ARM: dts: rockchip: rk3288 add efuse_id for cpuinfo
[firefly-linux-kernel-4.4.55.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
65
66 #include <asm/io.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/tlb.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
72
73 #include "internal.h"
74
75 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 #endif
78
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr;
82 struct page *mem_map;
83
84 EXPORT_SYMBOL(max_mapnr);
85 EXPORT_SYMBOL(mem_map);
86 #endif
87
88 /*
89  * A number of key systems in x86 including ioremap() rely on the assumption
90  * that high_memory defines the upper bound on direct map memory, then end
91  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
92  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93  * and ZONE_HIGHMEM.
94  */
95 void * high_memory;
96
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100  * Randomize the address space (stacks, mmaps, brk, etc.).
101  *
102  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103  *   as ancient (libc5 based) binaries can segfault. )
104  */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107                                         1;
108 #else
109                                         2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114         randomize_va_space = 0;
115         return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 EXPORT_SYMBOL(zero_pfn);
123
124 /*
125  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126  */
127 static int __init init_zero_pfn(void)
128 {
129         zero_pfn = page_to_pfn(ZERO_PAGE(0));
130         return 0;
131 }
132 core_initcall(init_zero_pfn);
133
134
135 #if defined(SPLIT_RSS_COUNTING)
136
137 void sync_mm_rss(struct mm_struct *mm)
138 {
139         int i;
140
141         for (i = 0; i < NR_MM_COUNTERS; i++) {
142                 if (current->rss_stat.count[i]) {
143                         add_mm_counter(mm, i, current->rss_stat.count[i]);
144                         current->rss_stat.count[i] = 0;
145                 }
146         }
147         current->rss_stat.events = 0;
148 }
149
150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 {
152         struct task_struct *task = current;
153
154         if (likely(task->mm == mm))
155                 task->rss_stat.count[member] += val;
156         else
157                 add_mm_counter(mm, member, val);
158 }
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH  (64)
164 static void check_sync_rss_stat(struct task_struct *task)
165 {
166         if (unlikely(task != current))
167                 return;
168         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169                 sync_mm_rss(task->mm);
170 }
171 #else /* SPLIT_RSS_COUNTING */
172
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176 static void check_sync_rss_stat(struct task_struct *task)
177 {
178 }
179
180 #endif /* SPLIT_RSS_COUNTING */
181
182 #ifdef HAVE_GENERIC_MMU_GATHER
183
184 static bool tlb_next_batch(struct mmu_gather *tlb)
185 {
186         struct mmu_gather_batch *batch;
187
188         batch = tlb->active;
189         if (batch->next) {
190                 tlb->active = batch->next;
191                 return true;
192         }
193
194         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195                 return false;
196
197         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198         if (!batch)
199                 return false;
200
201         tlb->batch_count++;
202         batch->next = NULL;
203         batch->nr   = 0;
204         batch->max  = MAX_GATHER_BATCH;
205
206         tlb->active->next = batch;
207         tlb->active = batch;
208
209         return true;
210 }
211
212 /* tlb_gather_mmu
213  *      Called to initialize an (on-stack) mmu_gather structure for page-table
214  *      tear-down from @mm. The @fullmm argument is used when @mm is without
215  *      users and we're going to destroy the full address space (exit/execve).
216  */
217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 {
219         tlb->mm = mm;
220
221         /* Is it from 0 to ~0? */
222         tlb->fullmm     = !(start | (end+1));
223         tlb->need_flush_all = 0;
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233
234         __tlb_reset_range(tlb);
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239         if (!tlb->end)
240                 return;
241
242         tlb_flush(tlb);
243         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245         tlb_table_flush(tlb);
246 #endif
247         __tlb_reset_range(tlb);
248 }
249
250 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251 {
252         struct mmu_gather_batch *batch;
253
254         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255                 free_pages_and_swap_cache(batch->pages, batch->nr);
256                 batch->nr = 0;
257         }
258         tlb->active = &tlb->local;
259 }
260
261 void tlb_flush_mmu(struct mmu_gather *tlb)
262 {
263         tlb_flush_mmu_tlbonly(tlb);
264         tlb_flush_mmu_free(tlb);
265 }
266
267 /* tlb_finish_mmu
268  *      Called at the end of the shootdown operation to free up any resources
269  *      that were required.
270  */
271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 {
273         struct mmu_gather_batch *batch, *next;
274
275         tlb_flush_mmu(tlb);
276
277         /* keep the page table cache within bounds */
278         check_pgt_cache();
279
280         for (batch = tlb->local.next; batch; batch = next) {
281                 next = batch->next;
282                 free_pages((unsigned long)batch, 0);
283         }
284         tlb->local.next = NULL;
285 }
286
287 /* __tlb_remove_page
288  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289  *      handling the additional races in SMP caused by other CPUs caching valid
290  *      mappings in their TLBs. Returns the number of free page slots left.
291  *      When out of page slots we must call tlb_flush_mmu().
292  */
293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 {
295         struct mmu_gather_batch *batch;
296
297         VM_BUG_ON(!tlb->end);
298
299         batch = tlb->active;
300         batch->pages[batch->nr++] = page;
301         if (batch->nr == batch->max) {
302                 if (!tlb_next_batch(tlb))
303                         return 0;
304                 batch = tlb->active;
305         }
306         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307
308         return batch->max - batch->nr;
309 }
310
311 #endif /* HAVE_GENERIC_MMU_GATHER */
312
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315 /*
316  * See the comment near struct mmu_table_batch.
317  */
318
319 static void tlb_remove_table_smp_sync(void *arg)
320 {
321         /* Simply deliver the interrupt */
322 }
323
324 static void tlb_remove_table_one(void *table)
325 {
326         /*
327          * This isn't an RCU grace period and hence the page-tables cannot be
328          * assumed to be actually RCU-freed.
329          *
330          * It is however sufficient for software page-table walkers that rely on
331          * IRQ disabling. See the comment near struct mmu_table_batch.
332          */
333         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334         __tlb_remove_table(table);
335 }
336
337 static void tlb_remove_table_rcu(struct rcu_head *head)
338 {
339         struct mmu_table_batch *batch;
340         int i;
341
342         batch = container_of(head, struct mmu_table_batch, rcu);
343
344         for (i = 0; i < batch->nr; i++)
345                 __tlb_remove_table(batch->tables[i]);
346
347         free_page((unsigned long)batch);
348 }
349
350 void tlb_table_flush(struct mmu_gather *tlb)
351 {
352         struct mmu_table_batch **batch = &tlb->batch;
353
354         if (*batch) {
355                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356                 *batch = NULL;
357         }
358 }
359
360 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 {
362         struct mmu_table_batch **batch = &tlb->batch;
363
364         /*
365          * When there's less then two users of this mm there cannot be a
366          * concurrent page-table walk.
367          */
368         if (atomic_read(&tlb->mm->mm_users) < 2) {
369                 __tlb_remove_table(table);
370                 return;
371         }
372
373         if (*batch == NULL) {
374                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375                 if (*batch == NULL) {
376                         tlb_remove_table_one(table);
377                         return;
378                 }
379                 (*batch)->nr = 0;
380         }
381         (*batch)->tables[(*batch)->nr++] = table;
382         if ((*batch)->nr == MAX_TABLE_BATCH)
383                 tlb_table_flush(tlb);
384 }
385
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387
388 /*
389  * Note: this doesn't free the actual pages themselves. That
390  * has been handled earlier when unmapping all the memory regions.
391  */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393                            unsigned long addr)
394 {
395         pgtable_t token = pmd_pgtable(*pmd);
396         pmd_clear(pmd);
397         pte_free_tlb(tlb, token, addr);
398         atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402                                 unsigned long addr, unsigned long end,
403                                 unsigned long floor, unsigned long ceiling)
404 {
405         pmd_t *pmd;
406         unsigned long next;
407         unsigned long start;
408
409         start = addr;
410         pmd = pmd_offset(pud, addr);
411         do {
412                 next = pmd_addr_end(addr, end);
413                 if (pmd_none_or_clear_bad(pmd))
414                         continue;
415                 free_pte_range(tlb, pmd, addr);
416         } while (pmd++, addr = next, addr != end);
417
418         start &= PUD_MASK;
419         if (start < floor)
420                 return;
421         if (ceiling) {
422                 ceiling &= PUD_MASK;
423                 if (!ceiling)
424                         return;
425         }
426         if (end - 1 > ceiling - 1)
427                 return;
428
429         pmd = pmd_offset(pud, start);
430         pud_clear(pud);
431         pmd_free_tlb(tlb, pmd, start);
432         mm_dec_nr_pmds(tlb->mm);
433 }
434
435 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436                                 unsigned long addr, unsigned long end,
437                                 unsigned long floor, unsigned long ceiling)
438 {
439         pud_t *pud;
440         unsigned long next;
441         unsigned long start;
442
443         start = addr;
444         pud = pud_offset(pgd, addr);
445         do {
446                 next = pud_addr_end(addr, end);
447                 if (pud_none_or_clear_bad(pud))
448                         continue;
449                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
450         } while (pud++, addr = next, addr != end);
451
452         start &= PGDIR_MASK;
453         if (start < floor)
454                 return;
455         if (ceiling) {
456                 ceiling &= PGDIR_MASK;
457                 if (!ceiling)
458                         return;
459         }
460         if (end - 1 > ceiling - 1)
461                 return;
462
463         pud = pud_offset(pgd, start);
464         pgd_clear(pgd);
465         pud_free_tlb(tlb, pud, start);
466 }
467
468 /*
469  * This function frees user-level page tables of a process.
470  */
471 void free_pgd_range(struct mmu_gather *tlb,
472                         unsigned long addr, unsigned long end,
473                         unsigned long floor, unsigned long ceiling)
474 {
475         pgd_t *pgd;
476         unsigned long next;
477
478         /*
479          * The next few lines have given us lots of grief...
480          *
481          * Why are we testing PMD* at this top level?  Because often
482          * there will be no work to do at all, and we'd prefer not to
483          * go all the way down to the bottom just to discover that.
484          *
485          * Why all these "- 1"s?  Because 0 represents both the bottom
486          * of the address space and the top of it (using -1 for the
487          * top wouldn't help much: the masks would do the wrong thing).
488          * The rule is that addr 0 and floor 0 refer to the bottom of
489          * the address space, but end 0 and ceiling 0 refer to the top
490          * Comparisons need to use "end - 1" and "ceiling - 1" (though
491          * that end 0 case should be mythical).
492          *
493          * Wherever addr is brought up or ceiling brought down, we must
494          * be careful to reject "the opposite 0" before it confuses the
495          * subsequent tests.  But what about where end is brought down
496          * by PMD_SIZE below? no, end can't go down to 0 there.
497          *
498          * Whereas we round start (addr) and ceiling down, by different
499          * masks at different levels, in order to test whether a table
500          * now has no other vmas using it, so can be freed, we don't
501          * bother to round floor or end up - the tests don't need that.
502          */
503
504         addr &= PMD_MASK;
505         if (addr < floor) {
506                 addr += PMD_SIZE;
507                 if (!addr)
508                         return;
509         }
510         if (ceiling) {
511                 ceiling &= PMD_MASK;
512                 if (!ceiling)
513                         return;
514         }
515         if (end - 1 > ceiling - 1)
516                 end -= PMD_SIZE;
517         if (addr > end - 1)
518                 return;
519
520         pgd = pgd_offset(tlb->mm, addr);
521         do {
522                 next = pgd_addr_end(addr, end);
523                 if (pgd_none_or_clear_bad(pgd))
524                         continue;
525                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
526         } while (pgd++, addr = next, addr != end);
527 }
528
529 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530                 unsigned long floor, unsigned long ceiling)
531 {
532         while (vma) {
533                 struct vm_area_struct *next = vma->vm_next;
534                 unsigned long addr = vma->vm_start;
535
536                 /*
537                  * Hide vma from rmap and truncate_pagecache before freeing
538                  * pgtables
539                  */
540                 unlink_anon_vmas(vma);
541                 unlink_file_vma(vma);
542
543                 if (is_vm_hugetlb_page(vma)) {
544                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545                                 floor, next? next->vm_start: ceiling);
546                 } else {
547                         /*
548                          * Optimization: gather nearby vmas into one call down
549                          */
550                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551                                && !is_vm_hugetlb_page(next)) {
552                                 vma = next;
553                                 next = vma->vm_next;
554                                 unlink_anon_vmas(vma);
555                                 unlink_file_vma(vma);
556                         }
557                         free_pgd_range(tlb, addr, vma->vm_end,
558                                 floor, next? next->vm_start: ceiling);
559                 }
560                 vma = next;
561         }
562 }
563
564 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565                 pmd_t *pmd, unsigned long address)
566 {
567         spinlock_t *ptl;
568         pgtable_t new = pte_alloc_one(mm, address);
569         int wait_split_huge_page;
570         if (!new)
571                 return -ENOMEM;
572
573         /*
574          * Ensure all pte setup (eg. pte page lock and page clearing) are
575          * visible before the pte is made visible to other CPUs by being
576          * put into page tables.
577          *
578          * The other side of the story is the pointer chasing in the page
579          * table walking code (when walking the page table without locking;
580          * ie. most of the time). Fortunately, these data accesses consist
581          * of a chain of data-dependent loads, meaning most CPUs (alpha
582          * being the notable exception) will already guarantee loads are
583          * seen in-order. See the alpha page table accessors for the
584          * smp_read_barrier_depends() barriers in page table walking code.
585          */
586         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588         ptl = pmd_lock(mm, pmd);
589         wait_split_huge_page = 0;
590         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
591                 atomic_long_inc(&mm->nr_ptes);
592                 pmd_populate(mm, pmd, new);
593                 new = NULL;
594         } else if (unlikely(pmd_trans_splitting(*pmd)))
595                 wait_split_huge_page = 1;
596         spin_unlock(ptl);
597         if (new)
598                 pte_free(mm, new);
599         if (wait_split_huge_page)
600                 wait_split_huge_page(vma->anon_vma, pmd);
601         return 0;
602 }
603
604 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
605 {
606         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
607         if (!new)
608                 return -ENOMEM;
609
610         smp_wmb(); /* See comment in __pte_alloc */
611
612         spin_lock(&init_mm.page_table_lock);
613         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
614                 pmd_populate_kernel(&init_mm, pmd, new);
615                 new = NULL;
616         } else
617                 VM_BUG_ON(pmd_trans_splitting(*pmd));
618         spin_unlock(&init_mm.page_table_lock);
619         if (new)
620                 pte_free_kernel(&init_mm, new);
621         return 0;
622 }
623
624 static inline void init_rss_vec(int *rss)
625 {
626         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
627 }
628
629 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
630 {
631         int i;
632
633         if (current->mm == mm)
634                 sync_mm_rss(mm);
635         for (i = 0; i < NR_MM_COUNTERS; i++)
636                 if (rss[i])
637                         add_mm_counter(mm, i, rss[i]);
638 }
639
640 /*
641  * This function is called to print an error when a bad pte
642  * is found. For example, we might have a PFN-mapped pte in
643  * a region that doesn't allow it.
