e01abb908b6bbac1d9c77613db24cbfa7dbca6fe
[firefly-linux-kernel-4.4.55.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (task->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, task->rss_stat.count[i]);
135                         task->rss_stat.count[i] = 0;
136                 }
137         }
138         task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165         long val = 0;
166
167         /*
168          * Don't use task->mm here...for avoiding to use task_get_mm()..
169          * The caller must guarantee task->mm is not invalid.
170          */
171         val = atomic_long_read(&mm->rss_stat.count[member]);
172         /*
173          * counter is updated in asynchronous manner and may go to minus.
174          * But it's never be expected number for users.
175          */
176         if (val < 0)
177                 return 0;
178         return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183         __sync_task_rss_stat(task, mm);
184 }
185 #else /* SPLIT_RSS_COUNTING */
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif /* SPLIT_RSS_COUNTING */
195
196 #ifdef HAVE_GENERIC_MMU_GATHER
197
198 static int tlb_next_batch(struct mmu_gather *tlb)
199 {
200         struct mmu_gather_batch *batch;
201
202         batch = tlb->active;
203         if (batch->next) {
204                 tlb->active = batch->next;
205                 return 1;
206         }
207
208         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209         if (!batch)
210                 return 0;
211
212         batch->next = NULL;
213         batch->nr   = 0;
214         batch->max  = MAX_GATHER_BATCH;
215
216         tlb->active->next = batch;
217         tlb->active = batch;
218
219         return 1;
220 }
221
222 /* tlb_gather_mmu
223  *      Called to initialize an (on-stack) mmu_gather structure for page-table
224  *      tear-down from @mm. The @fullmm argument is used when @mm is without
225  *      users and we're going to destroy the full address space (exit/execve).
226  */
227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
228 {
229         tlb->mm = mm;
230
231         tlb->fullmm     = fullmm;
232         tlb->need_flush = 0;
233         tlb->fast_mode  = (num_possible_cpus() == 1);
234         tlb->local.next = NULL;
235         tlb->local.nr   = 0;
236         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
237         tlb->active     = &tlb->local;
238
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240         tlb->batch = NULL;
241 #endif
242 }
243
244 void tlb_flush_mmu(struct mmu_gather *tlb)
245 {
246         struct mmu_gather_batch *batch;
247
248         if (!tlb->need_flush)
249                 return;
250         tlb->need_flush = 0;
251         tlb_flush(tlb);
252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
253         tlb_table_flush(tlb);
254 #endif
255
256         if (tlb_fast_mode(tlb))
257                 return;
258
259         for (batch = &tlb->local; batch; batch = batch->next) {
260                 free_pages_and_swap_cache(batch->pages, batch->nr);
261                 batch->nr = 0;
262         }
263         tlb->active = &tlb->local;
264 }
265
266 /* tlb_finish_mmu
267  *      Called at the end of the shootdown operation to free up any resources
268  *      that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272         struct mmu_gather_batch *batch, *next;
273
274         tlb_flush_mmu(tlb);
275
276         /* keep the page table cache within bounds */
277         check_pgt_cache();
278
279         for (batch = tlb->local.next; batch; batch = next) {
280                 next = batch->next;
281                 free_pages((unsigned long)batch, 0);
282         }
283         tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *      handling the additional races in SMP caused by other CPUs caching valid
289  *      mappings in their TLBs. Returns the number of free page slots left.
290  *      When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294         struct mmu_gather_batch *batch;
295
296         VM_BUG_ON(!tlb->need_flush);
297
298         if (tlb_fast_mode(tlb)) {
299                 free_page_and_swap_cache(page);
300                 return 1; /* avoid calling tlb_flush_mmu() */
301         }
302
303         batch = tlb->active;
304         batch->pages[batch->nr++] = page;
305         if (batch->nr == batch->max) {
306                 if (!tlb_next_batch(tlb))
307                         return 0;
308                 batch = tlb->active;
309         }
310         VM_BUG_ON(batch->nr > batch->max);
311
312         return batch->max - batch->nr;
313 }
314
315 #endif /* HAVE_GENERIC_MMU_GATHER */
316
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
318
319 /*
320  * See the comment near struct mmu_table_batch.
321  */
322
323 static void tlb_remove_table_smp_sync(void *arg)
324 {
325         /* Simply deliver the interrupt */
326 }
327
328 static void tlb_remove_table_one(void *table)
329 {
330         /*
331          * This isn't an RCU grace period and hence the page-tables cannot be
332          * assumed to be actually RCU-freed.
333          *
334          * It is however sufficient for software page-table walkers that rely on
335          * IRQ disabling. See the comment near struct mmu_table_batch.
336          */
337         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338         __tlb_remove_table(table);
339 }
340
341 static void tlb_remove_table_rcu(struct rcu_head *head)
342 {
343         struct mmu_table_batch *batch;
344         int i;
345
346         batch = container_of(head, struct mmu_table_batch, rcu);
347
348         for (i = 0; i < batch->nr; i++)
349                 __tlb_remove_table(batch->tables[i]);
350
351         free_page((unsigned long)batch);
352 }
353
354 void tlb_table_flush(struct mmu_gather *tlb)
355 {
356         struct mmu_table_batch **batch = &tlb->batch;
357
358         if (*batch) {
359                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360                 *batch = NULL;
361         }
362 }
363
364 void tlb_remove_table(struct mmu_gather *tlb, void *table)
365 {
366         struct mmu_table_batch **batch = &tlb->batch;
367
368         tlb->need_flush = 1;
369
370         /*
371          * When there's less then two users of this mm there cannot be a
372          * concurrent page-table walk.
373          */
374         if (atomic_read(&tlb->mm->mm_users) < 2) {
375                 __tlb_remove_table(table);
376                 return;
377         }
378
379         if (*batch == NULL) {
380                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
381                 if (*batch == NULL) {
382                         tlb_remove_table_one(table);
383                         return;
384                 }
385                 (*batch)->nr = 0;
386         }
387         (*batch)->tables[(*batch)->nr++] = table;
388         if ((*batch)->nr == MAX_TABLE_BATCH)
389                 tlb_table_flush(tlb);
390 }
391
392 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
393
394 /*
395  * If a p?d_bad entry is found while walking page tables, report
396  * the error, before resetting entry to p?d_none.  Usually (but
397  * very seldom) called out from the p?d_none_or_clear_bad macros.
398  */
399
400 void pgd_clear_bad(pgd_t *pgd)
401 {
402         pgd_ERROR(*pgd);
403         pgd_clear(pgd);
404 }
405
406 void pud_clear_bad(pud_t *pud)
407 {
408         pud_ERROR(*pud);
409         pud_clear(pud);
410 }
411
412 void pmd_clear_bad(pmd_t *pmd)
413 {
414         pmd_ERROR(*pmd);
415         pmd_clear(pmd);
416 }
417
418 /*
419  * Note: this doesn't free the actual pages themselves. That
420  * has been handled earlier when unmapping all the memory regions.
421  */
422 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
423                            unsigned long addr)
424 {
425         pgtable_t token = pmd_pgtable(*pmd);
426         pmd_clear(pmd);
427         pte_free_tlb(tlb, token, addr);
428         tlb->mm->nr_ptes--;
429 }
430
431 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
432                                 unsigned long addr, unsigned long end,
433                                 unsigned long floor, unsigned long ceiling)
434 {
435         pmd_t *pmd;
436         unsigned long next;
437         unsigned long start;
438
439         start = addr;
440         pmd = pmd_offset(pud, addr);
441         do {
442                 next = pmd_addr_end(addr, end);
443                 if (pmd_none_or_clear_bad(pmd))
444                         continue;
445                 free_pte_range(tlb, pmd, addr);
446         } while (pmd++, addr = next, addr != end);
447
448         start &= PUD_MASK;
449         if (start < floor)
450                 return;
451         if (ceiling) {
452                 ceiling &= PUD_MASK;
453                 if (!ceiling)
454                         return;
455         }
456         if (end - 1 > ceiling - 1)
457                 return;
458
459         pmd = pmd_offset(pud, start);
460         pud_clear(pud);
461         pmd_free_tlb(tlb, pmd, start);
462 }
463
464 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
465                                 unsigned long addr, unsigned long end,
466                                 unsigned long floor, unsigned long ceiling)
467 {
468         pud_t *pud;
469         unsigned long next;
470         unsigned long start;
471
472         start = addr;
473         pud = pud_offset(pgd, addr);
474         do {
475                 next = pud_addr_end(addr, end);
476                 if (pud_none_or_clear_bad(pud))
477                         continue;
478                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
479         } while (pud++, addr = next, addr != end);
480
481         start &= PGDIR_MASK;
482         if (start < floor)
483                 return;
484         if (ceiling) {
485                 ceiling &= PGDIR_MASK;
486                 if (!ceiling)
487                         return;
488         }
489         if (end - 1 > ceiling - 1)
490                 return;
491
492         pud = pud_offset(pgd, start);
493         pgd_clear(pgd);
494         pud_free_tlb(tlb, pud, start);
495 }
496
497 /*
498  * This function frees user-level page tables of a process.
499  *
500  * Must be called with pagetable lock held.
501  */
502 void free_pgd_range(struct mmu_gather *tlb,
503                         unsigned long addr, unsigned long end,
504                         unsigned long floor, unsigned long ceiling)
505 {
506         pgd_t *pgd;
507         unsigned long next;
508
509         /*
510          * The next few lines have given us lots of grief...
511          *
512          * Why are we testing PMD* at this top level?  Because often
513          * there will be no work to do at all, and we'd prefer not to
514          * go all the way down to the bottom just to discover that.
515          *
516          * Why all these "- 1"s?  Because 0 represents both the bottom
517          * of the address space and the top of it (using -1 for the
518          * top wouldn't help much: the masks would do the wrong thing).
519          * The rule is that addr 0 and floor 0 refer to the bottom of
520          * the address space, but end 0 and ceiling 0 refer to the top
521          * Comparisons need to use "end - 1" and "ceiling - 1" (though
522          * that end 0 case should be mythical).
523          *
524          * Wherever addr is brought up or ceiling brought down, we must
525          * be careful to reject "the opposite 0" before it confuses the
526          * subsequent tests.  But what about where end is brought down
527          * by PMD_SIZE below? no, end can't go down to 0 there.
528          *
529          * Whereas we round start (addr) and ceiling down, by different
530          * masks at different levels, in order to test whether a table
531          * now has no other vmas using it, so can be freed, we don't
532          * bother to round floor or end up - the tests don't need that.
533          */
534
535         addr &= PMD_MASK;
536         if (addr < floor) {
537                 addr += PMD_SIZE;
538                 if (!addr)
539                         return;
540         }
541         if (ceiling) {
542                 ceiling &= PMD_MASK;
543                 if (!ceiling)
544                         return;
545         }
546         if (end - 1 > ceiling - 1)
547                 end -= PMD_SIZE;
548         if (addr > end - 1)
549                 return;
550
551         pgd = pgd_offset(tlb->mm, addr);
552         do {
553                 next = pgd_addr_end(addr, end);
554                 if (pgd_none_or_clear_bad(pgd))
555                         continue;
556                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
557         } while (pgd++, addr = next, addr != end);
558 }
559
560 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
561                 unsigned long floor, unsigned long ceiling)
562 {
563         while (vma) {
564                 struct vm_area_struct *next = vma->vm_next;
565                 unsigned long addr = vma->vm_start;
566
567                 /*
568                  * Hide vma from rmap and truncate_pagecache before freeing
569                  * pgtables
570                  */
571                 unlink_anon_vmas(vma);
572                 unlink_file_vma(vma);
573
574                 if (is_vm_hugetlb_page(vma)) {
575                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
576                                 floor, next? next->vm_start: ceiling);
577                 } else {
578                         /*
579                          * Optimization: gather nearby vmas into one call down
580                          */
581                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
582                                && !is_vm_hugetlb_page(next)) {
583                                 vma = next;
584                                 next = vma->vm_next;
585                                 unlink_anon_vmas(vma);
586                                 unlink_file_vma(vma);
587                         }
588                         free_pgd_range(tlb, addr, vma->vm_end,
589                                 floor, next? next->vm_start: ceiling);
590                 }
591                 vma = next;
592         }
593 }
594
595 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
596                 pmd_t *pmd, unsigned long address)
597 {
598         pgtable_t new = pte_alloc_one(mm, address);
599         int wait_split_huge_page;
600         if (!new)
601                 return -ENOMEM;
602
603         /*
604          * Ensure all pte setup (eg. pte page lock and page clearing) are
605          * visible before the pte is made visible to other CPUs by being
606          * put into page tables.
607          *
608          * The other side of the story is the pointer chasing in the page
609          * table walking code (when walking the page table without locking;
610          * ie. most of the time). Fortunately, these data accesses consist
611          * of a chain of data-dependent loads, meaning most CPUs (alpha
612          * being the notable exception) will already guarantee loads are
613          * seen in-order. See the alpha page table accessors for the
614          * smp_read_barrier_depends() barriers in page table walking code.
615          */
616         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
617
618         spin_lock(&mm->page_table_lock);
619         wait_split_huge_page = 0;
620         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
621                 mm->nr_ptes++;
622                 pmd_populate(mm, pmd, new);
623                 new = NULL;
624         } else if (unlikely(pmd_trans_splitting(*pmd)))
625                 wait_split_huge_page = 1;
626         spin_unlock(&mm->page_table_lock);
627         if (new)
628                 pte_free(mm, new);
629         if (wait_split_huge_page)
630                 wait_split_huge_page(vma->anon_vma, pmd);
631         return 0;
632 }
633
634 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
635 {
636         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
637         if (!new)
638                 return -ENOMEM;
639
640         smp_wmb(); /* See comment in __pte_alloc */
641
642         spin_lock(&init_mm.page_table_lock);
643         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
644                 pmd_populate_kernel(&init_mm, pmd, new);
645                 new = NULL;
646         } else
647                 VM_BUG_ON(pmd_trans_splitting(*pmd));
648         spin_unlock(&init_mm.page_table_lock);
649         if (new)
650                 pte_free_kernel(&init_mm, new);
651         return 0;
652 }
653
654 static inline void init_rss_vec(int *rss)
655 {
656         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
657 }
658
659 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
660 {
661         int i;
662
663         if (current->mm == mm)
664                 sync_mm_rss(current, mm);
665         for (i = 0; i < NR_MM_COUNTERS; i++)
666                 if (rss[i])
667                         add_mm_counter(mm, i, rss[i]);
668 }
669
670 /*
671  * This function is called to print an error when a bad pte
672  * is found. For example, we might have a PFN-mapped pte in
673  * a region that doesn't allow it.
674  *
675  * The calling function must still handle the error.
676  */
677 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
678                           pte_t pte, struct page *page)
679 {
680         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
681         pud_t *pud = pud_offset(pgd, addr);
682         pmd_t *pmd = pmd_offset(pud, addr);
683         struct address_space *mapping;
684         pgoff_t index;
685         static unsigned long resume;
686         static unsigned long nr_shown;
687         static unsigned long nr_unshown;
688
689         /*
690          * Allow a burst of 60 reports, then keep quiet for that minute;
691          * or allow a steady drip of one report per second.
692          */
693         if (nr_shown == 60) {
694                 if (time_before(jiffies, resume)) {
695                         nr_unshown++;
696                         return;
697                 }
698                 if (nr_unshown) {
699                         printk(KERN_ALERT
700                                 "BUG: Bad page map: %lu messages suppressed\n",
701                                 nr_unshown);
702                         nr_unshown = 0;
703                 }
704                 nr_shown = 0;
705         }
706         if (nr_shown++ == 0)
707                 resume = jiffies + 60 * HZ;
708
709         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
710         index = linear_page_index(vma, addr);
711
712         printk(KERN_ALERT
713                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
714                 current->comm,
715                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
716         if (page)
717                 dump_page(page);
718         printk(KERN_ALERT
719                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
721         /*
722          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
723          */
724         if (vma->vm_ops)
725                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
726                                 (unsigned long)vma->vm_ops->fault);
727         if (vma->vm_file && vma->vm_file->f_op)
728                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
729                                 (unsigned long)vma->vm_file->f_op->mmap);
730         dump_stack();
731         add_taint(TAINT_BAD_PAGE);
732 }
733
734 static inline int is_cow_mapping(vm_flags_t flags)
735 {
736         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
737 }
738
739 #ifndef is_zero_pfn
740 static inline int is_zero_pfn(unsigned long pfn)
741 {
742         return pfn == zero_pfn;
743 }
744 #endif
745
746 #ifndef my_zero_pfn
747 static inline unsigned long my_zero_pfn(unsigned long addr)
748 {
749         return zero_pfn;
750 }
751 #endif
752
753 /*
754  * vm_normal_page -- This function gets the "struct page" associated with a pte.
755  *
756  * "Special" mappings do not wish to be associated with a "struct page" (either
757  * it doesn't exist, or it exists but they don't want to touch it). In this
758  * case, NULL is returned here. "Normal" mappings do have a struct page.
759  *
760  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
761  * pte bit, in which case this function is trivial. Secondly, an architecture
762  * may not have a spare pte bit, which requires a more complicated scheme,
763  * described below.
764  *
765  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766  * special mapping (even if there are underlying and valid "struct pages").
767  * COWed pages of a VM_PFNMAP are always normal.
768  *
769  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
770  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
771  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
772  * mapping will always honor the rule
773  *
774  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
775  *
776  * And for normal mappings this is false.
777  *
778  * This restricts such mappings to be a linear translation from virtual address
779  * to pfn. To get around this restriction, we allow arbitrary mappings so long
780  * as the vma is not a COW mapping; in that case, we know that all ptes are
781  * special (because none can have been COWed).
782  *
783  *
784  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
785  *
786  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787  * page" backing, however the difference is that _all_ pages with a struct
788  * page (that is, those where pfn_valid is true) are refcounted and considered
789  * normal pages by the VM. The disadvantage is that pages are refcounted
790  * (which can be slower and simply not an option for some PFNMAP users). The
791  * advantage is that we don't have to follow the strict linearity rule of
792  * PFNMAP mappings in order to support COWable mappings.
793  *
794  */
795 #ifdef __HAVE_ARCH_PTE_SPECIAL
796 # define HAVE_PTE_SPECIAL 1
797 #else
798 # define HAVE_PTE_SPECIAL 0
799 #endif
800 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
801                                 pte_t pte)
802 {
803         unsigned long pfn = pte_pfn(pte);
804
805         if (HAVE_PTE_SPECIAL) {
806                 if (likely(!pte_special(pte)))
807                         goto check_pfn;
808                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
809                         return NULL;
810                 if (!is_zero_pfn(pfn))
811                         print_bad_pte(vma, addr, pte, NULL);
812                 return NULL;
813         }
814
815         /* !HAVE_PTE_SPECIAL case follows: */
816
817         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818                 if (vma->vm_flags & VM_MIXEDMAP) {
819                         if (!pfn_valid(pfn))
820                                 return NULL;
821                         goto out;
822                 } else {
823                         unsigned long off;
824                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
825                         if (pfn == vma->vm_pgoff + off)
826                                 return NULL;
827                         if (!is_cow_mapping(vma->vm_flags))
828                                 return NULL;
829                 }
830         }
831
832         if (is_zero_pfn(pfn))
833                 return NULL;
834 check_pfn:
835         if (unlikely(pfn > highest_memmap_pfn)) {
836                 print_bad_pte(vma, addr, pte, NULL);
837                 return NULL;
838         }
839
840         /*
841          * NOTE! We still have PageReserved() pages in the page tables.
842          * eg. VDSO mappings can cause them to exist.
843          */
844 out:
845         return pfn_to_page(pfn);
846 }
847
848 /*
849  * copy one vm_area from one task to the other. Assumes the page tables
850  * already present in the new task to be cleared in the whole range
851  * covered by this vma.
852  */
853
854 static inline unsigned long
855 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
856                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
857                 unsigned long addr, int *rss)
858 {
859         unsigned long vm_flags = vma->vm_flags;
860         pte_t pte = *src_pte;
861         struct page *page;
862
863         /* pte contains position in swap or file, so copy. */
864         if (unlikely(!pte_present(pte))) {
865                 if (!pte_file(pte)) {
866                         swp_entry_t entry = pte_to_swp_entry(pte);
867
868                         if (swap_duplicate(entry) < 0)
869                                 return entry.val;
870
871                         /* make sure dst_mm is on swapoff's mmlist. */
872                         if (unlikely(list_empty(&dst_mm->mmlist))) {
873                                 spin_lock(&mmlist_lock);
874                                 if (list_empty(&dst_mm->mmlist))
875                                         list_add(&dst_mm->mmlist,
876                                                  &src_mm->mmlist);
877                                 spin_unlock(&mmlist_lock);
878                         }
879                         if (likely(!non_swap_entry(entry)))
880                                 rss[MM_SWAPENTS]++;
881                         else if (is_migration_entry(entry)) {
882                                 page = migration_entry_to_page(entry);
883
884                                 if (PageAnon(page))
885                                         rss[MM_ANONPAGES]++;
886                                 else
887                                         rss[MM_FILEPAGES]++;
888
889                                 if (is_write_migration_entry(entry) &&
890                                     is_cow_mapping(vm_flags)) {
891                                         /*
892                                          * COW mappings require pages in both
893                                          * parent and child to be set to read.
894                                          */
895                                         make_migration_entry_read(&entry);
896                                         pte = swp_entry_to_pte(entry);
897                                         set_pte_at(src_mm, addr, src_pte, pte);
898                                 }
899                         }
900                 }
901                 goto out_set_pte;
902         }
903
904         /*
905          * If it's a COW mapping, write protect it both
906          * in the parent and the child
907          */
908         if (is_cow_mapping(vm_flags)) {
909                 ptep_set_wrprotect(src_mm, addr, src_pte);
910                 pte = pte_wrprotect(pte);
911         }
912
913         /*
914          * If it's a shared mapping, mark it clean in
915          * the child
916          */
917         if (vm_flags & VM_SHARED)
918                 pte = pte_mkclean(pte);
919         pte = pte_mkold(pte);
920
921         page = vm_normal_page(vma, addr, pte);
922         if (page) {
923                 get_page(page);
924                 page_dup_rmap(page);
925                 if (PageAnon(page))
926                         rss[MM_ANONPAGES]++;
927                 else
928                         rss[MM_FILEPAGES]++;
929         }
930
931 out_set_pte:
932         set_pte_at(dst_mm, addr, dst_pte, pte);
933         return 0;
934 }
935
936 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
937                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
938                    unsigned long addr, unsigned long end)
939 {
940         pte_t *orig_src_pte, *orig_dst_pte;
941         pte_t *src_pte, *dst_pte;
942         spinlock_t *src_ptl, *dst_ptl;
943         int progress = 0;
944         int rss[NR_MM_COUNTERS];
945         swp_entry_t entry = (swp_entry_t){0};
946
947 again:
948         init_rss_vec(rss);
949
950         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
951         if (!dst_pte)
952                 return -ENOMEM;
953         src_pte = pte_offset_map(src_pmd, addr);
954         src_ptl = pte_lockptr(src_mm, src_pmd);
955         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
956         orig_src_pte = src_pte;
957         orig_dst_pte = dst_pte;
958         arch_enter_lazy_mmu_mode();
959
960         do {
961                 /*
962                  * We are holding two locks at this point - either of them
963                  * could generate latencies in another task on another CPU.
964                  */
965                 if (progress >= 32) {
966                         progress = 0;
967                         if (need_resched() ||
968                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
969                                 break;
970                 }
971                 if (pte_none(*src_pte)) {
972                         progress++;
973                         continue;
974                 }
975                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
976                                                         vma, addr, rss);
977                 if (entry.val)
978                         break;
979                 progress += 8;
980         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
981
982         arch_leave_lazy_mmu_mode();
983         spin_unlock(src_ptl);
984         pte_unmap(orig_src_pte);
985         add_mm_rss_vec(dst_mm, rss);
986         pte_unmap_unlock(orig_dst_pte, dst_ptl);
987         cond_resched();
988
989         if (entry.val) {
990                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
991                         return -ENOMEM;
992                 progress = 0;
993         }
994         if (addr != end)
995                 goto again;
996         return 0;
997 }
998
999 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1001                 unsigned long addr, unsigned long end)
1002 {
1003         pmd_t *src_pmd, *dst_pmd;
1004         unsigned long next;
1005
1006         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1007         if (!dst_pmd)
1008                 return -ENOMEM;
1009         src_pmd = pmd_offset(src_pud, addr);
1010         do {
1011                 next = pmd_addr_end(addr, end);
1012                 if (pmd_trans_huge(*src_pmd)) {
1013                         int err;
1014                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1015                         err = copy_huge_pmd(dst_mm, src_mm,
1016                                             dst_pmd, src_pmd, addr, vma);
1017                         if (err == -ENOMEM)
1018                                 return -ENOMEM;
1019                         if (!err)
1020                                 continue;
1021                         /* fall through */
1022                 }
1023                 if (pmd_none_or_clear_bad(src_pmd))
1024                         continue;
1025                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1026                                                 vma, addr, next))
1027                         return -ENOMEM;
1028         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1029         return 0;
1030 }
1031
1032 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1034                 unsigned long addr, unsigned long end)
1035 {
1036         pud_t *src_pud, *dst_pud;
1037         unsigned long next;
1038
1039         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1040         if (!dst_pud)
1041                 return -ENOMEM;
1042         src_pud = pud_offset(src_pgd, addr);
1043         do {
1044                 next = pud_addr_end(addr, end);
1045                 if (pud_none_or_clear_bad(src_pud))
1046                         continue;
1047                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1048                                                 vma, addr, next))
1049                         return -ENOMEM;
1050         } while (dst_pud++, src_pud++, addr = next, addr != end);
1051         return 0;
1052 }
1053
1054 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055                 struct vm_area_struct *vma)
1056 {
1057         pgd_t *src_pgd, *dst_pgd;
1058         unsigned long next;
1059         unsigned long addr = vma->vm_start;
1060         unsigned long end = vma->vm_end;
1061         int ret;
1062
1063         /*
1064          * Don't copy ptes where a page fault will fill them correctly.
1065          * Fork becomes much lighter when there are big shared or private
1066          * readonly mappings. The tradeoff is that copy_page_range is more
1067          * efficient than faulting.
1068          */
1069         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1070                 if (!vma->anon_vma)
1071                         return 0;
1072         }
1073
1074         if (is_vm_hugetlb_page(vma))
1075                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1076
1077         if (unlikely(is_pfn_mapping(vma))) {
1078                 /*
1079                  * We do not free on error cases below as remove_vma
1080                  * gets called on error from higher level routine
1081                  */
1082                 ret = track_pfn_vma_copy(vma);
1083                 if (ret)
1084                         return ret;
1085         }
1086
1087         /*
1088          * We need to invalidate the secondary MMU mappings only when
1089          * there could be a permission downgrade on the ptes of the
1090          * parent mm. And a permission downgrade will only happen if
1091          * is_cow_mapping() returns true.
1092          */
1093         if (is_cow_mapping(vma->vm_flags))
1094                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1095
1096         ret = 0;
1097         dst_pgd = pgd_offset(dst_mm, addr);
1098         src_pgd = pgd_offset(src_mm, addr);
1099         do {
1100                 next = pgd_addr_end(addr, end);
1101                 if (pgd_none_or_clear_bad(src_pgd))
1102                         continue;
1103                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1104                                             vma, addr, next))) {
1105                         ret = -ENOMEM;
1106                         break;
1107                 }
1108         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1109
1110         if (is_cow_mapping(vma->vm_flags))
1111                 mmu_notifier_invalidate_range_end(src_mm,
1112                                                   vma->vm_start, end);
1113         return ret;
1114 }
1115
1116 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1117                                 struct vm_area_struct *vma, pmd_t *pmd,
1118                                 unsigned long addr, unsigned long end,
1119                                 struct zap_details *details)
1120 {
1121         struct mm_struct *mm = tlb->mm;
1122         int force_flush = 0;
1123         int rss[NR_MM_COUNTERS];
1124         spinlock_t *ptl;
1125         pte_t *start_pte;
1126         pte_t *pte;
1127
1128 again:
1129         init_rss_vec(rss);
1130         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1131         pte = start_pte;
1132         arch_enter_lazy_mmu_mode();
1133         do {
1134                 pte_t ptent = *pte;
1135                 if (pte_none(ptent)) {
1136                         continue;
1137                 }
1138
1139                 if (pte_present(ptent)) {
1140                         struct page *page;
1141
1142                         page = vm_normal_page(vma, addr, ptent);
1143                         if (unlikely(details) && page) {
1144                                 /*
1145                                  * unmap_shared_mapping_pages() wants to
1146                                  * invalidate cache without truncating:
1147                                  * unmap shared but keep private pages.
1148                                  */
1149                                 if (details->check_mapping &&
1150                                     details->check_mapping != page->mapping)
1151                                         continue;
1152                                 /*
1153                                  * Each page->index must be checked when
1154                                  * invalidating or truncating nonlinear.
1155                                  */
1156                                 if (details->nonlinear_vma &&
1157                                     (page->index < details->first_index ||
1158                                      page->index > details->last_index))
1159                                         continue;
1160                         }
1161                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1162                                                         tlb->fullmm);
1163                         tlb_remove_tlb_entry(tlb, pte, addr);
1164                         if (unlikely(!page))
1165                                 continue;
1166                         if (unlikely(details) && details->nonlinear_vma
1167                             && linear_page_index(details->nonlinear_vma,
1168                                                 addr) != page->index)
1169                                 set_pte_at(mm, addr, pte,
1170                                            pgoff_to_pte(page->index));
1171                         if (PageAnon(page))
1172                                 rss[MM_ANONPAGES]--;
1173                         else {
1174                                 if (pte_dirty(ptent))
1175                                         set_page_dirty(page);
1176                                 if (pte_young(ptent) &&
1177                                     likely(!VM_SequentialReadHint(vma)))
1178                                         mark_page_accessed(page);
1179                                 rss[MM_FILEPAGES]--;
1180                         }
1181                         page_remove_rmap(page);
1182                         if (unlikely(page_mapcount(page) < 0))
1183                                 print_bad_pte(vma, addr, ptent, page);
1184                         force_flush = !__tlb_remove_page(tlb, page);
1185                         if (force_flush)
1186                                 break;
1187                         continue;
1188                 }
1189                 /*
1190                  * If details->check_mapping, we leave swap entries;
1191                  * if details->nonlinear_vma, we leave file entries.
1192                  */
1193                 if (unlikely(details))
1194                         continue;
1195                 if (pte_file(ptent)) {
1196                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1197                                 print_bad_pte(vma, addr, ptent, NULL);
1198                 } else {
1199                         swp_entry_t entry = pte_to_swp_entry(ptent);
1200
1201                         if (!non_swap_entry(entry))
1202                                 rss[MM_SWAPENTS]--;
1203                         else if (is_migration_entry(entry)) {
1204                                 struct page *page;
1205
1206                                 page = migration_entry_to_page(entry);
1207
1208                                 if (PageAnon(page))
1209                                         rss[MM_ANONPAGES]--;
1210                                 else
1211                                         rss[MM_FILEPAGES]--;
1212                         }
1213                         if (unlikely(!free_swap_and_cache(entry)))
1214                                 print_bad_pte(vma, addr, ptent, NULL);
1215                 }
1216                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1217         } while (pte++, addr += PAGE_SIZE, addr != end);
1218
1219         add_mm_rss_vec(mm, rss);
1220         arch_leave_lazy_mmu_mode();
1221         pte_unmap_unlock(start_pte, ptl);
1222
1223         /*
1224          * mmu_gather ran out of room to batch pages, we break out of
1225          * the PTE lock to avoid doing the potential expensive TLB invalidate
1226          * and page-free while holding it.
1227          */
1228         if (force_flush) {
1229                 force_flush = 0;
1230                 tlb_flush_mmu(tlb);
1231                 if (addr != end)
1232                         goto again;
1233         }
1234
1235         return addr;
1236 }
1237
1238 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1239                                 struct vm_area_struct *vma, pud_t *pud,
1240                                 unsigned long addr, unsigned long end,
1241                                 struct zap_details *details)
1242 {
1243         pmd_t *pmd;
1244         unsigned long next;
1245
1246         pmd = pmd_offset(pud, addr);
1247         do {
1248                 next = pmd_addr_end(addr, end);
1249                 if (pmd_trans_huge(*pmd)) {
1250                         if (next - addr != HPAGE_PMD_SIZE) {
1251                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1252                                 split_huge_page_pmd(vma->vm_mm, pmd);
1253                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1254                                 goto next;
1255                         /* fall through */
1256                 }
1257                 /*
1258                  * Here there can be other concurrent MADV_DONTNEED or
1259                  * trans huge page faults running, and if the pmd is
1260                  * none or trans huge it can change under us. This is
1261                  * because MADV_DONTNEED holds the mmap_sem in read
1262                  * mode.
1263                  */
1264                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1265                         goto next;
1266                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1267 next:
1268                 cond_resched();
1269         } while (pmd++, addr = next, addr != end);
1270
1271         return addr;
1272 }
1273
1274 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1275                                 struct vm_area_struct *vma, pgd_t *pgd,
1276                                 unsigned long addr, unsigned long end,
1277                                 struct zap_details *details)
1278 {
1279         pud_t *pud;
1280         unsigned long next;
1281
1282         pud = pud_offset(pgd, addr);
1283         do {
1284                 next = pud_addr_end(addr, end);
1285                 if (pud_none_or_clear_bad(pud))
1286                         continue;
1287                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1288         } while (pud++, addr = next, addr != end);
1289
1290         return addr;
1291 }
1292
1293 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1294                                 struct vm_area_struct *vma,
1295                                 unsigned long addr, unsigned long end,
1296                                 struct zap_details *details)
1297 {
1298         pgd_t *pgd;
1299         unsigned long next;
1300
1301         if (details && !details->check_mapping && !details->nonlinear_vma)
1302                 details = NULL;
1303
1304         BUG_ON(addr >= end);
1305         mem_cgroup_uncharge_start();
1306         tlb_start_vma(tlb, vma);
1307         pgd = pgd_offset(vma->vm_mm, addr);
1308         do {
1309                 next = pgd_addr_end(addr, end);
1310                 if (pgd_none_or_clear_bad(pgd))
1311                         continue;
1312                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1313         } while (pgd++, addr = next, addr != end);
1314         tlb_end_vma(tlb, vma);
1315         mem_cgroup_uncharge_end();
1316
1317         return addr;
1318 }
1319
1320 /**
1321  * unmap_vmas - unmap a range of memory covered by a list of vma's
1322  * @tlb: address of the caller's struct mmu_gather
1323  * @vma: the starting vma
1324  * @start_addr: virtual address at which to start unmapping
1325  * @end_addr: virtual address at which to end unmapping
1326  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1327  * @details: details of nonlinear truncation or shared cache invalidation
1328  *
1329  * Returns the end address of the unmapping (restart addr if interrupted).
1330  *
1331  * Unmap all pages in the vma list.
1332  *
1333  * Only addresses between `start' and `end' will be unmapped.
1334  *
1335  * The VMA list must be sorted in ascending virtual address order.
1336  *
1337  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1338  * range after unmap_vmas() returns.  So the only responsibility here is to
1339  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1340  * drops the lock and schedules.
1341  */
1342 unsigned long unmap_vmas(struct mmu_gather *tlb,
1343                 struct vm_area_struct *vma, unsigned long start_addr,
1344                 unsigned long end_addr, unsigned long *nr_accounted,
1345                 struct zap_details *details)
1346 {
1347         unsigned long start = start_addr;
1348         struct mm_struct *mm = vma->vm_mm;
1349
1350         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1351         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1352                 unsigned long end;
1353
1354                 start = max(vma->vm_start, start_addr);
1355                 if (start >= vma->vm_end)
1356                         continue;
1357                 end = min(vma->vm_end, end_addr);
1358                 if (end <= vma->vm_start)
1359                         continue;
1360
1361                 if (vma->vm_flags & VM_ACCOUNT)
1362                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1363
1364                 if (unlikely(is_pfn_mapping(vma)))
1365                         untrack_pfn_vma(vma, 0, 0);
1366
1367                 while (start != end) {
1368                         if (unlikely(is_vm_hugetlb_page(vma))) {
1369                                 /*
1370                                  * It is undesirable to test vma->vm_file as it
1371                                  * should be non-null for valid hugetlb area.
1372                                  * However, vm_file will be NULL in the error
1373                                  * cleanup path of do_mmap_pgoff. When
1374                                  * hugetlbfs ->mmap method fails,
1375                                  * do_mmap_pgoff() nullifies vma->vm_file
1376                                  * before calling this function to clean up.
1377                                  * Since no pte has actually been setup, it is
1378                                  * safe to do nothing in this case.
1379                                  */
1380                                 if (vma->vm_file)
1381                                         unmap_hugepage_range(vma, start, end, NULL);
1382
1383                                 start = end;
1384                         } else
1385                                 start = unmap_page_range(tlb, vma, start, end, details);
1386                 }
1387         }
1388
1389         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1390         return start;   /* which is now the end (or restart) address */
1391 }
1392
1393 /**
1394  * zap_page_range - remove user pages in a given range
1395  * @vma: vm_area_struct holding the applicable pages
1396  * @address: starting address of pages to zap
1397  * @size: number of bytes to zap
1398  * @details: details of nonlinear truncation or shared cache invalidation
1399  */
1400 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1401                 unsigned long size, struct zap_details *details)
1402 {
1403         struct mm_struct *mm = vma->vm_mm;
1404         struct mmu_gather tlb;
1405         unsigned long end = address + size;
1406         unsigned long nr_accounted = 0;
1407
1408         lru_add_drain();
1409         tlb_gather_mmu(&tlb, mm, 0);
1410         update_hiwater_rss(mm);
1411         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1412         tlb_finish_mmu(&tlb, address, end);
1413         return end;
1414 }
1415
1416 /**
1417  * zap_vma_ptes - remove ptes mapping the vma
1418  * @vma: vm_area_struct holding ptes to be zapped
1419  * @address: starting address of pages to zap
1420  * @size: number of bytes to zap
1421  *
1422  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1423  *
1424  * The entire address range must be fully contained within the vma.
1425  *
1426  * Returns 0 if successful.
1427  */
1428 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1429                 unsigned long size)
1430 {
1431         if (address < vma->vm_start || address + size > vma->vm_end ||
1432                         !(vma->vm_flags & VM_PFNMAP))
1433                 return -1;
1434         zap_page_range(vma, address, size, NULL);
1435         return 0;
1436 }
1437 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1438
1439 /**
1440  * follow_page - look up a page descriptor from a user-virtual address
1441  * @vma: vm_area_struct mapping @address
1442  * @address: virtual address to look up
1443  * @flags: flags modifying lookup behaviour
1444  *
1445  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1446  *
1447  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1448  * an error pointer if there is a mapping to something not represented
1449  * by a page descriptor (see also vm_normal_page()).
1450  */
1451 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1452                         unsigned int flags)
1453 {
1454         pgd_t *pgd;
1455         pud_t *pud;
1456         pmd_t *pmd;
1457         pte_t *ptep, pte;
1458         spinlock_t *ptl;
1459         struct page *page;
1460         struct mm_struct *mm = vma->vm_mm;
1461
1462         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1463         if (!IS_ERR(page)) {
1464                 BUG_ON(flags & FOLL_GET);
1465                 goto out;
1466         }
1467
1468         page = NULL;
1469         pgd = pgd_offset(mm, address);
1470         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1471                 goto no_page_table;
1472
1473         pud = pud_offset(pgd, address);
1474         if (pud_none(*pud))
1475                 goto no_page_table;
1476         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1477                 BUG_ON(flags & FOLL_GET);
1478                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1479                 goto out;
1480         }
1481         if (unlikely(pud_bad(*pud)))
1482                 goto no_page_table;
1483
1484         pmd = pmd_offset(pud, address);
1485         if (pmd_none(*pmd))
1486                 goto no_page_table;
1487         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1488                 BUG_ON(flags & FOLL_GET);
1489                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1490                 goto out;
1491         }
1492         if (pmd_trans_huge(*pmd)) {
1493                 if (flags & FOLL_SPLIT) {
1494                         split_huge_page_pmd(mm, pmd);
1495                         goto split_fallthrough;
1496                 }
1497                 spin_lock(&mm->page_table_lock);
1498                 if (likely(pmd_trans_huge(*pmd))) {
1499                         if (unlikely(pmd_trans_splitting(*pmd))) {
1500                                 spin_unlock(&mm->page_table_lock);
1501                                 wait_split_huge_page(vma->anon_vma, pmd);
1502                         } else {
1503                                 page = follow_trans_huge_pmd(mm, address,
1504                                                              pmd, flags);
1505                                 spin_unlock(&mm->page_table_lock);
1506                                 goto out;
1507                         }
1508                 } else
1509                         spin_unlock(&mm->page_table_lock);
1510                 /* fall through */
1511         }
1512 split_fallthrough:
1513         if (unlikely(pmd_bad(*pmd)))
1514                 goto no_page_table;
1515
1516         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1517
1518         pte = *ptep;
1519         if (!pte_present(pte))
1520                 goto no_page;
1521         if ((flags & FOLL_WRITE) && !pte_write(pte))
1522                 goto unlock;
1523
1524         page = vm_normal_page(vma, address, pte);
1525         if (unlikely(!page)) {
1526                 if ((flags & FOLL_DUMP) ||
1527                     !is_zero_pfn(pte_pfn(pte)))
1528                         goto bad_page;
1529                 page = pte_page(pte);
1530         }
1531
1532         if (flags & FOLL_GET)
1533                 get_page_foll(page);
1534         if (flags & FOLL_TOUCH) {
1535                 if ((flags & FOLL_WRITE) &&
1536                     !pte_dirty(pte) && !PageDirty(page))
1537                         set_page_dirty(page);
1538                 /*
1539                  * pte_mkyoung() would be more correct here, but atomic care
1540                  * is needed to avoid losing the dirty bit: it is easier to use
1541                  * mark_page_accessed().
1542                  */
1543                 mark_page_accessed(page);
1544         }
1545         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1546                 /*
1547                  * The preliminary mapping check is mainly to avoid the
1548                  * pointless overhead of lock_page on the ZERO_PAGE
1549                  * which might bounce very badly if there is contention.
1550                  *
1551                  * If the page is already locked, we don't need to
1552                  * handle it now - vmscan will handle it later if and
1553                  * when it attempts to reclaim the page.
1554                  */
1555                 if (page->mapping && trylock_page(page)) {
1556                         lru_add_drain();  /* push cached pages to LRU */
1557                         /*
1558                          * Because we lock page here and migration is
1559                          * blocked by the pte's page reference, we need
1560                          * only check for file-cache page truncation.
1561                          */
1562                         if (page->mapping)
1563                                 mlock_vma_page(page);
1564                         unlock_page(page);
1565                 }
1566         }
1567 unlock:
1568         pte_unmap_unlock(ptep, ptl);
1569 out:
1570         return page;
1571
1572 bad_page:
1573         pte_unmap_unlock(ptep, ptl);
1574         return ERR_PTR(-EFAULT);
1575
1576 no_page:
1577         pte_unmap_unlock(ptep, ptl);
1578         if (!pte_none(pte))
1579                 return page;
1580
1581 no_page_table:
1582         /*
1583          * When core dumping an enormous anonymous area that nobody
1584          * has touched so far, we don't want to allocate unnecessary pages or
1585          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1586          * then get_dump_page() will return NULL to leave a hole in the dump.
1587          * But we can only make this optimization where a hole would surely
1588          * be zero-filled if handle_mm_fault() actually did handle it.
1589          */
1590         if ((flags & FOLL_DUMP) &&
1591             (!vma->vm_ops || !vma->vm_ops->fault))
1592                 return ERR_PTR(-EFAULT);
1593         return page;
1594 }
1595
1596 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1597 {
1598         return stack_guard_page_start(vma, addr) ||
1599                stack_guard_page_end(vma, addr+PAGE_SIZE);
1600 }
1601
1602 /**
1603  * __get_user_pages() - pin user pages in memory
1604  * @tsk:        task_struct of target task
1605  * @mm:         mm_struct of target mm
1606  * @start:      starting user address
1607  * @nr_pages:   number of pages from start to pin
1608  * @gup_flags:  flags modifying pin behaviour
1609  * @pages:      array that receives pointers to the pages pinned.
1610  *              Should be at least nr_pages long. Or NULL, if caller
1611  *              only intends to ensure the pages are faulted in.
1612  * @vmas:       array of pointers to vmas corresponding to each page.
1613  *              Or NULL if the caller does not require them.
1614  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1615  *
1616  * Returns number of pages pinned. This may be fewer than the number
1617  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1618  * were pinned, returns -errno. Each page returned must be released
1619  * with a put_page() call when it is finished with. vmas will only
1620  * remain valid while mmap_sem is held.
1621  *
1622  * Must be called with mmap_sem held for read or write.
1623  *
1624  * __get_user_pages walks a process's page tables and takes a reference to
1625  * each struct page that each user address corresponds to at a given
1626  * instant. That is, it takes the page that would be accessed if a user
1627  * thread accesses the given user virtual address at that instant.
1628  *
1629  * This does not guarantee that the page exists in the user mappings when
1630  * __get_user_pages returns, and there may even be a completely different
1631  * page there in some cases (eg. if mmapped pagecache has been invalidated
1632  * and subsequently re faulted). However it does guarantee that the page
1633  * won't be freed completely. And mostly callers simply care that the page
1634  * contains data that was valid *at some point in time*. Typically, an IO
1635  * or similar operation cannot guarantee anything stronger anyway because
1636  * locks can't be held over the syscall boundary.
1637  *
1638  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1639  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1640  * appropriate) must be called after the page is finished with, and
1641  * before put_page is called.
1642  *
1643  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1644  * or mmap_sem contention, and if waiting is needed to pin all pages,
1645  * *@nonblocking will be set to 0.
1646  *
1647  * In most cases, get_user_pages or get_user_pages_fast should be used
1648  * instead of __get_user_pages. __get_user_pages should be used only if
1649  * you need some special @gup_flags.
1650  */
1651 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1652                      unsigned long start, int nr_pages, unsigned int gup_flags,
1653                      struct page **pages, struct vm_area_struct **vmas,
1654                      int *nonblocking)
1655 {
1656         int i;
1657         unsigned long vm_flags;
1658
1659         if (nr_pages <= 0)
1660                 return 0;
1661
1662         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1663
1664         /* 
1665          * Require read or write permissions.
1666          * If FOLL_FORCE is set, we only require the "MAY" flags.
1667          */
1668         vm_flags  = (gup_flags & FOLL_WRITE) ?
1669                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1670         vm_flags &= (gup_flags & FOLL_FORCE) ?
1671                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1672         i = 0;
1673
1674         do {
1675                 struct vm_area_struct *vma;
1676
1677                 vma = find_extend_vma(mm, start);
1678                 if (!vma && in_gate_area(mm, start)) {
1679                         unsigned long pg = start & PAGE_MASK;
1680                         pgd_t *pgd;
1681                         pud_t *pud;
1682                         pmd_t *pmd;
1683                         pte_t *pte;
1684
1685                         /* user gate pages are read-only */
1686                         if (gup_flags & FOLL_WRITE)
1687                                 return i ? : -EFAULT;
1688                         if (pg > TASK_SIZE)
1689                                 pgd = pgd_offset_k(pg);
1690                         else
1691                                 pgd = pgd_offset_gate(mm, pg);
1692                         BUG_ON(pgd_none(*pgd));
1693                         pud = pud_offset(pgd, pg);
1694                         BUG_ON(pud_none(*pud));
1695                         pmd = pmd_offset(pud, pg);
1696                         if (pmd_none(*pmd))
1697                                 return i ? : -EFAULT;
1698                         VM_BUG_ON(pmd_trans_huge(*pmd));
1699                         pte = pte_offset_map(pmd, pg);
1700                         if (pte_none(*pte)) {
1701                                 pte_unmap(pte);
1702                                 return i ? : -EFAULT;
1703                         }
1704                         vma = get_gate_vma(mm);
1705                         if (pages) {
1706                                 struct page *page;
1707
1708                                 page = vm_normal_page(vma, start, *pte);
1709                                 if (!page) {
1710                                         if (!(gup_flags & FOLL_DUMP) &&
1711                                              is_zero_pfn(pte_pfn(*pte)))
1712                                                 page = pte_page(*pte);
1713                                         else {
1714                                                 pte_unmap(pte);
1715                                                 return i ? : -EFAULT;
1716                                         }
1717                                 }
1718                                 pages[i] = page;
1719                                 get_page(page);
1720                         }
1721                         pte_unmap(pte);
1722                         goto next_page;
1723                 }
1724
1725                 if (!vma ||
1726                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1727                     !(vm_flags & vma->vm_flags))
1728                         return i ? : -EFAULT;
1729
1730                 if (is_vm_hugetlb_page(vma)) {
1731                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1732                                         &start, &nr_pages, i, gup_flags);
1733                         continue;
1734                 }
1735
1736                 do {
1737                         struct page *page;
1738                         unsigned int foll_flags = gup_flags;
1739
1740                         /*
1741                          * If we have a pending SIGKILL, don't keep faulting
1742                          * pages and potentially allocating memory.
1743                          */
1744                         if (unlikely(fatal_signal_pending(current)))
1745                                 return i ? i : -ERESTARTSYS;
1746
1747                         cond_resched();
1748                         while (!(page = follow_page(vma, start, foll_flags))) {
1749                                 int ret;
1750                                 unsigned int fault_flags = 0;
1751
1752                                 /* For mlock, just skip the stack guard page. */
1753                                 if (foll_flags & FOLL_MLOCK) {
1754                                         if (stack_guard_page(vma, start))
1755                                                 goto next_page;
1756                                 }
1757                                 if (foll_flags & FOLL_WRITE)
1758                                         fault_flags |= FAULT_FLAG_WRITE;
1759                                 if (nonblocking)
1760                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1761                                 if (foll_flags & FOLL_NOWAIT)
1762                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1763
1764                                 ret = handle_mm_fault(mm, vma, start,
1765                                                         fault_flags);
1766
1767                                 if (ret & VM_FAULT_ERROR) {
1768                                         if (ret & VM_FAULT_OOM)
1769                                                 return i ? i : -ENOMEM;
1770                                         if (ret & (VM_FAULT_HWPOISON |
1771                                                    VM_FAULT_HWPOISON_LARGE)) {
1772                                                 if (i)
1773                                                         return i;
1774                                                 else if (gup_flags & FOLL_HWPOISON)
1775                                                         return -EHWPOISON;
1776                                                 else
1777                                                         return -EFAULT;
1778                                         }
1779                                         if (ret & VM_FAULT_SIGBUS)
1780                                                 return i ? i : -EFAULT;
1781                                         BUG();
1782                                 }
1783
1784                                 if (tsk) {
1785                                         if (ret & VM_FAULT_MAJOR)
1786                                                 tsk->maj_flt++;
1787                                         else
1788                                                 tsk->min_flt++;
1789                                 }
1790
1791                                 if (ret & VM_FAULT_RETRY) {
1792                                         if (nonblocking)
1793                                                 *nonblocking = 0;
1794                                         return i;
1795                                 }
1796
1797                                 /*
1798                                  * The VM_FAULT_WRITE bit tells us that
1799                                  * do_wp_page has broken COW when necessary,
1800                                  * even if maybe_mkwrite decided not to set
1801                                  * pte_write. We can thus safely do subsequent
1802                                  * page lookups as if they were reads. But only
1803                                  * do so when looping for pte_write is futile:
1804                                  * in some cases userspace may also be wanting
1805                                  * to write to the gotten user page, which a
1806                                  * read fault here might prevent (a readonly
1807                                  * page might get reCOWed by userspace write).
1808                                  */
1809                                 if ((ret & VM_FAULT_WRITE) &&
1810                                     !(vma->vm_flags & VM_WRITE))
1811                                         foll_flags &= ~FOLL_WRITE;
1812
1813                                 cond_resched();
1814                         }
1815                         if (IS_ERR(page))
1816                                 return i ? i : PTR_ERR(page);
1817                         if (pages) {
1818                                 pages[i] = page;
1819
1820                                 flush_anon_page(vma, page, start);
1821                                 flush_dcache_page(page);
1822                         }
1823 next_page:
1824                         if (vmas)
1825                                 vmas[i] = vma;
1826                         i++;
1827                         start += PAGE_SIZE;
1828                         nr_pages--;
1829                 } while (nr_pages && start < vma->vm_end);
1830         } while (nr_pages);
1831         return i;
1832 }
1833 EXPORT_SYMBOL(__get_user_pages);
1834
1835 /*
1836  * fixup_user_fault() - manually resolve a user page fault
1837  * @tsk:        the task_struct to use for page fault accounting, or
1838  *              NULL if faults are not to be recorded.
1839  * @mm:         mm_struct of target mm
1840  * @address:    user address
1841  * @fault_flags:flags to pass down to handle_mm_fault()
1842  *
1843  * This is meant to be called in the specific scenario where for locking reasons
1844  * we try to access user memory in atomic context (within a pagefault_disable()
1845  * section), this returns -EFAULT, and we want to resolve the user fault before
1846  * trying again.
1847  *
1848  * Typically this is meant to be used by the futex code.
1849  *
1850  * The main difference with get_user_pages() is that this function will
1851  * unconditionally call handle_mm_fault() which will in turn perform all the
1852  * necessary SW fixup of the dirty and young bits in the PTE, while
1853  * handle_mm_fault() only guarantees to update these in the struct page.
1854  *
1855  * This is important for some architectures where those bits also gate the
1856  * access permission to the page because they are maintained in software.  On
1857  * such architectures, gup() will not be enough to make a subsequent access
1858  * succeed.
1859  *
1860  * This should be called with the mm_sem held for read.
1861  */
1862 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1863                      unsigned long address, unsigned int fault_flags)
1864 {
1865         struct vm_area_struct *vma;
1866         int ret;
1867
1868         vma = find_extend_vma(mm, address);
1869         if (!vma || address < vma->vm_start)
1870                 return -EFAULT;
1871
1872         ret = handle_mm_fault(mm, vma, address, fault_flags);
1873         if (ret & VM_FAULT_ERROR) {
1874                 if (ret & VM_FAULT_OOM)
1875                         return -ENOMEM;
1876                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1877                         return -EHWPOISON;
1878                 if (ret & VM_FAULT_SIGBUS)
1879                         return -EFAULT;
1880                 BUG();
1881         }
1882         if (tsk) {
1883                 if (ret & VM_FAULT_MAJOR)
1884                         tsk->maj_flt++;
1885                 else
1886                         tsk->min_flt++;
1887         }
1888         return 0;
1889 }
1890
1891 /*
1892  * get_user_pages() - pin user pages in memory
1893  * @tsk:        the task_struct to use for page fault accounting, or
1894  *              NULL if faults are not to be recorded.
1895  * @mm:         mm_struct of target mm
1896  * @start:      starting user address
1897  * @nr_pages:   number of pages from start to pin
1898  * @write:      whether pages will be written to by the caller
1899  * @force:      whether to force write access even if user mapping is
1900  *              readonly. This will result in the page being COWed even
1901  *              in MAP_SHARED mappings. You do not want this.
1902  * @pages:      array that receives pointers to the pages pinned.
1903  *              Should be at least nr_pages long. Or NULL, if caller
1904  *              only intends to ensure the pages are faulted in.
1905  * @vmas:       array of pointers to vmas corresponding to each page.
1906  *              Or NULL if the caller does not require them.
1907  *
1908  * Returns number of pages pinned. This may be fewer than the number
1909  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1910  * were pinned, returns -errno. Each page returned must be released
1911  * with a put_page() call when it is finished with. vmas will only
1912  * remain valid while mmap_sem is held.
1913  *
1914  * Must be called with mmap_sem held for read or write.
1915  *
1916  * get_user_pages walks a process's page tables and takes a reference to
1917  * each struct page that each user address corresponds to at a given
1918  * instant. That is, it takes the page that would be accessed if a user
1919  * thread accesses the given user virtual address at that instant.
1920  *
1921  * This does not guarantee that the page exists in the user mappings when
1922  * get_user_pages returns, and there may even be a completely different
1923  * page there in some cases (eg. if mmapped pagecache has been invalidated
1924  * and subsequently re faulted). However it does guarantee that the page
1925  * won't be freed completely. And mostly callers simply care that the page
1926  * contains data that was valid *at some point in time*. Typically, an IO
1927  * or similar operation cannot guarantee anything stronger anyway because
1928  * locks can't be held over the syscall boundary.
1929  *
1930  * If write=0, the page must not be written to. If the page is written to,
1931  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1932  * after the page is finished with, and before put_page is called.
1933  *
1934  * get_user_pages is typically used for fewer-copy IO operations, to get a
1935  * handle on the memory by some means other than accesses via the user virtual
1936  * addresses. The pages may be submitted for DMA to devices or accessed via
1937  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1938  * use the correct cache flushing APIs.
1939  *
1940  * See also get_user_pages_fast, for performance critical applications.
1941  */
1942 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1943                 unsigned long start, int nr_pages, int write, int force,
1944                 struct page **pages, struct vm_area_struct **vmas)
1945 {
1946         int flags = FOLL_TOUCH;
1947
1948         if (pages)
1949                 flags |= FOLL_GET;
1950         if (write)
1951                 flags |= FOLL_WRITE;
1952         if (force)
1953                 flags |= FOLL_FORCE;
1954
1955         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1956                                 NULL);
1957 }
1958 EXPORT_SYMBOL(get_user_pages);
1959
1960 /**
1961  * get_dump_page() - pin user page in memory while writing it to core dump
1962  * @addr: user address
1963  *
1964  * Returns struct page pointer of user page pinned for dump,
1965  * to be freed afterwards by page_cache_release() or put_page().
1966  *
1967  * Returns NULL on any kind of failure - a hole must then be inserted into
1968  * the corefile, to preserve alignment with its headers; and also returns
1969  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1970  * allowing a hole to be left in the corefile to save diskspace.
1971  *
1972  * Called without mmap_sem, but after all other threads have been killed.
1973  */
1974 #ifdef CONFIG_ELF_CORE
1975 struct page *get_dump_page(unsigned long addr)
1976 {
1977         struct vm_area_struct *vma;
1978         struct page *page;
1979
1980         if (__get_user_pages(current, current->mm, addr, 1,
1981                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1982                              NULL) < 1)
1983                 return NULL;
1984         flush_cache_page(vma, addr, page_to_pfn(page));
1985         return page;
1986 }
1987 #endif /* CONFIG_ELF_CORE */
1988
1989 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1990                         spinlock_t **ptl)
1991 {
1992         pgd_t * pgd = pgd_offset(mm, addr);
1993         pud_t * pud = pud_alloc(mm, pgd, addr);
1994         if (pud) {
1995                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1996                 if (pmd) {
1997                         VM_BUG_ON(pmd_trans_huge(*pmd));
1998                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1999                 }
2000         }
2001         return NULL;
2002 }
2003
2004 /*
2005  * This is the old fallback for page remapping.
2006  *
2007  * For historical reasons, it only allows reserved pages. Only
2008  * old drivers should use this, and they needed to mark their
2009  * pages reserved for the old functions anyway.
2010  */
2011 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2012                         struct page *page, pgprot_t prot)
2013 {
2014         struct mm_struct *mm = vma->vm_mm;
2015         int retval;
2016         pte_t *pte;
2017         spinlock_t *ptl;
2018
2019         retval = -EINVAL;
2020         if (PageAnon(page))
2021                 goto out;
2022         retval = -ENOMEM;
2023         flush_dcache_page(page);
2024         pte = get_locked_pte(mm, addr, &ptl);
2025         if (!pte)
2026                 goto out;
2027         retval = -EBUSY;
2028         if (!pte_none(*pte))
2029                 goto out_unlock;
2030
2031         /* Ok, finally just insert the thing.. */
2032         get_page(page);
2033         inc_mm_counter_fast(mm, MM_FILEPAGES);
2034         page_add_file_rmap(page);
2035         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2036
2037         retval = 0;
2038         pte_unmap_unlock(pte, ptl);
2039         return retval;
2040 out_unlock:
2041         pte_unmap_unlock(pte, ptl);
2042 out:
2043         return retval;
2044 }
2045
2046 /**
2047  * vm_insert_page - insert single page into user vma
2048  * @vma: user vma to map to
2049  * @addr: target user address of this page
2050  * @page: source kernel page
2051  *
2052  * This allows drivers to insert individual pages they've allocated
2053  * into a user vma.
2054  *
2055  * The page has to be a nice clean _individual_ kernel allocation.
2056  * If you allocate a compound page, you need to have marked it as
2057  * such (__GFP_COMP), or manually just split the page up yourself
2058  * (see split_page()).
2059  *
2060  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2061  * took an arbitrary page protection parameter. This doesn't allow
2062  * that. Your vma protection will have to be set up correctly, which
2063  * means that if you want a shared writable mapping, you'd better
2064  * ask for a shared writable mapping!
2065  *
2066  * The page does not need to be reserved.
2067  */
2068 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2069                         struct page *page)
2070 {
2071         if (addr < vma->vm_start || addr >= vma->vm_end)
2072                 return -EFAULT;
2073         if (!page_count(page))
2074                 return -EINVAL;
2075         vma->vm_flags |= VM_INSERTPAGE;
2076         return insert_page(vma, addr, page, vma->vm_page_prot);
2077 }
2078 EXPORT_SYMBOL(vm_insert_page);
2079
2080 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2081                         unsigned long pfn, pgprot_t prot)
2082 {
2083         struct mm_struct *mm = vma->vm_mm;
2084         int retval;
2085         pte_t *pte, entry;
2086         spinlock_t *ptl;
2087
2088         retval = -ENOMEM;
2089         pte = get_locked_pte(mm, addr, &ptl);
2090         if (!pte)
2091                 goto out;
2092         retval = -EBUSY;
2093         if (!pte_none(*pte))
2094                 goto out_unlock;
2095
2096         /* Ok, finally just insert the thing.. */
2097         entry = pte_mkspecial(pfn_pte(pfn, prot));
2098         set_pte_at(mm, addr, pte, entry);
2099         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2100
2101         retval = 0;
2102 out_unlock:
2103         pte_unmap_unlock(pte, ptl);
2104 out:
2105         return retval;
2106 }
2107
2108 /**
2109  * vm_insert_pfn - insert single pfn into user vma
2110  * @vma: user vma to map to
2111  * @addr: target user address of this page
2112  * @pfn: source kernel pfn
2113  *
2114  * Similar to vm_inert_page, this allows drivers to insert individual pages
2115  * they've allocated into a user vma. Same comments apply.
2116  *
2117  * This function should only be called from a vm_ops->fault handler, and
2118  * in that case the handler should return NULL.
2119  *
2120  * vma cannot be a COW mapping.
2121  *
2122  * As this is called only for pages that do not currently exist, we
2123  * do not need to flush old virtual caches or the TLB.
2124  */
2125 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2126                         unsigned long pfn)
2127 {
2128         int ret;
2129         pgprot_t pgprot = vma->vm_page_prot;
2130         /*
2131          * Technically, architectures with pte_special can avoid all these
2132          * restrictions (same for remap_pfn_range).  However we would like
2133          * consistency in testing and feature parity among all, so we should
2134          * try to keep these invariants in place for everybody.
2135          */
2136         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2137         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2138                                                 (VM_PFNMAP|VM_MIXEDMAP));
2139         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2140         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2141
2142         if (addr < vma->vm_start || addr >= vma->vm_end)
2143                 return -EFAULT;
2144         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2145                 return -EINVAL;
2146
2147         ret = insert_pfn(vma, addr, pfn, pgprot);
2148
2149         if (ret)
2150                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2151
2152         return ret;
2153 }
2154 EXPORT_SYMBOL(vm_insert_pfn);
2155
2156 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2157                         unsigned long pfn)
2158 {
2159         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2160
2161         if (addr < vma->vm_start || addr >= vma->vm_end)
2162                 return -EFAULT;
2163
2164         /*
2165          * If we don't have pte special, then we have to use the pfn_valid()
2166          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2167          * refcount the page if pfn_valid is true (hence insert_page rather
2168          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2169          * without pte special, it would there be refcounted as a normal page.
2170          */
2171         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2172                 struct page *page;
2173
2174                 page = pfn_to_page(pfn);
2175                 return insert_page(vma, addr, page, vma->vm_page_prot);
2176         }
2177         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2178 }
2179 EXPORT_SYMBOL(vm_insert_mixed);
2180
2181 /*
2182  * maps a range of physical memory into the requested pages. the old
2183  * mappings are removed. any references to nonexistent pages results
2184  * in null mappings (currently treated as "copy-on-access")
2185  */
2186 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2187                         unsigned long addr, unsigned long end,
2188                         unsigned long pfn, pgprot_t prot)
2189 {
2190         pte_t *pte;
2191         spinlock_t *ptl;
2192
2193         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2194         if (!pte)
2195                 return -ENOMEM;
2196         arch_enter_lazy_mmu_mode();
2197         do {
2198                 BUG_ON(!pte_none(*pte));
2199                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2200                 pfn++;
2201         } while (pte++, addr += PAGE_SIZE, addr != end);
2202         arch_leave_lazy_mmu_mode();
2203         pte_unmap_unlock(pte - 1, ptl);
2204         return 0;
2205 }
2206
2207 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2208                         unsigned long addr, unsigned long end,
2209                         unsigned long pfn, pgprot_t prot)
2210 {
2211         pmd_t *pmd;
2212         unsigned long next;
2213
2214         pfn -= addr >> PAGE_SHIFT;
2215         pmd = pmd_alloc(mm, pud, addr);
2216         if (!pmd)
2217                 return -ENOMEM;
2218         VM_BUG_ON(pmd_trans_huge(*pmd));
2219         do {
2220                 next = pmd_addr_end(addr, end);
2221                 if (remap_pte_range(mm, pmd, addr, next,
2222                                 pfn + (addr >> PAGE_SHIFT), prot))
2223                         return -ENOMEM;
2224         } while (pmd++, addr = next, addr != end);
2225         return 0;
2226 }
2227
2228 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2229                         unsigned long addr, unsigned long end,
2230                         unsigned long pfn, pgprot_t prot)
2231 {
2232         pud_t *pud;
2233         unsigned long next;
2234
2235         pfn -= addr >> PAGE_SHIFT;
2236         pud = pud_alloc(mm, pgd, addr);
2237         if (!pud)
2238                 return -ENOMEM;
2239         do {
2240                 next = pud_addr_end(addr, end);
2241                 if (remap_pmd_range(mm, pud, addr, next,
2242                                 pfn + (addr >> PAGE_SHIFT), prot))
2243                         return -ENOMEM;
2244         } while (pud++, addr = next, addr != end);
2245         return 0;
2246 }
2247
2248 /**
2249  * remap_pfn_range - remap kernel memory to userspace
2250  * @vma: user vma to map to
2251  * @addr: target user address to start at
2252  * @pfn: physical address of kernel memory
2253  * @size: size of map area
2254  * @prot: page protection flags for this mapping
2255  *
2256  *  Note: this is only safe if the mm semaphore is held when called.
2257  */
2258 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2259                     unsigned long pfn, unsigned long size, pgprot_t prot)
2260 {
2261         pgd_t *pgd;
2262         unsigned long next;
2263         unsigned long end = addr + PAGE_ALIGN(size);
2264         struct mm_struct *mm = vma->vm_mm;
2265         int err;
2266
2267         /*
2268          * Physically remapped pages are special. Tell the
2269          * rest of the world about it:
2270          *   VM_IO tells people not to look at these pages
2271          *      (accesses can have side effects).
2272          *   VM_RESERVED is specified all over the place, because
2273          *      in 2.4 it kept swapout's vma scan off this vma; but
2274          *      in 2.6 the LRU scan won't even find its pages, so this
2275          *      flag means no more than count its pages in reserved_vm,
2276          *      and omit it from core dump, even when VM_IO turned off.
2277          *   VM_PFNMAP tells the core MM that the base pages are just
2278          *      raw PFN mappings, and do not have a "struct page" associated
2279          *      with them.
2280          *
2281          * There's a horrible special case to handle copy-on-write
2282          * behaviour that some programs depend on. We mark the "original"
2283          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2284          */
2285         if (addr == vma->vm_start && end == vma->vm_end) {
2286                 vma->vm_pgoff = pfn;
2287                 vma->vm_flags |= VM_PFN_AT_MMAP;
2288         } else if (is_cow_mapping(vma->vm_flags))
2289                 return -EINVAL;
2290
2291         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2292
2293         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2294         if (err) {
2295                 /*
2296                  * To indicate that track_pfn related cleanup is not
2297                  * needed from higher level routine calling unmap_vmas
2298                  */
2299                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2300                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2301                 return -EINVAL;
2302         }
2303
2304         BUG_ON(addr >= end);
2305         pfn -= addr >> PAGE_SHIFT;
2306         pgd = pgd_offset(mm, addr);
2307         flush_cache_range(vma, addr, end);
2308         do {
2309                 next = pgd_addr_end(addr, end);
2310                 err = remap_pud_range(mm, pgd, addr, next,
2311                                 pfn + (addr >> PAGE_SHIFT), prot);
2312                 if (err)
2313                         break;
2314         } while (pgd++, addr = next, addr != end);
2315
2316         if (err)
2317                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2318
2319         return err;
2320 }
2321 EXPORT_SYMBOL(remap_pfn_range);
2322
2323 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2324                                      unsigned long addr, unsigned long end,
2325                                      pte_fn_t fn, void *data)
2326 {
2327         pte_t *pte;
2328         int err;
2329         pgtable_t token;
2330         spinlock_t *uninitialized_var(ptl);
2331
2332         pte = (mm == &init_mm) ?
2333                 pte_alloc_kernel(pmd, addr) :
2334                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2335         if (!pte)
2336                 return -ENOMEM;
2337
2338         BUG_ON(pmd_huge(*pmd));
2339
2340         arch_enter_lazy_mmu_mode();
2341
2342         token = pmd_pgtable(*pmd);
2343
2344         do {
2345                 err = fn(pte++, token, addr, data);
2346                 if (err)
2347                         break;
2348         } while (addr += PAGE_SIZE, addr != end);
2349
2350         arch_leave_lazy_mmu_mode();
2351
2352         if (mm != &init_mm)
2353                 pte_unmap_unlock(pte-1, ptl);
2354         return err;
2355 }
2356
2357 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2358                                      unsigned long addr, unsigned long end,
2359                                      pte_fn_t fn, void *data)
2360 {
2361         pmd_t *pmd;
2362         unsigned long next;
2363         int err;
2364
2365         BUG_ON(pud_huge(*pud));
2366
2367         pmd = pmd_alloc(mm, pud, addr);
2368         if (!pmd)
2369                 return -ENOMEM;
2370         do {
2371                 next = pmd_addr_end(addr, end);
2372                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2373                 if (err)
2374                         break;
2375         } while (pmd++, addr = next, addr != end);
2376         return err;
2377 }
2378
2379 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2380                                      unsigned long addr, unsigned long end,
2381                                      pte_fn_t fn, void *data)
2382 {
2383         pud_t *pud;
2384         unsigned long next;
2385         int err;
2386
2387         pud = pud_alloc(mm, pgd, addr);
2388         if (!pud)
2389                 return -ENOMEM;
2390         do {
2391                 next = pud_addr_end(addr, end);
2392                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2393                 if (err)
2394                         break;
2395         } while (pud++, addr = next, addr != end);
2396         return err;
2397 }
2398
2399 /*
2400  * Scan a region of virtual memory, filling in page tables as necessary
2401  * and calling a provided function on each leaf page table.
2402  */
2403 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2404                         unsigned long size, pte_fn_t fn, void *data)
2405 {
2406         pgd_t *pgd;
2407         unsigned long next;
2408         unsigned long end = addr + size;
2409         int err;
2410
2411         BUG_ON(addr >= end);
2412         pgd = pgd_offset(mm, addr);
2413         do {
2414                 next = pgd_addr_end(addr, end);
2415                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2416                 if (err)
2417                         break;
2418         } while (pgd++, addr = next, addr != end);
2419
2420         return err;
2421 }
2422 EXPORT_SYMBOL_GPL(apply_to_page_range);
2423
2424 /*
2425  * handle_pte_fault chooses page fault handler according to an entry
2426  * which was read non-atomically.  Before making any commitment, on
2427  * those architectures or configurations (e.g. i386 with PAE) which
2428  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2429  * must check under lock before unmapping the pte and proceeding
2430  * (but do_wp_page is only called after already making such a check;
2431  * and do_anonymous_page can safely check later on).
2432  */
2433 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2434                                 pte_t *page_table, pte_t orig_pte)
2435 {
2436         int same = 1;
2437 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2438         if (sizeof(pte_t) > sizeof(unsigned long)) {
2439                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2440                 spin_lock(ptl);
2441                 same = pte_same(*page_table, orig_pte);
2442                 spin_unlock(ptl);
2443         }
2444 #endif
2445         pte_unmap(page_table);
2446         return same;
2447 }
2448
2449 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2450 {
2451         /*
2452          * If the source page was a PFN mapping, we don't have
2453          * a "struct page" for it. We do a best-effort copy by
2454          * just copying from the original user address. If that
2455          * fails, we just zero-fill it. Live with it.
2456          */
2457         if (unlikely(!src)) {
2458                 void *kaddr = kmap_atomic(dst);
2459                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2460
2461                 /*
2462                  * This really shouldn't fail, because the page is there
2463                  * in the page tables. But it might just be unreadable,
2464                  * in which case we just give up and fill the result with
2465                  * zeroes.
2466                  */
2467                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2468                         clear_page(kaddr);
2469                 kunmap_atomic(kaddr);
2470                 flush_dcache_page(dst);
2471         } else
2472                 copy_user_highpage(dst, src, va, vma);
2473 }
2474
2475 /*
2476  * This routine handles present pages, when users try to write
2477  * to a shared page. It is done by copying the page to a new address
2478  * and decrementing the shared-page counter for the old page.
2479  *
2480  * Note that this routine assumes that the protection checks have been
2481  * done by the caller (the low-level page fault routine in most cases).
2482  * Thus we can safely just mark it writable once we've done any necessary
2483  * COW.
2484  *
2485  * We also mark the page dirty at this point even though the page will
2486  * change only once the write actually happens. This avoids a few races,
2487  * and potentially makes it more efficient.
2488  *
2489  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2490  * but allow concurrent faults), with pte both mapped and locked.
2491  * We return with mmap_sem still held, but pte unmapped and unlocked.
2492  */
2493 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2494                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2495                 spinlock_t *ptl, pte_t orig_pte)
2496         __releases(ptl)
2497 {
2498         struct page *old_page, *new_page;
2499         pte_t entry;
2500         int ret = 0;
2501         int page_mkwrite = 0;
2502         struct page *dirty_page = NULL;
2503
2504         old_page = vm_normal_page(vma, address, orig_pte);
2505         if (!old_page) {
2506                 /*
2507                  * VM_MIXEDMAP !pfn_valid() case
2508                  *
2509                  * We should not cow pages in a shared writeable mapping.
2510                  * Just mark the pages writable as we can't do any dirty
2511                  * accounting on raw pfn maps.
2512                  */
2513                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2514                                      (VM_WRITE|VM_SHARED))
2515                         goto reuse;
2516                 goto gotten;
2517         }
2518
2519         /*
2520          * Take out anonymous pages first, anonymous shared vmas are
2521          * not dirty accountable.
2522          */
2523         if (PageAnon(old_page) && !PageKsm(old_page)) {
2524                 if (!trylock_page(old_page)) {
2525                         page_cache_get(old_page);
2526                         pte_unmap_unlock(page_table, ptl);
2527                         lock_page(old_page);
2528                         page_table = pte_offset_map_lock(mm, pmd, address,
2529                                                          &ptl);
2530                         if (!pte_same(*page_table, orig_pte)) {
2531                                 unlock_page(old_page);
2532                                 goto unlock;
2533                         }
2534                         page_cache_release(old_page);
2535                 }
2536                 if (reuse_swap_page(old_page)) {
2537                         /*
2538                          * The page is all ours.  Move it to our anon_vma so
2539                          * the rmap code will not search our parent or siblings.
2540                          * Protected against the rmap code by the page lock.
2541                          */
2542                         page_move_anon_rmap(old_page, vma, address);
2543                         unlock_page(old_page);
2544                         goto reuse;
2545                 }
2546                 unlock_page(old_page);
2547         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2548                                         (VM_WRITE|VM_SHARED))) {
2549                 /*
2550                  * Only catch write-faults on shared writable pages,
2551                  * read-only shared pages can get COWed by
2552                  * get_user_pages(.write=1, .force=1).
2553                  */
2554                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2555                         struct vm_fault vmf;
2556                         int tmp;
2557
2558                         vmf.virtual_address = (void __user *)(address &
2559                                                                 PAGE_MASK);
2560                         vmf.pgoff = old_page->index;
2561                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2562                         vmf.page = old_page;
2563
2564                         /*
2565                          * Notify the address space that the page is about to
2566                          * become writable so that it can prohibit this or wait
2567                          * for the page to get into an appropriate state.
2568                          *
2569                          * We do this without the lock held, so that it can
2570                          * sleep if it needs to.
2571                          */
2572                         page_cache_get(old_page);
2573                         pte_unmap_unlock(page_table, ptl);
2574
2575                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2576                         if (unlikely(tmp &
2577                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2578                                 ret = tmp;
2579                                 goto unwritable_page;
2580                         }
2581                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2582                                 lock_page(old_page);
2583                                 if (!old_page->mapping) {
2584                                         ret = 0; /* retry the fault */
2585                                         unlock_page(old_page);
2586                                         goto unwritable_page;
2587                                 }
2588                         } else
2589                                 VM_BUG_ON(!PageLocked(old_page));
2590
2591                         /*
2592                          * Since we dropped the lock we need to revalidate
2593                          * the PTE as someone else may have changed it.  If
2594                          * they did, we just return, as we can count on the
2595                          * MMU to tell us if they didn't also make it writable.
2596                          */
2597                         page_table = pte_offset_map_lock(mm, pmd, address,
2598                                                          &ptl);
2599                         if (!pte_same(*page_table, orig_pte)) {
2600                                 unlock_page(old_page);
2601                                 goto unlock;
2602                         }
2603
2604                         page_mkwrite = 1;
2605                 }
2606                 dirty_page = old_page;
2607                 get_page(dirty_page);
2608
2609 reuse:
2610                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2611                 entry = pte_mkyoung(orig_pte);
2612                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2613                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2614                         update_mmu_cache(vma, address, page_table);
2615                 pte_unmap_unlock(page_table, ptl);
2616                 ret |= VM_FAULT_WRITE;
2617
2618                 if (!dirty_page)
2619                         return ret;
2620
2621                 /*
2622                  * Yes, Virginia, this is actually required to prevent a race
2623                  * with clear_page_dirty_for_io() from clearing the page dirty
2624                  * bit after it clear all dirty ptes, but before a racing
2625                  * do_wp_page installs a dirty pte.
2626                  *
2627                  * __do_fault is protected similarly.
2628                  */
2629                 if (!page_mkwrite) {
2630                         wait_on_page_locked(dirty_page);
2631                         set_page_dirty_balance(dirty_page, page_mkwrite);
2632                 }
2633                 put_page(dirty_page);
2634                 if (page_mkwrite) {
2635                         struct address_space *mapping = dirty_page->mapping;
2636
2637                         set_page_dirty(dirty_page);
2638                         unlock_page(dirty_page);
2639                         page_cache_release(dirty_page);
2640                         if (mapping)    {
2641                                 /*
2642                                  * Some device drivers do not set page.mapping
2643                                  * but still dirty their pages
2644                                  */
2645                                 balance_dirty_pages_ratelimited(mapping);
2646                         }
2647                 }
2648
2649                 /* file_update_time outside page_lock */
2650                 if (vma->vm_file)
2651                         file_update_time(vma->vm_file);
2652
2653                 return ret;
2654         }
2655
2656         /*
2657          * Ok, we need to copy. Oh, well..
2658          */
2659         page_cache_get(old_page);
2660 gotten:
2661         pte_unmap_unlock(page_table, ptl);
2662
2663         if (unlikely(anon_vma_prepare(vma)))
2664                 goto oom;
2665
2666         if (is_zero_pfn(pte_pfn(orig_pte))) {
2667                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2668                 if (!new_page)
2669                         goto oom;
2670         } else {
2671                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2672                 if (!new_page)
2673                         goto oom;
2674                 cow_user_page(new_page, old_page, address, vma);
2675         }
2676         __SetPageUptodate(new_page);
2677
2678         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2679                 goto oom_free_new;
2680
2681         /*
2682          * Re-check the pte - we dropped the lock
2683          */
2684         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2685         if (likely(pte_same(*page_table, orig_pte))) {
2686                 if (old_page) {
2687                         if (!PageAnon(old_page)) {
2688                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2689                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2690                         }
2691                 } else
2692                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2693                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2694                 entry = mk_pte(new_page, vma->vm_page_prot);
2695                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2696                 /*
2697                  * Clear the pte entry and flush it first, before updating the
2698                  * pte with the new entry. This will avoid a race condition
2699                  * seen in the presence of one thread doing SMC and another
2700                  * thread doing COW.
2701                  */
2702                 ptep_clear_flush(vma, address, page_table);
2703                 page_add_new_anon_rmap(new_page, vma, address);
2704                 /*
2705                  * We call the notify macro here because, when using secondary
2706                  * mmu page tables (such as kvm shadow page tables), we want the
2707                  * new page to be mapped directly into the secondary page table.
2708                  */
2709                 set_pte_at_notify(mm, address, page_table, entry);
2710                 update_mmu_cache(vma, address, page_table);
2711                 if (old_page) {
2712                         /*
2713                          * Only after switching the pte to the new page may
2714                          * we remove the mapcount here. Otherwise another
2715                          * process may come and find the rmap count decremented
2716                          * before the pte is switched to the new page, and
2717                          * "reuse" the old page writing into it while our pte
2718                          * here still points into it and can be read by other
2719                          * threads.
2720                          *
2721                          * The critical issue is to order this
2722                          * page_remove_rmap with the ptp_clear_flush above.
2723                          * Those stores are ordered by (if nothing else,)
2724                          * the barrier present in the atomic_add_negative
2725                          * in page_remove_rmap.
2726                          *
2727                          * Then the TLB flush in ptep_clear_flush ensures that
2728                          * no process can access the old page before the
2729                          * decremented mapcount is visible. And the old page
2730                          * cannot be reused until after the decremented
2731                          * mapcount is visible. So transitively, TLBs to
2732                          * old page will be flushed before it can be reused.
2733                          */
2734                         page_remove_rmap(old_page);
2735                 }
2736
2737                 /* Free the old page.. */
2738                 new_page = old_page;
2739                 ret |= VM_FAULT_WRITE;
2740         } else
2741                 mem_cgroup_uncharge_page(new_page);
2742
2743         if (new_page)
2744                 page_cache_release(new_page);
2745 unlock:
2746         pte_unmap_unlock(page_table, ptl);
2747         if (old_page) {
2748                 /*
2749                  * Don't let another task, with possibly unlocked vma,
2750                  * keep the mlocked page.
2751                  */
2752                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2753                         lock_page(old_page);    /* LRU manipulation */
2754                         munlock_vma_page(old_page);
2755                         unlock_page(old_page);
2756                 }
2757                 page_cache_release(old_page);
2758         }
2759         return ret;
2760 oom_free_new:
2761         page_cache_release(new_page);
2762 oom:
2763         if (old_page) {
2764                 if (page_mkwrite) {
2765                         unlock_page(old_page);
2766                         page_cache_release(old_page);
2767                 }
2768                 page_cache_release(old_page);
2769         }
2770         return VM_FAULT_OOM;
2771
2772 unwritable_page:
2773         page_cache_release(old_page);
2774         return ret;
2775 }
2776
2777 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2778                 unsigned long start_addr, unsigned long end_addr,
2779                 struct zap_details *details)
2780 {
2781         zap_page_range(vma, start_addr, end_addr - start_addr, details);
2782 }
2783
2784 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2785                                             struct zap_details *details)
2786 {
2787         struct vm_area_struct *vma;
2788         struct prio_tree_iter iter;
2789         pgoff_t vba, vea, zba, zea;
2790
2791         vma_prio_tree_foreach(vma, &iter, root,
2792                         details->first_index, details->last_index) {
2793
2794                 vba = vma->vm_pgoff;
2795                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2796                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2797                 zba = details->first_index;
2798                 if (zba < vba)
2799                         zba = vba;
2800                 zea = details->last_index;
2801                 if (zea > vea)
2802                         zea = vea;
2803
2804                 unmap_mapping_range_vma(vma,
2805                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2806                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2807                                 details);
2808         }
2809 }
2810
2811 static inline void unmap_mapping_range_list(struct list_head *head,
2812                                             struct zap_details *details)
2813 {
2814         struct vm_area_struct *vma;
2815
2816         /*
2817          * In nonlinear VMAs there is no correspondence between virtual address
2818          * offset and file offset.  So we must perform an exhaustive search
2819          * across *all* the pages in each nonlinear VMA, not just the pages
2820          * whose virtual address lies outside the file truncation point.
2821          */
2822         list_for_each_entry(vma, head, shared.vm_set.list) {
2823                 details->nonlinear_vma = vma;
2824                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2825         }
2826 }
2827
2828 /**
2829  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2830  * @mapping: the address space containing mmaps to be unmapped.
2831  * @holebegin: byte in first page to unmap, relative to the start of
2832  * the underlying file.  This will be rounded down to a PAGE_SIZE
2833  * boundary.  Note that this is different from truncate_pagecache(), which
2834  * must keep the partial page.  In contrast, we must get rid of
2835  * partial pages.
2836  * @holelen: size of prospective hole in bytes.  This will be rounded
2837  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2838  * end of the file.
2839  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2840  * but 0 when invalidating pagecache, don't throw away private data.
2841  */
2842 void unmap_mapping_range(struct address_space *mapping,
2843                 loff_t const holebegin, loff_t const holelen, int even_cows)
2844 {
2845         struct zap_details details;
2846         pgoff_t hba = holebegin >> PAGE_SHIFT;
2847         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2848
2849         /* Check for overflow. */
2850         if (sizeof(holelen) > sizeof(hlen)) {
2851                 long long holeend =
2852                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2853                 if (holeend & ~(long long)ULONG_MAX)
2854                         hlen = ULONG_MAX - hba + 1;
2855         }
2856
2857         details.check_mapping = even_cows? NULL: mapping;
2858         details.nonlinear_vma = NULL;
2859         details.first_index = hba;
2860         details.last_index = hba + hlen - 1;
2861         if (details.last_index < details.first_index)
2862                 details.last_index = ULONG_MAX;
2863
2864
2865         mutex_lock(&mapping->i_mmap_mutex);
2866         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2867                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2868         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2869                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2870         mutex_unlock(&mapping->i_mmap_mutex);
2871 }
2872 EXPORT_SYMBOL(unmap_mapping_range);
2873
2874 /*
2875  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2876  * but allow concurrent faults), and pte mapped but not yet locked.
2877  * We return with mmap_sem still held, but pte unmapped and unlocked.
2878  */
2879 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2880                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2881                 unsigned int flags, pte_t orig_pte)
2882 {
2883         spinlock_t *ptl;
2884         struct page *page, *swapcache = NULL;
2885         swp_entry_t entry;
2886         pte_t pte;
2887         int locked;
2888         struct mem_cgroup *ptr;
2889         int exclusive = 0;
2890         int ret = 0;
2891
2892         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2893                 goto out;
2894
2895         entry = pte_to_swp_entry(orig_pte);
2896         if (unlikely(non_swap_entry(entry))) {
2897                 if (is_migration_entry(entry)) {
2898                         migration_entry_wait(mm, pmd, address);
2899                 } else if (is_hwpoison_entry(entry)) {
2900                         ret = VM_FAULT_HWPOISON;
2901                 } else {
2902                         print_bad_pte(vma, address, orig_pte, NULL);
2903                         ret = VM_FAULT_SIGBUS;
2904                 }
2905                 goto out;
2906         }
2907         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2908         page = lookup_swap_cache(entry);
2909         if (!page) {
2910                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2911                 page = swapin_readahead(entry,
2912                                         GFP_HIGHUSER_MOVABLE, vma, address);
2913                 if (!page) {
2914                         /*
2915                          * Back out if somebody else faulted in this pte
2916                          * while we released the pte lock.
2917                          */
2918                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2919                         if (likely(pte_same(*page_table, orig_pte)))
2920                                 ret = VM_FAULT_OOM;
2921                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2922                         goto unlock;
2923                 }
2924
2925                 /* Had to read the page from swap area: Major fault */
2926                 ret = VM_FAULT_MAJOR;
2927                 count_vm_event(PGMAJFAULT);
2928                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2929         } else if (PageHWPoison(page)) {
2930                 /*
2931                  * hwpoisoned dirty swapcache pages are kept for killing
2932                  * owner processes (which may be unknown at hwpoison time)
2933                  */
2934                 ret = VM_FAULT_HWPOISON;
2935                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2936                 goto out_release;
2937         }
2938
2939         locked = lock_page_or_retry(page, mm, flags);
2940         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2941         if (!locked) {
2942                 ret |= VM_FAULT_RETRY;
2943                 goto out_release;
2944         }
2945
2946         /*
2947          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2948          * release the swapcache from under us.  The page pin, and pte_same
2949          * test below, are not enough to exclude that.  Even if it is still
2950          * swapcache, we need to check that the page's swap has not changed.
2951          */
2952         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2953                 goto out_page;
2954
2955         if (ksm_might_need_to_copy(page, vma, address)) {
2956                 swapcache = page;
2957                 page = ksm_does_need_to_copy(page, vma, address);
2958
2959                 if (unlikely(!page)) {
2960                         ret = VM_FAULT_OOM;
2961                         page = swapcache;
2962                         swapcache = NULL;
2963                         goto out_page;
2964                 }
2965         }
2966
2967         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2968                 ret = VM_FAULT_OOM;
2969                 goto out_page;
2970         }
2971
2972         /*
2973          * Back out if somebody else already faulted in this pte.
2974          */
2975         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2976         if (unlikely(!pte_same(*page_table, orig_pte)))
2977                 goto out_nomap;
2978
2979         if (unlikely(!PageUptodate(page))) {
2980                 ret = VM_FAULT_SIGBUS;
2981                 goto out_nomap;
2982         }
2983
2984         /*
2985          * The page isn't present yet, go ahead with the fault.
2986          *
2987          * Be careful about the sequence of operations here.
2988          * To get its accounting right, reuse_swap_page() must be called
2989          * while the page is counted on swap but not yet in mapcount i.e.
2990          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2991          * must be called after the swap_free(), or it will never succeed.
2992          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2993          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2994          * in page->private. In this case, a record in swap_cgroup  is silently
2995          * discarded at swap_free().
2996          */
2997
2998         inc_mm_counter_fast(mm, MM_ANONPAGES);
2999         dec_mm_counter_fast(mm, MM_SWAPENTS);
3000         pte = mk_pte(page, vma->vm_page_prot);
3001         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3002                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3003                 flags &= ~FAULT_FLAG_WRITE;
3004                 ret |= VM_FAULT_WRITE;
3005                 exclusive = 1;
3006         }
3007         flush_icache_page(vma, page);
3008         set_pte_at(mm, address, page_table, pte);
3009         do_page_add_anon_rmap(page, vma, address, exclusive);
3010         /* It's better to call commit-charge after rmap is established */
3011         mem_cgroup_commit_charge_swapin(page, ptr);
3012
3013         swap_free(entry);
3014         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3015                 try_to_free_swap(page);
3016         unlock_page(page);
3017         if (swapcache) {
3018                 /*
3019                  * Hold the lock to avoid the swap entry to be reused
3020                  * until we take the PT lock for the pte_same() check
3021                  * (to avoid false positives from pte_same). For
3022                  * further safety release the lock after the swap_free
3023                  * so that the swap count won't change under a
3024                  * parallel locked swapcache.
3025                  */
3026                 unlock_page(swapcache);
3027                 page_cache_release(swapcache);
3028         }
3029
3030         if (flags & FAULT_FLAG_WRITE) {
3031                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3032                 if (ret & VM_FAULT_ERROR)
3033                         ret &= VM_FAULT_ERROR;
3034                 goto out;
3035         }
3036
3037         /* No need to invalidate - it was non-present before */
3038         update_mmu_cache(vma, address, page_table);
3039 unlock:
3040         pte_unmap_unlock(page_table, ptl);
3041 out:
3042         return ret;
3043 out_nomap:
3044         mem_cgroup_cancel_charge_swapin(ptr);
3045         pte_unmap_unlock(page_table, ptl);
3046 out_page:
3047         unlock_page(page);
3048 out_release:
3049         page_cache_release(page);
3050         if (swapcache) {
3051                 unlock_page(swapcache);
3052                 page_cache_release(swapcache);
3053         }
3054         return ret;
3055 }
3056
3057 /*
3058  * This is like a special single-page "expand_{down|up}wards()",
3059  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3060  * doesn't hit another vma.
3061  */
3062 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3063 {
3064         address &= PAGE_MASK;
3065         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3066                 struct vm_area_struct *prev = vma->vm_prev;
3067
3068                 /*
3069                  * Is there a mapping abutting this one below?
3070                  *
3071                  * That's only ok if it's the same stack mapping
3072                  * that has gotten split..
3073                  */
3074                 if (prev && prev->vm_end == address)
3075                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3076
3077                 expand_downwards(vma, address - PAGE_SIZE);
3078         }
3079         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3080                 struct vm_area_struct *next = vma->vm_next;
3081
3082                 /* As VM_GROWSDOWN but s/below/above/ */
3083                 if (next && next->vm_start == address + PAGE_SIZE)
3084                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3085
3086                 expand_upwards(vma, address + PAGE_SIZE);
3087         }
3088         return 0;
3089 }
3090
3091 /*
3092  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3093  * but allow concurrent faults), and pte mapped but not yet locked.
3094  * We return with mmap_sem still held, but pte unmapped and unlocked.
3095  */
3096 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3097                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3098                 unsigned int flags)
3099 {
3100         struct page *page;
3101         spinlock_t *ptl;
3102         pte_t entry;
3103
3104         pte_unmap(page_table);
3105
3106         /* Check if we need to add a guard page to the stack */
3107         if (check_stack_guard_page(vma, address) < 0)
3108                 return VM_FAULT_SIGBUS;
3109
3110         /* Use the zero-page for reads */
3111         if (!(flags & FAULT_FLAG_WRITE)) {
3112                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3113                                                 vma->vm_page_prot));
3114                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3115                 if (!pte_none(*page_table))
3116                         goto unlock;
3117                 goto setpte;
3118         }
3119
3120         /* Allocate our own private page. */
3121         if (unlikely(anon_vma_prepare(vma)))
3122                 goto oom;
3123         page = alloc_zeroed_user_highpage_movable(vma, address);
3124         if (!page)
3125                 goto oom;
3126         __SetPageUptodate(page);
3127
3128         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3129                 goto oom_free_page;
3130
3131         entry = mk_pte(page, vma->vm_page_prot);
3132         if (vma->vm_flags & VM_WRITE)
3133                 entry = pte_mkwrite(pte_mkdirty(entry));
3134
3135         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3136         if (!pte_none(*page_table))
3137                 goto release;
3138
3139         inc_mm_counter_fast(mm, MM_ANONPAGES);
3140         page_add_new_anon_rmap(page, vma, address);
3141 setpte:
3142         set_pte_at(mm, address, page_table, entry);
3143
3144         /* No need to invalidate - it was non-present before */
3145         update_mmu_cache(vma, address, page_table);
3146 unlock:
3147         pte_unmap_unlock(page_table, ptl);
3148         return 0;
3149 release:
3150         mem_cgroup_uncharge_page(page);
3151         page_cache_release(page);
3152         goto unlock;
3153 oom_free_page:
3154         page_cache_release(page);
3155 oom:
3156         return VM_FAULT_OOM;
3157 }
3158
3159 /*
3160  * __do_fault() tries to create a new page mapping. It aggressively
3161  * tries to share with existing pages, but makes a separate copy if
3162  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3163  * the next page fault.
3164  *
3165  * As this is called only for pages that do not currently exist, we
3166  * do not need to flush old virtual caches or the TLB.
3167  *
3168  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3169  * but allow concurrent faults), and pte neither mapped nor locked.
3170  * We return with mmap_sem still held, but pte unmapped and unlocked.
3171  */
3172 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3173                 unsigned long address, pmd_t *pmd,
3174                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3175 {
3176         pte_t *page_table;
3177         spinlock_t *ptl;
3178         struct page *page;
3179         struct page *cow_page;
3180         pte_t entry;
3181         int anon = 0;
3182         struct page *dirty_page = NULL;
3183         struct vm_fault vmf;
3184         int ret;
3185         int page_mkwrite = 0;
3186
3187         /*
3188          * If we do COW later, allocate page befor taking lock_page()
3189          * on the file cache page. This will reduce lock holding time.
3190          */
3191         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3192
3193                 if (unlikely(anon_vma_prepare(vma)))
3194                         return VM_FAULT_OOM;
3195
3196                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3197                 if (!cow_page)
3198                         return VM_FAULT_OOM;
3199
3200                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3201                         page_cache_release(cow_page);
3202                         return VM_FAULT_OOM;
3203                 }
3204         } else
3205                 cow_page = NULL;
3206
3207         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3208         vmf.pgoff = pgoff;
3209         vmf.flags = flags;
3210         vmf.page = NULL;
3211
3212         ret = vma->vm_ops->fault(vma, &vmf);
3213         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3214                             VM_FAULT_RETRY)))
3215                 goto uncharge_out;
3216
3217         if (unlikely(PageHWPoison(vmf.page))) {
3218                 if (ret & VM_FAULT_LOCKED)
3219                         unlock_page(vmf.page);
3220                 ret = VM_FAULT_HWPOISON;
3221                 goto uncharge_out;
3222         }
3223
3224         /*
3225          * For consistency in subsequent calls, make the faulted page always
3226          * locked.
3227          */
3228         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3229                 lock_page(vmf.page);
3230         else
3231                 VM_BUG_ON(!PageLocked(vmf.page));
3232
3233         /*
3234          * Should we do an early C-O-W break?
3235          */
3236         page = vmf.page;
3237         if (flags & FAULT_FLAG_WRITE) {
3238                 if (!(vma->vm_flags & VM_SHARED)) {
3239                         page = cow_page;
3240                         anon = 1;
3241                         copy_user_highpage(page, vmf.page, address, vma);
3242                         __SetPageUptodate(page);
3243                 } else {
3244                         /*
3245                          * If the page will be shareable, see if the backing
3246                          * address space wants to know that the page is about
3247                          * to become writable
3248                          */
3249                         if (vma->vm_ops->page_mkwrite) {
3250                                 int tmp;
3251
3252                                 unlock_page(page);
3253                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3254                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3255                                 if (unlikely(tmp &
3256                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3257                                         ret = tmp;
3258                                         goto unwritable_page;
3259                                 }
3260                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3261                                         lock_page(page);
3262                                         if (!page->mapping) {
3263                                                 ret = 0; /* retry the fault */
3264                                                 unlock_page(page);
3265                                                 goto unwritable_page;
3266                                         }
3267                                 } else
3268                                         VM_BUG_ON(!PageLocked(page));
3269                                 page_mkwrite = 1;
3270                         }
3271                 }
3272
3273         }
3274
3275         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3276
3277         /*
3278          * This silly early PAGE_DIRTY setting removes a race
3279          * due to the bad i386 page protection. But it's valid
3280          * for other architectures too.
3281          *
3282          * Note that if FAULT_FLAG_WRITE is set, we either now have
3283          * an exclusive copy of the page, or this is a shared mapping,
3284          * so we can make it writable and dirty to avoid having to
3285          * handle that later.
3286          */
3287         /* Only go through if we didn't race with anybody else... */
3288         if (likely(pte_same(*page_table, orig_pte))) {
3289                 flush_icache_page(vma, page);
3290                 entry = mk_pte(page, vma->vm_page_prot);
3291                 if (flags & FAULT_FLAG_WRITE)
3292                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3293                 if (anon) {
3294                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3295                         page_add_new_anon_rmap(page, vma, address);
3296                 } else {
3297                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3298                         page_add_file_rmap(page);
3299                         if (flags & FAULT_FLAG_WRITE) {
3300                                 dirty_page = page;
3301                                 get_page(dirty_page);
3302                         }
3303                 }
3304                 set_pte_at(mm, address, page_table, entry);
3305
3306                 /* no need to invalidate: a not-present page won't be cached */
3307                 update_mmu_cache(vma, address, page_table);
3308         } else {
3309                 if (cow_page)
3310                         mem_cgroup_uncharge_page(cow_page);
3311                 if (anon)
3312                         page_cache_release(page);
3313                 else
3314                         anon = 1; /* no anon but release faulted_page */
3315         }
3316
3317         pte_unmap_unlock(page_table, ptl);
3318
3319         if (dirty_page) {
3320                 struct address_space *mapping = page->mapping;
3321
3322                 if (set_page_dirty(dirty_page))
3323                         page_mkwrite = 1;
3324                 unlock_page(dirty_page);
3325                 put_page(dirty_page);
3326                 if (page_mkwrite && mapping) {
3327                         /*
3328                          * Some device drivers do not set page.mapping but still
3329                          * dirty their pages
3330                          */
3331                         balance_dirty_pages_ratelimited(mapping);
3332                 }
3333
3334                 /* file_update_time outside page_lock */
3335                 if (vma->vm_file)
3336                         file_update_time(vma->vm_file);
3337         } else {
3338                 unlock_page(vmf.page);
3339                 if (anon)
3340                         page_cache_release(vmf.page);
3341         }
3342
3343         return ret;
3344
3345 unwritable_page:
3346         page_cache_release(page);
3347         return ret;
3348 uncharge_out:
3349         /* fs's fault handler get error */
3350         if (cow_page) {
3351                 mem_cgroup_uncharge_page(cow_page);
3352                 page_cache_release(cow_page);
3353         }
3354         return ret;
3355 }
3356
3357 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3358                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3359                 unsigned int flags, pte_t orig_pte)
3360 {
3361         pgoff_t pgoff = (((address & PAGE_MASK)
3362                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3363
3364         pte_unmap(page_table);
3365         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3366 }
3367
3368 /*
3369  * Fault of a previously existing named mapping. Repopulate the pte
3370  * from the encoded file_pte if possible. This enables swappable
3371  * nonlinear vmas.
3372  *
3373  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3374  * but allow concurrent faults), and pte mapped but not yet locked.
3375  * We return with mmap_sem still held, but pte unmapped and unlocked.
3376  */
3377 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3378                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3379                 unsigned int flags, pte_t orig_pte)
3380 {
3381         pgoff_t pgoff;
3382
3383         flags |= FAULT_FLAG_NONLINEAR;
3384
3385         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3386                 return 0;
3387
3388         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3389                 /*
3390                  * Page table corrupted: show pte and kill process.
3391                  */
3392                 print_bad_pte(vma, address, orig_pte, NULL);
3393                 return VM_FAULT_SIGBUS;
3394         }
3395
3396         pgoff = pte_to_pgoff(orig_pte);
3397         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3398 }
3399
3400 /*
3401  * These routines also need to handle stuff like marking pages dirty
3402  * and/or accessed for architectures that don't do it in hardware (most
3403  * RISC architectures).  The early dirtying is also good on the i386.
3404  *
3405  * There is also a hook called "update_mmu_cache()" that architectures
3406  * with external mmu caches can use to update those (ie the Sparc or
3407  * PowerPC hashed page tables that act as extended TLBs).
3408  *
3409  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3410  * but allow concurrent faults), and pte mapped but not yet locked.
3411  * We return with mmap_sem still held, but pte unmapped and unlocked.
3412  */
3413 int handle_pte_fault(struct mm_struct *mm,
3414                      struct vm_area_struct *vma, unsigned long address,
3415                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3416 {
3417         pte_t entry;
3418         spinlock_t *ptl;
3419
3420         entry = *pte;
3421         if (!pte_present(entry)) {
3422                 if (pte_none(entry)) {
3423                         if (vma->vm_ops) {
3424                                 if (likely(vma->vm_ops->fault))
3425                                         return do_linear_fault(mm, vma, address,
3426                                                 pte, pmd, flags, entry);
3427                         }
3428                         return do_anonymous_page(mm, vma, address,
3429                                                  pte, pmd, flags);
3430                 }
3431                 if (pte_file(entry))
3432                         return do_nonlinear_fault(mm, vma, address,
3433                                         pte, pmd, flags, entry);
3434                 return do_swap_page(mm, vma, address,
3435                                         pte, pmd, flags, entry);
3436         }
3437
3438         ptl = pte_lockptr(mm, pmd);
3439         spin_lock(ptl);
3440         if (unlikely(!pte_same(*pte, entry)))
3441                 goto unlock;
3442         if (flags & FAULT_FLAG_WRITE) {
3443                 if (!pte_write(entry))
3444                         return do_wp_page(mm, vma, address,
3445                                         pte, pmd, ptl, entry);
3446                 entry = pte_mkdirty(entry);
3447         }
3448         entry = pte_mkyoung(entry);
3449         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3450                 update_mmu_cache(vma, address, pte);
3451         } else {
3452                 /*
3453                  * This is needed only for protection faults but the arch code
3454                  * is not yet telling us if this is a protection fault or not.
3455                  * This still avoids useless tlb flushes for .text page faults
3456                  * with threads.
3457                  */
3458                 if (flags & FAULT_FLAG_WRITE)
3459                         flush_tlb_fix_spurious_fault(vma, address);
3460         }
3461 unlock:
3462         pte_unmap_unlock(pte, ptl);
3463         return 0;
3464 }
3465
3466 /*
3467  * By the time we get here, we already hold the mm semaphore
3468  */
3469 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3470                 unsigned long address, unsigned int flags)
3471 {
3472         pgd_t *pgd;
3473         pud_t *pud;
3474         pmd_t *pmd;
3475         pte_t *pte;
3476
3477         __set_current_state(TASK_RUNNING);
3478
3479         count_vm_event(PGFAULT);
3480         mem_cgroup_count_vm_event(mm, PGFAULT);
3481
3482         /* do counter updates before entering really critical section. */
3483         check_sync_rss_stat(current);
3484
3485         if (unlikely(is_vm_hugetlb_page(vma)))
3486                 return hugetlb_fault(mm, vma, address, flags);
3487
3488         pgd = pgd_offset(mm, address);
3489         pud = pud_alloc(mm, pgd, address);
3490         if (!pud)
3491                 return VM_FAULT_OOM;
3492         pmd = pmd_alloc(mm, pud, address);
3493         if (!pmd)
3494                 return VM_FAULT_OOM;
3495         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3496                 if (!vma->vm_ops)
3497                         return do_huge_pmd_anonymous_page(mm, vma, address,
3498                                                           pmd, flags);
3499         } else {
3500                 pmd_t orig_pmd = *pmd;
3501                 barrier();
3502                 if (pmd_trans_huge(orig_pmd)) {
3503                         if (flags & FAULT_FLAG_WRITE &&
3504                             !pmd_write(orig_pmd) &&
3505                             !pmd_trans_splitting(orig_pmd))
3506                                 return do_huge_pmd_wp_page(mm, vma, address,
3507                                                            pmd, orig_pmd);
3508                         return 0;
3509                 }
3510         }
3511
3512         /*
3513          * Use __pte_alloc instead of pte_alloc_map, because we can't
3514          * run pte_offset_map on the pmd, if an huge pmd could
3515          * materialize from under us from a different thread.
3516          */
3517         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3518                 return VM_FAULT_OOM;
3519         /* if an huge pmd materialized from under us just retry later */
3520         if (unlikely(pmd_trans_huge(*pmd)))
3521                 return 0;
3522         /*
3523          * A regular pmd is established and it can't morph into a huge pmd
3524          * from under us anymore at this point because we hold the mmap_sem
3525          * read mode and khugepaged takes it in write mode. So now it's
3526          * safe to run pte_offset_map().
3527          */
3528         pte = pte_offset_map(pmd, address);
3529
3530         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3531 }
3532
3533 #ifndef __PAGETABLE_PUD_FOLDED
3534 /*
3535  * Allocate page upper directory.
3536  * We've already handled the fast-path in-line.
3537  */
3538 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3539 {
3540         pud_t *new = pud_alloc_one(mm, address);
3541         if (!new)
3542                 return -ENOMEM;
3543
3544         smp_wmb(); /* See comment in __pte_alloc */
3545
3546         spin_lock(&mm->page_table_lock);
3547         if (pgd_present(*pgd))          /* Another has populated it */
3548                 pud_free(mm, new);
3549         else
3550                 pgd_populate(mm, pgd, new);
3551         spin_unlock(&mm->page_table_lock);
3552         return 0;
3553 }
3554 #endif /* __PAGETABLE_PUD_FOLDED */
3555
3556 #ifndef __PAGETABLE_PMD_FOLDED
3557 /*
3558  * Allocate page middle directory.
3559  * We've already handled the fast-path in-line.
3560  */
3561 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3562 {
3563         pmd_t *new = pmd_alloc_one(mm, address);
3564         if (!new)
3565                 return -ENOMEM;
3566
3567         smp_wmb(); /* See comment in __pte_alloc */
3568
3569         spin_lock(&mm->page_table_lock);
3570 #ifndef __ARCH_HAS_4LEVEL_HACK
3571         if (pud_present(*pud))          /* Another has populated it */
3572                 pmd_free(mm, new);
3573         else
3574                 pud_populate(mm, pud, new);
3575 #else
3576         if (pgd_present(*pud))          /* Another has populated it */
3577                 pmd_free(mm, new);
3578         else
3579                 pgd_populate(mm, pud, new);
3580 #endif /* __ARCH_HAS_4LEVEL_HACK */
3581         spin_unlock(&mm->page_table_lock);
3582         return 0;
3583 }
3584 #endif /* __PAGETABLE_PMD_FOLDED */
3585
3586 int make_pages_present(unsigned long addr, unsigned long end)
3587 {
3588         int ret, len, write;
3589         struct vm_area_struct * vma;
3590
3591         vma = find_vma(current->mm, addr);
3592         if (!vma)
3593                 return -ENOMEM;
3594         /*
3595          * We want to touch writable mappings with a write fault in order
3596          * to break COW, except for shared mappings because these don't COW
3597          * and we would not want to dirty them for nothing.
3598          */
3599         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3600         BUG_ON(addr >= end);
3601         BUG_ON(end > vma->vm_end);
3602         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3603         ret = get_user_pages(current, current->mm, addr,
3604                         len, write, 0, NULL, NULL);
3605         if (ret < 0)
3606                 return ret;
3607         return ret == len ? 0 : -EFAULT;
3608 }
3609
3610 #if !defined(__HAVE_ARCH_GATE_AREA)
3611
3612 #if defined(AT_SYSINFO_EHDR)
3613 static struct vm_area_struct gate_vma;
3614
3615 static int __init gate_vma_init(void)
3616 {
3617         gate_vma.vm_mm = NULL;
3618         gate_vma.vm_start = FIXADDR_USER_START;
3619         gate_vma.vm_end = FIXADDR_USER_END;
3620         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3621         gate_vma.vm_page_prot = __P101;
3622         /*
3623          * Make sure the vDSO gets into every core dump.
3624          * Dumping its contents makes post-mortem fully interpretable later
3625          * without matching up the same kernel and hardware config to see
3626          * what PC values meant.
3627          */
3628         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3629         return 0;
3630 }
3631 __initcall(gate_vma_init);
3632 #endif
3633
3634 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3635 {
3636 #ifdef AT_SYSINFO_EHDR
3637         return &gate_vma;
3638 #else
3639         return NULL;
3640 #endif
3641 }
3642
3643 int in_gate_area_no_mm(unsigned long addr)
3644 {
3645 #ifdef AT_SYSINFO_EHDR
3646         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3647                 return 1;
3648 #endif
3649         return 0;
3650 }
3651
3652 #endif  /* __HAVE_ARCH_GATE_AREA */
3653
3654 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3655                 pte_t **ptepp, spinlock_t **ptlp)
3656 {
3657         pgd_t *pgd;
3658         pud_t *pud;
3659         pmd_t *pmd;
3660         pte_t *ptep;
3661
3662         pgd = pgd_offset(mm, address);
3663         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3664                 goto out;
3665
3666         pud = pud_offset(pgd, address);
3667         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3668                 goto out;
3669
3670         pmd = pmd_offset(pud, address);
3671         VM_BUG_ON(pmd_trans_huge(*pmd));
3672         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3673                 goto out;
3674
3675         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3676         if (pmd_huge(*pmd))
3677                 goto out;
3678
3679         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3680         if (!ptep)
3681                 goto out;
3682         if (!pte_present(*ptep))
3683                 goto unlock;
3684         *ptepp = ptep;
3685         return 0;
3686 unlock:
3687         pte_unmap_unlock(ptep, *ptlp);
3688 out:
3689         return -EINVAL;
3690 }
3691
3692 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3693                              pte_t **ptepp, spinlock_t **ptlp)
3694 {
3695         int res;
3696
3697         /* (void) is needed to make gcc happy */
3698         (void) __cond_lock(*ptlp,
3699                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3700         return res;
3701 }
3702
3703 /**
3704  * follow_pfn - look up PFN at a user virtual address
3705  * @vma: memory mapping
3706  * @address: user virtual address
3707  * @pfn: location to store found PFN
3708  *
3709  * Only IO mappings and raw PFN mappings are allowed.
3710  *
3711  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3712  */
3713 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3714         unsigned long *pfn)
3715 {
3716         int ret = -EINVAL;
3717         spinlock_t *ptl;
3718         pte_t *ptep;
3719
3720         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3721                 return ret;
3722
3723         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3724         if (ret)
3725                 return ret;
3726         *pfn = pte_pfn(*ptep);
3727         pte_unmap_unlock(ptep, ptl);
3728         return 0;
3729 }
3730 EXPORT_SYMBOL(follow_pfn);
3731
3732 #ifdef CONFIG_HAVE_IOREMAP_PROT
3733 int follow_phys(struct vm_area_struct *vma,
3734                 unsigned long address, unsigned int flags,
3735                 unsigned long *prot, resource_size_t *phys)
3736 {
3737         int ret = -EINVAL;
3738         pte_t *ptep, pte;
3739         spinlock_t *ptl;
3740
3741         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3742                 goto out;
3743
3744         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3745                 goto out;
3746         pte = *ptep;
3747
3748         if ((flags & FOLL_WRITE) && !pte_write(pte))
3749                 goto unlock;
3750
3751         *prot = pgprot_val(pte_pgprot(pte));
3752         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3753
3754         ret = 0;
3755 unlock:
3756         pte_unmap_unlock(ptep, ptl);
3757 out:
3758         return ret;
3759 }
3760
3761 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3762                         void *buf, int len, int write)
3763 {
3764         resource_size_t phys_addr;
3765         unsigned long prot = 0;
3766         void __iomem *maddr;
3767         int offset = addr & (PAGE_SIZE-1);
3768
3769         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3770                 return -EINVAL;
3771
3772         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3773         if (write)
3774                 memcpy_toio(maddr + offset, buf, len);
3775         else
3776                 memcpy_fromio(buf, maddr + offset, len);
3777         iounmap(maddr);
3778
3779         return len;
3780 }
3781 #endif
3782
3783 /*
3784  * Access another process' address space as given in mm.  If non-NULL, use the
3785  * given task for page fault accounting.
3786  */
3787 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3788                 unsigned long addr, void *buf, int len, int write)
3789 {
3790         struct vm_area_struct *vma;
3791         void *old_buf = buf;
3792
3793         down_read(&mm->mmap_sem);
3794         /* ignore errors, just check how much was successfully transferred */
3795         while (len) {
3796                 int bytes, ret, offset;
3797                 void *maddr;
3798                 struct page *page = NULL;
3799
3800                 ret = get_user_pages(tsk, mm, addr, 1,
3801                                 write, 1, &page, &vma);
3802                 if (ret <= 0) {
3803                         /*
3804                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3805                          * we can access using slightly different code.
3806                          */
3807 #ifdef CONFIG_HAVE_IOREMAP_PROT
3808                         vma = find_vma(mm, addr);
3809                         if (!vma || vma->vm_start > addr)
3810                                 break;
3811                         if (vma->vm_ops && vma->vm_ops->access)
3812                                 ret = vma->vm_ops->access(vma, addr, buf,
3813                                                           len, write);
3814                         if (ret <= 0)
3815 #endif
3816                                 break;
3817                         bytes = ret;
3818                 } else {
3819                         bytes = len;
3820                         offset = addr & (PAGE_SIZE-1);
3821                         if (bytes > PAGE_SIZE-offset)
3822                                 bytes = PAGE_SIZE-offset;
3823
3824                         maddr = kmap(page);
3825                         if (write) {
3826                                 copy_to_user_page(vma, page, addr,
3827                                                   maddr + offset, buf, bytes);
3828                                 set_page_dirty_lock(page);
3829                         } else {
3830                                 copy_from_user_page(vma, page, addr,
3831                                                     buf, maddr + offset, bytes);
3832                         }
3833                         kunmap(page);
3834                         page_cache_release(page);
3835                 }
3836                 len -= bytes;
3837                 buf += bytes;
3838                 addr += bytes;
3839         }
3840         up_read(&mm->mmap_sem);
3841
3842         return buf - old_buf;
3843 }
3844
3845 /**
3846  * access_remote_vm - access another process' address space
3847  * @mm:         the mm_struct of the target address space
3848  * @addr:       start address to access
3849  * @buf:        source or destination buffer
3850  * @len:        number of bytes to transfer
3851  * @write:      whether the access is a write
3852  *
3853  * The caller must hold a reference on @mm.
3854  */
3855 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3856                 void *buf, int len, int write)
3857 {
3858         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3859 }
3860
3861 /*
3862  * Access another process' address space.
3863  * Source/target buffer must be kernel space,
3864  * Do not walk the page table directly, use get_user_pages
3865  */
3866 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3867                 void *buf, int len, int write)
3868 {
3869         struct mm_struct *mm;
3870         int ret;
3871
3872         mm = get_task_mm(tsk);
3873         if (!mm)
3874                 return 0;
3875
3876         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3877         mmput(mm);
3878
3879         return ret;
3880 }
3881
3882 /*
3883  * Print the name of a VMA.
3884  */
3885 void print_vma_addr(char *prefix, unsigned long ip)
3886 {
3887         struct mm_struct *mm = current->mm;
3888         struct vm_area_struct *vma;
3889
3890         /*
3891          * Do not print if we are in atomic
3892          * contexts (in exception stacks, etc.):
3893          */
3894         if (preempt_count())
3895                 return;
3896
3897         down_read(&mm->mmap_sem);
3898         vma = find_vma(mm, ip);
3899         if (vma && vma->vm_file) {
3900                 struct file *f = vma->vm_file;
3901                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3902                 if (buf) {
3903                         char *p, *s;
3904
3905                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3906                         if (IS_ERR(p))
3907                                 p = "?";
3908                         s = strrchr(p, '/');
3909                         if (s)
3910                                 p = s+1;
3911                         printk("%s%s[%lx+%lx]", prefix, p,
3912                                         vma->vm_start,
3913                                         vma->vm_end - vma->vm_start);
3914                         free_page((unsigned long)buf);
3915                 }
3916         }
3917         up_read(&current->mm->mmap_sem);
3918 }
3919
3920 #ifdef CONFIG_PROVE_LOCKING
3921 void might_fault(void)
3922 {
3923         /*
3924          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3925          * holding the mmap_sem, this is safe because kernel memory doesn't
3926          * get paged out, therefore we'll never actually fault, and the
3927          * below annotations will generate false positives.
3928          */
3929         if (segment_eq(get_fs(), KERNEL_DS))
3930                 return;
3931
3932         might_sleep();
3933         /*
3934          * it would be nicer only to annotate paths which are not under
3935          * pagefault_disable, however that requires a larger audit and
3936          * providing helpers like get_user_atomic.
3937          */
3938         if (!in_atomic() && current->mm)
3939                 might_lock_read(&current->mm->mmap_sem);
3940 }
3941 EXPORT_SYMBOL(might_fault);
3942 #endif
3943
3944 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3945 static void clear_gigantic_page(struct page *page,
3946                                 unsigned long addr,
3947                                 unsigned int pages_per_huge_page)
3948 {
3949         int i;
3950         struct page *p = page;
3951
3952         might_sleep();
3953         for (i = 0; i < pages_per_huge_page;
3954              i++, p = mem_map_next(p, page, i)) {
3955                 cond_resched();
3956                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3957         }
3958 }
3959 void clear_huge_page(struct page *page,
3960                      unsigned long addr, unsigned int pages_per_huge_page)
3961 {
3962         int i;
3963
3964         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3965                 clear_gigantic_page(page, addr, pages_per_huge_page);
3966                 return;
3967         }
3968
3969         might_sleep();
3970         for (i = 0; i < pages_per_huge_page; i++) {
3971                 cond_resched();
3972                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3973         }
3974 }
3975
3976 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3977                                     unsigned long addr,
3978                                     struct vm_area_struct *vma,
3979                                     unsigned int pages_per_huge_page)
3980 {
3981         int i;
3982         struct page *dst_base = dst;
3983         struct page *src_base = src;
3984
3985         for (i = 0; i < pages_per_huge_page; ) {
3986                 cond_resched();
3987                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3988
3989                 i++;
3990                 dst = mem_map_next(dst, dst_base, i);
3991                 src = mem_map_next(src, src_base, i);
3992         }
3993 }
3994
3995 void copy_user_huge_page(struct page *dst, struct page *src,
3996                          unsigned long addr, struct vm_area_struct *vma,
3997                          unsigned int pages_per_huge_page)
3998 {
3999         int i;
4000
4001         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4002                 copy_user_gigantic_page(dst, src, addr, vma,
4003                                         pages_per_huge_page);
4004                 return;
4005         }
4006
4007         might_sleep();
4008         for (i = 0; i < pages_per_huge_page; i++) {
4009                 cond_resched();
4010                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4011         }
4012 }
4013 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */