2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
102 #include "internal.h"
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
111 /* Highest zone. An specific allocation for a zone below that is not
113 enum zone_type policy_zone = 0;
116 * run-time system-wide default policy => local allocation
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
126 struct mempolicy *get_task_policy(struct task_struct *p)
128 struct mempolicy *pol = p->mempolicy;
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
142 return &default_policy;
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
153 * If we have a lock to protect task->mempolicy in read-side, we do
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
167 return pol->flags & MPOL_MODE_FLAGS;
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 const nodemask_t *rel)
174 nodes_fold(tmp, *orig, nodes_weight(*rel));
175 nodes_onto(*ret, tmp, *rel);
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
180 if (nodes_empty(*nodes))
182 pol->v.nodes = *nodes;
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
189 pol->flags |= MPOL_F_LOCAL; /* local allocation */
190 else if (nodes_empty(*nodes))
191 return -EINVAL; /* no allowed nodes */
193 pol->v.preferred_node = first_node(*nodes);
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
199 if (nodes_empty(*nodes))
201 pol->v.nodes = *nodes;
206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207 * any, for the new policy. mpol_new() has already validated the nodes
208 * parameter with respect to the policy mode and flags. But, we need to
209 * handle an empty nodemask with MPOL_PREFERRED here.
211 * Must be called holding task's alloc_lock to protect task's mems_allowed
212 * and mempolicy. May also be called holding the mmap_semaphore for write.
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 const nodemask_t *nodes, struct nodemask_scratch *nsc)
219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
223 nodes_and(nsc->mask1,
224 cpuset_current_mems_allowed, node_states[N_MEMORY]);
227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 nodes = NULL; /* explicit local allocation */
230 if (pol->flags & MPOL_F_RELATIVE_NODES)
231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
233 nodes_and(nsc->mask2, *nodes, nsc->mask1);
235 if (mpol_store_user_nodemask(pol))
236 pol->w.user_nodemask = *nodes;
238 pol->w.cpuset_mems_allowed =
239 cpuset_current_mems_allowed;
243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
245 ret = mpol_ops[pol->mode].create(pol, NULL);
250 * This function just creates a new policy, does some check and simple
251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
256 struct mempolicy *policy;
258 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
261 if (mode == MPOL_DEFAULT) {
262 if (nodes && !nodes_empty(*nodes))
263 return ERR_PTR(-EINVAL);
269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 * All other modes require a valid pointer to a non-empty nodemask.
273 if (mode == MPOL_PREFERRED) {
274 if (nodes_empty(*nodes)) {
275 if (((flags & MPOL_F_STATIC_NODES) ||
276 (flags & MPOL_F_RELATIVE_NODES)))
277 return ERR_PTR(-EINVAL);
279 } else if (mode == MPOL_LOCAL) {
280 if (!nodes_empty(*nodes))
281 return ERR_PTR(-EINVAL);
282 mode = MPOL_PREFERRED;
283 } else if (nodes_empty(*nodes))
284 return ERR_PTR(-EINVAL);
285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
287 return ERR_PTR(-ENOMEM);
288 atomic_set(&policy->refcnt, 1);
290 policy->flags = flags;
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
298 if (!atomic_dec_and_test(&p->refcnt))
300 kmem_cache_free(policy_cache, p);
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
310 * MPOL_REBIND_ONCE - do rebind work at once
311 * MPOL_REBIND_STEP1 - set all the newly nodes
312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 enum mpol_rebind_step step)
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 nodes_remap(tmp, pol->v.nodes,
330 pol->w.cpuset_mems_allowed, *nodes);
331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 } else if (step == MPOL_REBIND_STEP2) {
333 tmp = pol->w.cpuset_mems_allowed;
334 pol->w.cpuset_mems_allowed = *nodes;
339 if (nodes_empty(tmp))
342 if (step == MPOL_REBIND_STEP1)
343 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
349 if (!node_isset(current->il_next, tmp)) {
350 current->il_next = next_node(current->il_next, tmp);
351 if (current->il_next >= MAX_NUMNODES)
352 current->il_next = first_node(tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = numa_node_id();
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 const nodemask_t *nodes,
360 enum mpol_rebind_step step)
364 if (pol->flags & MPOL_F_STATIC_NODES) {
365 int node = first_node(pol->w.user_nodemask);
367 if (node_isset(node, *nodes)) {
368 pol->v.preferred_node = node;
369 pol->flags &= ~MPOL_F_LOCAL;
371 pol->flags |= MPOL_F_LOCAL;
372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 pol->v.preferred_node = first_node(tmp);
375 } else if (!(pol->flags & MPOL_F_LOCAL)) {
376 pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 pol->w.cpuset_mems_allowed,
379 pol->w.cpuset_mems_allowed = *nodes;
384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
386 * If read-side task has no lock to protect task->mempolicy, write-side
387 * task will rebind the task->mempolicy by two step. The first step is
388 * setting all the newly nodes, and the second step is cleaning all the
389 * disallowed nodes. In this way, we can avoid finding no node to alloc
391 * If we have a lock to protect task->mempolicy in read-side, we do
395 * MPOL_REBIND_ONCE - do rebind work at once
396 * MPOL_REBIND_STEP1 - set all the newly nodes
397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 enum mpol_rebind_step step)
404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
414 if (step == MPOL_REBIND_STEP1)
415 pol->flags |= MPOL_F_REBINDING;
416 else if (step == MPOL_REBIND_STEP2)
417 pol->flags &= ~MPOL_F_REBINDING;
418 else if (step >= MPOL_REBIND_NSTEP)
421 mpol_ops[pol->mode].rebind(pol, newmask, step);
425 * Wrapper for mpol_rebind_policy() that just requires task
426 * pointer, and updates task mempolicy.
428 * Called with task's alloc_lock held.
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 enum mpol_rebind_step step)
434 mpol_rebind_policy(tsk->mempolicy, new, step);
438 * Rebind each vma in mm to new nodemask.
440 * Call holding a reference to mm. Takes mm->mmap_sem during call.
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
445 struct vm_area_struct *vma;
447 down_write(&mm->mmap_sem);
448 for (vma = mm->mmap; vma; vma = vma->vm_next)
449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 up_write(&mm->mmap_sem);
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
455 .rebind = mpol_rebind_default,
457 [MPOL_INTERLEAVE] = {
458 .create = mpol_new_interleave,
459 .rebind = mpol_rebind_nodemask,
462 .create = mpol_new_preferred,
463 .rebind = mpol_rebind_preferred,
466 .create = mpol_new_bind,
467 .rebind = mpol_rebind_nodemask,
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 unsigned long flags);
475 struct list_head *pagelist;
478 struct vm_area_struct *prev;
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 unsigned long end, struct mm_walk *walk)
488 struct vm_area_struct *vma = walk->vma;
490 struct queue_pages *qp = walk->private;
491 unsigned long flags = qp->flags;
496 split_huge_page_pmd(vma, addr, pmd);
497 if (pmd_trans_unstable(pmd))
500 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 for (; addr != end; pte++, addr += PAGE_SIZE) {
502 if (!pte_present(*pte))
504 page = vm_normal_page(vma, addr, *pte);
508 * vm_normal_page() filters out zero pages, but there might
509 * still be PageReserved pages to skip, perhaps in a VDSO.
