_rmap(page);
3306                         if (flags & FAULT_FLAG_WRITE) {
3307                                 dirty_page = page;
3308                                 get_page(dirty_page);
3309                         }
3310                 }
3311                 set_pte_at(mm, address, page_table, entry);
3312
3313                 /* no need to invalidate: a not-present page won't be cached */
3314                 update_mmu_cache(vma, address, page_table);
3315         } else {
3316                 if (cow_page)
3317                         mem_cgroup_uncharge_page(cow_page);
3318                 if (anon)
3319                         page_cache_release(page);
3320                 else
3321                         anon = 1; /* no anon but release faulted_page */
3322         }
3323
3324         pte_unmap_unlock(page_table, ptl);
3325
3326         if (dirty_page) {
3327                 struct address_space *mapping = page->mapping;
3328
3329                 if (set_page_dirty(dirty_page))
3330                         page_mkwrite = 1;
3331                 unlock_page(dirty_page);
3332                 put_page(dirty_page);
3333                 if (page_mkwrite && mapping) {
3334                         /*
3335                          * Some device drivers do not set page.mapping but still
3336                          * dirty their pages
3337                          */
3338                         balance_dirty_pages_ratelimited(mapping);
3339                 }
3340
3341                 /* file_update_time outside page_lock */
3342                 if (vma->vm_file)
3343                         file_update_time(vma->vm_file);
3344         } else {
3345                 unlock_page(vmf.page);
3346                 if (anon)
3347                         page_cache_release(vmf.page);
3348         }
3349
3350         return ret;
3351
3352 unwritable_page:
3353         page_cache_release(page);
3354         return ret;
3355 uncharge_out:
3356         /* fs's fault handler get error */
3357         if (cow_page) {
3358                 mem_cgroup_uncharge_page(cow_page);
3359                 page_cache_release(cow_page);
3360         }
3361         return ret;
3362 }
3363
3364 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3365                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3366                 unsigned int flags, pte_t orig_pte)
3367 {
3368         pgoff_t pgoff = (((address & PAGE_MASK)
3369                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3370
3371         pte_unmap(page_table);
3372         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3373 }
3374
3375 /*
3376  * Fault of a previously existing named mapping. Repopulate the pte
3377  * from the encoded file_pte if possible. This enables swappable
3378  * nonlinear vmas.
3379  *
3380  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3381  * but allow concurrent faults), and pte mapped but not yet locked.
3382  * We return with mmap_sem still held, but pte unmapped and unlocked.
3383  */
3384 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3385                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3386                 unsigned int flags, pte_t orig_pte)
3387 {
3388         pgoff_t pgoff;
3389
3390         flags |= FAULT_FLAG_NONLINEAR;
3391
3392         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3393                 return 0;
3394
3395         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3396                 /*
3397                  * Page table corrupted: show pte and kill process.
3398                  */
3399                 print_bad_pte(vma, address, orig_pte, NULL);
3400                 return VM_FAULT_SIGBUS;
3401         }
3402
3403         pgoff = pte_to_pgoff(orig_pte);
3404         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3405 }
3406
3407 /*
3408  * These routines also need to handle stuff like marking pages dirty
3409  * and/or accessed for architectures that don't do it in hardware (most
3410  * RISC architectures).  The early dirtying is also good on the i386.
3411  *
3412  * There is also a hook called "update_mmu_cache()" that architectures
3413  * with external mmu caches can use to update those (ie the Sparc or
3414  * PowerPC hashed page tables that act as extended TLBs).
3415  *
3416  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3417  * but allow concurrent faults), and pte mapped but not yet locked.
3418  * We return with mmap_sem still held, but pte unmapped and unlocked.
3419  */
3420 int handle_pte_fault(struct mm_struct *mm,
3421                      struct vm_area_struct *vma, unsigned long address,
3422                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3423 {
3424         pte_t entry;
3425         spinlock_t *ptl;
3426
3427         entry = *pte;
3428         if (!pte_present(entry)) {
3429                 if (pte_none(entry)) {
3430                         if (vma->vm_ops) {
3431                                 if (likely(vma->vm_ops->fault))
3432                                         return do_linear_fault(mm, vma, address,
3433                                                 pte, pmd, flags, entry);
3434                         }
3435                         return do_anonymous_page(mm, vma, address,
3436                                                  pte, pmd, flags);
3437                 }
3438                 if (pte_file(entry))
3439                         return do_nonlinear_fault(mm, vma, address,
3440                                         pte, pmd, flags, entry);
3441                 return do_swap_page(mm, vma, address,
3442                                         pte, pmd, flags, entry);
3443         }
3444
3445         ptl = pte_lockptr(mm, pmd);
3446         spin_lock(ptl);
3447         if (unlikely(!pte_same(*pte, entry)))
3448                 goto unlock;
3449         if (flags & FAULT_FLAG_WRITE) {
3450                 if (!pte_write(entry))
3451                         return do_wp_page(mm, vma, address,
3452                                         pte, pmd, ptl, entry);
3453                 entry = pte_mkdirty(entry);
3454         }
3455         entry = pte_mkyoung(entry);
3456         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3457                 update_mmu_cache(vma, address, pte);
3458         } else {
3459                 /*
3460                  * This is needed only for protection faults but the arch code
3461                  * is not yet telling us if this is a protection fault or not.