644  *
645  * The calling function must still handle the error.
646  */
647 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
648                           pte_t pte, struct page *page)
649 {
650         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
651         pud_t *pud = pud_offset(pgd, addr);
652         pmd_t *pmd = pmd_offset(pud, addr);
653         struct address_space *mapping;
654         pgoff_t index;
655         static unsigned long resume;
656         static unsigned long nr_shown;
657         static unsigned long nr_unshown;
658
659         /*
660          * Allow a burst of 60 reports, then keep quiet for that minute;
661          * or allow a steady drip of one report per second.
662          */
663         if (nr_shown == 60) {
664                 if (time_before(jiffies, resume)) {
665                         nr_unshown++;
666                         return;
667                 }
668                 if (nr_unshown) {
669                         printk(KERN_ALERT
670                                 "BUG: Bad page map: %lu messages suppressed\n",
671                                 nr_unshown);
672                         nr_unshown = 0;
673                 }
674                 nr_shown = 0;
675         }
676         if (nr_shown++ == 0)
677                 resume = jiffies + 60 * HZ;
678
679         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
680         index = linear_page_index(vma, addr);
681
682         printk(KERN_ALERT
683                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
684                 current->comm,
685                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
686         if (page)
687                 dump_page(page, "bad pte");
688         printk(KERN_ALERT
689                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
690                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
691         /*
692          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693          */
694         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
695                  vma->vm_file,
696                  vma->vm_ops ? vma->vm_ops->fault : NULL,
697                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
698                  mapping ? mapping->a_ops->readpage : NULL);
699         dump_stack();
700         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702
703 /*
704  * vm_normal_page -- This function gets the "struct page" associated with a pte.
705  *
706  * "Special" mappings do not wish to be associated with a "struct page" (either
707  * it doesn't exist, or it exists but they don't want to touch it). In this
708  * case, NULL is returned here. "Normal" mappings do have a struct page.
709  *
710  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711  * pte bit, in which case this function is trivial. Secondly, an architecture
712  * may not have a spare pte bit, which requires a more complicated scheme,
713  * described below.
714  *
715  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716  * special mapping (even if there are underlying and valid "struct pages").
717  * COWed pages of a VM_PFNMAP are always normal.
718  *
719  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722  * mapping will always honor the rule
723  *
724  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725  *
726  * And for normal mappings this is false.
727  *
728  * This restricts such mappings to be a linear translation from virtual address
729  * to pfn. To get around this restriction, we allow arbitrary mappings so long
730  * as the vma is not a COW mapping; in that case, we know that all ptes are
731  * special (because none can have been COWed).
732  *
733  *
734  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735  *
736  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737  * page" backing, however the difference is that _all_ pages with a struct
738  * page (that is, those where pfn_valid is true) are refcounted and considered
739  * normal pages by the VM. The disadvantage is that pages are refcounted
740  * (which can be slower and simply not an option for some PFNMAP users). The
741  * advantage is that we don't have to follow the strict linearity rule of
742  * PFNMAP mappings in order to support COWable mappings.
743  *
744  */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751                                 pte_t pte)
752 {
753         unsigned long pfn = pte_pfn(pte);
754
755         if (HAVE_PTE_SPECIAL) {
756                 if (likely(!pte_special(pte)))
757                         goto check_pfn;
758                 if (vma->vm_ops && vma->vm_ops->find_special_page)
759                         return vma->vm_ops->find_special_page(vma, addr);
760                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761                         return NULL;
762                 if (!is_zero_pfn(pfn))
763                         print_bad_pte(vma, addr, pte, NULL);
764                 return NULL;
765         }
766
767         /* !HAVE_PTE_SPECIAL case follows: */
768
769         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770                 if (vma->vm_flags & VM_MIXEDMAP) {
771                         if (!pfn_valid(pfn))
772                                 return NULL;
773                         goto out;
774                 } else {
775                         unsigned long off;
776                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
777                         if (pfn == vma->vm_pgoff + off)
778                                 return NULL;
779                         if (!is_cow_mapping(vma->vm_flags))
780                                 return NULL;
781                 }
782         }
783
784         if (is_zero_pfn(pfn))
785                 return NULL;
786 check_pfn:
787         if (unlikely(pfn > highest_memmap_pfn)) {
788                 print_bad_pte(vma, addr, pte, NULL);
789                 return NULL;
790         }
791
792         /*
793          * NOTE! We still have PageReserved() pages in the page tables.
794          * eg. VDSO mappings can cause them to exist.
795          */
796 out:
797         return pfn_to_page(pfn);
798 }
799
800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
801 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
802                                 pmd_t pmd)
803 {
804         unsigned long pfn = pmd_pfn(pmd);
805
806         /*
807          * There is no pmd_special() but there may be special pmds, e.g.
808          * in a direct-access (dax) mapping, so let's just replicate the
809          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
810          */
811         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
812                 if (vma->vm_flags & VM_MIXEDMAP) {
813                         if (!pfn_valid(pfn))
814                                 return NULL;
815                         goto out;
816                 } else {
817                         unsigned long off;
818                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
819                         if (pfn == vma->vm_pgoff + off)
820                                 return NULL;
821                         if (!is_cow_mapping(vma->vm_flags))
822                                 return NULL;
823                 }
824         }
825
826         if (is_zero_pfn(pfn))
827                 return NULL;
828         if (unlikely(pfn > highest_memmap_pfn))
829                 return NULL;
830
831         /*
832          * NOTE! We still have PageReserved() pages in the page tables.
833          * eg. VDSO mappings can cause them to exist.
834          */
835 out:
836         return pfn_to_page(pfn);
837 }
838 #endif
839
840 /*
841  * copy one vm_area from one task to the other. Assumes the page tables
842  * already present in the new task to be cleared in the whole range
843  * covered by this vma.
844  */
845
846 static inline unsigned long
847 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
849                 unsigned long addr, int *rss)
850 {
851         unsigned long vm_flags = vma->vm_flags;
852         pte_t pte = *src_pte;
853         struct page *page;
854
855         /* pte contains position in swap or file, so copy. */
856         if (unlikely(!pte_present(pte))) {
857                 swp_entry_t entry = pte_to_swp_entry(pte);
858
859                 if (likely(!non_swap_entry(entry))) {
860                         if (swap_duplicate(entry) < 0)
861                                 return entry.val;
862
863                         /* make sure dst_mm is on swapoff's mmlist. */
864                         if (unlikely(list_empty(&dst_mm->mmlist))) {
865                                 spin_lock(&mmlist_lock);
866                                 if (list_empty(&dst_mm->mmlist))
867                                         list_add(&dst_mm->mmlist,
868                                                         &src_mm->mmlist);
869                                 spin_unlock(&mmlist_lock);
870                         }
871                         rss[MM_SWAPENTS]++;
872                 } else if (is_migration_entry(entry)) {
873                         page = migration_entry_to_page(entry);
874
875                         if (PageAnon(page))
876                                 rss[MM_ANONPAGES]++;
877                         else
878                                 rss[MM_FILEPAGES]++;
879
880                         if (is_write_migration_entry(entry) &&
881                                         is_cow_mapping(vm_flags)) {
882                                 /*
883                                  * COW mappings require pages in both
884                                  * parent and child to be set to read.
885                                  */
886                                 make_migration_entry_read(&entry);
887                                 pte = swp_entry_to_pte(entry);
888                                 if (pte_swp_soft_dirty(*src_pte))
889                                         pte = pte_swp_mksoft_dirty(pte);
890                                 set_pte_at(src_mm, addr, src_pte, pte);
891                         }
892                 }
893                 goto out_set_pte;
894         }
895
896         /*
897          * If it's a COW mapping, write protect it both
898          * in the parent and the child
899          */
900         if (is_cow_mapping(vm_flags)) {
901                 ptep_set_wrprotect(src_mm, addr, src_pte);
902                 pte = pte_wrprotect(pte);
903         }
904
905         /*
906          * If it's a shared mapping, mark it clean in
907          * the child
908          */
909         if (vm_flags & VM_SHARED)
910                 pte = pte_mkclean(pte);
911         pte = pte_mkold(pte);
912
913         page = vm_normal_page(vma, addr, pte);
914         if (page) {
915                 get_page(page);
916                 page_dup_rmap(page);
917                 if (PageAnon(page))
918                         rss[MM_ANONPAGES]++;
919                 else
920                         rss[MM_FILEPAGES]++;
921         }
922
923 out_set_pte:
924         set_pte_at(dst_mm, addr, dst_pte, pte);
925         return 0;
926 }
927
928 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
929                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
930                    unsigned long addr, unsigned long end)
931 {
932         pte_t *orig_src_pte, *orig_dst_pte;
933         pte_t *src_pte, *dst_pte;
934         spinlock_t *src_ptl, *dst_ptl;
935         int progress = 0;
936         int rss[NR_MM_COUNTERS];
937         swp_entry_t entry = (swp_entry_t){0};
938
939 again:
940         init_rss_vec(rss);
941
942         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
943         if (!dst_pte)
944                 return -ENOMEM;
945         src_pte = pte_offset_map(src_pmd, addr);
946         src_ptl = pte_lockptr(src_mm, src_pmd);
947         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
948         orig_src_pte = src_pte;
949         orig_dst_pte = dst_pte;
950         arch_enter_lazy_mmu_mode();
951
952         do {
953                 /*
954                  * We are holding two locks at this point - either of them
955                  * could generate latencies in another task on another CPU.
956                  */
957                 if (progress >= 32) {
958                         progress = 0;
959                         if (need_resched() ||
960                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
961                                 break;
962                 }
963                 if (pte_none(*src_pte)) {
964                         progress++;
965                         continue;
966                 }
967                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
968                                                         vma, addr, rss);
969                 if (entry.val)
970                         break;
971                 progress += 8;
972         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
973
974         arch_leave_lazy_mmu_mode();
975         spin_unlock(src_ptl);
976         pte_unmap(orig_src_pte);
977         add_mm_rss_vec(dst_mm, rss);
978         pte_unmap_unlock(orig_dst_pte, dst_ptl);
979         cond_resched();
980
981         if (entry.val) {
982                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
983                         return -ENOMEM;
984                 progress = 0;
985         }
986         if (addr != end)
987                 goto again;
988         return 0;
989 }
990
991 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
993                 unsigned long addr, unsigned long end)
994 {
995         pmd_t *src_pmd, *dst_pmd;
996         unsigned long next;
997
998         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
999         if (!dst_pmd)
1000                 return -ENOMEM;
1001         src_pmd = pmd_offset(src_pud, addr);
1002         do {
1003                 next = pmd_addr_end(addr, end);
1004                 if (pmd_trans_huge(*src_pmd)) {
1005                         int err;
1006                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1007                         err = copy_huge_pmd(dst_mm, src_mm,
1008                                             dst_pmd, src_pmd, addr, vma);
1009                         if (err == -ENOMEM)
1010                                 return -ENOMEM;
1011                         if (!err)
1012                                 continue;
1013                         /* fall through */
1014                 }
1015                 if (pmd_none_or_clear_bad(src_pmd))
1016                         continue;
1017                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1018                                                 vma, addr, next))
1019                         return -ENOMEM;
1020         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1021         return 0;
1022 }
1023
1024 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1026                 unsigned long addr, unsigned long end)
1027 {
1028         pud_t *src_pud, *dst_pud;
1029         unsigned long next;
1030
1031         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1032         if (!dst_pud)
1033                 return -ENOMEM;
1034         src_pud = pud_offset(src_pgd, addr);
1035         do {
1036                 next = pud_addr_end(addr, end);
1037                 if (pud_none_or_clear_bad(src_pud))
1038                         continue;
1039                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1040                                                 vma, addr, next))
1041                         return -ENOMEM;
1042         } while (dst_pud++, src_pud++, addr = next, addr != end);
1043         return 0;
1044 }
1045
1046 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1047                 struct vm_area_struct *vma)
1048 {
1049         pgd_t *src_pgd, *dst_pgd;
1050         unsigned long next;
1051         unsigned long addr = vma->vm_start;
1052         unsigned long end = vma->vm_end;
1053         unsigned long mmun_start;       /* For mmu_notifiers */
1054         unsigned long mmun_end;         /* For mmu_notifiers */
1055         bool is_cow;
1056         int ret;
1057
1058         /*
1059          * Don't copy ptes where a page fault will fill them correctly.
1060          * Fork becomes much lighter when there are big shared or private
1061          * readonly mappings. The tradeoff is that copy_page_range is more
1062          * efficient than faulting.
1063          */
1064         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1065                         !vma->anon_vma)
1066                 return 0;
1067
1068         if (is_vm_hugetlb_page(vma))
1069                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1070
1071         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1072                 /*
1073                  * We do not free on error cases below as remove_vma
1074                  * gets called on error from higher level routine
1075                  */
1076                 ret = track_pfn_copy(vma);
1077                 if (ret)
1078                         return ret;
1079         }
1080
1081         /*
1082          * We need to invalidate the secondary MMU mappings only when
1083          * there could be a permission downgrade on the ptes of the
1084          * parent mm. And a permission downgrade will only happen if
1085          * is_cow_mapping() returns true.
1086          */
1087         is_cow = is_cow_mapping(vma->vm_flags);
1088         mmun_start = addr;
1089         mmun_end   = end;
1090         if (is_cow)
1091                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1092                                                     mmun_end);
1093
1094         ret = 0;
1095         dst_pgd = pgd_offset(dst_mm, addr);
1096         src_pgd = pgd_offset(src_mm, addr);
1097         do {
1098                 next = pgd_addr_end(addr, end);
1099                 if (pgd_none_or_clear_bad(src_pgd))
1100                         continue;
1101                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1102                                             vma, addr, next))) {
1103                         ret = -ENOMEM;
1104                         break;
1105                 }
1106         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1107
1108         if (is_cow)
1109                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1110         return ret;
1111 }
1112
1113 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1114                                 struct vm_area_struct *vma, pmd_t *pmd,
1115                                 unsigned long addr, unsigned long end,
1116                                 struct zap_details *details)
1117 {
1118         struct mm_struct *mm = tlb->mm;
1119         int force_flush = 0;
1120         int rss[NR_MM_COUNTERS];
1121         spinlock_t *ptl;
1122         pte_t *start_pte;
1123         pte_t *pte;
1124         swp_entry_t entry;
1125
1126 again:
1127         init_rss_vec(rss);
1128         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1129         pte = start_pte;
1130         arch_enter_lazy_mmu_mode();
1131         do {
1132                 pte_t ptent = *pte;
1133                 if (pte_none(ptent)) {
1134                         continue;
1135                 }
1136
1137                 if (pte_present(ptent)) {
1138                         struct page *page;
1139
1140                         page = vm_normal_page(vma, addr, ptent);
1141                         if (unlikely(details) && page) {
1142                                 /*
1143                                  * unmap_shared_mapping_pages() wants to
1144                                  * invalidate cache without truncating:
1145                                  * unmap shared but keep private pages.
1146                                  */
1147                                 if (details->check_mapping &&
1148                                     details->check_mapping != page->mapping)
1149                                         continue;
1150                         }
1151                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1152                                                         tlb->fullmm);
1153                         tlb_remove_tlb_entry(tlb, pte, addr);
1154                         if (unlikely(!page))
1155                                 continue;
1156                         if (PageAnon(page))
1157                                 rss[MM_ANONPAGES]--;
1158                         else {
1159                                 if (pte_dirty(ptent)) {
1160                                         force_flush = 1;
1161                                         set_page_dirty(page);
1162                                 }
1163                                 if (pte_young(ptent) &&
1164                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1165                                         mark_page_accessed(page);
1166                                 rss[MM_FILEPAGES]--;
1167                         }
1168                         page_remove_rmap(page);
1169                         if (unlikely(page_mapcount(page) < 0))
1170                                 print_bad_pte(vma, addr, ptent, page);
1171                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1172                                 force_flush = 1;
1173                                 addr += PAGE_SIZE;
1174                                 break;
1175                         }
1176                         continue;
1177                 }
1178                 /* If details->check_mapping, we leave swap entries. */
1179                 if (unlikely(details))
1180                         continue;
1181
1182                 entry = pte_to_swp_entry(ptent);
1183                 if (!non_swap_entry(entry))
1184                         rss[MM_SWAPENTS]--;
1185                 else if (is_migration_entry(entry)) {
1186                         struct page *page;
1187
1188                         page = migration_entry_to_page(entry);
1189
1190                         if (PageAnon(page))
1191                                 rss[MM_ANONPAGES]--;
1192                         else
1193                                 rss[MM_FILEPAGES]--;
1194                 }
1195                 if (unlikely(!free_swap_and_cache(entry)))
1196                         print_bad_pte(vma, addr, ptent, NULL);
1197                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198         } while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200         add_mm_rss_vec(mm, rss);
1201         arch_leave_lazy_mmu_mode();
1202
1203         /* Do the actual TLB flush before dropping ptl */
1204         if (force_flush)
1205                 tlb_flush_mmu_tlbonly(tlb);
1206         pte_unmap_unlock(start_pte, ptl);
1207
1208         /*
1209          * If we forced a TLB flush (either due to running out of
1210          * batch buffers or because we needed to flush dirty TLB
1211          * entries before releasing the ptl), free the batched
1212          * memory too. Restart if we didn't do everything.
1213          */
1214         if (force_flush) {
1215                 force_flush = 0;
1216                 tlb_flush_mmu_free(tlb);
1217
1218                 if (addr != end)
1219                         goto again;
1220         }
1221
1222         return addr;
1223 }
1224
1225 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1226                                 struct vm_area_struct *vma, pud_t *pud,
1227                                 unsigned long addr, unsigned long end,
1228                                 struct zap_details *details)
1229 {
1230         pmd_t *pmd;
1231         unsigned long next;
1232
1233         pmd = pmd_offset(pud, addr);
1234         do {
1235                 next = pmd_addr_end(addr, end);
1236                 if (pmd_trans_huge(*pmd)) {
1237                         if (next - addr != HPAGE_PMD_SIZE) {
1238 #ifdef CONFIG_DEBUG_VM
1239                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1240                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1241                                                 __func__, addr, end,
1242                                                 vma->vm_start,
1243                                                 vma->vm_end);
1244                                         BUG();
1245                                 }
1246 #endif
1247                                 split_huge_page_pmd(vma, addr, pmd);
1248                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1249                                 goto next;
1250                         /* fall through */
1251                 }
1252                 /*
1253                  * Here there can be other concurrent MADV_DONTNEED or
1254                  * trans huge page faults running, and if the pmd is
1255                  * none or trans huge it can change under us. This is
1256                  * because MADV_DONTNEED holds the mmap_sem in read
1257                  * mode.
1258                  */
1259                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1260                         goto next;
1261                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1262 next:
1263                 cond_resched();
1264         } while (pmd++, addr = next, addr != end);
1265
1266         return addr;
1267 }
1268
1269 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1270                                 struct vm_area_struct *vma, pgd_t *pgd,
1271                                 unsigned long addr, unsigned long end,
1272                                 struct zap_details *details)
1273 {
1274         pud_t *pud;
1275         unsigned long next;
1276
1277         pud = pud_offset(pgd, addr);
1278         do {
1279                 next = pud_addr_end(addr, end);
1280                 if (pud_none_or_clear_bad(pud))
1281                         continue;
1282                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1283         } while (pud++, addr = next, addr != end);
1284
1285         return addr;
1286 }
1287
1288 static void unmap_page_range(struct mmu_gather *tlb,
1289                              struct vm_area_struct *vma,
1290                              unsigned long addr, unsigned long end,
1291                              struct zap_details *details)
1292 {
1293         pgd_t *pgd;
1294         unsigned long next;
1295
1296         if (details && !details->check_mapping)
1297                 details = NULL;
1298
1299         BUG_ON(addr >= end);
1300         tlb_start_vma(tlb, vma);
1301         pgd = pgd_offset(vma->vm_mm, addr);
1302         do {
1303                 next = pgd_addr_end(addr, end);
1304                 if (pgd_none_or_clear_bad(pgd))
1305                         continue;
1306                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307         } while (pgd++, addr = next, addr != end);
1308         tlb_end_vma(tlb, vma);
1309 }
1310
1311
1312 static void unmap_single_vma(struct mmu_gather *tlb,
1313                 struct vm_area_struct *vma, unsigned long start_addr,
1314                 unsigned long end_addr,
1315                 struct zap_details *details)
1316 {
1317         unsigned long start = max(vma->vm_start, start_addr);
1318         unsigned long end;
1319
1320         if (start >= vma->vm_end)
1321                 return;
1322         end = min(vma->vm_end, end_addr);
1323         if (end <= vma->vm_start)
1324                 return;
1325
1326         if (vma->vm_file)
1327                 uprobe_munmap(vma, start, end);
1328
1329         if (unlikely(vma->vm_flags & VM_PFNMAP))
1330                 untrack_pfn(vma, 0, 0);
1331
1332         if (start != end) {
1333                 if (unlikely(is_vm_hugetlb_page(vma))) {
1334                         /*
1335                          * It is undesirable to test vma->vm_file as it
1336                          * should be non-null for valid hugetlb area.
1337                          * However, vm_file will be NULL in the error
1338                          * cleanup path of mmap_region. When
1339                          * hugetlbfs ->mmap method fails,
1340                          * mmap_region() nullifies vma->vm_file
1341                          * before calling this function to clean up.
1342                          * Since no pte has actually been setup, it is
1343                          * safe to do nothing in this case.
1344                          */
1345                         if (vma->vm_file) {
1346                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1347                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1348                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1349                         }
1350                 } else
1351                         unmap_page_range(tlb, vma, start, end, details);
1352         }
1353 }
1354
1355 /**
1356  * unmap_vmas - unmap a range of memory covered by a list of vma's
1357  * @tlb: address of the caller's struct mmu_gather
1358  * @vma: the starting vma
1359  * @start_addr: virtual address at which to start unmapping
1360  * @end_addr: virtual address at which to end unmapping
1361  *
1362  * Unmap all pages in the vma list.
1363  *
1364  * Only addresses between `start' and `end' will be unmapped.
1365  *
1366  * The VMA list must be sorted in ascending virtual address order.
1367  *
1368  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1369  * range after unmap_vmas() returns.  So the only responsibility here is to
1370  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1371  * drops the lock and schedules.
1372  */
1373 void unmap_vmas(struct mmu_gather *tlb,
1374                 struct vm_area_struct *vma, unsigned long start_addr,
1375                 unsigned long end_addr)
1376 {
1377         struct mm_struct *mm = vma->vm_mm;
1378
1379         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1380         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1381                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1382         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1383 }
1384
1385 /**
1386  * zap_page_range - remove user pages in a given range
1387  * @vma: vm_area_struct holding the applicable pages
1388  * @start: starting address of pages to zap
1389  * @size: number of bytes to zap
1390  * @details: details of shared cache invalidation
1391  *
1392  * Caller must protect the VMA list
1393  */
1394 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1395                 unsigned long size, struct zap_details *details)
1396 {
1397         struct mm_struct *mm = vma->vm_mm;
1398         struct mmu_gather tlb;
1399         unsigned long end = start + size;
1400
1401         lru_add_drain();
1402         tlb_gather_mmu(&tlb, mm, start, end);
1403         update_hiwater_rss(mm);
1404         mmu_notifier_invalidate_range_start(mm, start, end);
1405         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1406                 unmap_single_vma(&tlb, vma, start, end, details);
1407         mmu_notifier_invalidate_range_end(mm, start, end);
1408         tlb_finish_mmu(&tlb, start, end);
1409 }
1410
1411 /**
1412  * zap_page_range_single - remove user pages in a given range
1413  * @vma: vm_area_struct holding the applicable pages
1414  * @address: starting address of pages to zap
1415  * @size: number of bytes to zap
1416  * @details: details of shared cache invalidation
1417  *
1418  * The range must fit into one VMA.
1419  */
1420 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1421                 unsigned long size, struct zap_details *details)
1422 {
1423         struct mm_struct *mm = vma->vm_mm;
1424         struct mmu_gather tlb;
1425         unsigned long end = address + size;
1426
1427         lru_add_drain();
1428         tlb_gather_mmu(&tlb, mm, address, end);
1429         update_hiwater_rss(mm);
1430         mmu_notifier_invalidate_range_start(mm, address, end);
1431         unmap_single_vma(&tlb, vma, address, end, details);
1432         mmu_notifier_invalidate_range_end(mm, address, end);
1433         tlb_finish_mmu(&tlb, address, end);
1434 }
1435
1436 /**
1437  * zap_vma_ptes - remove ptes mapping the vma
1438  * @vma: vm_area_struct holding ptes to be zapped
1439  * @address: starting address of pages to zap
1440  * @size: number of bytes to zap
1441  *
1442  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1443  *
1444  * The entire address range must be fully contained within the vma.
1445  *
1446  * Returns 0 if successful.
1447  */
1448 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1449                 unsigned long size)
1450 {
1451         if (address < vma->vm_start || address + size > vma->vm_end ||
1452                         !(vma->vm_flags & VM_PFNMAP))
1453                 return -1;
1454         zap_page_range_single(vma, address, size, NULL);
1455         return 0;
1456 }
1457 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1458
1459 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1460                         spinlock_t **ptl)
1461 {
1462         pgd_t * pgd = pgd_offset(mm, addr);
1463         pud_t * pud = pud_alloc(mm, pgd, addr);
1464         if (pud) {
1465                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1466                 if (pmd) {
1467                         VM_BUG_ON(pmd_trans_huge(*pmd));
1468                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1469                 }
1470         }
1471         return NULL;
1472 }
1473
1474 /*
1475  * This is the old fallback for page remapping.
1476  *
1477  * For historical reasons, it only allows reserved pages. Only
1478  * old drivers should use this, and they needed to mark their
1479  * pages reserved for the old functions anyway.
1480  */
1481 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1482                         struct page *page, pgprot_t prot)
1483 {
1484         struct mm_struct *mm = vma->vm_mm;
1485         int retval;
1486         pte_t *pte;
1487         spinlock_t *ptl;
1488
1489         retval = -EINVAL;
1490         if (PageAnon(page))
1491                 goto out;
1492         retval = -ENOMEM;
1493         flush_dcache_page(page);
1494         pte = get_locked_pte(mm, addr, &ptl);
1495         if (!pte)
1496                 goto out;
1497         retval = -EBUSY;
1498         if (!pte_none(*pte))
1499                 goto out_unlock;
1500
1501         /* Ok, finally just insert the thing.. */
1502         get_page(page);
1503         inc_mm_counter_fast(mm, MM_FILEPAGES);
1504         page_add_file_rmap(page);
1505         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1506
1507         retval = 0;
1508         pte_unmap_unlock(pte, ptl);
1509         return retval;
1510 out_unlock:
1511         pte_unmap_unlock(pte, ptl);
1512 out:
1513         return retval;
1514 }
1515
1516 /**
1517  * vm_insert_page - insert single page into user vma
1518  * @vma: user vma to map to
1519  * @addr: target user address of this page
1520  * @page: source kernel page
1521  *
1522  * This allows drivers to insert individual pages they've allocated
1523  * into a user vma.
1524  *
1525  * The page has to be a nice clean _individual_ kernel allocation.
1526  * If you allocate a compound page, you need to have marked it as
1527  * such (__GFP_COMP), or manually just split the page up yourself
1528  * (see split_page()).
1529  *
1530  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1531  * took an arbitrary page protection parameter. This doesn't allow
1532  * that. Your vma protection will have to be set up correctly, which
1533  * means that if you want a shared writable mapping, you'd better
1534  * ask for a shared writable mapping!
1535  *
1536  * The page does not need to be reserved.
1537  *
1538  * Usually this function is called from f_op->mmap() handler
1539  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1540  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1541  * function from other places, for example from page-fault handler.
1542  */
1543 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1544                         struct page *page)
1545 {
1546         if (addr < vma->vm_start || addr >= vma->vm_end)
1547                 return -EFAULT;
1548         if (!page_count(page))
1549                 return -EINVAL;
1550         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1551                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1552                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1553                 vma->vm_flags |= VM_MIXEDMAP;
1554         }
1555         return insert_page(vma, addr, page, vma->vm_page_prot);
1556 }
1557 EXPORT_SYMBOL(vm_insert_page);
1558
1559 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1560                         unsigned long pfn, pgprot_t prot)
1561 {
1562         struct mm_struct *mm = vma->vm_mm;
1563         int retval;
1564         pte_t *pte, entry;
1565         spinlock_t *ptl;
1566
1567         retval = -ENOMEM;
1568         pte = get_locked_pte(mm, addr, &ptl);
1569         if (!pte)
1570                 goto out;
1571         retval = -EBUSY;
1572         if (!pte_none(*pte))
1573                 goto out_unlock;
1574
1575         /* Ok, finally just insert the thing.. */
1576         entry = pte_mkspecial(pfn_pte(pfn, prot));
1577         set_pte_at(mm, addr, pte, entry);
1578         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1579
1580         retval = 0;
1581 out_unlock:
1582         pte_unmap_unlock(pte, ptl);
1583 out:
1584         return retval;
1585 }
1586
1587 /**
1588  * vm_insert_pfn - insert single pfn into user vma
1589  * @vma: user vma to map to
1590  * @addr: target user address of this page
1591  * @pfn: source kernel pfn
1592  *
1593  * Similar to vm_insert_page, this allows drivers to insert individual pages
1594  * they've allocated into a user vma. Same comments apply.
1595  *
1596  * This function should only be called from a vm_ops->fault handler, and
1597  * in that case the handler should return NULL.
1598  *
1599  * vma cannot be a COW mapping.
1600  *
1601  * As this is called only for pages that do not currently exist, we
1602  * do not need to flush old virtual caches or the TLB.
1603  */
1604 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1605                         unsigned long pfn)
1606 {
1607         int ret;
1608         pgprot_t pgprot = vma->vm_page_prot;
1609         /*
1610          * Technically, architectures with pte_special can avoid all these
1611          * restrictions (same for remap_pfn_range).  However we would like
1612          * consistency in testing and feature parity among all, so we should
1613          * try to keep these invariants in place for everybody.
1614          */
1615         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1616         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1617                                                 (VM_PFNMAP|VM_MIXEDMAP));
1618         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1619         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1620
1621         if (addr < vma->vm_start || addr >= vma->vm_end)
1622                 return -EFAULT;
1623         if (track_pfn_insert(vma, &pgprot, pfn))
1624                 return -EINVAL;
1625
1626         ret = insert_pfn(vma, addr, pfn, pgprot);
1627
1628         return ret;
1629 }
1630 EXPORT_SYMBOL(vm_insert_pfn);
1631
1632 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1633                         unsigned long pfn)
1634 {
1635         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1636
1637         if (addr < vma->vm_start || addr >= vma->vm_end)
1638                 return -EFAULT;
1639
1640         /*
1641          * If we don't have pte special, then we have to use the pfn_valid()
1642          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1643          * refcount the page if pfn_valid is true (hence insert_page rather
1644          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1645          * without pte special, it would there be refcounted as a normal page.
1646          */
1647         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1648                 struct page *page;
1649
1650                 page = pfn_to_page(pfn);
1651                 return insert_page(vma, addr, page, vma->vm_page_prot);
1652         }
1653         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1654 }
1655 EXPORT_SYMBOL(vm_insert_mixed);
1656
1657 /*
1658  * maps a range of physical memory into the requested pages. the old
1659  * mappings are removed. any references to nonexistent pages results
1660  * in null mappings (currently treated as "copy-on-access")
1661  */
1662 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1663                         unsigned long addr, unsigned long end,
1664                         unsigned long pfn, pgprot_t prot)
1665 {
1666         pte_t *pte;
1667         spinlock_t *ptl;
1668
1669         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1670         if (!pte)
1671                 return -ENOMEM;
1672         arch_enter_lazy_mmu_mode();
1673         do {
1674                 BUG_ON(!pte_none(*pte));
1675                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1676                 pfn++;
1677         } while (pte++, addr += PAGE_SIZE, addr != end);
1678         arch_leave_lazy_mmu_mode();
1679         pte_unmap_unlock(pte - 1, ptl);
1680         return 0;
1681 }
1682
1683 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1684                         unsigned long addr, unsigned long end,
1685                         unsigned long pfn, pgprot_t prot)
1686 {
1687         pmd_t *pmd;
1688         unsigned long next;
1689
1690         pfn -= addr >> PAGE_SHIFT;
1691         pmd = pmd_alloc(mm, pud, addr);
1692         if (!pmd)
1693                 return -ENOMEM;
1694         VM_BUG_ON(pmd_trans_huge(*pmd));
1695         do {
1696                 next = pmd_addr_end(addr, end);
1697                 if (remap_pte_range(mm, pmd, addr, next,
1698                                 pfn + (addr >> PAGE_SHIFT), prot))
1699                         return -ENOMEM;
1700         } while (pmd++, addr = next, addr != end);
1701         return 0;
1702 }
1703
1704 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1705                         unsigned long addr, unsigned long end,
1706                         unsigned long pfn, pgprot_t prot)
1707 {
1708         pud_t *pud;
1709         unsigned long next;
1710
1711         pfn -= addr >> PAGE_SHIFT;
1712         pud = pud_alloc(mm, pgd, addr);
1713         if (!pud)
1714                 return -ENOMEM;
1715         do {
1716                 next = pud_addr_end(addr, end);
1717                 if (remap_pmd_range(mm, pud, addr, next,
1718                                 pfn + (addr >> PAGE_SHIFT), prot))
1719                         return -ENOMEM;
1720         } while (pud++, addr = next, addr != end);
1721         return 0;
1722 }
1723
1724 /**
1725  * remap_pfn_range - remap kernel memory to userspace
1726  * @vma: user vma to map to
1727  * @addr: target user address to start at
1728  * @pfn: physical address of kernel memory
1729  * @size: size of map area
1730  * @prot: page protection flags for this mapping
1731  *
1732  *  Note: this is only safe if the mm semaphore is held when called.
1733  */
1734 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1735                     unsigned long pfn, unsigned long size, pgprot_t prot)
1736 {
1737         pgd_t *pgd;
1738         unsigned long next;
1739         unsigned long end = addr + PAGE_ALIGN(size);
1740         struct mm_struct *mm = vma->vm_mm;
1741         int err;
1742
1743         /*
1744          * Physically remapped pages are special. Tell the
1745          * rest of the world about it:
1746          *   VM_IO tells people not to look at these pages
1747          *      (accesses can have side effects).
1748          *   VM_PFNMAP tells the core MM that the base pages are just
1749          *      raw PFN mappings, and do not have a "struct page" associated
1750          *      with them.
1751          *   VM_DONTEXPAND
1752          *      Disable vma merging and expanding with mremap().
1753          *   VM_DONTDUMP
1754          *      Omit vma from core dump, even when VM_IO turned off.
1755          *
1756          * There's a horrible special case to handle copy-on-write
1757          * behaviour that some programs depend on. We mark the "original"
1758          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1759          * See vm_normal_page() for details.
1760          */
1761         if (is_cow_mapping(vma->vm_flags)) {
1762                 if (addr != vma->vm_start || end != vma->vm_end)
1763                         return -EINVAL;
1764                 vma->vm_pgoff = pfn;
1765         }
1766
1767         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1768         if (err)
1769                 return -EINVAL;
1770
1771         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1772
1773         BUG_ON(addr >= end);
1774         pfn -= addr >> PAGE_SHIFT;
1775         pgd = pgd_offset(mm, addr);
1776         flush_cache_range(vma, addr, end);
1777         do {
1778                 next = pgd_addr_end(addr, end);
1779                 err = remap_pud_range(mm, pgd, addr, next,
1780                                 pfn + (addr >> PAGE_SHIFT), prot);
1781                 if (err)
1782                         break;
1783         } while (pgd++, addr = next, addr != end);
1784
1785         if (err)
1786                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1787
1788         return err;
1789 }
1790 EXPORT_SYMBOL(remap_pfn_range);
1791
1792 /**
1793  * vm_iomap_memory - remap memory to userspace
1794  * @vma: user vma to map to
1795  * @start: start of area
1796  * @len: size of area
1797  *
1798  * This is a simplified io_remap_pfn_range() for common driver use. The
1799  * driver just needs to give us the physical memory range to be mapped,
1800  * we'll figure out the rest from the vma information.
1801  *
1802  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1803  * whatever write-combining details or similar.
1804  */
1805 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1806 {
1807         unsigned long vm_len, pfn, pages;
1808
1809         /* Check that the physical memory area passed in looks valid */
1810         if (start + len < start)
1811                 return -EINVAL;
1812         /*
1813          * You *really* shouldn't map things that aren't page-aligned,
1814          * but we've historically allowed it because IO memory might
1815          * just have smaller alignment.
1816          */
1817         len += start & ~PAGE_MASK;
1818         pfn = start >> PAGE_SHIFT;
1819         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1820         if (pfn + pages < pfn)
1821                 return -EINVAL;
1822
1823         /* We start the mapping 'vm_pgoff' pages into the area */
1824         if (vma->vm_pgoff > pages)
1825                 return -EINVAL;
1826         pfn += vma->vm_pgoff;
1827         pages -= vma->vm_pgoff;
1828
1829         /* Can we fit all of the mapping? */
1830         vm_len = vma->vm_end - vma->vm_start;
1831         if (vm_len >> PAGE_SHIFT > pages)
1832                 return -EINVAL;
1833
1834         /* Ok, let it rip */
1835         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1836 }
1837 EXPORT_SYMBOL(vm_iomap_memory);
1838
1839 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1840                                      unsigned long addr, unsigned long end,
1841                                      pte_fn_t fn, void *data)
1842 {
1843         pte_t *pte;
1844         int err;
1845         pgtable_t token;
1846         spinlock_t *uninitialized_var(ptl);
1847
1848         pte = (mm == &init_mm) ?
1849                 pte_alloc_kernel(pmd, addr) :
1850                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1851         if (!pte)
1852                 return -ENOMEM;
1853
1854         BUG_ON(pmd_huge(*pmd));
1855
1856         arch_enter_lazy_mmu_mode();
1857
1858         token = pmd_pgtable(*pmd);
1859
1860         do {
1861                 err = fn(pte++, token, addr, data);
1862                 if (err)
1863                         break;
1864         } while (addr += PAGE_SIZE, addr != end);
1865
1866         arch_leave_lazy_mmu_mode();
1867
1868         if (mm != &init_mm)
1869                 pte_unmap_unlock(pte-1, ptl);
1870         return err;
1871 }
1872
1873 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1874                                      unsigned long addr, unsigned long end,
1875                                      pte_fn_t fn, void *data)
1876 {
1877         pmd_t *pmd;
1878         unsigned long next;
1879         int err;
1880
1881         BUG_ON(pud_huge(*pud));
1882
1883         pmd = pmd_alloc(mm, pud, addr);
1884         if (!pmd)
1885                 return -ENOMEM;
1886         do {
1887                 next = pmd_addr_end(addr, end);
1888                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1889                 if (err)
1890                         break;
1891         } while (pmd++, addr = next, addr != end);
1892         return err;
1893 }
1894
1895 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1896                                      unsigned long addr, unsigned long end,
1897                                      pte_fn_t fn, void *data)
1898 {
1899         pud_t *pud;
1900         unsigned long next;
1901         int err;
1902
1903         pud = pud_alloc(mm, pgd, addr);
1904         if (!pud)
1905                 return -ENOMEM;
1906         do {
1907                 next = pud_addr_end(addr, end);
1908                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1909                 if (err)
1910                         break;
1911         } while (pud++, addr = next, addr != end);
1912         return err;
1913 }
1914
1915 /*
1916  * Scan a region of virtual memory, filling in page tables as necessary
1917  * and calling a provided function on each leaf page table.
1918  */
1919 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1920                         unsigned long size, pte_fn_t fn, void *data)
1921 {
1922         pgd_t *pgd;
1923         unsigned long next;
1924         unsigned long end = addr + size;
1925         int err;
1926
1927         BUG_ON(addr >= end);
1928         pgd = pgd_offset(mm, addr);
1929         do {
1930                 next = pgd_addr_end(addr, end);
1931                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1932                 if (err)
1933                         break;
1934         } while (pgd++, addr = next, addr != end);
1935
1936         return err;
1937 }
1938 EXPORT_SYMBOL_GPL(apply_to_page_range);
1939
1940 /*
1941  * handle_pte_fault chooses page fault handler according to an entry which was
1942  * read non-atomically.  Before making any commitment, on those architectures
1943  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1944  * parts, do_swap_page must check under lock before unmapping the pte and
1945  * proceeding (but do_wp_page is only called after already making such a check;
1946  * and do_anonymous_page can safely check later on).
1947  */
1948 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1949                                 pte_t *page_table, pte_t orig_pte)
1950 {
1951         int same = 1;
1952 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1953         if (sizeof(pte_t) > sizeof(unsigned long)) {
1954                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1955                 spin_lock(ptl);
1956                 same = pte_same(*page_table, orig_pte);
1957                 spin_unlock(ptl);
1958         }
1959 #endif
1960         pte_unmap(page_table);
1961         return same;
1962 }
1963
1964 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1965 {
1966         debug_dma_assert_idle(src);
1967
1968         /*
1969          * If the source page was a PFN mapping, we don't have
1970          * a "struct page" for it. We do a best-effort copy by
1971          * just copying from the original user address. If that
1972          * fails, we just zero-fill it. Live with it.
1973          */
1974         if (unlikely(!src)) {
1975                 void *kaddr = kmap_atomic(dst);
1976                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1977
1978                 /*
1979                  * This really shouldn't fail, because the page is there
1980                  * in the page tables. But it might just be unreadable,
1981                  * in which case we just give up and fill the result with
1982                  * zeroes.
1983                  */
1984                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1985                         clear_page(kaddr);
1986                 kunmap_atomic(kaddr);
1987                 flush_dcache_page(dst);
1988         } else
1989                 copy_user_highpage(dst, src, va, vma);
1990 }
1991
1992 /*
1993  * Notify the address space that the page is about to become writable so that
1994  * it can prohibit this or wait for the page to get into an appropriate state.
1995  *
1996  * We do this without the lock held, so that it can sleep if it needs to.
1997  */
1998 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1999                unsigned long address)
2000 {
2001         struct vm_fault vmf;
2002         int ret;
2003
2004         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2005         vmf.pgoff = page->index;
2006         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2007         vmf.page = page;
2008         vmf.cow_page = NULL;
2009
2010         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2011         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2012                 return ret;
2013         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2014                 lock_page(page);
2015                 if (!page->mapping) {
2016                         unlock_page(page);
2017                         return 0; /* retry */
2018                 }
2019                 ret |= VM_FAULT_LOCKED;
2020         } else
2021                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2022         return ret;
2023 }
2024
2025 /*
2026  * Handle write page faults for pages that can be reused in the current vma
2027  *
2028  * This can happen either due to the mapping being with the VM_SHARED flag,
2029  * or due to us being the last reference standing to the page. In either
2030  * case, all we need to do here is to mark the page as writable and update
2031  * any related book-keeping.
2032  */
2033 static inline int wp_page_reuse(struct mm_struct *mm,
2034                         struct vm_area_struct *vma, unsigned long address,
2035                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2036                         struct page *page, int page_mkwrite,
2037                         int dirty_shared)
2038         __releases(ptl)
2039 {
2040         pte_t entry;
2041         /*
2042          * Clear the pages cpupid information as the existing
2043          * information potentially belongs to a now completely
2044          * unrelated process.
2045          */
2046         if (page)
2047                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2048
2049         flush_cache_page(vma, address, pte_pfn(orig_pte));
2050         entry = pte_mkyoung(orig_pte);
2051         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2052         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2053                 update_mmu_cache(vma, address, page_table);
2054         pte_unmap_unlock(page_table, ptl);
2055
2056         if (dirty_shared) {
2057                 struct address_space *mapping;
2058                 int dirtied;
2059
2060                 if (!page_mkwrite)
2061                         lock_page(page);
2062
2063                 dirtied = set_page_dirty(page);
2064                 VM_BUG_ON_PAGE(PageAnon(page), page);
2065                 mapping = page->mapping;
2066                 unlock_page(page);
2067                 page_cache_release(page);
2068
2069                 if ((dirtied || page_mkwrite) && mapping) {
2070                         /*
2071                          * Some device drivers do not set page.mapping
2072                          * but still dirty their pages
2073                          */
2074                         balance_dirty_pages_ratelimited(mapping);
2075                 }
2076
2077                 if (!page_mkwrite)
2078                         file_update_time(vma->vm_file);
2079         }
2080
2081         return VM_FAULT_WRITE;
2082 }
2083
2084 /*
2085  * Handle the case of a page which we actually need to copy to a new page.
2086  *
2087  * Called with mmap_sem locked and the old page referenced, but
2088  * without the ptl held.
2089  *
2090  * High level logic flow:
2091  *
2092  * - Allocate a page, copy the content of the old page to the new one.
2093  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2094  * - Take the PTL. If the pte changed, bail out and release the allocated page
2095  * - If the pte is still the way we remember it, update the page table and all
2096  *   relevant references. This includes dropping the reference the page-table
2097  *   held to the old page, as well as updating the rmap.
2098  * - In any case, unlock the PTL and drop the reference we took to the old page.
2099  */
2100 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2101                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2102                         pte_t orig_pte, struct page *old_page)
2103 {
2104         struct page *new_page = NULL;
2105         spinlock_t *ptl = NULL;
2106         pte_t entry;
2107         int page_copied = 0;
2108         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2109         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2110         struct mem_cgroup *memcg;
2111
2112         if (unlikely(anon_vma_prepare(vma)))
2113                 goto oom;
2114
2115         if (is_zero_pfn(pte_pfn(orig_pte))) {
2116                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2117                 if (!new_page)
2118                         goto oom;
2119         } else {
2120                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2121                 if (!new_page)
2122                         goto oom;
2123                 cow_user_page(new_page, old_page, address, vma);
2124         }
2125
2126         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2127                 goto oom_free_new;
2128
2129         __SetPageUptodate(new_page);
2130
2131         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2132
2133         /*
2134          * Re-check the pte - we dropped the lock
2135          */
2136         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2137         if (likely(pte_same(*page_table, orig_pte))) {
2138                 if (old_page) {
2139                         if (!PageAnon(old_page)) {
2140                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2141                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2142                         }
2143                 } else {
2144                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2145                 }
2146                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2147                 entry = mk_pte(new_page, vma->vm_page_prot);
2148                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2149                 /*
2150                  * Clear the pte entry and flush it first, before updating the
2151                  * pte with the new entry. This will avoid a race condition
2152                  * seen in the presence of one thread doing SMC and another
2153                  * thread doing COW.
2154                  */
2155                 ptep_clear_flush_notify(vma, address, page_table);
2156                 page_add_new_anon_rmap(new_page, vma, address);
2157                 mem_cgroup_commit_charge(new_page, memcg, false);
2158                 lru_cache_add_active_or_unevictable(new_page, vma);
2159                 /*
2160                  * We call the notify macro here because, when using secondary
2161                  * mmu page tables (such as kvm shadow page tables), we want the
2162                  * new page to be mapped directly into the secondary page table.
2163                  */
2164                 set_pte_at_notify(mm, address, page_table, entry);
2165                 update_mmu_cache(vma, address, page_table);
2166                 if (old_page) {
2167                         /*
2168                          * Only after switching the pte to the new page may
2169                          * we remove the mapcount here. Otherwise another
2170                          * process may come and find the rmap count decremented
2171                          * before the pte is switched to the new page, and
2172                          * "reuse" the old page writing into it while our pte
2173                          * here still points into it and can be read by other
2174                          * threads.
2175                          *
2176                          * The critical issue is to order this
2177                          * page_remove_rmap with the ptp_clear_flush above.
2178                          * Those stores are ordered by (if nothing else,)
2179                          * the barrier present in the atomic_add_negative
2180                          * in page_remove_rmap.
2181                          *
2182                          * Then the TLB flush in ptep_clear_flush ensures that
2183                          * no process can access the old page before the
2184                          * decremented mapcount is visible. And the old page
2185                          * cannot be reused until after the decremented
2186                          * mapcount is visible. So transitively, TLBs to
2187                          * old page will be flushed before it can be reused.
2188                          */
2189                         page_remove_rmap(old_page);
2190                 }
2191
2192                 /* Free the old page.. */
2193                 new_page = old_page;
2194                 page_copied = 1;
2195         } else {
2196                 mem_cgroup_cancel_charge(new_page, memcg);
2197         }
2198
2199         if (new_page)
2200                 page_cache_release(new_page);
2201
2202         pte_unmap_unlock(page_table, ptl);
2203         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2204         if (old_page) {
2205                 /*
2206                  * Don't let another task, with possibly unlocked vma,
2207                  * keep the mlocked page.
2208                  */
2209                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2210                         lock_page(old_page);    /* LRU manipulation */
2211                         munlock_vma_page(old_page);
2212                         unlock_page(old_page);
2213                 }
2214                 page_cache_release(old_page);
2215         }
2216         return page_copied ? VM_FAULT_WRITE : 0;
2217 oom_free_new:
2218         page_cache_release(new_page);
2219 oom:
2220         if (old_page)
2221                 page_cache_release(old_page);
2222         return VM_FAULT_OOM;
2223 }
2224
2225 /*
2226  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2227  * mapping
2228  */
2229 static int wp_pfn_shared(struct mm_struct *mm,
2230                         struct vm_area_struct *vma, unsigned long address,
2231                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2232                         pmd_t *pmd)
2233 {
2234         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2235                 struct vm_fault vmf = {
2236                         .page = NULL,
2237                         .pgoff = linear_page_index(vma, address),
2238                         .virtual_address = (void __user *)(address & PAGE_MASK),
2239                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2240                 };
2241                 int ret;
2242
2243                 pte_unmap_unlock(page_table, ptl);
2244                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2245                 if (ret & VM_FAULT_ERROR)
2246                         return ret;
2247                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2248                 /*
2249                  * We might have raced with another page fault while we
2250                  * released the pte_offset_map_lock.
2251                  */
2252                 if (!pte_same(*page_table, orig_pte)) {
2253                         pte_unmap_unlock(page_table, ptl);
2254                         return 0;
2255                 }
2256         }
2257         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2258                              NULL, 0, 0);
2259 }
2260
2261 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2262                           unsigned long address, pte_t *page_table,
2263                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2264                           struct page *old_page)
2265         __releases(ptl)
2266 {
2267         int page_mkwrite = 0;
2268
2269         page_cache_get(old_page);
2270
2271         /*
2272          * Only catch write-faults on shared writable pages,
2273          * read-only shared pages can get COWed by
2274          * get_user_pages(.write=1, .force=1).
2275          */
2276         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2277                 int tmp;
2278
2279                 pte_unmap_unlock(page_table, ptl);
2280                 tmp = do_page_mkwrite(vma, old_page, address);
2281                 if (unlikely(!tmp || (tmp &
2282                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2283                         page_cache_release(old_page);
2284                         return tmp;
2285                 }
2286                 /*
2287                  * Since we dropped the lock we need to revalidate
2288                  * the PTE as someone else may have changed it.  If
2289                  * they did, we just return, as we can count on the
2290                  * MMU to tell us if they didn't also make it writable.
2291                  */
2292                 page_table = pte_offset_map_lock(mm, pmd, address,
2293                                                  &ptl);
2294                 if (!pte_same(*page_table, orig_pte)) {
2295                         unlock_page(old_page);
2296                         pte_unmap_unlock(page_table, ptl);
2297                         page_cache_release(old_page);
2298                         return 0;
2299                 }
2300                 page_mkwrite = 1;
2301         }
2302
2303         return wp_page_reuse(mm, vma, address, page_table, ptl,
2304                              orig_pte, old_page, page_mkwrite, 1);
2305 }
2306
2307 /*
2308  * This routine handles present pages, when users try to write
2309  * to a shared page. It is done by copying the page to a new address
2310  * and decrementing the shared-page counter for the old page.
2311  *
2312  * Note that this routine assumes that the protection checks have been
2313  * done by the caller (the low-level page fault routine in most cases).
2314  * Thus we can safely just mark it writable once we've done any necessary
2315  * COW.
2316  *
2317  * We also mark the page dirty at this point even though the page will
2318  * change only once the write actually happens. This avoids a few races,
2319  * and potentially makes it more efficient.
2320  *
2321  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2322  * but allow concurrent faults), with pte both mapped and locked.
2323  * We return with mmap_sem still held, but pte unmapped and unlocked.
2324  */
2325 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2326                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2327                 spinlock_t *ptl, pte_t orig_pte)
2328         __releases(ptl)
2329 {
2330         struct page *old_page;
2331
2332         old_page = vm_normal_page(vma, address, orig_pte);
2333         if (!old_page) {
2334                 /*
2335                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2336                  * VM_PFNMAP VMA.
2337                  *
2338                  * We should not cow pages in a shared writeable mapping.
2339                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2340                  */
2341                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2342                                      (VM_WRITE|VM_SHARED))
2343                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2344                                              orig_pte, pmd);
2345
2346                 pte_unmap_unlock(page_table, ptl);
2347                 return wp_page_copy(mm, vma, address, page_table, pmd,
2348                                     orig_pte, old_page);
2349         }
2350
2351         /*
2352          * Take out anonymous pages first, anonymous shared vmas are
2353          * not dirty accountable.
2354          */
2355         if (PageAnon(old_page) && !PageKsm(old_page)) {
2356                 if (!trylock_page(old_page)) {
2357                         page_cache_get(old_page);
2358                         pte_unmap_unlock(page_table, ptl);
2359                         lock_page(old_page);
2360                         page_table = pte_offset_map_lock(mm, pmd, address,
2361                                                          &ptl);
2362                         if (!pte_same(*page_table, orig_pte)) {
2363                                 unlock_page(old_page);
2364                                 pte_unmap_unlock(page_table, ptl);
2365                                 page_cache_release(old_page);
2366                                 return 0;
2367                         }
2368                         page_cache_release(old_page);
2369                 }
2370                 if (reuse_swap_page(old_page)) {
2371                         /*
2372                          * The page is all ours.  Move it to our anon_vma so
2373                          * the rmap code will not search our parent or siblings.
2374                          * Protected against the rmap code by the page lock.
2375                          */
2376                         page_move_anon_rmap(old_page, vma, address);
2377                         unlock_page(old_page);
2378                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2379                                              orig_pte, old_page, 0, 0);
2380                 }
2381                 unlock_page(old_page);
2382         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2383                                         (VM_WRITE|VM_SHARED))) {
2384                 return wp_page_shared(mm, vma, address, page_table, pmd,
2385                                       ptl, orig_pte, old_page);
2386         }
2387
2388         /*
2389          * Ok, we need to copy. Oh, well..
2390          */
2391         page_cache_get(old_page);
2392
2393         pte_unmap_unlock(page_table, ptl);
2394         return wp_page_copy(mm, vma, address, page_table, pmd,
2395                             orig_pte, old_page);
2396 }
2397
2398 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2399                 unsigned long start_addr, unsigned long end_addr,
2400                 struct zap_details *details)
2401 {
2402         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2403 }
2404
2405 static inline void unmap_mapping_range_tree(struct rb_root *root,
2406                                             struct zap_details *details)
2407 {
2408         struct vm_area_struct *vma;
2409         pgoff_t vba, vea, zba, zea;
2410
2411         vma_interval_tree_foreach(vma, root,
2412                         details->first_index, details->last_index) {
2413
2414                 vba = vma->vm_pgoff;
2415                 vea = vba + vma_pages(vma) - 1;
2416                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2417                 zba = details->first_index;
2418                 if (zba < vba)
2419                         zba = vba;
2420                 zea = details->last_index;
2421                 if (zea > vea)
2422                         zea = vea;
2423
2424                 unmap_mapping_range_vma(vma,
2425                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2426                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2427                                 details);
2428         }
2429 }
2430
2431 /**
2432  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2433  * address_space corresponding to the specified page range in the underlying
2434  * file.
2435  *
2436  * @mapping: the address space containing mmaps to be unmapped.
2437  * @holebegin: byte in first page to unmap, relative to the start of
2438  * the underlying file.  This will be rounded down to a PAGE_SIZE
2439  * boundary.  Note that this is different from truncate_pagecache(), which
2440  * must keep the partial page.  In contrast, we must get rid of
2441  * partial pages.
2442  * @holelen: size of prospective hole in bytes.  This will be rounded
2443  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2444  * end of the file.
2445  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2446  * but 0 when invalidating pagecache, don't throw away private data.
2447  */
2448 void unmap_mapping_range(struct address_space *mapping,
2449                 loff_t const holebegin, loff_t const holelen, int even_cows)
2450 {
2451         struct zap_details details;
2452         pgoff_t hba = holebegin >> PAGE_SHIFT;
2453         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2454
2455         /* Check for overflow. */
2456         if (sizeof(holelen) > sizeof(hlen)) {
2457                 long long holeend =
2458                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2459                 if (holeend & ~(long long)ULONG_MAX)
2460                         hlen = ULONG_MAX - hba + 1;
2461         }
2462
2463         details.check_mapping = even_cows? NULL: mapping;
2464         details.first_index = hba;
2465         details.last_index = hba + hlen - 1;
2466         if (details.last_index < details.first_index)
2467                 details.last_index = ULONG_MAX;
2468
2469
2470         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2471         i_mmap_lock_write(mapping);
2472         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2473                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2474         i_mmap_unlock_write(mapping);
2475 }
2476 EXPORT_SYMBOL(unmap_mapping_range);
2477
2478 /*
2479  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2480  * but allow concurrent faults), and pte mapped but not yet locked.
2481  * We return with pte unmapped and unlocked.
2482  *
2483  * We return with the mmap_sem locked or unlocked in the same cases
2484  * as does filemap_fault().
2485  */
2486 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2487                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2488                 unsigned int flags, pte_t orig_pte)
2489 {
2490         spinlock_t *ptl;
2491         struct page *page, *swapcache;
2492         struct mem_cgroup *memcg;
2493         swp_entry_t entry;
2494         pte_t pte;
2495         int locked;
2496         int exclusive = 0;
2497         int ret = 0;
2498
2499         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2500                 goto out;
2501
2502         entry = pte_to_swp_entry(orig_pte);
2503         if (unlikely(non_swap_entry(entry))) {
2504                 if (is_migration_entry(entry)) {
2505                         migration_entry_wait(mm, pmd, address);
2506                 } else if (is_hwpoison_entry(entry)) {
2507                         ret = VM_FAULT_HWPOISON;
2508                 } else {
2509                         print_bad_pte(vma, address, orig_pte, NULL);
2510                         ret = VM_FAULT_SIGBUS;
2511                 }
2512                 goto out;
2513         }
2514         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2515         page = lookup_swap_cache(entry);
2516         if (!page) {
2517                 page = swapin_readahead(entry,
2518                                         GFP_HIGHUSER_MOVABLE, vma, address);
2519                 if (!page) {
2520                         /*
2521                          * Back out if somebody else faulted in this pte
2522                          * while we released the pte lock.
2523                          */
2524                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2525                         if (likely(pte_same(*page_table, orig_pte)))
2526                                 ret = VM_FAULT_OOM;
2527                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2528                         goto unlock;
2529                 }
2530
2531                 /* Had to read the page from swap area: Major fault */
2532                 ret = VM_FAULT_MAJOR;
2533                 count_vm_event(PGMAJFAULT);
2534                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2535         } else if (PageHWPoison(page)) {
2536                 /*
2537                  * hwpoisoned dirty swapcache pages are kept for killing
2538                  * owner processes (which may be unknown at hwpoison time)
2539                  */
2540                 ret = VM_FAULT_HWPOISON;
2541                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2542                 swapcache = page;
2543                 goto out_release;
2544         }
2545
2546         swapcache = page;
2547         locked = lock_page_or_retry(page, mm, flags);
2548
2549         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2550         if (!locked) {
2551                 ret |= VM_FAULT_RETRY;
2552                 goto out_release;
2553         }
2554
2555         /*
2556          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2557          * release the swapcache from under us.  The page pin, and pte_same
2558          * test below, are not enough to exclude that.  Even if it is still
2559          * swapcache, we need to check that the page's swap has not changed.
2560          */
2561         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2562                 goto out_page;
2563
2564         page = ksm_might_need_to_copy(page, vma, address);
2565         if (unlikely(!page)) {
2566                 ret = VM_FAULT_OOM;
2567                 page = swapcache;
2568                 goto out_page;
2569         }
2570
2571         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2572                 ret = VM_FAULT_OOM;
2573                 goto out_page;
2574         }
2575
2576         /*
2577          * Back out if somebody else already faulted in this pte.
2578          */
2579         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2580         if (unlikely(!pte_same(*page_table, orig_pte)))
2581                 goto out_nomap;
2582
2583         if (unlikely(!PageUptodate(page))) {
2584                 ret = VM_FAULT_SIGBUS;
2585                 goto out_nomap;
2586         }
2587
2588         /*
2589          * The page isn't present yet, go ahead with the fault.
2590          *
2591          * Be careful about the sequence of operations here.
2592          * To get its accounting right, reuse_swap_page() must be called
2593          * while the page is counted on swap but not yet in mapcount i.e.
2594          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2595          * must be called after the swap_free(), or it will never succeed.
2596          */
2597
2598         inc_mm_counter_fast(mm, MM_ANONPAGES);
2599         dec_mm_counter_fast(mm, MM_SWAPENTS);
2600         pte = mk_pte(page, vma->vm_page_prot);
2601         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2602                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2603                 flags &= ~FAULT_FLAG_WRITE;
2604                 ret |= VM_FAULT_WRITE;
2605                 exclusive = 1;
2606         }
2607         flush_icache_page(vma, page);
2608         if (pte_swp_soft_dirty(orig_pte))
2609                 pte = pte_mksoft_dirty(pte);
2610         set_pte_at(mm, address, page_table, pte);
2611         if (page == swapcache) {
2612                 do_page_add_anon_rmap(page, vma, address, exclusive);
2613                 mem_cgroup_commit_charge(page, memcg, true);
2614         } else { /* ksm created a completely new copy */
2615                 page_add_new_anon_rmap(page, vma, address);
2616                 mem_cgroup_commit_charge(page, memcg, false);
2617                 lru_cache_add_active_or_unevictable(page, vma);
2618         }
2619
2620         swap_free(entry);
2621         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2622                 try_to_free_swap(page);
2623         unlock_page(page);
2624         if (page != swapcache) {
2625                 /*
2626                  * Hold the lock to avoid the swap entry to be reused
2627                  * until we take the PT lock for the pte_same() check
2628                  * (to avoid false positives from pte_same). For
2629                  * further safety release the lock after the swap_free
2630                  * so that the swap count won't change under a
2631                  * parallel locked swapcache.
2632                  */
2633                 unlock_page(swapcache);
2634                 page_cache_release(swapcache);
2635         }
2636
2637         if (flags & FAULT_FLAG_WRITE) {
2638                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2639                 if (ret & VM_FAULT_ERROR)
2640                         ret &= VM_FAULT_ERROR;
2641                 goto out;
2642         }
2643
2644         /* No need to invalidate - it was non-present before */
2645         update_mmu_cache(vma, address, page_table);
2646 unlock:
2647         pte_unmap_unlock(page_table, ptl);
2648 out:
2649         return ret;
2650 out_nomap:
2651         mem_cgroup_cancel_charge(page, memcg);
2652         pte_unmap_unlock(page_table, ptl);
2653 out_page:
2654         unlock_page(page);
2655 out_release:
2656         page_cache_release(page);
2657         if (page != swapcache) {
2658                 unlock_page(swapcache);
2659                 page_cache_release(swapcache);
2660         }
2661         return ret;
2662 }
2663
2664 /*
2665  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2666  * but allow concurrent faults), and pte mapped but not yet locked.
2667  * We return with mmap_sem still held, but pte unmapped and unlocked.
2668  */
2669 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2670                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2671                 unsigned int flags)
2672 {
2673         struct mem_cgroup *memcg;
2674         struct page *page;
2675         spinlock_t *ptl;
2676         pte_t entry;
2677
2678         pte_unmap(page_table);
2679
2680         /* File mapping without ->vm_ops ? */
2681         if (vma->vm_flags & VM_SHARED)
2682                 return VM_FAULT_SIGBUS;
2683
2684         /* Use the zero-page for reads */
2685         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2686                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2687                                                 vma->vm_page_prot));
2688                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2689                 if (!pte_none(*page_table))
2690                         goto unlock;
2691                 /* Deliver the page fault to userland, check inside PT lock */
2692                 if (userfaultfd_missing(vma)) {
2693                         pte_unmap_unlock(page_table, ptl);
2694                         return handle_userfault(vma, address, flags,
2695                                                 VM_UFFD_MISSING);
2696                 }
2697                 goto setpte;
2698         }
2699
2700         /* Allocate our own private page. */
2701         if (unlikely(anon_vma_prepare(vma)))
2702                 goto oom;
2703         page = alloc_zeroed_user_highpage_movable(vma, address);
2704         if (!page)
2705                 goto oom;
2706
2707         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2708                 goto oom_free_page;
2709
2710         /*
2711          * The memory barrier inside __SetPageUptodate makes sure that
2712          * preceeding stores to the page contents become visible before
2713          * the set_pte_at() write.
2714          */
2715         __SetPageUptodate(page);
2716
2717         entry = mk_pte(page, vma->vm_page_prot);
2718         if (vma->vm_flags & VM_WRITE)
2719                 entry = pte_mkwrite(pte_mkdirty(entry));
2720
2721         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2722         if (!pte_none(*page_table))
2723                 goto release;
2724
2725         /* Deliver the page fault to userland, check inside PT lock */
2726         if (userfaultfd_missing(vma)) {
2727                 pte_unmap_unlock(page_table, ptl);
2728                 mem_cgroup_cancel_charge(page, memcg);
2729                 page_cache_release(page);
2730                 return handle_userfault(vma, address, flags,
2731                                         VM_UFFD_MISSING);
2732         }
2733
2734         inc_mm_counter_fast(mm, MM_ANONPAGES);
2735         page_add_new_anon_rmap(page, vma, address);
2736         mem_cgroup_commit_charge(page, memcg, false);
2737         lru_cache_add_active_or_unevictable(page, vma);
2738 setpte:
2739         set_pte_at(mm, address, page_table, entry);
2740
2741         /* No need to invalidate - it was non-present before */
2742         update_mmu_cache(vma, address, page_table);
2743 unlock:
2744         pte_unmap_unlock(page_table, ptl);
2745         return 0;
2746 release:
2747         mem_cgroup_cancel_charge(page, memcg);
2748         page_cache_release(page);
2749         goto unlock;
2750 oom_free_page:
2751         page_cache_release(page);
2752 oom:
2753         return VM_FAULT_OOM;
2754 }
2755
2756 /*
2757  * The mmap_sem must have been held on entry, and may have been
2758  * released depending on flags and vma->vm_ops->fault() return value.
2759  * See filemap_fault() and __lock_page_retry().
2760  */
2761 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2762                         pgoff_t pgoff, unsigned int flags,
2763                         struct page *cow_page, struct page **page)
2764 {
2765         struct vm_fault vmf;
2766         int ret;
2767
2768         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2769         vmf.pgoff = pgoff;
2770         vmf.flags = flags;
2771         vmf.page = NULL;
2772         vmf.cow_page = cow_page;
2773
2774         ret = vma->vm_ops->fault(vma, &vmf);
2775         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2776                 return ret;
2777         if (!vmf.page)
2778                 goto out;
2779
2780         if (unlikely(PageHWPoison(vmf.page))) {
2781                 if (ret & VM_FAULT_LOCKED)
2782                         unlock_page(vmf.page);
2783                 page_cache_release(vmf.page);
2784                 return VM_FAULT_HWPOISON;
2785         }
2786
2787         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2788                 lock_page(vmf.page);
2789         else
2790                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2791
2792  out:
2793         *page = vmf.page;
2794         return ret;
2795 }
2796
2797 /**
2798  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2799  *
2800  * @vma: virtual memory area
2801  * @address: user virtual address
2802  * @page: page to map
2803  * @pte: pointer to target page table entry
2804  * @write: true, if new entry is writable
2805  * @anon: true, if it's anonymous page
2806  *
2807  * Caller must hold page table lock relevant for @pte.
2808  *
2809  * Target users are page handler itself and implementations of
2810  * vm_ops->map_pages.
2811  */
2812 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2813                 struct page *page, pte_t *pte, bool write, bool anon)
2814 {
2815         pte_t entry;
2816
2817         flush_icache_page(vma, page);
2818         entry = mk_pte(page, vma->vm_page_prot);
2819         if (write)
2820                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2821         if (anon) {
2822                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2823                 page_add_new_anon_rmap(page, vma, address);
2824         } else {
2825                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2826                 page_add_file_rmap(page);
2827         }
2828         set_pte_at(vma->vm_mm, address, pte, entry);
2829
2830         /* no need to invalidate: a not-present page won't be cached */
2831         update_mmu_cache(vma, address, pte);
2832 }
2833
2834 static unsigned long fault_around_bytes __read_mostly =
2835         rounddown_pow_of_two(65536);
2836
2837 #ifdef CONFIG_DEBUG_FS
2838 static int fault_around_bytes_get(void *data, u64 *val)
2839 {
2840         *val = fault_around_bytes;
2841         return 0;
2842 }
2843
2844 /*
2845  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2846  * rounded down to nearest page order. It's what do_fault_around() expects to
2847  * see.
2848  */
2849 static int fault_around_bytes_set(void *data, u64 val)
2850 {
2851         if (val / PAGE_SIZE > PTRS_PER_PTE)
2852                 return -EINVAL;
2853         if (val > PAGE_SIZE)
2854                 fault_around_bytes = rounddown_pow_of_two(val);
2855         else
2856                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2857         return 0;
2858 }
2859 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2860                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2861
2862 static int __init fault_around_debugfs(void)
2863 {
2864         void *ret;
2865
2866         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2867                         &fault_around_bytes_fops);
2868         if (!ret)
2869                 pr_warn("Failed to create fault_around_bytes in debugfs");
2870         return 0;
2871 }
2872 late_initcall(fault_around_debugfs);
2873 #endif
2874
2875 /*
2876  * do_fault_around() tries to map few pages around the fault address. The hope
2877  * is that the pages will be needed soon and this will lower the number of
2878  * faults to handle.
2879  *
2880  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2881  * not ready to be mapped: not up-to-date, locked, etc.
2882  *
2883  * This function is called with the page table lock taken. In the split ptlock
2884  * case the page table lock only protects only those entries which belong to
2885  * the page table corresponding to the fault address.
2886  *
2887  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2888  * only once.
2889  *
2890  * fault_around_pages() defines how many pages we'll try to map.
2891  * do_fault_around() expects it to return a power of two less than or equal to
2892  * PTRS_PER_PTE.
2893  *
2894  * The virtual address of the area that we map is naturally aligned to the
2895  * fault_around_pages() value (and therefore to page order).  This way it's
2896  * easier to guarantee that we don't cross page table boundaries.
2897  */
2898 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2899                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2900 {
2901         unsigned long start_addr, nr_pages, mask;
2902         pgoff_t max_pgoff;
2903         struct vm_fault vmf;
2904         int off;
2905
2906         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2907         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2908
2909         start_addr = max(address & mask, vma->vm_start);
2910         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2911         pte -= off;
2912         pgoff -= off;
2913
2914         /*
2915          *  max_pgoff is either end of page table or end of vma
2916          *  or fault_around_pages() from pgoff, depending what is nearest.
2917          */
2918         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2919                 PTRS_PER_PTE - 1;
2920         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2921                         pgoff + nr_pages - 1);
2922
2923         /* Check if it makes any sense to call ->map_pages */
2924         while (!pte_none(*pte)) {
2925                 if (++pgoff > max_pgoff)
2926                         return;
2927                 start_addr += PAGE_SIZE;
2928                 if (start_addr >= vma->vm_end)
2929                         return;
2930                 pte++;
2931         }
2932
2933         vmf.virtual_address = (void __user *) start_addr;
2934         vmf.pte = pte;
2935         vmf.pgoff = pgoff;
2936         vmf.max_pgoff = max_pgoff;
2937         vmf.flags = flags;
2938         vma->vm_ops->map_pages(vma, &vmf);
2939 }
2940
2941 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2942                 unsigned long address, pmd_t *pmd,
2943                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2944 {
2945         struct page *fault_page;
2946         spinlock_t *ptl;
2947         pte_t *pte;
2948         int ret = 0;
2949
2950         /*
2951          * Let's call ->map_pages() first and use ->fault() as fallback
2952          * if page by the offset is not ready to be mapped (cold cache or
2953          * something).
2954          */
2955         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2956                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2957                 do_fault_around(vma, address, pte, pgoff, flags);
2958                 if (!pte_same(*pte, orig_pte))
2959                         goto unlock_out;
2960                 pte_unmap_unlock(pte, ptl);
2961         }
2962
2963         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2964         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2965                 return ret;
2966
2967         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2968         if (unlikely(!pte_same(*pte, orig_pte))) {
2969                 pte_unmap_unlock(pte, ptl);
2970                 unlock_page(fault_page);
2971                 page_cache_release(fault_page);
2972                 return ret;
2973         }
2974         do_set_pte(vma, address, fault_page, pte, false, false);
2975         unlock_page(fault_page);
2976 unlock_out:
2977         pte_unmap_unlock(pte, ptl);
2978         return ret;
2979 }
2980
2981 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2982                 unsigned long address, pmd_t *pmd,
2983                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2984 {
2985         struct page *fault_page, *new_page;
2986         struct mem_cgroup *memcg;
2987         spinlock_t *ptl;
2988         pte_t *pte;
2989         int ret;
2990
2991         if (unlikely(anon_vma_prepare(vma)))
2992                 return VM_FAULT_OOM;
2993
2994         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2995         if (!new_page)
2996                 return VM_FAULT_OOM;
2997
2998         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2999                 page_cache_release(new_page);
3000                 return VM_FAULT_OOM;
3001         }
3002
3003         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3004         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3005                 goto uncharge_out;
3006
3007         if (fault_page)
3008                 copy_user_highpage(new_page, fault_page, address, vma);
3009         __SetPageUptodate(new_page);
3010
3011         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3012         if (unlikely(!pte_same(*pte, orig_pte))) {
3013                 pte_unmap_unlock(pte, ptl);
3014                 if (fault_page) {
3015                         unlock_page(fault_page);
3016                         page_cache_release(fault_page);
3017                 } else {
3018                         /*
3019                          * The fault handler has no page to lock, so it holds
3020                          * i_mmap_lock for read to protect against truncate.
3021                          */
3022                         i_mmap_unlock_read(vma->vm_file->f_mapping);
3023                 }
3024                 goto uncharge_out;
3025         }
3026         do_set_pte(vma, address, new_page, pte, true, true);
3027         mem_cgroup_commit_charge(new_page, memcg, false);
3028         lru_cache_add_active_or_unevictable(new_page, vma);
3029         pte_unmap_unlock(pte, ptl);
3030         if (fault_page) {
3031                 unlock_page(fault_page);
3032                 page_cache_release(fault_page);
3033         } else {
3034                 /*
3035                  * The fault handler has no page to lock, so it holds
3036                  * i_mmap_lock for read to protect against truncate.
3037                  */
3038                 i_mmap_unlock_read(vma->vm_file->f_mapping);
3039         }
3040         return ret;
3041 uncharge_out:
3042         mem_cgroup_cancel_charge(new_page, memcg);
3043         page_cache_release(new_page);
3044         return ret;
3045 }
3046
3047 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3048                 unsigned long address, pmd_t *pmd,
3049                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3050 {
3051         struct page *fault_page;
3052         struct address_space *mapping;
3053         spinlock_t *ptl;
3054         pte_t *pte;
3055         int dirtied = 0;
3056         int ret, tmp;
3057
3058         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3059         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3060                 return ret;
3061
3062         /*
3063          * Check if the backing address space wants to know that the page is
3064          * about to become writable
3065          */
3066         if (vma->vm_ops->page_mkwrite) {
3067                 unlock_page(fault_page);
3068                 tmp = do_page_mkwrite(vma, fault_page, address);
3069                 if (unlikely(!tmp ||
3070                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3071                         page_cache_release(fault_page);
3072                         return tmp;
3073                 }
3074         }
3075
3076         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3077         if (unlikely(!pte_same(*pte, orig_pte))) {
3078                 pte_unmap_unlock(pte, ptl);
3079                 unlock_page(fault_page);
3080                 page_cache_release(fault_page);
3081                 return ret;
3082         }
3083         do_set_pte(vma, address, fault_page, pte, true, false);
3084         pte_unmap_unlock(pte, ptl);
3085
3086         if (set_page_dirty(fault_page))
3087                 dirtied = 1;
3088         /*
3089          * Take a local copy of the address_space - page.mapping may be zeroed
3090          * by truncate after unlock_page().   The address_space itself remains
3091          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3092          * release semantics to prevent the compiler from undoing this copying.
3093          */
3094         mapping = fault_page->mapping;
3095         unlock_page(fault_page);
3096         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3097                 /*
3098                  * Some device drivers do not set page.mapping but still
3099                  * dirty their pages
3100                  */
3101                 balance_dirty_pages_ratelimited(mapping);
3102         }
3103
3104         if (!vma->vm_ops->page_mkwrite)
3105                 file_update_time(vma->vm_file);
3106
3107         return ret;
3108 }
3109
3110 /*
3111  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3112  * but allow concurrent faults).
3113  * The mmap_sem may have been released depending on flags and our
3114  * return value.  See filemap_fault() and __lock_page_or_retry().
3115  */
3116 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3117                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3118                 unsigned int flags, pte_t orig_pte)
3119 {
3120         pgoff_t pgoff = (((address & PAGE_MASK)
3121                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3122
3123         pte_unmap(page_table);
3124         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3125         if (!vma->vm_ops->fault)
3126                 return VM_FAULT_SIGBUS;
3127         if (!(flags & FAULT_FLAG_WRITE))
3128                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3129                                 orig_pte);
3130         if (!(vma->vm_flags & VM_SHARED))
3131                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3132                                 orig_pte);
3133         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3134 }
3135
3136 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3137                                 unsigned long addr, int page_nid,
3138                                 int *flags)
3139 {
3140         get_page(page);
3141
3142         count_vm_numa_event(NUMA_HINT_FAULTS);
3143         if (page_nid == numa_node_id()) {
3144                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3145                 *flags |= TNF_FAULT_LOCAL;
3146         }
3147
3148         return mpol_misplaced(page, vma, addr);
3149 }
3150
3151 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3152                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3153 {
3154         struct page *page = NULL;
3155         spinlock_t *ptl;
3156         int page_nid = -1;
3157         int last_cpupid;
3158         int target_nid;
3159         bool migrated = false;
3160         bool was_writable = pte_write(pte);
3161         int flags = 0;
3162
3163         /* A PROT_NONE fault should not end up here */
3164         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3165
3166         /*
3167         * The "pte" at this point cannot be used safely without
3168         * validation through pte_unmap_same(). It's of NUMA type but
3169         * the pfn may be screwed if the read is non atomic.
3170         *
3171         * We can safely just do a "set_pte_at()", because the old
3172         * page table entry is not accessible, so there would be no
3173         * concurrent hardware modifications to the PTE.
3174         */
3175         ptl = pte_lockptr(mm, pmd);
3176         spin_lock(ptl);
3177         if (unlikely(!pte_same(*ptep, pte))) {
3178                 pte_unmap_unlock(ptep, ptl);
3179                 goto out;
3180         }
3181
3182         /* Make it present again */
3183         pte = pte_modify(pte, vma->vm_page_prot);
3184         pte = pte_mkyoung(pte);
3185         if (was_writable)
3186                 pte = pte_mkwrite(pte);
3187         set_pte_at(mm, addr, ptep, pte);
3188         update_mmu_cache(vma, addr, ptep);
3189
3190         page = vm_normal_page(vma, addr, pte);
3191         if (!page) {
3192                 pte_unmap_unlock(ptep, ptl);
3193                 return 0;
3194         }
3195
3196         /*
3197          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3198          * much anyway since they can be in shared cache state. This misses
3199          * the case where a mapping is writable but the process never writes
3200          * to it but pte_write gets cleared during protection updates and
3201          * pte_dirty has unpredictable behaviour between PTE scan updates,
3202          * background writeback, dirty balancing and application behaviour.
3203          */
3204         if (!(vma->vm_flags & VM_WRITE))
3205                 flags |= TNF_NO_GROUP;
3206
3207         /*
3208          * Flag if the page is shared between multiple address spaces. This
3209          * is later used when determining whether to group tasks together
3210          */
3211         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3212                 flags |= TNF_SHARED;
3213
3214         last_cpupid = page_cpupid_last(page);
3215         page_nid = page_to_nid(page);
3216         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3217         pte_unmap_unlock(ptep, ptl);
3218         if (target_nid == -1) {
3219                 put_page(page);
3220                 goto out;
3221         }
3222
3223         /* Migrate to the requested node */
3224         migrated = migrate_misplaced_page(page, vma, target_nid);
3225         if (migrated) {
3226                 page_nid = target_nid;
3227                 flags |= TNF_MIGRATED;
3228         } else
3229                 flags |= TNF_MIGRATE_FAIL;
3230
3231 out:
3232         if (page_nid != -1)
3233                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3234         return 0;
3235 }
3236
3237 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3238                         unsigned long address, pmd_t *pmd, unsigned int flags)
3239 {
3240         if (vma_is_anonymous(vma))
3241                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3242         if (vma->vm_ops->pmd_fault)
3243                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3244         return VM_FAULT_FALLBACK;
3245 }
3246
3247 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3248                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3249                         unsigned int flags)
3250 {
3251         if (vma_is_anonymous(vma))
3252                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3253         if (vma->vm_ops->pmd_fault)
3254                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3255         return VM_FAULT_FALLBACK;
3256 }
3257
3258 /*
3259  * These routines also need to handle stuff like marking pages dirty
3260  * and/or accessed for architectures that don't do it in hardware (most
3261  * RISC architectures).  The early dirtying is also good on the i386.
3262  *
3263  * There is also a hook called "update_mmu_cache()" that architectures
3264  * with external mmu caches can use to update those (ie the Sparc or
3265  * PowerPC hashed page tables that act as extended TLBs).
3266  *
3267  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3268  * but allow concurrent faults), and pte mapped but not yet locked.
3269  * We return with pte unmapped and unlocked.
3270  *
3271  * The mmap_sem may have been released depending on flags and our
3272  * return value.  See filemap_fault() and __lock_page_or_retry().
3273  */
3274 static int handle_pte_fault(struct mm_struct *mm,
3275                      struct vm_area_struct *vma, unsigned long address,
3276                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3277 {
3278         pte_t entry;
3279         spinlock_t *ptl;
3280
3281         /*
3282          * some architectures can have larger ptes than wordsize,
3283          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3284          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3285          * The code below just needs a consistent view for the ifs and
3286          * we later double check anyway with the ptl lock held. So here
3287          * a barrier will do.
3288          */
3289         entry = *pte;
3290         barrier();
3291         if (!pte_present(entry)) {
3292                 if (pte_none(entry)) {
3293                         if (vma_is_anonymous(vma))
3294                                 return do_anonymous_page(mm, vma, address,
3295                                                          pte, pmd, flags);
3296                         else
3297                                 return do_fault(mm, vma, address, pte, pmd,
3298                                                 flags, entry);
3299                 }
3300                 return do_swap_page(mm, vma, address,
3301                                         pte, pmd, flags, entry);
3302         }
3303
3304         if (pte_protnone(entry))
3305                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3306
3307         ptl = pte_lockptr(mm, pmd);
3308         spin_lock(ptl);
3309         if (unlikely(!pte_same(*pte, entry)))
3310                 goto unlock;
3311         if (flags & FAULT_FLAG_WRITE) {
3312                 if (!pte_write(entry))
3313                         return do_wp_page(mm, vma, address,
3314                                         pte, pmd, ptl, entry);
3315                 entry = pte_mkdirty(entry);
3316         }
3317         entry = pte_mkyoung(entry);
3318         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3319                 update_mmu_cache(vma, address, pte);
3320         } else {
3321                 /*
3322                  * This is needed only for protection faults but the arch code
3323                  * is not yet telling us if this is a protection fault or not.
3324                  * This still avoids useless tlb flushes for .text page faults
3325                  * with threads.
3326                  */
3327                 if (flags & FAULT_FLAG_WRITE)
3328                         flush_tlb_fix_spurious_fault(vma, address);
3329         }
3330 unlock:
3331         pte_unmap_unlock(pte, ptl);
3332         return 0;
3333 }
3334
3335 /*
3336  * By the time we get here, we already hold the mm semaphore
3337  *
3338  * The mmap_sem may have been released depending on flags and our
3339  * return value.  See filemap_fault() and __lock_page_or_retry().
3340  */
3341 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3342                              unsigned long address, unsigned int flags)
3343 {
3344         pgd_t *pgd;
3345         pud_t *pud;
3346         pmd_t *pmd;
3347         pte_t *pte;
3348
3349         if (unlikely(is_vm_hugetlb_page(vma)))
3350                 return hugetlb_fault(mm, vma, address, flags);
3351
3352         pgd = pgd_offset(mm, address);
3353         pud = pud_alloc(mm, pgd, address);
3354         if (!pud)
3355                 return VM_FAULT_OOM;
3356         pmd = pmd_alloc(mm, pud, address);
3357         if (!pmd)
3358                 return VM_FAULT_OOM;
3359         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3360                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3361                 if (!(ret & VM_FAULT_FALLBACK))
3362                         return ret;
3363         } else {
3364                 pmd_t orig_pmd = *pmd;
3365                 int ret;
3366
3367                 barrier();
3368                 if (pmd_trans_huge(orig_pmd)) {
3369                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3370
3371                         /*
3372                          * If the pmd is splitting, return and retry the
3373                          * the fault.  Alternative: wait until the split
3374                          * is done, and goto retry.
3375                          */
3376                         if (pmd_trans_splitting(orig_pmd))
3377                                 return 0;
3378
3379                         if (pmd_protnone(orig_pmd))
3380                                 return do_huge_pmd_numa_page(mm, vma, address,
3381                                                              orig_pmd, pmd);
3382
3383                         if (dirty && !pmd_write(orig_pmd)) {
3384                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3385                                                         orig_pmd, flags);
3386                                 if (!(ret & VM_FAULT_FALLBACK))
3387                                         return ret;
3388                         } else {
3389                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3390                                                       orig_pmd, dirty);
3391                                 return 0;
3392                         }
3393                 }
3394         }
3395
3396         /*
3397          * Use __pte_alloc instead of pte_alloc_map, because we can't
3398          * run pte_offset_map on the pmd, if an huge pmd could
3399          * materialize from under us from a different thread.
3400          */
3401         if (unlikely(pmd_none(*pmd)) &&
3402             unlikely(__pte_alloc(mm, vma, pmd, address)))
3403                 return VM_FAULT_OOM;
3404         /*
3405          * If a huge pmd materialized under us just retry later.  Use
3406          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3407          * didn't become pmd_trans_huge under us and then back to pmd_none, as
3408          * a result of MADV_DONTNEED running immediately after a huge pmd fault
3409          * in a different thread of this mm, in turn leading to a misleading
3410          * pmd_trans_huge() retval.  All we have to ensure is that it is a
3411          * regular pmd that we can walk with pte_offset_map() and we can do that
3412          * through an atomic read in C, which is what pmd_trans_unstable()
3413          * provides.
3414          */
3415         if (unlikely(pmd_trans_unstable(pmd)))
3416                 return 0;
3417         /*
3418          * A regular pmd is established and it can't morph into a huge pmd
3419          * from under us anymore at this point because we hold the mmap_sem
3420          * read mode and khugepaged takes it in write mode. So now it's
3421          * safe to run pte_offset_map().
3422          */
3423         pte = pte_offset_map(pmd, address);
3424
3425         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3426 }
3427
3428 /*
3429  * By the time we get here, we already hold the mm semaphore
3430  *
3431  * The mmap_sem may have been released depending on flags and our
3432  * return value.  See filemap_fault() and __lock_page_or_retry().
3433  */
3434 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3435                     unsigned long address, unsigned int flags)
3436 {
3437         int ret;
3438
3439         __set_current_state(TASK_RUNNING);
3440
3441         count_vm_event(PGFAULT);
3442         mem_cgroup_count_vm_event(mm, PGFAULT);
3443
3444         /* do counter updates before entering really critical section. */
3445         check_sync_rss_stat(current);
3446
3447         /*
3448          * Enable the memcg OOM handling for faults triggered in user
3449          * space.  Kernel faults are handled more gracefully.
3450          */
3451         if (flags & FAULT_FLAG_USER)
3452                 mem_cgroup_oom_enable();
3453
3454         ret = __handle_mm_fault(mm, vma, address, flags);
3455
3456         if (flags & FAULT_FLAG_USER) {
3457                 mem_cgroup_oom_disable();
3458                 /*
3459                  * The task may have entered a memcg OOM situation but
3460                  * if the allocation error was handled gracefully (no
3461                  * VM_FAULT_OOM), there is no need to kill anything.
3462                  * Just clean up the OOM state peacefully.
3463                  */
3464                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3465                         mem_cgroup_oom_synchronize(false);
3466         }
3467
3468         return ret;
3469 }
3470 EXPORT_SYMBOL_GPL(handle_mm_fault);
3471
3472 #ifndef __PAGETABLE_PUD_FOLDED
3473 /*
3474  * Allocate page upper directory.
3475  * We've already handled the fast-path in-line.
3476  */
3477 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3478 {
3479         pud_t *new = pud_alloc_one(mm, address);
3480         if (!new)
3481                 return -ENOMEM;
3482
3483         smp_wmb(); /* See comment in __pte_alloc */
3484
3485         spin_lock(&mm->page_table_lock);
3486         if (pgd_present(*pgd))          /* Another has populated it */
3487                 pud_free(mm, new);
3488         else
3489                 pgd_populate(mm, pgd, new);
3490         spin_unlock(&mm->page_table_lock);
3491         return 0;
3492 }
3493 #endif /* __PAGETABLE_PUD_FOLDED */
3494
3495 #ifndef __PAGETABLE_PMD_FOLDED
3496 /*
3497  * Allocate page middle directory.
3498  * We've already handled the fast-path in-line.
3499  */
3500 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3501 {
3502         pmd_t *new = pmd_alloc_one(mm, address);
3503         if (!new)
3504                 return -ENOMEM;
3505
3506         smp_wmb(); /* See comment in __pte_alloc */
3507
3508         spin_lock(&mm->page_table_lock);
3509 #ifndef __ARCH_HAS_4LEVEL_HACK
3510         if (!pud_present(*pud)) {
3511                 mm_inc_nr_pmds(mm);
3512                 pud_populate(mm, pud, new);
3513         } else  /* Another has populated it */
3514                 pmd_free(mm, new);
3515 #else
3516         if (!pgd_present(*pud)) {
3517                 mm_inc_nr_pmds(mm);
3518                 pgd_populate(mm, pud, new);
3519         } else /* Another has populated it */
3520                 pmd_free(mm, new);
3521 #endif /* __ARCH_HAS_4LEVEL_HACK */
3522         spin_unlock(&mm->page_table_lock);
3523         return 0;
3524 }
3525 #endif /* __PAGETABLE_PMD_FOLDED */
3526
3527 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3528                 pte_t **ptepp, spinlock_t **ptlp)
3529 {
3530         pgd_t *pgd;
3531         pud_t *pud;
3532         pmd_t *pmd;
3533         pte_t *ptep;
3534
3535         pgd = pgd_offset(mm, address);
3536         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3537                 goto out;
3538
3539         pud = pud_offset(pgd, address);
3540         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3541                 goto out;
3542
3543         pmd = pmd_offset(pud, address);
3544         VM_BUG_ON(pmd_trans_huge(*pmd));
3545         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3546                 goto out;
3547
3548         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3549         if (pmd_huge(*pmd))
3550                 goto out;
3551
3552         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3553         if (!ptep)
3554                 goto out;
3555         if (!pte_present(*ptep))
3556                 goto unlock;
3557         *ptepp = ptep;
3558         return 0;
3559 unlock:
3560         pte_unmap_unlock(ptep, *ptlp);
3561 out:
3562         return -EINVAL;
3563 }
3564
3565 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3566                              pte_t **ptepp, spinlock_t **ptlp)
3567 {
3568         int res;
3569
3570         /* (void) is needed to make gcc happy */
3571         (void) __cond_lock(*ptlp,
3572                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3573         return res;
3574 }
3575
3576 /**
3577  * follow_pfn - look up PFN at a user virtual address
3578  * @vma: memory mapping
3579  * @address: user virtual address
3580  * @pfn: location to store found PFN
3581  *
3582  * Only IO mappings and raw PFN mappings are allowed.
3583  *
3584  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3585  */
3586 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3587         unsigned long *pfn)
3588 {
3589         int ret = -EINVAL;
3590         spinlock_t *ptl;
3591         pte_t *ptep;
3592
3593         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3594                 return ret;
3595
3596         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3597         if (ret)
3598                 return ret;
3599         *pfn = pte_pfn(*ptep);
3600         pte_unmap_unlock(ptep, ptl);
3601         return 0;
3602 }
3603 EXPORT_SYMBOL(follow_pfn);
3604
3605 #ifdef CONFIG_HAVE_IOREMAP_PROT
3606 int follow_phys(struct vm_area_struct *vma,
3607                 unsigned long address, unsigned int flags,
3608                 unsigned long *prot, resource_size_t *phys)
3609 {
3610         int ret = -EINVAL;
3611         pte_t *ptep, pte;
3612         spinlock_t *ptl;
3613
3614         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3615                 goto out;
3616
3617         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3618                 goto out;
3619         pte = *ptep;
3620
3621         if ((flags & FOLL_WRITE) && !pte_write(pte))
3622                 goto unlock;
3623
3624         *prot = pgprot_val(pte_pgprot(pte));
3625         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3626
3627         ret = 0;
3628 unlock:
3629         pte_unmap_unlock(ptep, ptl);
3630 out:
3631         return ret;
3632 }
3633
3634 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3635                         void *buf, int len, int write)
3636 {
3637         resource_size_t phys_addr;
3638         unsigned long prot = 0;
3639         void __iomem *maddr;
3640         int offset = addr & (PAGE_SIZE-1);
3641
3642         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3643                 return -EINVAL;
3644
3645         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3646         if (write)
3647                 memcpy_toio(maddr + offset, buf, len);
3648         else
3649                 memcpy_fromio(buf, maddr + offset, len);
3650         iounmap(maddr);
3651
3652         return len;
3653 }
3654 EXPORT_SYMBOL_GPL(generic_access_phys);
3655 #endif
3656
3657 /*
3658  * Access another process' address space as given in mm.  If non-NULL, use the
3659  * given task for page fault accounting.
3660  */
3661 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3662                 unsigned long addr, void *buf, int len, int write)
3663 {
3664         struct vm_area_struct *vma;
3665         void *old_buf = buf;
3666
3667         down_read(&mm->mmap_sem);
3668         /* ignore errors, just check how much was successfully transferred */
3669         while (len) {
3670                 int bytes, ret, offset;
3671                 void *maddr;
3672                 struct page *page = NULL;
3673
3674                 ret = get_user_pages(tsk, mm, addr, 1,
3675                                 write, 1, &page, &vma);
3676                 if (ret <= 0) {
3677 #ifndef CONFIG_HAVE_IOREMAP_PROT
3678                         break;
3679 #else
3680                         /*
3681                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3682                          * we can access using slightly different code.
3683                          */
3684                         vma = find_vma(mm, addr);
3685                         if (!vma || vma->vm_start > addr)
3686                                 break;
3687                         if (vma->vm_ops && vma->vm_ops->access)
3688                                 ret = vma->vm_ops->access(vma, addr, buf,
3689                                                           len, write);
3690                         if (ret <= 0)
3691                                 break;
3692                         bytes = ret;
3693 #endif
3694                 } else {
3695                         bytes = len;
3696                         offset = addr & (PAGE_SIZE-1);
3697                         if (bytes > PAGE_SIZE-offset)
3698                                 bytes = PAGE_SIZE-offset;
3699
3700                         maddr = kmap(page);
3701                         if (write) {
3702                                 copy_to_user_page(vma, page, addr,
3703                                                   maddr + offset, buf, bytes);
3704                                 set_page_dirty_lock(page);
3705                         } else {
3706                                 copy_from_user_page(vma, page, addr,
3707                                                     buf, maddr + offset, bytes);
3708                         }
3709                         kunmap(page);
3710                         page_cache_release(page);
3711                 }
3712                 len -= bytes;
3713                 buf += bytes;
3714                 addr += bytes;
3715         }
3716         up_read(&mm->mmap_sem);
3717
3718         return buf - old_buf;
3719 }
3720
3721 /**
3722  * access_remote_vm - access another process' address space
3723  * @mm:         the mm_struct of the target address space
3724  * @addr:       start address to access
3725  * @buf:        source or destination buffer
3726  * @len:        number of bytes to transfer
3727  * @write:      whether the access is a write
3728  *
3729  * The caller must hold a reference on @mm.
3730  */
3731 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3732                 void *buf, int len, int write)
3733 {
3734         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3735 }
3736
3737 /*
3738  * Access another process' address space.
3739  * Source/target buffer must be kernel space,
3740  * Do not walk the page table directly, use get_user_pages
3741  */
3742 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3743                 void *buf, int len, int write)
3744 {
3745         struct mm_struct *mm;
3746         int ret;
3747
3748         mm = get_task_mm(tsk);
3749         if (!mm)
3750                 return 0;
3751
3752         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3753         mmput(mm);
3754
3755         return ret;
3756 }
3757
3758 /*
3759  * Print the name of a VMA.
3760  */
3761 void print_vma_addr(char *prefix, unsigned long ip)
3762 {
3763         struct mm_struct *mm = current->mm;
3764         struct vm_area_struct *vma;
3765
3766         /*
3767          * Do not print if we are in atomic
3768          * contexts (in exception stacks, etc.):
3769          */
3770         if (preempt_count())
3771                 return;
3772
3773         down_read(&mm->mmap_sem);
3774         vma = find_vma(mm, ip);
3775         if (vma && vma->vm_file) {
3776                 struct file *f = vma->vm_file;
3777                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3778                 if (buf) {
3779                         char *p;
3780
3781                         p = file_path(f, buf, PAGE_SIZE);
3782                         if (IS_ERR(p))
3783                                 p = "?";
3784                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3785                                         vma->vm_start,
3786                                         vma->vm_end - vma->vm_start);
3787                         free_page((unsigned long)buf);
3788                 }
3789         }
3790         up_read(&mm->mmap_sem);
3791 }
3792
3793 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3794 void __might_fault(const char *file, int line)
3795 {
3796         /*
3797          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3798          * holding the mmap_sem, this is safe because kernel memory doesn't
3799          * get paged out, therefore we'll never actually fault, and the
3800          * below annotations will generate false positives.
3801          */
3802         if (segment_eq(get_fs(), KERNEL_DS))
3803                 return;
3804         if (pagefault_disabled())
3805                 return;
3806         __might_sleep(file, line, 0);
3807 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3808         if (current->mm)
3809                 might_lock_read(&current->mm->mmap_sem);
3810 #endif
3811 }
3812 EXPORT_SYMBOL(__might_fault);
3813 #endif
3814
3815 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3816 static void clear_gigantic_page(struct page *page,
3817                                 unsigned long addr,
3818                                 unsigned int pages_per_huge_page)
3819 {
3820         int i;
3821         struct page *p = page;
3822
3823         might_sleep();
3824         for (i = 0; i < pages_per_huge_page;
3825              i++, p = mem_map_next(p, page, i)) {
3826                 cond_resched();
3827                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3828         }
3829 }
3830 void clear_huge_page(struct page *page,
3831                      unsigned long addr, unsigned int pages_per_huge_page)
3832 {
3833         int i;
3834
3835         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3836                 clear_gigantic_page(page, addr, pages_per_huge_page);
3837                 return;
3838         }
3839
3840         might_sleep();
3841         for (i = 0; i < pages_per_huge_page; i++) {
3842                 cond_resched();
3843                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3844         }
3845 }
3846
3847 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3848                                     unsigned long addr,
3849                                     struct vm_area_struct *vma,
3850                                     unsigned int pages_per_huge_page)
3851 {
3852         int i;
3853         struct page *dst_base = dst;
3854         struct page *src_base = src;
3855
3856         for (i = 0; i < pages_per_huge_page; ) {
3857                 cond_resched();
3858                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3859
3860                 i++;
3861                 dst = mem_map_next(dst, dst_base, i);
3862                 src = mem_map_next(src, src_base, i);
3863         }
3864 }
3865
3866 void copy_user_huge_page(struct page *dst, struct page *src,
3867                          unsigned long addr, struct vm_area_struct *vma,
3868                          unsigned int pages_per_huge_page)
3869 {
3870         int i;
3871
3872         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3873                 copy_user_gigantic_page(dst, src, addr, vma,
3874                                         pages_per_huge_page);
3875                 return;
3876         }
3877
3878         might_sleep();
3879         for (i = 0; i < pages_per_huge_page; i++) {
3880                 cond_resched();
3881                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3882         }
3883 }
3884 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3885
3886 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3887
3888 static struct kmem_cache *page_ptl_cachep;
3889
3890 void __init ptlock_cache_init(void)
3891 {
3892         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3893                         SLAB_PANIC, NULL);
3894 }
3895
3896 bool ptlock_alloc(struct page *page)
3897 {
3898         spinlock_t *ptl;
3899
3900         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3901         if (!ptl)
3902                 return false;
3903         page->ptl = ptl;
3904         return true;
3905 }
3906
3907 void ptlock_free(struct page *page)
3908 {
3909         kmem_cache_free(page_ptl_cachep, page->ptl);
3910 }
3911 #endif