511 if (PageReserved(page))
513 nid = page_to_nid(page);
514 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
517 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
518 migrate_page_add(page, qp->pagelist, flags);
520 pte_unmap_unlock(pte - 1, ptl);
525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
526 unsigned long addr, unsigned long end,
527 struct mm_walk *walk)
529 #ifdef CONFIG_HUGETLB_PAGE
530 struct queue_pages *qp = walk->private;
531 unsigned long flags = qp->flags;
537 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
538 entry = huge_ptep_get(pte);
539 if (!pte_present(entry))
541 page = pte_page(entry);
542 nid = page_to_nid(page);
543 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
545 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
546 if (flags & (MPOL_MF_MOVE_ALL) ||
547 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
548 isolate_huge_page(page, qp->pagelist);
557 #ifdef CONFIG_NUMA_BALANCING
559 * This is used to mark a range of virtual addresses to be inaccessible.
560 * These are later cleared by a NUMA hinting fault. Depending on these
561 * faults, pages may be migrated for better NUMA placement.
563 * This is assuming that NUMA faults are handled using PROT_NONE. If
564 * an architecture makes a different choice, it will need further
565 * changes to the core.
567 unsigned long change_prot_numa(struct vm_area_struct *vma,
568 unsigned long addr, unsigned long end)
572 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
574 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
579 static unsigned long change_prot_numa(struct vm_area_struct *vma,
580 unsigned long addr, unsigned long end)
584 #endif /* CONFIG_NUMA_BALANCING */
586 static int queue_pages_test_walk(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
589 struct vm_area_struct *vma = walk->vma;
590 struct queue_pages *qp = walk->private;
591 unsigned long endvma = vma->vm_end;
592 unsigned long flags = qp->flags;
594 if (vma->vm_flags & VM_PFNMAP)
599 if (vma->vm_start > start)
600 start = vma->vm_start;
602 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
603 if (!vma->vm_next && vma->vm_end < end)
605 if (qp->prev && qp->prev->vm_end < vma->vm_start)
611 if (flags & MPOL_MF_LAZY) {
612 /* Similar to task_numa_work, skip inaccessible VMAs */
613 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
614 change_prot_numa(vma, start, endvma);
618 if ((flags & MPOL_MF_STRICT) ||
619 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
620 vma_migratable(vma)))
621 /* queue pages from current vma */
627 * Walk through page tables and collect pages to be migrated.
629 * If pages found in a given range are on a set of nodes (determined by
630 * @nodes and @flags,) it's isolated and queued to the pagelist which is
631 * passed via @private.)
634 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
635 nodemask_t *nodes, unsigned long flags,
636 struct list_head *pagelist)
638 struct queue_pages qp = {
639 .pagelist = pagelist,
644 struct mm_walk queue_pages_walk = {
645 .hugetlb_entry = queue_pages_hugetlb,
646 .pmd_entry = queue_pages_pte_range,
647 .test_walk = queue_pages_test_walk,
652 return walk_page_range(start, end, &queue_pages_walk);
656 * Apply policy to a single VMA
657 * This must be called with the mmap_sem held for writing.
659 static int vma_replace_policy(struct vm_area_struct *vma,
660 struct mempolicy *pol)
663 struct mempolicy *old;
664 struct mempolicy *new;
666 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
667 vma->vm_start, vma->vm_end, vma->vm_pgoff,
668 vma->vm_ops, vma->vm_file,
669 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
675 if (vma->vm_ops && vma->vm_ops->set_policy) {
676 err = vma->vm_ops->set_policy(vma, new);
681 old = vma->vm_policy;
682 vma->vm_policy = new; /* protected by mmap_sem */
691 /* Step 2: apply policy to a range and do splits. */
692 static int mbind_range(struct mm_struct *mm, unsigned long start,
693 unsigned long end, struct mempolicy *new_pol)
695 struct vm_area_struct *next;
696 struct vm_area_struct *prev;
697 struct vm_area_struct *vma;
700 unsigned long vmstart;
703 vma = find_vma(mm, start);
704 if (!vma || vma->vm_start > start)
708 if (start > vma->vm_start)
711 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
713 vmstart = max(start, vma->vm_start);
714 vmend = min(end, vma->vm_end);
716 if (mpol_equal(vma_policy(vma), new_pol))
719 pgoff = vma->vm_pgoff +
720 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
721 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
722 vma->anon_vma, vma->vm_file, pgoff,
723 new_pol, vma->vm_userfaultfd_ctx,
724 vma_get_anon_name(vma));
728 if (mpol_equal(vma_policy(vma), new_pol))
730 /* vma_merge() joined vma && vma->next, case 8 */
733 if (vma->vm_start != vmstart) {
734 err = split_vma(vma->vm_mm, vma, vmstart, 1);
738 if (vma->vm_end != vmend) {
739 err = split_vma(vma->vm_mm, vma, vmend, 0);
744 err = vma_replace_policy(vma, new_pol);
753 /* Set the process memory policy */
754 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
757 struct mempolicy *new, *old;
758 NODEMASK_SCRATCH(scratch);
764 new = mpol_new(mode, flags, nodes);
771 ret = mpol_set_nodemask(new, nodes, scratch);
773 task_unlock(current);
777 old = current->mempolicy;
778 current->mempolicy = new;
779 if (new && new->mode == MPOL_INTERLEAVE &&
780 nodes_weight(new->v.nodes))
781 current->il_next = first_node(new->v.nodes);
782 task_unlock(current);
786 NODEMASK_SCRATCH_FREE(scratch);
791 * Return nodemask for policy for get_mempolicy() query
793 * Called with task's alloc_lock held
795 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
798 if (p == &default_policy)
804 case MPOL_INTERLEAVE:
808 if (!(p->flags & MPOL_F_LOCAL))
809 node_set(p->v.preferred_node, *nodes);
810 /* else return empty node mask for local allocation */
817 static int lookup_node(struct mm_struct *mm, unsigned long addr)
822 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
824 err = page_to_nid(p);
830 /* Retrieve NUMA policy */
831 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
832 unsigned long addr, unsigned long flags)
835 struct mm_struct *mm = current->mm;
836 struct vm_area_struct *vma = NULL;
837 struct mempolicy *pol = current->mempolicy;
840 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
843 if (flags & MPOL_F_MEMS_ALLOWED) {
844 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
846 *policy = 0; /* just so it's initialized */
848 *nmask = cpuset_current_mems_allowed;
849 task_unlock(current);
853 if (flags & MPOL_F_ADDR) {
855 * Do NOT fall back to task policy if the
856 * vma/shared policy at addr is NULL. We
857 * want to return MPOL_DEFAULT in this case.
859 down_read(&mm->mmap_sem);
860 vma = find_vma_intersection(mm, addr, addr+1);
862 up_read(&mm->mmap_sem);
865 if (vma->vm_ops && vma->vm_ops->get_policy)
866 pol = vma->vm_ops->get_policy(vma, addr);
868 pol = vma->vm_policy;
873 pol = &default_policy; /* indicates default behavior */
875 if (flags & MPOL_F_NODE) {
876 if (flags & MPOL_F_ADDR) {
877 err = lookup_node(mm, addr);
881 } else if (pol == current->mempolicy &&
882 pol->mode == MPOL_INTERLEAVE) {
883 *policy = current->il_next;
889 *policy = pol == &default_policy ? MPOL_DEFAULT :
892 * Internal mempolicy flags must be masked off before exposing
893 * the policy to userspace.
895 *policy |= (pol->flags & MPOL_MODE_FLAGS);
899 up_read(¤t->mm->mmap_sem);
905 if (mpol_store_user_nodemask(pol)) {
906 *nmask = pol->w.user_nodemask;
909 get_policy_nodemask(pol, nmask);
910 task_unlock(current);
917 up_read(¤t->mm->mmap_sem);
921 #ifdef CONFIG_MIGRATION
925 static void migrate_page_add(struct page *page, struct list_head *pagelist,
929 * Avoid migrating a page that is shared with others.
931 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
932 if (!isolate_lru_page(page)) {
933 list_add_tail(&page->lru, pagelist);
934 inc_zone_page_state(page, NR_ISOLATED_ANON +
935 page_is_file_cache(page));
940 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
943 return alloc_huge_page_node(page_hstate(compound_head(page)),
946 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
951 * Migrate pages from one node to a target node.
952 * Returns error or the number of pages not migrated.
954 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
962 node_set(source, nmask);
965 * This does not "check" the range but isolates all pages that
966 * need migration. Between passing in the full user address
967 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
969 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
970 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
971 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
973 if (!list_empty(&pagelist)) {
974 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
975 MIGRATE_SYNC, MR_SYSCALL);
977 putback_movable_pages(&pagelist);
984 * Move pages between the two nodesets so as to preserve the physical
985 * layout as much as possible.
987 * Returns the number of page that could not be moved.
989 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
990 const nodemask_t *to, int flags)
996 err = migrate_prep();
1000 down_read(&mm->mmap_sem);
1003 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1004 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1005 * bit in 'tmp', and return that <source, dest> pair for migration.
1006 * The pair of nodemasks 'to' and 'from' define the map.
1008 * If no pair of bits is found that way, fallback to picking some
1009 * pair of 'source' and 'dest' bits that are not the same. If the
1010 * 'source' and 'dest' bits are the same, this represents a node
1011 * that will be migrating to itself, so no pages need move.
1013 * If no bits are left in 'tmp', or if all remaining bits left
1014 * in 'tmp' correspond to the same bit in 'to', return false
1015 * (nothing left to migrate).
1017 * This lets us pick a pair of nodes to migrate between, such that
1018 * if possible the dest node is not already occupied by some other
1019 * source node, minimizing the risk of overloading the memory on a
1020 * node that would happen if we migrated incoming memory to a node
1021 * before migrating outgoing memory source that same node.
1023 * A single scan of tmp is sufficient. As we go, we remember the
1024 * most recent <s, d> pair that moved (s != d). If we find a pair
1025 * that not only moved, but what's better, moved to an empty slot
1026 * (d is not set in tmp), then we break out then, with that pair.
1027 * Otherwise when we finish scanning from_tmp, we at least have the
1028 * most recent <s, d> pair that moved. If we get all the way through
1029 * the scan of tmp without finding any node that moved, much less
1030 * moved to an empty node, then there is nothing left worth migrating.
1034 while (!nodes_empty(tmp)) {
1036 int source = NUMA_NO_NODE;
1039 for_each_node_mask(s, tmp) {
1042 * do_migrate_pages() tries to maintain the relative
1043 * node relationship of the pages established between
1044 * threads and memory areas.
1046 * However if the number of source nodes is not equal to
1047 * the number of destination nodes we can not preserve
1048 * this node relative relationship. In that case, skip
1049 * copying memory from a node that is in the destination
1052 * Example: [2,3,4] -> [3,4,5] moves everything.
1053 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1056 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1057 (node_isset(s, *to)))
1060 d = node_remap(s, *from, *to);
1064 source = s; /* Node moved. Memorize */
1067 /* dest not in remaining from nodes? */
1068 if (!node_isset(dest, tmp))
1071 if (source == NUMA_NO_NODE)
1074 node_clear(source, tmp);
1075 err = migrate_to_node(mm, source, dest, flags);
1081 up_read(&mm->mmap_sem);
1089 * Allocate a new page for page migration based on vma policy.
1090 * Start by assuming the page is mapped by the same vma as contains @start.
1091 * Search forward from there, if not. N.B., this assumes that the
1092 * list of pages handed to migrate_pages()--which is how we get here--
1093 * is in virtual address order.
1095 static struct page *new_page(struct page *page, unsigned long start, int **x)
1097 struct vm_area_struct *vma;
1098 unsigned long uninitialized_var(address);
1100 vma = find_vma(current->mm, start);
1102 address = page_address_in_vma(page, vma);
1103 if (address != -EFAULT)
1108 if (PageHuge(page)) {
1110 return alloc_huge_page_noerr(vma, address, 1);
1113 * if !vma, alloc_page_vma() will use task or system default policy
1115 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1119 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1120 unsigned long flags)
1124 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1125 const nodemask_t *to, int flags)
1130 static struct page *new_page(struct page *page, unsigned long start, int **x)
1136 static long do_mbind(unsigned long start, unsigned long len,
1137 unsigned short mode, unsigned short mode_flags,
1138 nodemask_t *nmask, unsigned long flags)
1140 struct mm_struct *mm = current->mm;
1141 struct mempolicy *new;
1144 LIST_HEAD(pagelist);
1146 if (flags & ~(unsigned long)MPOL_MF_VALID)
1148 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1151 if (start & ~PAGE_MASK)
1154 if (mode == MPOL_DEFAULT)
1155 flags &= ~MPOL_MF_STRICT;
1157 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1165 new = mpol_new(mode, mode_flags, nmask);
1167 return PTR_ERR(new);
1169 if (flags & MPOL_MF_LAZY)
1170 new->flags |= MPOL_F_MOF;
1173 * If we are using the default policy then operation
1174 * on discontinuous address spaces is okay after all
1177 flags |= MPOL_MF_DISCONTIG_OK;
1179 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1180 start, start + len, mode, mode_flags,
1181 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1183 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1185 err = migrate_prep();
1190 NODEMASK_SCRATCH(scratch);
1192 down_write(&mm->mmap_sem);
1194 err = mpol_set_nodemask(new, nmask, scratch);
1195 task_unlock(current);
1197 up_write(&mm->mmap_sem);
1200 NODEMASK_SCRATCH_FREE(scratch);
1205 err = queue_pages_range(mm, start, end, nmask,
1206 flags | MPOL_MF_INVERT, &pagelist);
1208 err = mbind_range(mm, start, end, new);
1213 if (!list_empty(&pagelist)) {
1214 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1215 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1216 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1218 putback_movable_pages(&pagelist);
1221 if (nr_failed && (flags & MPOL_MF_STRICT))
1224 putback_movable_pages(&pagelist);
1226 up_write(&mm->mmap_sem);
1233 * User space interface with variable sized bitmaps for nodelists.
1236 /* Copy a node mask from user space. */
1237 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1238 unsigned long maxnode)
1241 unsigned long nlongs;
1242 unsigned long endmask;
1245 nodes_clear(*nodes);
1246 if (maxnode == 0 || !nmask)
1248 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1251 nlongs = BITS_TO_LONGS(maxnode);
1252 if ((maxnode % BITS_PER_LONG) == 0)
1255 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1257 /* When the user specified more nodes than supported just check
1258 if the non supported part is all zero. */
1259 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1260 if (nlongs > PAGE_SIZE/sizeof(long))
1262 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1264 if (get_user(t, nmask + k))
1266 if (k == nlongs - 1) {
1272 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1276 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1278 nodes_addr(*nodes)[nlongs-1] &= endmask;
1282 /* Copy a kernel node mask to user space */
1283 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1286 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1287 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1289 if (copy > nbytes) {
1290 if (copy > PAGE_SIZE)
1292 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1296 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1299 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1300 unsigned long, mode, const unsigned long __user *, nmask,
1301 unsigned long, maxnode, unsigned, flags)
1305 unsigned short mode_flags;
1307 mode_flags = mode & MPOL_MODE_FLAGS;
1308 mode &= ~MPOL_MODE_FLAGS;
1309 if (mode >= MPOL_MAX)
1311 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1312 (mode_flags & MPOL_F_RELATIVE_NODES))
1314 err = get_nodes(&nodes, nmask, maxnode);
1317 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1320 /* Set the process memory policy */
1321 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1322 unsigned long, maxnode)
1326 unsigned short flags;
1328 flags = mode & MPOL_MODE_FLAGS;
1329 mode &= ~MPOL_MODE_FLAGS;
1330 if ((unsigned int)mode >= MPOL_MAX)
1332 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1334 err = get_nodes(&nodes, nmask, maxnode);
1337 return do_set_mempolicy(mode, flags, &nodes);
1340 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1341 const unsigned long __user *, old_nodes,
1342 const unsigned long __user *, new_nodes)
1344 const struct cred *cred = current_cred(), *tcred;
1345 struct mm_struct *mm = NULL;
1346 struct task_struct *task;
1347 nodemask_t task_nodes;
1351 NODEMASK_SCRATCH(scratch);
1356 old = &scratch->mask1;
1357 new = &scratch->mask2;
1359 err = get_nodes(old, old_nodes, maxnode);
1363 err = get_nodes(new, new_nodes, maxnode);
1367 /* Find the mm_struct */
1369 task = pid ? find_task_by_vpid(pid) : current;
1375 get_task_struct(task);
1380 * Check if this process has the right to modify the specified
1381 * process. The right exists if the process has administrative
1382 * capabilities, superuser privileges or the same
1383 * userid as the target process.
1385 tcred = __task_cred(task);
1386 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1387 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1388 !capable(CAP_SYS_NICE)) {
1395 task_nodes = cpuset_mems_allowed(task);
1396 /* Is the user allowed to access the target nodes? */
1397 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1402 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1407 err = security_task_movememory(task);
1411 mm = get_task_mm(task);
1412 put_task_struct(task);
1419 err = do_migrate_pages(mm, old, new,
1420 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1424 NODEMASK_SCRATCH_FREE(scratch);
1429 put_task_struct(task);
1435 /* Retrieve NUMA policy */
1436 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1437 unsigned long __user *, nmask, unsigned long, maxnode,
1438 unsigned long, addr, unsigned long, flags)
1441 int uninitialized_var(pval);
1444 if (nmask != NULL && maxnode < MAX_NUMNODES)
1447 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1452 if (policy && put_user(pval, policy))
1456 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1461 #ifdef CONFIG_COMPAT
1463 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1464 compat_ulong_t __user *, nmask,
1465 compat_ulong_t, maxnode,
1466 compat_ulong_t, addr, compat_ulong_t, flags)
1469 unsigned long __user *nm = NULL;
1470 unsigned long nr_bits, alloc_size;
1471 DECLARE_BITMAP(bm, MAX_NUMNODES);
1473 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1474 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1477 nm = compat_alloc_user_space(alloc_size);
1479 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1481 if (!err && nmask) {
1482 unsigned long copy_size;
1483 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1484 err = copy_from_user(bm, nm, copy_size);
1485 /* ensure entire bitmap is zeroed */
1486 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1487 err |= compat_put_bitmap(nmask, bm, nr_bits);
1493 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1494 compat_ulong_t, maxnode)
1497 unsigned long __user *nm = NULL;
1498 unsigned long nr_bits, alloc_size;
1499 DECLARE_BITMAP(bm, MAX_NUMNODES);
1501 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1502 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1505 err = compat_get_bitmap(bm, nmask, nr_bits);
1506 nm = compat_alloc_user_space(alloc_size);
1507 err |= copy_to_user(nm, bm, alloc_size);
1513 return sys_set_mempolicy(mode, nm, nr_bits+1);
1516 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1517 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1518 compat_ulong_t, maxnode, compat_ulong_t, flags)
1521 unsigned long __user *nm = NULL;
1522 unsigned long nr_bits, alloc_size;
1525 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1526 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1529 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1530 nm = compat_alloc_user_space(alloc_size);
1531 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1537 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1542 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1545 struct mempolicy *pol = NULL;
1548 if (vma->vm_ops && vma->vm_ops->get_policy) {
1549 pol = vma->vm_ops->get_policy(vma, addr);
1550 } else if (vma->vm_policy) {
1551 pol = vma->vm_policy;
1554 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1555 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1556 * count on these policies which will be dropped by
1557 * mpol_cond_put() later
1559 if (mpol_needs_cond_ref(pol))
1568 * get_vma_policy(@vma, @addr)
1569 * @vma: virtual memory area whose policy is sought
1570 * @addr: address in @vma for shared policy lookup
1572 * Returns effective policy for a VMA at specified address.
1573 * Falls back to current->mempolicy or system default policy, as necessary.
1574 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1575 * count--added by the get_policy() vm_op, as appropriate--to protect against
1576 * freeing by another task. It is the caller's responsibility to free the
1577 * extra reference for shared policies.
1579 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1582 struct mempolicy *pol = __get_vma_policy(vma, addr);
1585 pol = get_task_policy(current);
1590 bool vma_policy_mof(struct vm_area_struct *vma)
1592 struct mempolicy *pol;
1594 if (vma->vm_ops && vma->vm_ops->get_policy) {
1597 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1598 if (pol && (pol->flags & MPOL_F_MOF))
1605 pol = vma->vm_policy;
1607 pol = get_task_policy(current);
1609 return pol->flags & MPOL_F_MOF;
1612 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1614 enum zone_type dynamic_policy_zone = policy_zone;
1616 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1619 * if policy->v.nodes has movable memory only,
1620 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1622 * policy->v.nodes is intersect with node_states[N_MEMORY].
1623 * so if the following test faile, it implies
1624 * policy->v.nodes has movable memory only.
1626 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1627 dynamic_policy_zone = ZONE_MOVABLE;
1629 return zone >= dynamic_policy_zone;
1633 * Return a nodemask representing a mempolicy for filtering nodes for
1636 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1638 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1639 if (unlikely(policy->mode == MPOL_BIND) &&
1640 apply_policy_zone(policy, gfp_zone(gfp)) &&
1641 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1642 return &policy->v.nodes;
1647 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1648 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1651 switch (policy->mode) {
1652 case MPOL_PREFERRED:
1653 if (!(policy->flags & MPOL_F_LOCAL))
1654 nd = policy->v.preferred_node;
1658 * Normally, MPOL_BIND allocations are node-local within the
1659 * allowed nodemask. However, if __GFP_THISNODE is set and the
1660 * current node isn't part of the mask, we use the zonelist for
1661 * the first node in the mask instead.
1663 if (unlikely(gfp & __GFP_THISNODE) &&
1664 unlikely(!node_isset(nd, policy->v.nodes)))
1665 nd = first_node(policy->v.nodes);
1670 return node_zonelist(nd, gfp);
1673 /* Do dynamic interleaving for a process */
1674 static unsigned interleave_nodes(struct mempolicy *policy)
1677 struct task_struct *me = current;
1680 next = next_node(nid, policy->v.nodes);
1681 if (next >= MAX_NUMNODES)
1682 next = first_node(policy->v.nodes);
1683 if (next < MAX_NUMNODES)
1689 * Depending on the memory policy provide a node from which to allocate the
1692 unsigned int mempolicy_slab_node(void)
1694 struct mempolicy *policy;
1695 int node = numa_mem_id();
1700 policy = current->mempolicy;
1701 if (!policy || policy->flags & MPOL_F_LOCAL)
1704 switch (policy->mode) {
1705 case MPOL_PREFERRED:
1707 * handled MPOL_F_LOCAL above
1709 return policy->v.preferred_node;
1711 case MPOL_INTERLEAVE:
1712 return interleave_nodes(policy);
1716 * Follow bind policy behavior and start allocation at the
1719 struct zonelist *zonelist;
1721 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1722 zonelist = &NODE_DATA(node)->node_zonelists[0];
1723 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1726 return zone ? zone->node : node;
1734 /* Do static interleaving for a VMA with known offset. */
1735 static unsigned offset_il_node(struct mempolicy *pol,
1736 struct vm_area_struct *vma, unsigned long off)
1738 unsigned nnodes = nodes_weight(pol->v.nodes);
1741 int nid = NUMA_NO_NODE;
1744 return numa_node_id();
1745 target = (unsigned int)off % nnodes;
1748 nid = next_node(nid, pol->v.nodes);
1750 } while (c <= target);
1754 /* Determine a node number for interleave */
1755 static inline unsigned interleave_nid(struct mempolicy *pol,
1756 struct vm_area_struct *vma, unsigned long addr, int shift)
1762 * for small pages, there is no difference between
1763 * shift and PAGE_SHIFT, so the bit-shift is safe.
1764 * for huge pages, since vm_pgoff is in units of small
1765 * pages, we need to shift off the always 0 bits to get
1768 BUG_ON(shift < PAGE_SHIFT);
1769 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1770 off += (addr - vma->vm_start) >> shift;
1771 return offset_il_node(pol, vma, off);
1773 return interleave_nodes(pol);
1777 * Return the bit number of a random bit set in the nodemask.
1778 * (returns NUMA_NO_NODE if nodemask is empty)
1780 int node_random(const nodemask_t *maskp)
1782 int w, bit = NUMA_NO_NODE;
1784 w = nodes_weight(*maskp);
1786 bit = bitmap_ord_to_pos(maskp->bits,
1787 get_random_int() % w, MAX_NUMNODES);
1791 #ifdef CONFIG_HUGETLBFS
1793 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1794 * @vma: virtual memory area whose policy is sought
1795 * @addr: address in @vma for shared policy lookup and interleave policy
1796 * @gfp_flags: for requested zone
1797 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1798 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1800 * Returns a zonelist suitable for a huge page allocation and a pointer
1801 * to the struct mempolicy for conditional unref after allocation.
1802 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1803 * @nodemask for filtering the zonelist.
1805 * Must be protected by read_mems_allowed_begin()
1807 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1808 gfp_t gfp_flags, struct mempolicy **mpol,
1809 nodemask_t **nodemask)
1811 struct zonelist *zl;
1813 *mpol = get_vma_policy(vma, addr);
1814 *nodemask = NULL; /* assume !MPOL_BIND */
1816 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1817 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1818 huge_page_shift(hstate_vma(vma))), gfp_flags);
1820 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1821 if ((*mpol)->mode == MPOL_BIND)
1822 *nodemask = &(*mpol)->v.nodes;
1828 * init_nodemask_of_mempolicy
1830 * If the current task's mempolicy is "default" [NULL], return 'false'
1831 * to indicate default policy. Otherwise, extract the policy nodemask
1832 * for 'bind' or 'interleave' policy into the argument nodemask, or
1833 * initialize the argument nodemask to contain the single node for
1834 * 'preferred' or 'local' policy and return 'true' to indicate presence
1835 * of non-default mempolicy.
1837 * We don't bother with reference counting the mempolicy [mpol_get/put]
1838 * because the current task is examining it's own mempolicy and a task's
1839 * mempolicy is only ever changed by the task itself.
1841 * N.B., it is the caller's responsibility to free a returned nodemask.
1843 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1845 struct mempolicy *mempolicy;
1848 if (!(mask && current->mempolicy))
1852 mempolicy = current->mempolicy;
1853 switch (mempolicy->mode) {
1854 case MPOL_PREFERRED:
1855 if (mempolicy->flags & MPOL_F_LOCAL)
1856 nid = numa_node_id();
1858 nid = mempolicy->v.preferred_node;
1859 init_nodemask_of_node(mask, nid);
1864 case MPOL_INTERLEAVE:
1865 *mask = mempolicy->v.nodes;
1871 task_unlock(current);
1878 * mempolicy_nodemask_intersects
1880 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1881 * policy. Otherwise, check for intersection between mask and the policy
1882 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1883 * policy, always return true since it may allocate elsewhere on fallback.
1885 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1887 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1888 const nodemask_t *mask)
1890 struct mempolicy *mempolicy;
1896 mempolicy = tsk->mempolicy;
1900 switch (mempolicy->mode) {
1901 case MPOL_PREFERRED:
1903 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1904 * allocate from, they may fallback to other nodes when oom.
1905 * Thus, it's possible for tsk to have allocated memory from
1910 case MPOL_INTERLEAVE:
1911 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1921 /* Allocate a page in interleaved policy.
1922 Own path because it needs to do special accounting. */
1923 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1926 struct zonelist *zl;
1929 zl = node_zonelist(nid, gfp);
1930 page = __alloc_pages(gfp, order, zl);
1931 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1932 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1937 * alloc_pages_vma - Allocate a page for a VMA.
1940 * %GFP_USER user allocation.
1941 * %GFP_KERNEL kernel allocations,
1942 * %GFP_HIGHMEM highmem/user allocations,
1943 * %GFP_FS allocation should not call back into a file system.
1944 * %GFP_ATOMIC don't sleep.
1946 * @order:Order of the GFP allocation.
1947 * @vma: Pointer to VMA or NULL if not available.
1948 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1949 * @node: Which node to prefer for allocation (modulo policy).
1950 * @hugepage: for hugepages try only the preferred node if possible
1952 * This function allocates a page from the kernel page pool and applies
1953 * a NUMA policy associated with the VMA or the current process.
1954 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1955 * mm_struct of the VMA to prevent it from going away. Should be used for
1956 * all allocations for pages that will be mapped into user space. Returns
1957 * NULL when no page can be allocated.
1960 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1961 unsigned long addr, int node, bool hugepage)
1963 struct mempolicy *pol;
1965 unsigned int cpuset_mems_cookie;
1966 struct zonelist *zl;
1970 pol = get_vma_policy(vma, addr);
1971 cpuset_mems_cookie = read_mems_allowed_begin();
1973 if (pol->mode == MPOL_INTERLEAVE) {
1976 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1978 page = alloc_page_interleave(gfp, order, nid);
1982 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1983 int hpage_node = node;
1986 * For hugepage allocation and non-interleave policy which
1987 * allows the current node (or other explicitly preferred
1988 * node) we only try to allocate from the current/preferred
1989 * node and don't fall back to other nodes, as the cost of
1990 * remote accesses would likely offset THP benefits.
1992 * If the policy is interleave, or does not allow the current
1993 * node in its nodemask, we allocate the standard way.
1995 if (pol->mode == MPOL_PREFERRED &&
1996 !(pol->flags & MPOL_F_LOCAL))
1997 hpage_node = pol->v.preferred_node;
1999 nmask = policy_nodemask(gfp, pol);
2000 if (!nmask || node_isset(hpage_node, *nmask)) {
2002 page = __alloc_pages_node(hpage_node,
2003 gfp | __GFP_THISNODE, order);
2008 nmask = policy_nodemask(gfp, pol);
2009 zl = policy_zonelist(gfp, pol, node);
2011 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2013 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2019 * alloc_pages_current - Allocate pages.
2022 * %GFP_USER user allocation,
2023 * %GFP_KERNEL kernel allocation,
2024 * %GFP_HIGHMEM highmem allocation,
2025 * %GFP_FS don't call back into a file system.
2026 * %GFP_ATOMIC don't sleep.
2027 * @order: Power of two of allocation size in pages. 0 is a single page.
2029 * Allocate a page from the kernel page pool. When not in
2030 * interrupt context and apply the current process NUMA policy.
2031 * Returns NULL when no page can be allocated.
2033 * Don't call cpuset_update_task_memory_state() unless
2034 * 1) it's ok to take cpuset_sem (can WAIT), and
2035 * 2) allocating for current task (not interrupt).
2037 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2039 struct mempolicy *pol = &default_policy;
2041 unsigned int cpuset_mems_cookie;
2043 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2044 pol = get_task_policy(current);
2047 cpuset_mems_cookie = read_mems_allowed_begin();
2050 * No reference counting needed for current->mempolicy
2051 * nor system default_policy
2053 if (pol->mode == MPOL_INTERLEAVE)
2054 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2056 page = __alloc_pages_nodemask(gfp, order,
2057 policy_zonelist(gfp, pol, numa_node_id()),
2058 policy_nodemask(gfp, pol));
2060 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2065 EXPORT_SYMBOL(alloc_pages_current);
2067 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2069 struct mempolicy *pol = mpol_dup(vma_policy(src));
2072 return PTR_ERR(pol);
2073 dst->vm_policy = pol;
2078 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2079 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2080 * with the mems_allowed returned by cpuset_mems_allowed(). This
2081 * keeps mempolicies cpuset relative after its cpuset moves. See
2082 * further kernel/cpuset.c update_nodemask().
2084 * current's mempolicy may be rebinded by the other task(the task that changes
2085 * cpuset's mems), so we needn't do rebind work for current task.
2088 /* Slow path of a mempolicy duplicate */
2089 struct mempolicy *__mpol_dup(struct mempolicy *old)
2091 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2094 return ERR_PTR(-ENOMEM);
2096 /* task's mempolicy is protected by alloc_lock */
2097 if (old == current->mempolicy) {
2100 task_unlock(current);
2104 if (current_cpuset_is_being_rebound()) {
2105 nodemask_t mems = cpuset_mems_allowed(current);
2106 if (new->flags & MPOL_F_REBINDING)
2107 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2109 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2111 atomic_set(&new->refcnt, 1);
2115 /* Slow path of a mempolicy comparison */
2116 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2120 if (a->mode != b->mode)
2122 if (a->flags != b->flags)
2124 if (mpol_store_user_nodemask(a))
2125 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2131 case MPOL_INTERLEAVE:
2132 return !!nodes_equal(a->v.nodes, b->v.nodes);
2133 case MPOL_PREFERRED:
2134 return a->v.preferred_node == b->v.preferred_node;
2142 * Shared memory backing store policy support.
2144 * Remember policies even when nobody has shared memory mapped.
2145 * The policies are kept in Red-Black tree linked from the inode.
2146 * They are protected by the sp->lock spinlock, which should be held
2147 * for any accesses to the tree.
2150 /* lookup first element intersecting start-end */
2151 /* Caller holds sp->lock */
2152 static struct sp_node *
2153 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2155 struct rb_node *n = sp->root.rb_node;
2158 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2160 if (start >= p->end)
2162 else if (end <= p->start)
2170 struct sp_node *w = NULL;
2171 struct rb_node *prev = rb_prev(n);
2174 w = rb_entry(prev, struct sp_node, nd);
2175 if (w->end <= start)
2179 return rb_entry(n, struct sp_node, nd);
2182 /* Insert a new shared policy into the list. */
2183 /* Caller holds sp->lock */
2184 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2186 struct rb_node **p = &sp->root.rb_node;
2187 struct rb_node *parent = NULL;
2192 nd = rb_entry(parent, struct sp_node, nd);
2193 if (new->start < nd->start)
2195 else if (new->end > nd->end)
2196 p = &(*p)->rb_right;
2200 rb_link_node(&new->nd, parent, p);
2201 rb_insert_color(&new->nd, &sp->root);
2202 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2203 new->policy ? new->policy->mode : 0);
2206 /* Find shared policy intersecting idx */
2208 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2210 struct mempolicy *pol = NULL;
2213 if (!sp->root.rb_node)
2215 spin_lock(&sp->lock);
2216 sn = sp_lookup(sp, idx, idx+1);
2218 mpol_get(sn->policy);
2221 spin_unlock(&sp->lock);
2225 static void sp_free(struct sp_node *n)
2227 mpol_put(n->policy);
2228 kmem_cache_free(sn_cache, n);
2232 * mpol_misplaced - check whether current page node is valid in policy
2234 * @page: page to be checked
2235 * @vma: vm area where page mapped
2236 * @addr: virtual address where page mapped
2238 * Lookup current policy node id for vma,addr and "compare to" page's
2242 * -1 - not misplaced, page is in the right node
2243 * node - node id where the page should be
2245 * Policy determination "mimics" alloc_page_vma().
2246 * Called from fault path where we know the vma and faulting address.
2248 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2250 struct mempolicy *pol;
2252 int curnid = page_to_nid(page);
2253 unsigned long pgoff;
2254 int thiscpu = raw_smp_processor_id();
2255 int thisnid = cpu_to_node(thiscpu);
2261 pol = get_vma_policy(vma, addr);
2262 if (!(pol->flags & MPOL_F_MOF))
2265 switch (pol->mode) {
2266 case MPOL_INTERLEAVE:
2267 BUG_ON(addr >= vma->vm_end);
2268 BUG_ON(addr < vma->vm_start);
2270 pgoff = vma->vm_pgoff;
2271 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2272 polnid = offset_il_node(pol, vma, pgoff);
2275 case MPOL_PREFERRED:
2276 if (pol->flags & MPOL_F_LOCAL)
2277 polnid = numa_node_id();
2279 polnid = pol->v.preferred_node;
2284 * allows binding to multiple nodes.
2285 * use current page if in policy nodemask,
2286 * else select nearest allowed node, if any.
2287 * If no allowed nodes, use current [!misplaced].
2289 if (node_isset(curnid, pol->v.nodes))
2291 (void)first_zones_zonelist(
2292 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2293 gfp_zone(GFP_HIGHUSER),
2294 &pol->v.nodes, &zone);
2295 polnid = zone->node;
2302 /* Migrate the page towards the node whose CPU is referencing it */
2303 if (pol->flags & MPOL_F_MORON) {
2306 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2310 if (curnid != polnid)
2318 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2320 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2321 rb_erase(&n->nd, &sp->root);
2325 static void sp_node_init(struct sp_node *node, unsigned long start,
2326 unsigned long end, struct mempolicy *pol)
2328 node->start = start;
2333 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2334 struct mempolicy *pol)
2337 struct mempolicy *newpol;
2339 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2343 newpol = mpol_dup(pol);
2344 if (IS_ERR(newpol)) {
2345 kmem_cache_free(sn_cache, n);
2348 newpol->flags |= MPOL_F_SHARED;
2349 sp_node_init(n, start, end, newpol);
2354 /* Replace a policy range. */
2355 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2356 unsigned long end, struct sp_node *new)
2359 struct sp_node *n_new = NULL;
2360 struct mempolicy *mpol_new = NULL;
2364 spin_lock(&sp->lock);
2365 n = sp_lookup(sp, start, end);
2366 /* Take care of old policies in the same range. */
2367 while (n && n->start < end) {
2368 struct rb_node *next = rb_next(&n->nd);
2369 if (n->start >= start) {
2375 /* Old policy spanning whole new range. */
2380 *mpol_new = *n->policy;
2381 atomic_set(&mpol_new->refcnt, 1);
2382 sp_node_init(n_new, end, n->end, mpol_new);
2384 sp_insert(sp, n_new);
2393 n = rb_entry(next, struct sp_node, nd);
2397 spin_unlock(&sp->lock);
2404 kmem_cache_free(sn_cache, n_new);
2409 spin_unlock(&sp->lock);
2411 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2414 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2421 * mpol_shared_policy_init - initialize shared policy for inode
2422 * @sp: pointer to inode shared policy
2423 * @mpol: struct mempolicy to install
2425 * Install non-NULL @mpol in inode's shared policy rb-tree.
2426 * On entry, the current task has a reference on a non-NULL @mpol.
2427 * This must be released on exit.
2428 * This is called at get_inode() calls and we can use GFP_KERNEL.
2430 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2434 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2435 spin_lock_init(&sp->lock);
2438 struct vm_area_struct pvma;
2439 struct mempolicy *new;
2440 NODEMASK_SCRATCH(scratch);
2444 /* contextualize the tmpfs mount point mempolicy */
2445 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2447 goto free_scratch; /* no valid nodemask intersection */
2450 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2451 task_unlock(current);
2455 /* Create pseudo-vma that contains just the policy */
2456 memset(&pvma, 0, sizeof(struct vm_area_struct));
2457 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2458 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2461 mpol_put(new); /* drop initial ref */
2463 NODEMASK_SCRATCH_FREE(scratch);
2465 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2469 int mpol_set_shared_policy(struct shared_policy *info,
2470 struct vm_area_struct *vma, struct mempolicy *npol)
2473 struct sp_node *new = NULL;
2474 unsigned long sz = vma_pages(vma);
2476 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2478 sz, npol ? npol->mode : -1,
2479 npol ? npol->flags : -1,
2480 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2483 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2487 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2493 /* Free a backing policy store on inode delete. */
2494 void mpol_free_shared_policy(struct shared_policy *p)
2497 struct rb_node *next;
2499 if (!p->root.rb_node)
2501 spin_lock(&p->lock);
2502 next = rb_first(&p->root);
2504 n = rb_entry(next, struct sp_node, nd);
2505 next = rb_next(&n->nd);
2508 spin_unlock(&p->lock);
2511 #ifdef CONFIG_NUMA_BALANCING
2512 static int __initdata numabalancing_override;
2514 static void __init check_numabalancing_enable(void)
2516 bool numabalancing_default = false;
2518 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2519 numabalancing_default = true;
2521 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2522 if (numabalancing_override)
2523 set_numabalancing_state(numabalancing_override == 1);
2525 if (num_online_nodes() > 1 && !numabalancing_override) {
2526 pr_info("%s automatic NUMA balancing. "
2527 "Configure with numa_balancing= or the "
2528 "kernel.numa_balancing sysctl",
2529 numabalancing_default ? "Enabling" : "Disabling");
2530 set_numabalancing_state(numabalancing_default);
2534 static int __init setup_numabalancing(char *str)
2540 if (!strcmp(str, "enable")) {
2541 numabalancing_override = 1;
2543 } else if (!strcmp(str, "disable")) {
2544 numabalancing_override = -1;
2549 pr_warn("Unable to parse numa_balancing=\n");
2553 __setup("numa_balancing=", setup_numabalancing);
2555 static inline void __init check_numabalancing_enable(void)
2558 #endif /* CONFIG_NUMA_BALANCING */
2560 /* assumes fs == KERNEL_DS */
2561 void __init numa_policy_init(void)
2563 nodemask_t interleave_nodes;
2564 unsigned long largest = 0;
2565 int nid, prefer = 0;
2567 policy_cache = kmem_cache_create("numa_policy",
2568 sizeof(struct mempolicy),
2569 0, SLAB_PANIC, NULL);
2571 sn_cache = kmem_cache_create("shared_policy_node",
2572 sizeof(struct sp_node),
2573 0, SLAB_PANIC, NULL);
2575 for_each_node(nid) {
2576 preferred_node_policy[nid] = (struct mempolicy) {
2577 .refcnt = ATOMIC_INIT(1),
2578 .mode = MPOL_PREFERRED,
2579 .flags = MPOL_F_MOF | MPOL_F_MORON,
2580 .v = { .preferred_node = nid, },
2585 * Set interleaving policy for system init. Interleaving is only
2586 * enabled across suitably sized nodes (default is >= 16MB), or
2587 * fall back to the largest node if they're all smaller.
2589 nodes_clear(interleave_nodes);
2590 for_each_node_state(nid, N_MEMORY) {
2591 unsigned long total_pages = node_present_pages(nid);
2593 /* Preserve the largest node */
2594 if (largest < total_pages) {
2595 largest = total_pages;
2599 /* Interleave this node? */
2600 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2601 node_set(nid, interleave_nodes);
2604 /* All too small, use the largest */
2605 if (unlikely(nodes_empty(interleave_nodes)))
2606 node_set(prefer, interleave_nodes);
2608 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2609 pr_err("%s: interleaving failed\n", __func__);
2611 check_numabalancing_enable();
2614 /* Reset policy of current process to default */
2615 void numa_default_policy(void)
2617 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2621 * Parse and format mempolicy from/to strings
2625 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2627 static const char * const policy_modes[] =
2629 [MPOL_DEFAULT] = "default",
2630 [MPOL_PREFERRED] = "prefer",
2631 [MPOL_BIND] = "bind",
2632 [MPOL_INTERLEAVE] = "interleave",
2633 [MPOL_LOCAL] = "local",
2639 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2640 * @str: string containing mempolicy to parse
2641 * @mpol: pointer to struct mempolicy pointer, returned on success.
2644 * <mode>[=<flags>][:<nodelist>]
2646 * On success, returns 0, else 1
2648 int mpol_parse_str(char *str, struct mempolicy **mpol)
2650 struct mempolicy *new = NULL;
2651 unsigned short mode;
2652 unsigned short mode_flags;
2654 char *nodelist = strchr(str, ':');
2655 char *flags = strchr(str, '=');
2659 /* NUL-terminate mode or flags string */
2661 if (nodelist_parse(nodelist, nodes))
2663 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2669 *flags++ = '\0'; /* terminate mode string */
2671 for (mode = 0; mode < MPOL_MAX; mode++) {
2672 if (!strcmp(str, policy_modes[mode])) {
2676 if (mode >= MPOL_MAX)
2680 case MPOL_PREFERRED:
2682 * Insist on a nodelist of one node only
2685 char *rest = nodelist;
2686 while (isdigit(*rest))
2692 case MPOL_INTERLEAVE:
2694 * Default to online nodes with memory if no nodelist
2697 nodes = node_states[N_MEMORY];
2701 * Don't allow a nodelist; mpol_new() checks flags
2705 mode = MPOL_PREFERRED;
2709 * Insist on a empty nodelist
2716 * Insist on a nodelist
2725 * Currently, we only support two mutually exclusive
2728 if (!strcmp(flags, "static"))
2729 mode_flags |= MPOL_F_STATIC_NODES;
2730 else if (!strcmp(flags, "relative"))
2731 mode_flags |= MPOL_F_RELATIVE_NODES;
2736 new = mpol_new(mode, mode_flags, &nodes);
2741 * Save nodes for mpol_to_str() to show the tmpfs mount options
2742 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2744 if (mode != MPOL_PREFERRED)
2745 new->v.nodes = nodes;
2747 new->v.preferred_node = first_node(nodes);
2749 new->flags |= MPOL_F_LOCAL;
2752 * Save nodes for contextualization: this will be used to "clone"
2753 * the mempolicy in a specific context [cpuset] at a later time.
2755 new->w.user_nodemask = nodes;
2760 /* Restore string for error message */
2769 #endif /* CONFIG_TMPFS */
2772 * mpol_to_str - format a mempolicy structure for printing
2773 * @buffer: to contain formatted mempolicy string
2774 * @maxlen: length of @buffer
2775 * @pol: pointer to mempolicy to be formatted
2777 * Convert @pol into a string. If @buffer is too short, truncate the string.
2778 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2779 * longest flag, "relative", and to display at least a few node ids.
2781 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2784 nodemask_t nodes = NODE_MASK_NONE;
2785 unsigned short mode = MPOL_DEFAULT;
2786 unsigned short flags = 0;
2788 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2796 case MPOL_PREFERRED:
2797 if (flags & MPOL_F_LOCAL)
2800 node_set(pol->v.preferred_node, nodes);
2803 case MPOL_INTERLEAVE:
2804 nodes = pol->v.nodes;
2808 snprintf(p, maxlen, "unknown");
2812 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2814 if (flags & MPOL_MODE_FLAGS) {
2815 p += snprintf(p, buffer + maxlen - p, "=");
2818 * Currently, the only defined flags are mutually exclusive
2820 if (flags & MPOL_F_STATIC_NODES)
2821 p += snprintf(p, buffer + maxlen - p, "static");
2822 else if (flags & MPOL_F_RELATIVE_NODES)
2823 p += snprintf(p, buffer + maxlen - p, "relative");
2826 if (!nodes_empty(nodes))
2827 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2828 nodemask_pr_args(&nodes));