3462                  * This still avoids useless tlb flushes for .text page faults
3463                  * with threads.
3464                  */
3465                 if (flags & FAULT_FLAG_WRITE)
3466                         flush_tlb_fix_spurious_fault(vma, address);
3467         }
3468 unlock:
3469         pte_unmap_unlock(pte, ptl);
3470         return 0;
3471 }
3472
3473 /*
3474  * By the time we get here, we already hold the mm semaphore
3475  */
3476 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3477                 unsigned long address, unsigned int flags)
3478 {
3479         pgd_t *pgd;
3480         pud_t *pud;
3481         pmd_t *pmd;
3482         pte_t *pte;
3483
3484         __set_current_state(TASK_RUNNING);
3485
3486         count_vm_event(PGFAULT);
3487         mem_cgroup_count_vm_event(mm, PGFAULT);
3488
3489         /* do counter updates before entering really critical section. */
3490         check_sync_rss_stat(current);
3491
3492         if (unlikely(is_vm_hugetlb_page(vma)))
3493                 return hugetlb_fault(mm, vma, address, flags);
3494
3495         pgd = pgd_offset(mm, address);
3496         pud = pud_alloc(mm, pgd, address);
3497         if (!pud)
3498                 return VM_FAULT_OOM;
3499         pmd = pmd_alloc(mm, pud, address);
3500         if (!pmd)
3501                 return VM_FAULT_OOM;
3502         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3503                 if (!vma->vm_ops)
3504                         return do_huge_pmd_anonymous_page(mm, vma, address,
3505                                                           pmd, flags);
3506         } else {
3507                 pmd_t orig_pmd = *pmd;
3508                 barrier();
3509                 if (pmd_trans_huge(orig_pmd)) {
3510                         if (flags & FAULT_FLAG_WRITE &&
3511                             !pmd_write(orig_pmd) &&
3512                             !pmd_trans_splitting(orig_pmd))
3513                                 return do_huge_pmd_wp_page(mm, vma, address,
3514                                                            pmd, orig_pmd);
3515                         return 0;
3516                 }
3517         }
3518
3519         /*
3520          * Use __pte_alloc instead of pte_alloc_map, because we can't
3521          * run pte_offset_map on the pmd, if an huge pmd could
3522          * materialize from under us from a different thread.
3523          */
3524         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3525                 return VM_FAULT_OOM;
3526         /* if an huge pmd materialized from under us just retry later */
3527         if (unlikely(pmd_trans_huge(*pmd)))
3528                 return 0;
3529         /*
3530          * A regular pmd is established and it can't morph into a huge pmd
3531          * from under us anymore at this point because we hold the mmap_sem
3532          * read mode and khugepaged takes it in write mode. So now it's
3533          * safe to run pte_offset_map().
3534          */
3535         pte = pte_offset_map(pmd, address);
3536
3537         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3538 }
3539
3540 #ifndef __PAGETABLE_PUD_FOLDED
3541 /*
3542  * Allocate page upper directory.
3543  * We've already handled the fast-path in-line.
3544  */
3545 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3546 {
3547         pud_t *new = pud_alloc_one(mm, address);
3548         if (!new)
3549                 return -ENOMEM;
3550
3551         smp_wmb(); /* See comment in __pte_alloc */
3552
3553         spin_lock(&mm->page_table_lock);
3554         if (pgd_present(*pgd))          /* Another has populated it */
3555                 pud_free(mm, new);
3556         else
3557                 pgd_populate(mm, pgd, new);
3558         spin_unlock(&mm->page_table_lock);
3559         return 0;
3560 }
3561 #endif /* __PAGETABLE_PUD_FOLDED */
3562
3563 #ifndef __PAGETABLE_PMD_FOLDED
3564 /*
3565  * Allocate page middle directory.
3566  * We've already handled the fast-path in-line.
3567  */
3568 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3569 {
3570         pmd_t *new = pmd_alloc_one(mm, address);
3571         if (!new)
3572                 return -ENOMEM;
3573
3574         smp_wmb(); /* See comment in __pte_alloc */
3575
3576         spin_lock(&mm->page_table_lock);
3577 #ifndef __ARCH_HAS_4LEVEL_HACK
3578         if (pud_present(*pud))          /* Another has populated it */
3579                 pmd_free(mm, new);
3580         else
3581                 pud_populate(mm, pud, new);
3582 #else
3583         if (pgd_present(*pud))          /* Another has populated it */
3584                 pmd_free(mm, new);
3585         else
3586                 pgd_populate(mm, pud, new);
3587 #endif /* __ARCH_HAS_4LEVEL_HACK */
3588         spin_unlock(&mm->page_table_lock);
3589         return 0;
3590 }
3591 #endif /* __PAGETABLE_PMD_FOLDED */
3592
3593 int make_pages_present(unsigned long addr, unsigned long end)
3594 {
3595         int ret, len, write;
3596         struct vm_area_struct * vma;
3597
3598         vma = find_vma(current->mm, addr);
3599         if (!vma)
3600                 return -ENOMEM;
3601         /*
3602          * We want to touch writable mappings with a write fault in order
3603          * to break COW, except for shared mappings because these don't COW
3604          * and we would not want to dirty them for nothing.
3605          */
3606         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3607         BUG_ON(addr >= end);
3608         BUG_ON(end > vma->vm_end);
3609         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3610         ret = get_user_pages(current, current->mm, addr,
3611                         len, write, 0, NULL, NULL);
3612         if (ret < 0)
3613                 return ret;
3614         return ret == len ? 0 : -EFAULT;
3615 }
3616
3617 #if !defined(__HAVE_ARCH_GATE_AREA)
3618
3619 #if defined(AT_SYSINFO_EHDR)
3620 static struct vm_area_struct gate_vma;
3621
3622 static int __init gate_vma_init(void)
3623 {
3624         gate_vma.vm_mm = NULL;
3625         gate_vma.vm_start = FIXADDR_USER_START;
3626         gate_vma.vm_end = FIXADDR_USER_END;
3627         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3628         gate_vma.vm_page_prot = __P101;
3629
3630         return 0;
3631 }
3632 __initcall(gate_vma_init);
3633 #endif
3634
3635 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3636 {
3637 #ifdef AT_SYSINFO_EHDR
3638         return &gate_vma;
3639 #else
3640         return NULL;
3641 #endif
3642 }
3643
3644 int in_gate_area_no_mm(unsigned long addr)
3645 {
3646 #ifdef AT_SYSINFO_EHDR
3647         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3648                 return 1;
3649 #endif
3650         return 0;
3651 }
3652
3653 #endif  /* __HAVE_ARCH_GATE_AREA */
3654
3655 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3656                 pte_t **ptepp, spinlock_t **ptlp)
3657 {
3658         pgd_t *pgd;
3659         pud_t *pud;
3660         pmd_t *pmd;
3661         pte_t *ptep;
3662
3663         pgd = pgd_offset(mm, address);
3664         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3665                 goto out;
3666
3667         pud = pud_offset(pgd, address);
3668         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3669                 goto out;
3670
3671         pmd = pmd_offset(pud, address);
3672         VM_BUG_ON(pmd_trans_huge(*pmd));
3673         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3674                 goto out;
3675
3676         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3677         if (pmd_huge(*pmd))
3678                 goto out;
3679
3680         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3681         if (!ptep)
3682                 goto out;
3683         if (!pte_present(*ptep))
3684                 goto unlock;
3685         *ptepp = ptep;
3686         return 0;
3687 unlock:
3688         pte_unmap_unlock(ptep, *ptlp);
3689 out:
3690         return -EINVAL;
3691 }
3692
3693 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3694                              pte_t **ptepp, spinlock_t **ptlp)
3695 {
3696         int res;
3697
3698         /* (void) is needed to make gcc happy */
3699         (void) __cond_lock(*ptlp,
3700                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3701         return res;
3702 }
3703
3704 /**
3705  * follow_pfn - look up PFN at a user virtual address
3706  * @vma: memory mapping
3707  * @address: user virtual address
3708  * @pfn: location to store found PFN
3709  *
3710  * Only IO mappings and raw PFN mappings are allowed.
3711  *
3712  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3713  */
3714 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3715         unsigned long *pfn)
3716 {
3717         int ret = -EINVAL;
3718         spinlock_t *ptl;
3719         pte_t *ptep;
3720
3721         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3722                 return ret;
3723
3724         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3725         if (ret)
3726                 return ret;
3727         *pfn = pte_pfn(*ptep);
3728         pte_unmap_unlock(ptep, ptl);
3729         return 0;
3730 }
3731 EXPORT_SYMBOL(follow_pfn);
3732
3733 #ifdef CONFIG_HAVE_IOREMAP_PROT
3734 int follow_phys(struct vm_area_struct *vma,
3735                 unsigned long address, unsigned int flags,
3736                 unsigned long *prot, resource_size_t *phys)
3737 {
3738         int ret = -EINVAL;
3739         pte_t *ptep, pte;
3740         spinlock_t *ptl;
3741
3742         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3743                 goto out;
3744
3745         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3746                 goto out;
3747         pte = *ptep;
3748
3749         if ((flags & FOLL_WRITE) && !pte_write(pte))
3750                 goto unlock;
3751
3752         *prot = pgprot_val(pte_pgprot(pte));
3753         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3754
3755         ret = 0;
3756 unlock:
3757         pte_unmap_unlock(ptep, ptl);
3758 out:
3759         return ret;
3760 }
3761
3762 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3763                         void *buf, int len, int write)
3764 {
3765         resource_size_t phys_addr;
3766         unsigned long prot = 0;
3767         void __iomem *maddr;
3768         int offset = addr & (PAGE_SIZE-1);
3769
3770         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3771                 return -EINVAL;
3772
3773         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3774         if (write)
3775                 memcpy_toio(maddr + offset, buf, len);
3776         else
3777                 memcpy_fromio(buf, maddr + offset, len);
3778         iounmap(maddr);
3779
3780         return len;
3781 }
3782 #endif
3783
3784 /*
3785  * Access another process' address space as given in mm.  If non-NULL, use the
3786  * given task for page fault accounting.
3787  */
3788 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3789                 unsigned long addr, void *buf, int len, int write)
3790 {
3791         struct vm_area_struct *vma;
3792         void *old_buf = buf;
3793
3794         down_read(&mm->mmap_sem);
3795         /* ignore errors, just check how much was successfully transferred */
3796         while (len) {
3797                 int bytes, ret, offset;
3798                 void *maddr;
3799                 struct page *page = NULL;
3800
3801                 ret = get_user_pages(tsk, mm, addr, 1,
3802                                 write, 1, &page, &vma);
3803                 if (ret <= 0) {
3804                         /*
3805                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3806                          * we can access using slightly different code.
3807                          */
3808 #ifdef CONFIG_HAVE_IOREMAP_PROT
3809                         vma = find_vma(mm, addr);
3810                         if (!vma || vma->vm_start > addr)
3811                                 break;
3812                         if (vma->vm_ops && vma->vm_ops->access)
3813                                 ret = vma->vm_ops->access(vma, addr, buf,
3814                                                           len, write);
3815                         if (ret <= 0)
3816 #endif
3817                                 break;
3818                         bytes = ret;
3819                 } else {
3820                         bytes = len;
3821                         offset = addr & (PAGE_SIZE-1);
3822                         if (bytes > PAGE_SIZE-offset)
3823                                 bytes = PAGE_SIZE-offset;
3824
3825                         maddr = kmap(page);
3826                         if (write) {
3827                                 copy_to_user_page(vma, page, addr,
3828                                                   maddr + offset, buf, bytes);
3829                                 set_page_dirty_lock(page);
3830                         } else {
3831                                 copy_from_user_page(vma, page, addr,
3832                                                     buf, maddr + offset, bytes);
3833                         }
3834                         kunmap(page);
3835                         page_cache_release(page);
3836                 }
3837                 len -= bytes;
3838                 buf += bytes;
3839                 addr += bytes;
3840         }
3841         up_read(&mm->mmap_sem);
3842
3843         return buf - old_buf;
3844 }
3845
3846 /**
3847  * access_remote_vm - access another process' address space
3848  * @mm:         the mm_struct of the target address space
3849  * @addr:       start address to access
3850  * @buf:        source or destination buffer
3851  * @len:        number of bytes to transfer
3852  * @write:      whether the access is a write
3853  *
3854  * The caller must hold a reference on @mm.
3855  */
3856 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3857                 void *buf, int len, int write)
3858 {
3859         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3860 }
3861
3862 /*
3863  * Access another process' address space.
3864  * Source/target buffer must be kernel space,
3865  * Do not walk the page table directly, use get_user_pages
3866  */
3867 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3868                 void *buf, int len, int write)
3869 {
3870         struct mm_struct *mm;
3871         int ret;
3872
3873         mm = get_task_mm(tsk);
3874         if (!mm)
3875                 return 0;
3876
3877         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3878         mmput(mm);
3879
3880         return ret;
3881 }
3882
3883 /*
3884  * Print the name of a VMA.
3885  */
3886 void print_vma_addr(char *prefix, unsigned long ip)
3887 {
3888         struct mm_struct *mm = current->mm;
3889         struct vm_area_struct *vma;
3890
3891         /*
3892          * Do not print if we are in atomic
3893          * contexts (in exception stacks, etc.):
3894          */
3895         if (preempt_count())
3896                 return;
3897
3898         down_read(&mm->mmap_sem);
3899         vma = find_vma(mm, ip);
3900         if (vma && vma->vm_file) {
3901                 struct file *f = vma->vm_file;
3902                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3903                 if (buf) {
3904                         char *p, *s;
3905
3906                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3907                         if (IS_ERR(p))
3908                                 p = "?";
3909                         s = strrchr(p, '/');
3910                         if (s)
3911                                 p = s+1;
3912                         printk("%s%s[%lx+%lx]", prefix, p,
3913                                         vma->vm_start,
3914                                         vma->vm_end - vma->vm_start);
3915                         free_page((unsigned long)buf);
3916                 }
3917         }
3918         up_read(&current->mm->mmap_sem);
3919 }
3920
3921 #ifdef CONFIG_PROVE_LOCKING
3922 void might_fault(void)
3923 {
3924         /*
3925          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3926          * holding the mmap_sem, this is safe because kernel memory doesn't
3927          * get paged out, therefore we'll never actually fault, and the
3928          * below annotations will generate false positives.
3929          */
3930         if (segment_eq(get_fs(), KERNEL_DS))
3931                 return;
3932
3933         might_sleep();
3934         /*
3935          * it would be nicer only to annotate paths which are not under
3936          * pagefault_disable, however that requires a larger audit and
3937          * providing helpers like get_user_atomic.
3938          */
3939         if (!in_atomic() && current->mm)
3940                 might_lock_read(&current->mm->mmap_sem);
3941 }
3942 EXPORT_SYMBOL(might_fault);
3943 #endif
3944
3945 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3946 static void clear_gigantic_page(struct page *page,
3947                                 unsigned long addr,
3948                                 unsigned int pages_per_huge_page)
3949 {
3950         int i;
3951         struct page *p = page;
3952
3953         might_sleep();
3954         for (i = 0; i < pages_per_huge_page;
3955              i++, p = mem_map_next(p, page, i)) {
3956                 cond_resched();
3957                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3958         }
3959 }
3960 void clear_huge_page(struct page *page,
3961                      unsigned long addr, unsigned int pages_per_huge_page)
3962 {
3963         int i;
3964
3965         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3966                 clear_gigantic_page(page, addr, pages_per_huge_page);
3967                 return;
3968         }
3969
3970         might_sleep();
3971         for (i = 0; i < pages_per_huge_page; i++) {
3972                 cond_resched();
3973                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3974         }
3975 }
3976
3977 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3978                                     unsigned long addr,
3979                                     struct vm_area_struct *vma,
3980                                     unsigned int pages_per_huge_page)
3981 {
3982         int i;
3983         struct page *dst_base = dst;
3984         struct page *src_base = src;
3985
3986         for (i = 0; i < pages_per_huge_page; ) {
3987                 cond_resched();
3988                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3989
3990                 i++;
3991                 dst = mem_map_next(dst, dst_base, i);
3992                 src = mem_map_next(src, src_base, i);
3993         }
3994 }
3995
3996 void copy_user_huge_page(struct page *dst, struct page *src,
3997                          unsigned long addr, struct vm_area_struct *vma,
3998                          unsigned int pages_per_huge_page)
3999 {
4000         int i;
4001
4002         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4003                 copy_user_gigantic_page(dst, src, addr, vma,
4004                                         pages_per_huge_page);
4005                 return;
4006         }
4007
4008         might_sleep();
4009         for (i = 0; i < pages_per_huge_page; i++) {
4010                 cond_resched();
4011                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4012         }
4013 }
4014 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */