6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
49 #include <asm/mmu_context.h>
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags) (0)
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len) (addr)
61 static void unmap_region(struct mm_struct *mm,
62 struct vm_area_struct *vma, struct vm_area_struct *prev,
63 unsigned long start, unsigned long end);
65 /* description of effects of mapping type and prot in current implementation.
66 * this is due to the limited x86 page protection hardware. The expected
67 * behavior is in parens:
70 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
71 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
72 * w: (no) no w: (no) no w: (yes) yes w: (no) no
73 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
75 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
76 * w: (no) no w: (no) no w: (copy) copy w: (no) no
77 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
80 pgprot_t protection_map[16] = {
81 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
82 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
85 pgprot_t vm_get_page_prot(unsigned long vm_flags)
87 return __pgprot(pgprot_val(protection_map[vm_flags &
88 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
89 pgprot_val(arch_vm_get_page_prot(vm_flags)));
91 EXPORT_SYMBOL(vm_get_page_prot);
93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
95 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
99 void vma_set_page_prot(struct vm_area_struct *vma)
101 unsigned long vm_flags = vma->vm_flags;
103 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
104 if (vma_wants_writenotify(vma)) {
105 vm_flags &= ~VM_SHARED;
106 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
113 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
114 unsigned long sysctl_overcommit_kbytes __read_mostly;
115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
119 * Make sure vm_committed_as in one cacheline and not cacheline shared with
120 * other variables. It can be updated by several CPUs frequently.
122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
125 * The global memory commitment made in the system can be a metric
126 * that can be used to drive ballooning decisions when Linux is hosted
127 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
128 * balancing memory across competing virtual machines that are hosted.
129 * Several metrics drive this policy engine including the guest reported
132 unsigned long vm_memory_committed(void)
134 return percpu_counter_read_positive(&vm_committed_as);
136 EXPORT_SYMBOL_GPL(vm_memory_committed);
139 * Check that a process has enough memory to allocate a new virtual
140 * mapping. 0 means there is enough memory for the allocation to
141 * succeed and -ENOMEM implies there is not.
143 * We currently support three overcommit policies, which are set via the
144 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
146 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
147 * Additional code 2002 Jul 20 by Robert Love.
149 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
151 * Note this is a helper function intended to be used by LSMs which
152 * wish to use this logic.
154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
156 long free, allowed, reserve;
158 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
159 -(s64)vm_committed_as_batch * num_online_cpus(),
160 "memory commitment underflow");
162 vm_acct_memory(pages);
165 * Sometimes we want to use more memory than we have
167 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
170 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
171 free = global_page_state(NR_FREE_PAGES);
172 free += global_page_state(NR_FILE_PAGES);
175 * shmem pages shouldn't be counted as free in this
176 * case, they can't be purged, only swapped out, and
177 * that won't affect the overall amount of available
178 * memory in the system.
180 free -= global_page_state(NR_SHMEM);
182 free += get_nr_swap_pages();
185 * Any slabs which are created with the
186 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
187 * which are reclaimable, under pressure. The dentry
188 * cache and most inode caches should fall into this
190 free += global_page_state(NR_SLAB_RECLAIMABLE);
193 * Leave reserved pages. The pages are not for anonymous pages.
195 if (free <= totalreserve_pages)
198 free -= totalreserve_pages;
201 * Reserve some for root
204 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
212 allowed = vm_commit_limit();
214 * Reserve some for root
217 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
220 * Don't let a single process grow so big a user can't recover
223 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
224 allowed -= min_t(long, mm->total_vm / 32, reserve);
227 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
230 vm_unacct_memory(pages);
236 * Requires inode->i_mapping->i_mmap_rwsem
238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239 struct file *file, struct address_space *mapping)
241 if (vma->vm_flags & VM_DENYWRITE)
242 atomic_inc(&file_inode(file)->i_writecount);
243 if (vma->vm_flags & VM_SHARED)
244 mapping_unmap_writable(mapping);
246 flush_dcache_mmap_lock(mapping);
247 vma_interval_tree_remove(vma, &mapping->i_mmap);
248 flush_dcache_mmap_unlock(mapping);
252 * Unlink a file-based vm structure from its interval tree, to hide
253 * vma from rmap and vmtruncate before freeing its page tables.
255 void unlink_file_vma(struct vm_area_struct *vma)
257 struct file *file = vma->vm_file;
260 struct address_space *mapping = file->f_mapping;
261 i_mmap_lock_write(mapping);
262 __remove_shared_vm_struct(vma, file, mapping);
263 i_mmap_unlock_write(mapping);
268 * Close a vm structure and free it, returning the next.
270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
272 struct vm_area_struct *next = vma->vm_next;
275 if (vma->vm_ops && vma->vm_ops->close)
276 vma->vm_ops->close(vma);
279 mpol_put(vma_policy(vma));
280 kmem_cache_free(vm_area_cachep, vma);
284 static unsigned long do_brk(unsigned long addr, unsigned long len);
286 SYSCALL_DEFINE1(brk, unsigned long, brk)
288 unsigned long retval;
289 unsigned long newbrk, oldbrk;
290 struct mm_struct *mm = current->mm;
291 unsigned long min_brk;
294 down_write(&mm->mmap_sem);
296 #ifdef CONFIG_COMPAT_BRK
298 * CONFIG_COMPAT_BRK can still be overridden by setting
299 * randomize_va_space to 2, which will still cause mm->start_brk
300 * to be arbitrarily shifted
302 if (current->brk_randomized)
303 min_brk = mm->start_brk;
305 min_brk = mm->end_data;
307 min_brk = mm->start_brk;
313 * Check against rlimit here. If this check is done later after the test
314 * of oldbrk with newbrk then it can escape the test and let the data
315 * segment grow beyond its set limit the in case where the limit is
316 * not page aligned -Ram Gupta
318 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
319 mm->end_data, mm->start_data))
322 newbrk = PAGE_ALIGN(brk);
323 oldbrk = PAGE_ALIGN(mm->brk);
324 if (oldbrk == newbrk)
327 /* Always allow shrinking brk. */
328 if (brk <= mm->brk) {
329 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
334 /* Check against existing mmap mappings. */
335 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
338 /* Ok, looks good - let it rip. */
339 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
344 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
345 up_write(&mm->mmap_sem);
347 mm_populate(oldbrk, newbrk - oldbrk);
352 up_write(&mm->mmap_sem);
356 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
358 unsigned long max, subtree_gap;
361 max -= vma->vm_prev->vm_end;
362 if (vma->vm_rb.rb_left) {
363 subtree_gap = rb_entry(vma->vm_rb.rb_left,
364 struct vm_area_struct, vm_rb)->rb_subtree_gap;
365 if (subtree_gap > max)
368 if (vma->vm_rb.rb_right) {
369 subtree_gap = rb_entry(vma->vm_rb.rb_right,
370 struct vm_area_struct, vm_rb)->rb_subtree_gap;
371 if (subtree_gap > max)
377 #ifdef CONFIG_DEBUG_VM_RB
378 static int browse_rb(struct rb_root *root)
380 int i = 0, j, bug = 0;
381 struct rb_node *nd, *pn = NULL;
382 unsigned long prev = 0, pend = 0;
384 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385 struct vm_area_struct *vma;
386 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387 if (vma->vm_start < prev) {
388 pr_emerg("vm_start %lx < prev %lx\n",
389 vma->vm_start, prev);
392 if (vma->vm_start < pend) {
393 pr_emerg("vm_start %lx < pend %lx\n",
394 vma->vm_start, pend);
397 if (vma->vm_start > vma->vm_end) {
398 pr_emerg("vm_start %lx > vm_end %lx\n",
399 vma->vm_start, vma->vm_end);
402 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
403 pr_emerg("free gap %lx, correct %lx\n",
405 vma_compute_subtree_gap(vma));
410 prev = vma->vm_start;
414 for (nd = pn; nd; nd = rb_prev(nd))
417 pr_emerg("backwards %d, forwards %d\n", j, i);
423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
427 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
428 struct vm_area_struct *vma;
429 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
430 VM_BUG_ON_VMA(vma != ignore &&
431 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
436 static void validate_mm(struct mm_struct *mm)
440 unsigned long highest_address = 0;
441 struct vm_area_struct *vma = mm->mmap;
444 struct anon_vma *anon_vma = vma->anon_vma;
445 struct anon_vma_chain *avc;
448 anon_vma_lock_read(anon_vma);
449 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450 anon_vma_interval_tree_verify(avc);
451 anon_vma_unlock_read(anon_vma);
454 highest_address = vma->vm_end;
458 if (i != mm->map_count) {
459 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
462 if (highest_address != mm->highest_vm_end) {
463 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
464 mm->highest_vm_end, highest_address);
467 i = browse_rb(&mm->mm_rb);
468 if (i != mm->map_count) {
470 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
473 VM_BUG_ON_MM(bug, mm);
476 #define validate_mm_rb(root, ignore) do { } while (0)
477 #define validate_mm(mm) do { } while (0)
480 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
481 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
484 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
485 * vma->vm_prev->vm_end values changed, without modifying the vma's position
488 static void vma_gap_update(struct vm_area_struct *vma)
491 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
492 * function that does exacltly what we want.
494 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
497 static inline void vma_rb_insert(struct vm_area_struct *vma,
498 struct rb_root *root)
500 /* All rb_subtree_gap values must be consistent prior to insertion */
501 validate_mm_rb(root, NULL);
503 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
506 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
509 * All rb_subtree_gap values must be consistent prior to erase,
510 * with the possible exception of the vma being erased.
512 validate_mm_rb(root, vma);
515 * Note rb_erase_augmented is a fairly large inline function,
516 * so make sure we instantiate it only once with our desired
517 * augmented rbtree callbacks.
519 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
523 * vma has some anon_vma assigned, and is already inserted on that
524 * anon_vma's interval trees.
526 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
527 * vma must be removed from the anon_vma's interval trees using
528 * anon_vma_interval_tree_pre_update_vma().
530 * After the update, the vma will be reinserted using
531 * anon_vma_interval_tree_post_update_vma().
533 * The entire update must be protected by exclusive mmap_sem and by
534 * the root anon_vma's mutex.
537 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
539 struct anon_vma_chain *avc;
541 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
542 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
546 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
548 struct anon_vma_chain *avc;
550 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
551 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
554 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
555 unsigned long end, struct vm_area_struct **pprev,
556 struct rb_node ***rb_link, struct rb_node **rb_parent)
558 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
560 __rb_link = &mm->mm_rb.rb_node;
561 rb_prev = __rb_parent = NULL;
564 struct vm_area_struct *vma_tmp;
566 __rb_parent = *__rb_link;
567 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
569 if (vma_tmp->vm_end > addr) {
570 /* Fail if an existing vma overlaps the area */
571 if (vma_tmp->vm_start < end)
573 __rb_link = &__rb_parent->rb_left;
575 rb_prev = __rb_parent;
576 __rb_link = &__rb_parent->rb_right;
582 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
583 *rb_link = __rb_link;
584 *rb_parent = __rb_parent;
588 static unsigned long count_vma_pages_range(struct mm_struct *mm,
589 unsigned long addr, unsigned long end)
591 unsigned long nr_pages = 0;
592 struct vm_area_struct *vma;
594 /* Find first overlaping mapping */
595 vma = find_vma_intersection(mm, addr, end);
599 nr_pages = (min(end, vma->vm_end) -
600 max(addr, vma->vm_start)) >> PAGE_SHIFT;
602 /* Iterate over the rest of the overlaps */
603 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
604 unsigned long overlap_len;
606 if (vma->vm_start > end)
609 overlap_len = min(end, vma->vm_end) - vma->vm_start;
610 nr_pages += overlap_len >> PAGE_SHIFT;
616 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
617 struct rb_node **rb_link, struct rb_node *rb_parent)
619 /* Update tracking information for the gap following the new vma. */
621 vma_gap_update(vma->vm_next);
623 mm->highest_vm_end = vma->vm_end;
626 * vma->vm_prev wasn't known when we followed the rbtree to find the
627 * correct insertion point for that vma. As a result, we could not
628 * update the vma vm_rb parents rb_subtree_gap values on the way down.
629 * So, we first insert the vma with a zero rb_subtree_gap value
630 * (to be consistent with what we did on the way down), and then
631 * immediately update the gap to the correct value. Finally we
632 * rebalance the rbtree after all augmented values have been set.
634 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
635 vma->rb_subtree_gap = 0;
637 vma_rb_insert(vma, &mm->mm_rb);
640 static void __vma_link_file(struct vm_area_struct *vma)
646 struct address_space *mapping = file->f_mapping;
648 if (vma->vm_flags & VM_DENYWRITE)
649 atomic_dec(&file_inode(file)->i_writecount);
650 if (vma->vm_flags & VM_SHARED)
651 atomic_inc(&mapping->i_mmap_writable);
653 flush_dcache_mmap_lock(mapping);
654 vma_interval_tree_insert(vma, &mapping->i_mmap);
655 flush_dcache_mmap_unlock(mapping);
660 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
661 struct vm_area_struct *prev, struct rb_node **rb_link,
662 struct rb_node *rb_parent)
664 __vma_link_list(mm, vma, prev, rb_parent);
665 __vma_link_rb(mm, vma, rb_link, rb_parent);
668 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
669 struct vm_area_struct *prev, struct rb_node **rb_link,
670 struct rb_node *rb_parent)
672 struct address_space *mapping = NULL;
675 mapping = vma->vm_file->f_mapping;
676 i_mmap_lock_write(mapping);
679 __vma_link(mm, vma, prev, rb_link, rb_parent);
680 __vma_link_file(vma);
683 i_mmap_unlock_write(mapping);
690 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
691 * mm's list and rbtree. It has already been inserted into the interval tree.
693 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
695 struct vm_area_struct *prev;
696 struct rb_node **rb_link, *rb_parent;
698 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
699 &prev, &rb_link, &rb_parent))
701 __vma_link(mm, vma, prev, rb_link, rb_parent);
706 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
707 struct vm_area_struct *prev)
709 struct vm_area_struct *next;
711 vma_rb_erase(vma, &mm->mm_rb);
712 prev->vm_next = next = vma->vm_next;
714 next->vm_prev = prev;
717 vmacache_invalidate(mm);
721 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
722 * is already present in an i_mmap tree without adjusting the tree.
723 * The following helper function should be used when such adjustments
724 * are necessary. The "insert" vma (if any) is to be inserted
725 * before we drop the necessary locks.
727 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
728 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
730 struct mm_struct *mm = vma->vm_mm;
731 struct vm_area_struct *next = vma->vm_next;
732 struct vm_area_struct *importer = NULL;
733 struct address_space *mapping = NULL;
734 struct rb_root *root = NULL;
735 struct anon_vma *anon_vma = NULL;
736 struct file *file = vma->vm_file;
737 bool start_changed = false, end_changed = false;
738 long adjust_next = 0;
741 if (next && !insert) {
742 struct vm_area_struct *exporter = NULL;
744 if (end >= next->vm_end) {
746 * vma expands, overlapping all the next, and
747 * perhaps the one after too (mprotect case 6).
749 again: remove_next = 1 + (end > next->vm_end);
753 } else if (end > next->vm_start) {
755 * vma expands, overlapping part of the next:
756 * mprotect case 5 shifting the boundary up.
758 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
761 } else if (end < vma->vm_end) {
763 * vma shrinks, and !insert tells it's not
764 * split_vma inserting another: so it must be
765 * mprotect case 4 shifting the boundary down.
767 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
773 * Easily overlooked: when mprotect shifts the boundary,
774 * make sure the expanding vma has anon_vma set if the
775 * shrinking vma had, to cover any anon pages imported.
777 if (exporter && exporter->anon_vma && !importer->anon_vma) {
780 importer->anon_vma = exporter->anon_vma;
781 error = anon_vma_clone(importer, exporter);
788 mapping = file->f_mapping;
789 root = &mapping->i_mmap;
790 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
793 uprobe_munmap(next, next->vm_start, next->vm_end);
795 i_mmap_lock_write(mapping);
798 * Put into interval tree now, so instantiated pages
799 * are visible to arm/parisc __flush_dcache_page
800 * throughout; but we cannot insert into address
801 * space until vma start or end is updated.
803 __vma_link_file(insert);
807 vma_adjust_trans_huge(vma, start, end, adjust_next);
809 anon_vma = vma->anon_vma;
810 if (!anon_vma && adjust_next)
811 anon_vma = next->anon_vma;
813 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
814 anon_vma != next->anon_vma, next);
815 anon_vma_lock_write(anon_vma);
816 anon_vma_interval_tree_pre_update_vma(vma);
818 anon_vma_interval_tree_pre_update_vma(next);
822 flush_dcache_mmap_lock(mapping);
823 vma_interval_tree_remove(vma, root);
825 vma_interval_tree_remove(next, root);
828 if (start != vma->vm_start) {
829 vma->vm_start = start;
830 start_changed = true;
832 if (end != vma->vm_end) {
836 vma->vm_pgoff = pgoff;
838 next->vm_start += adjust_next << PAGE_SHIFT;
839 next->vm_pgoff += adjust_next;
844 vma_interval_tree_insert(next, root);
845 vma_interval_tree_insert(vma, root);
846 flush_dcache_mmap_unlock(mapping);
851 * vma_merge has merged next into vma, and needs
852 * us to remove next before dropping the locks.
854 __vma_unlink(mm, next, vma);
856 __remove_shared_vm_struct(next, file, mapping);
859 * split_vma has split insert from vma, and needs
860 * us to insert it before dropping the locks
861 * (it may either follow vma or precede it).
863 __insert_vm_struct(mm, insert);
869 mm->highest_vm_end = end;
870 else if (!adjust_next)
871 vma_gap_update(next);
876 anon_vma_interval_tree_post_update_vma(vma);
878 anon_vma_interval_tree_post_update_vma(next);
879 anon_vma_unlock_write(anon_vma);
882 i_mmap_unlock_write(mapping);
893 uprobe_munmap(next, next->vm_start, next->vm_end);
897 anon_vma_merge(vma, next);
899 mpol_put(vma_policy(next));
900 kmem_cache_free(vm_area_cachep, next);
902 * In mprotect's case 6 (see comments on vma_merge),
903 * we must remove another next too. It would clutter
904 * up the code too much to do both in one go.
907 if (remove_next == 2)
910 vma_gap_update(next);
912 mm->highest_vm_end = end;
923 * If the vma has a ->close operation then the driver probably needs to release
924 * per-vma resources, so we don't attempt to merge those.
926 static inline int is_mergeable_vma(struct vm_area_struct *vma,
927 struct file *file, unsigned long vm_flags,
928 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
931 * VM_SOFTDIRTY should not prevent from VMA merging, if we
932 * match the flags but dirty bit -- the caller should mark
933 * merged VMA as dirty. If dirty bit won't be excluded from
934 * comparison, we increase pressue on the memory system forcing
935 * the kernel to generate new VMAs when old one could be
938 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
940 if (vma->vm_file != file)
942 if (vma->vm_ops && vma->vm_ops->close)
944 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
949 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
950 struct anon_vma *anon_vma2,
951 struct vm_area_struct *vma)
954 * The list_is_singular() test is to avoid merging VMA cloned from
955 * parents. This can improve scalability caused by anon_vma lock.
957 if ((!anon_vma1 || !anon_vma2) && (!vma ||
958 list_is_singular(&vma->anon_vma_chain)))
960 return anon_vma1 == anon_vma2;
964 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
965 * in front of (at a lower virtual address and file offset than) the vma.
967 * We cannot merge two vmas if they have differently assigned (non-NULL)
968 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
970 * We don't check here for the merged mmap wrapping around the end of pagecache
971 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
972 * wrap, nor mmaps which cover the final page at index -1UL.
975 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
976 struct anon_vma *anon_vma, struct file *file,
978 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
980 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
981 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
982 if (vma->vm_pgoff == vm_pgoff)
989 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
990 * beyond (at a higher virtual address and file offset than) the vma.
992 * We cannot merge two vmas if they have differently assigned (non-NULL)
993 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
996 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
997 struct anon_vma *anon_vma, struct file *file,
999 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1001 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1002 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1004 vm_pglen = vma_pages(vma);
1005 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1012 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1013 * whether that can be merged with its predecessor or its successor.
1014 * Or both (it neatly fills a hole).
1016 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1017 * certain not to be mapped by the time vma_merge is called; but when
1018 * called for mprotect, it is certain to be already mapped (either at
1019 * an offset within prev, or at the start of next), and the flags of
1020 * this area are about to be changed to vm_flags - and the no-change
1021 * case has already been eliminated.
1023 * The following mprotect cases have to be considered, where AAAA is
1024 * the area passed down from mprotect_fixup, never extending beyond one
1025 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1027 * AAAA AAAA AAAA AAAA
1028 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1029 * cannot merge might become might become might become
1030 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1031 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1032 * mremap move: PPPPNNNNNNNN 8
1034 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1035 * might become case 1 below case 2 below case 3 below
1037 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1038 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1040 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1041 struct vm_area_struct *prev, unsigned long addr,
1042 unsigned long end, unsigned long vm_flags,
1043 struct anon_vma *anon_vma, struct file *file,
1044 pgoff_t pgoff, struct mempolicy *policy,
1045 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1047 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1048 struct vm_area_struct *area, *next;
1052 * We later require that vma->vm_flags == vm_flags,
1053 * so this tests vma->vm_flags & VM_SPECIAL, too.
1055 if (vm_flags & VM_SPECIAL)
1059 next = prev->vm_next;
1063 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1064 next = next->vm_next;
1067 * Can it merge with the predecessor?
1069 if (prev && prev->vm_end == addr &&
1070 mpol_equal(vma_policy(prev), policy) &&
1071 can_vma_merge_after(prev, vm_flags,
1072 anon_vma, file, pgoff,
1073 vm_userfaultfd_ctx)) {
1075 * OK, it can. Can we now merge in the successor as well?
1077 if (next && end == next->vm_start &&
1078 mpol_equal(policy, vma_policy(next)) &&
1079 can_vma_merge_before(next, vm_flags,
1082 vm_userfaultfd_ctx) &&
1083 is_mergeable_anon_vma(prev->anon_vma,
1084 next->anon_vma, NULL)) {
1086 err = vma_adjust(prev, prev->vm_start,
1087 next->vm_end, prev->vm_pgoff, NULL);
1088 } else /* cases 2, 5, 7 */
1089 err = vma_adjust(prev, prev->vm_start,
1090 end, prev->vm_pgoff, NULL);
1093 khugepaged_enter_vma_merge(prev, vm_flags);
1098 * Can this new request be merged in front of next?
1100 if (next && end == next->vm_start &&
1101 mpol_equal(policy, vma_policy(next)) &&
1102 can_vma_merge_before(next, vm_flags,
1103 anon_vma, file, pgoff+pglen,
1104 vm_userfaultfd_ctx)) {
1105 if (prev && addr < prev->vm_end) /* case 4 */
1106 err = vma_adjust(prev, prev->vm_start,
1107 addr, prev->vm_pgoff, NULL);
1108 else /* cases 3, 8 */
1109 err = vma_adjust(area, addr, next->vm_end,
1110 next->vm_pgoff - pglen, NULL);
1113 khugepaged_enter_vma_merge(area, vm_flags);
1121 * Rough compatbility check to quickly see if it's even worth looking
1122 * at sharing an anon_vma.
1124 * They need to have the same vm_file, and the flags can only differ
1125 * in things that mprotect may change.
1127 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1128 * we can merge the two vma's. For example, we refuse to merge a vma if
1129 * there is a vm_ops->close() function, because that indicates that the
1130 * driver is doing some kind of reference counting. But that doesn't
1131 * really matter for the anon_vma sharing case.
1133 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1135 return a->vm_end == b->vm_start &&
1136 mpol_equal(vma_policy(a), vma_policy(b)) &&
1137 a->vm_file == b->vm_file &&
1138 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1139 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1143 * Do some basic sanity checking to see if we can re-use the anon_vma
1144 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1145 * the same as 'old', the other will be the new one that is trying
1146 * to share the anon_vma.
1148 * NOTE! This runs with mm_sem held for reading, so it is possible that
1149 * the anon_vma of 'old' is concurrently in the process of being set up
1150 * by another page fault trying to merge _that_. But that's ok: if it
1151 * is being set up, that automatically means that it will be a singleton
1152 * acceptable for merging, so we can do all of this optimistically. But
1153 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1155 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1156 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1157 * is to return an anon_vma that is "complex" due to having gone through
1160 * We also make sure that the two vma's are compatible (adjacent,
1161 * and with the same memory policies). That's all stable, even with just
1162 * a read lock on the mm_sem.
1164 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1166 if (anon_vma_compatible(a, b)) {
1167 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1169 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1176 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1177 * neighbouring vmas for a suitable anon_vma, before it goes off
1178 * to allocate a new anon_vma. It checks because a repetitive
1179 * sequence of mprotects and faults may otherwise lead to distinct
1180 * anon_vmas being allocated, preventing vma merge in subsequent
1183 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1185 struct anon_vma *anon_vma;
1186 struct vm_area_struct *near;
1188 near = vma->vm_next;
1192 anon_vma = reusable_anon_vma(near, vma, near);
1196 near = vma->vm_prev;
1200 anon_vma = reusable_anon_vma(near, near, vma);
1205 * There's no absolute need to look only at touching neighbours:
1206 * we could search further afield for "compatible" anon_vmas.
1207 * But it would probably just be a waste of time searching,
1208 * or lead to too many vmas hanging off the same anon_vma.
1209 * We're trying to allow mprotect remerging later on,
1210 * not trying to minimize memory used for anon_vmas.
1215 #ifdef CONFIG_PROC_FS
1216 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1217 struct file *file, long pages)
1219 const unsigned long stack_flags
1220 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1222 mm->total_vm += pages;
1225 mm->shared_vm += pages;
1226 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1227 mm->exec_vm += pages;
1228 } else if (flags & stack_flags)
1229 mm->stack_vm += pages;
1231 #endif /* CONFIG_PROC_FS */
1234 * If a hint addr is less than mmap_min_addr change hint to be as
1235 * low as possible but still greater than mmap_min_addr
1237 static inline unsigned long round_hint_to_min(unsigned long hint)
1240 if (((void *)hint != NULL) &&
1241 (hint < mmap_min_addr))
1242 return PAGE_ALIGN(mmap_min_addr);
1246 static inline int mlock_future_check(struct mm_struct *mm,
1247 unsigned long flags,
1250 unsigned long locked, lock_limit;
1252 /* mlock MCL_FUTURE? */
1253 if (flags & VM_LOCKED) {
1254 locked = len >> PAGE_SHIFT;
1255 locked += mm->locked_vm;
1256 lock_limit = rlimit(RLIMIT_MEMLOCK);
1257 lock_limit >>= PAGE_SHIFT;
1258 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1265 * The caller must hold down_write(¤t->mm->mmap_sem).
1267 unsigned long do_mmap(struct file *file, unsigned long addr,
1268 unsigned long len, unsigned long prot,
1269 unsigned long flags, vm_flags_t vm_flags,
1270 unsigned long pgoff, unsigned long *populate)
1272 struct mm_struct *mm = current->mm;
1280 * Does the application expect PROT_READ to imply PROT_EXEC?
1282 * (the exception is when the underlying filesystem is noexec
1283 * mounted, in which case we dont add PROT_EXEC.)
1285 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1286 if (!(file && path_noexec(&file->f_path)))
1289 if (!(flags & MAP_FIXED))
1290 addr = round_hint_to_min(addr);
1292 /* Careful about overflows.. */
1293 len = PAGE_ALIGN(len);
1297 /* offset overflow? */
1298 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1301 /* Too many mappings? */
1302 if (mm->map_count > sysctl_max_map_count)
1305 /* Obtain the address to map to. we verify (or select) it and ensure
1306 * that it represents a valid section of the address space.
1308 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1309 if (offset_in_page(addr))
1312 /* Do simple checking here so the lower-level routines won't have
1313 * to. we assume access permissions have been handled by the open
1314 * of the memory object, so we don't do any here.
1316 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1317 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1319 if (flags & MAP_LOCKED)
1320 if (!can_do_mlock())
1323 if (mlock_future_check(mm, vm_flags, len))
1327 struct inode *inode = file_inode(file);
1329 switch (flags & MAP_TYPE) {
1331 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1335 * Make sure we don't allow writing to an append-only
1338 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1342 * Make sure there are no mandatory locks on the file.
1344 if (locks_verify_locked(file))
1347 vm_flags |= VM_SHARED | VM_MAYSHARE;
1348 if (!(file->f_mode & FMODE_WRITE))
1349 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1353 if (!(file->f_mode & FMODE_READ))
1355 if (path_noexec(&file->f_path)) {
1356 if (vm_flags & VM_EXEC)
1358 vm_flags &= ~VM_MAYEXEC;
1361 if (!file->f_op->mmap)
1363 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1371 switch (flags & MAP_TYPE) {
1373 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1379 vm_flags |= VM_SHARED | VM_MAYSHARE;
1383 * Set pgoff according to addr for anon_vma.
1385 pgoff = addr >> PAGE_SHIFT;
1393 * Set 'VM_NORESERVE' if we should not account for the
1394 * memory use of this mapping.
1396 if (flags & MAP_NORESERVE) {
1397 /* We honor MAP_NORESERVE if allowed to overcommit */
1398 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1399 vm_flags |= VM_NORESERVE;
1401 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1402 if (file && is_file_hugepages(file))
1403 vm_flags |= VM_NORESERVE;
1406 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1407 if (!IS_ERR_VALUE(addr) &&
1408 ((vm_flags & VM_LOCKED) ||
1409 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1414 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1415 unsigned long, prot, unsigned long, flags,
1416 unsigned long, fd, unsigned long, pgoff)
1418 struct file *file = NULL;
1419 unsigned long retval;
1421 if (!(flags & MAP_ANONYMOUS)) {
1422 audit_mmap_fd(fd, flags);
1426 if (is_file_hugepages(file))
1427 len = ALIGN(len, huge_page_size(hstate_file(file)));
1429 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1431 } else if (flags & MAP_HUGETLB) {
1432 struct user_struct *user = NULL;
1435 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1439 len = ALIGN(len, huge_page_size(hs));
1441 * VM_NORESERVE is used because the reservations will be
1442 * taken when vm_ops->mmap() is called
1443 * A dummy user value is used because we are not locking
1444 * memory so no accounting is necessary
1446 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1448 &user, HUGETLB_ANONHUGE_INODE,
1449 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1451 return PTR_ERR(file);
1454 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1456 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1463 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1464 struct mmap_arg_struct {
1468 unsigned long flags;
1470 unsigned long offset;
1473 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1475 struct mmap_arg_struct a;
1477 if (copy_from_user(&a, arg, sizeof(a)))
1479 if (offset_in_page(a.offset))
1482 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1483 a.offset >> PAGE_SHIFT);
1485 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1488 * Some shared mappigns will want the pages marked read-only
1489 * to track write events. If so, we'll downgrade vm_page_prot
1490 * to the private version (using protection_map[] without the
1493 int vma_wants_writenotify(struct vm_area_struct *vma)
1495 vm_flags_t vm_flags = vma->vm_flags;
1496 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1498 /* If it was private or non-writable, the write bit is already clear */
1499 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1502 /* The backer wishes to know when pages are first written to? */
1503 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1506 /* The open routine did something to the protections that pgprot_modify
1507 * won't preserve? */
1508 if (pgprot_val(vma->vm_page_prot) !=
1509 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1512 /* Do we need to track softdirty? */
1513 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1516 /* Specialty mapping? */
1517 if (vm_flags & VM_PFNMAP)
1520 /* Can the mapping track the dirty pages? */
1521 return vma->vm_file && vma->vm_file->f_mapping &&
1522 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1526 * We account for memory if it's a private writeable mapping,
1527 * not hugepages and VM_NORESERVE wasn't set.
1529 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1532 * hugetlb has its own accounting separate from the core VM
1533 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1535 if (file && is_file_hugepages(file))
1538 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1541 unsigned long mmap_region(struct file *file, unsigned long addr,
1542 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1544 struct mm_struct *mm = current->mm;
1545 struct vm_area_struct *vma, *prev;
1547 struct rb_node **rb_link, *rb_parent;
1548 unsigned long charged = 0;
1550 /* Check against address space limit. */
1551 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1552 unsigned long nr_pages;
1555 * MAP_FIXED may remove pages of mappings that intersects with
1556 * requested mapping. Account for the pages it would unmap.
1558 if (!(vm_flags & MAP_FIXED))
1561 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1563 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1567 /* Clear old maps */
1568 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1570 if (do_munmap(mm, addr, len))
1575 * Private writable mapping: check memory availability
1577 if (accountable_mapping(file, vm_flags)) {
1578 charged = len >> PAGE_SHIFT;
1579 if (security_vm_enough_memory_mm(mm, charged))
1581 vm_flags |= VM_ACCOUNT;
1585 * Can we just expand an old mapping?
1587 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1588 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1593 * Determine the object being mapped and call the appropriate
1594 * specific mapper. the address has already been validated, but
1595 * not unmapped, but the maps are removed from the list.
1597 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1604 vma->vm_start = addr;
1605 vma->vm_end = addr + len;
1606 vma->vm_flags = vm_flags;
1607 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1608 vma->vm_pgoff = pgoff;
1609 INIT_LIST_HEAD(&vma->anon_vma_chain);
1612 if (vm_flags & VM_DENYWRITE) {
1613 error = deny_write_access(file);
1617 if (vm_flags & VM_SHARED) {
1618 error = mapping_map_writable(file->f_mapping);
1620 goto allow_write_and_free_vma;
1623 /* ->mmap() can change vma->vm_file, but must guarantee that
1624 * vma_link() below can deny write-access if VM_DENYWRITE is set
1625 * and map writably if VM_SHARED is set. This usually means the
1626 * new file must not have been exposed to user-space, yet.
1628 vma->vm_file = get_file(file);
1629 error = file->f_op->mmap(file, vma);
1631 goto unmap_and_free_vma;
1633 /* Can addr have changed??
1635 * Answer: Yes, several device drivers can do it in their
1636 * f_op->mmap method. -DaveM
1637 * Bug: If addr is changed, prev, rb_link, rb_parent should
1638 * be updated for vma_link()
1640 WARN_ON_ONCE(addr != vma->vm_start);
1642 addr = vma->vm_start;
1643 vm_flags = vma->vm_flags;
1644 } else if (vm_flags & VM_SHARED) {
1645 error = shmem_zero_setup(vma);
1650 vma_link(mm, vma, prev, rb_link, rb_parent);
1651 /* Once vma denies write, undo our temporary denial count */
1653 if (vm_flags & VM_SHARED)
1654 mapping_unmap_writable(file->f_mapping);
1655 if (vm_flags & VM_DENYWRITE)
1656 allow_write_access(file);
1658 file = vma->vm_file;
1660 perf_event_mmap(vma);
1662 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1663 if (vm_flags & VM_LOCKED) {
1664 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1665 vma == get_gate_vma(current->mm)))
1666 mm->locked_vm += (len >> PAGE_SHIFT);
1668 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1675 * New (or expanded) vma always get soft dirty status.
1676 * Otherwise user-space soft-dirty page tracker won't
1677 * be able to distinguish situation when vma area unmapped,
1678 * then new mapped in-place (which must be aimed as
1679 * a completely new data area).
1681 vma->vm_flags |= VM_SOFTDIRTY;
1683 vma_set_page_prot(vma);
1688 vma->vm_file = NULL;
1691 /* Undo any partial mapping done by a device driver. */
1692 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1694 if (vm_flags & VM_SHARED)
1695 mapping_unmap_writable(file->f_mapping);
1696 allow_write_and_free_vma:
1697 if (vm_flags & VM_DENYWRITE)
1698 allow_write_access(file);
1700 kmem_cache_free(vm_area_cachep, vma);
1703 vm_unacct_memory(charged);
1707 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1710 * We implement the search by looking for an rbtree node that
1711 * immediately follows a suitable gap. That is,
1712 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1713 * - gap_end = vma->vm_start >= info->low_limit + length;
1714 * - gap_end - gap_start >= length
1717 struct mm_struct *mm = current->mm;
1718 struct vm_area_struct *vma;
1719 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1721 /* Adjust search length to account for worst case alignment overhead */
1722 length = info->length + info->align_mask;
1723 if (length < info->length)
1726 /* Adjust search limits by the desired length */
1727 if (info->high_limit < length)
1729 high_limit = info->high_limit - length;
1731 if (info->low_limit > high_limit)
1733 low_limit = info->low_limit + length;
1735 /* Check if rbtree root looks promising */
1736 if (RB_EMPTY_ROOT(&mm->mm_rb))
1738 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1739 if (vma->rb_subtree_gap < length)
1743 /* Visit left subtree if it looks promising */
1744 gap_end = vma->vm_start;
1745 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1746 struct vm_area_struct *left =
1747 rb_entry(vma->vm_rb.rb_left,
1748 struct vm_area_struct, vm_rb);
1749 if (left->rb_subtree_gap >= length) {
1755 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1757 /* Check if current node has a suitable gap */
1758 if (gap_start > high_limit)
1760 if (gap_end >= low_limit && gap_end - gap_start >= length)
1763 /* Visit right subtree if it looks promising */
1764 if (vma->vm_rb.rb_right) {
1765 struct vm_area_struct *right =
1766 rb_entry(vma->vm_rb.rb_right,
1767 struct vm_area_struct, vm_rb);
1768 if (right->rb_subtree_gap >= length) {
1774 /* Go back up the rbtree to find next candidate node */
1776 struct rb_node *prev = &vma->vm_rb;
1777 if (!rb_parent(prev))
1779 vma = rb_entry(rb_parent(prev),
1780 struct vm_area_struct, vm_rb);
1781 if (prev == vma->vm_rb.rb_left) {
1782 gap_start = vma->vm_prev->vm_end;
1783 gap_end = vma->vm_start;
1790 /* Check highest gap, which does not precede any rbtree node */
1791 gap_start = mm->highest_vm_end;
1792 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1793 if (gap_start > high_limit)
1797 /* We found a suitable gap. Clip it with the original low_limit. */
1798 if (gap_start < info->low_limit)
1799 gap_start = info->low_limit;
1801 /* Adjust gap address to the desired alignment */
1802 gap_start += (info->align_offset - gap_start) & info->align_mask;
1804 VM_BUG_ON(gap_start + info->length > info->high_limit);
1805 VM_BUG_ON(gap_start + info->length > gap_end);
1809 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1811 struct mm_struct *mm = current->mm;
1812 struct vm_area_struct *vma;
1813 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1815 /* Adjust search length to account for worst case alignment overhead */
1816 length = info->length + info->align_mask;
1817 if (length < info->length)
1821 * Adjust search limits by the desired length.
1822 * See implementation comment at top of unmapped_area().
1824 gap_end = info->high_limit;
1825 if (gap_end < length)
1827 high_limit = gap_end - length;
1829 if (info->low_limit > high_limit)
1831 low_limit = info->low_limit + length;
1833 /* Check highest gap, which does not precede any rbtree node */
1834 gap_start = mm->highest_vm_end;
1835 if (gap_start <= high_limit)
1838 /* Check if rbtree root looks promising */
1839 if (RB_EMPTY_ROOT(&mm->mm_rb))
1841 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1842 if (vma->rb_subtree_gap < length)
1846 /* Visit right subtree if it looks promising */
1847 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1848 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1849 struct vm_area_struct *right =
1850 rb_entry(vma->vm_rb.rb_right,
1851 struct vm_area_struct, vm_rb);
1852 if (right->rb_subtree_gap >= length) {
1859 /* Check if current node has a suitable gap */
1860 gap_end = vma->vm_start;
1861 if (gap_end < low_limit)
1863 if (gap_start <= high_limit && gap_end - gap_start >= length)
1866 /* Visit left subtree if it looks promising */
1867 if (vma->vm_rb.rb_left) {
1868 struct vm_area_struct *left =
1869 rb_entry(vma->vm_rb.rb_left,
1870 struct vm_area_struct, vm_rb);
1871 if (left->rb_subtree_gap >= length) {
1877 /* Go back up the rbtree to find next candidate node */
1879 struct rb_node *prev = &vma->vm_rb;
1880 if (!rb_parent(prev))
1882 vma = rb_entry(rb_parent(prev),
1883 struct vm_area_struct, vm_rb);
1884 if (prev == vma->vm_rb.rb_right) {
1885 gap_start = vma->vm_prev ?
1886 vma->vm_prev->vm_end : 0;
1893 /* We found a suitable gap. Clip it with the original high_limit. */
1894 if (gap_end > info->high_limit)
1895 gap_end = info->high_limit;
1898 /* Compute highest gap address at the desired alignment */
1899 gap_end -= info->length;
1900 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1902 VM_BUG_ON(gap_end < info->low_limit);
1903 VM_BUG_ON(gap_end < gap_start);
1907 /* Get an address range which is currently unmapped.
1908 * For shmat() with addr=0.
1910 * Ugly calling convention alert:
1911 * Return value with the low bits set means error value,
1913 * if (ret & ~PAGE_MASK)
1916 * This function "knows" that -ENOMEM has the bits set.
1918 #ifndef HAVE_ARCH_UNMAPPED_AREA
1920 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1921 unsigned long len, unsigned long pgoff, unsigned long flags)
1923 struct mm_struct *mm = current->mm;
1924 struct vm_area_struct *vma;
1925 struct vm_unmapped_area_info info;
1927 if (len > TASK_SIZE - mmap_min_addr)
1930 if (flags & MAP_FIXED)
1934 addr = PAGE_ALIGN(addr);
1935 vma = find_vma(mm, addr);
1936 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1937 (!vma || addr + len <= vma->vm_start))
1943 info.low_limit = mm->mmap_base;
1944 info.high_limit = TASK_SIZE;
1945 info.align_mask = 0;
1946 return vm_unmapped_area(&info);
1951 * This mmap-allocator allocates new areas top-down from below the
1952 * stack's low limit (the base):
1954 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1956 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1957 const unsigned long len, const unsigned long pgoff,
1958 const unsigned long flags)
1960 struct vm_area_struct *vma;
1961 struct mm_struct *mm = current->mm;
1962 unsigned long addr = addr0;
1963 struct vm_unmapped_area_info info;
1965 /* requested length too big for entire address space */
1966 if (len > TASK_SIZE - mmap_min_addr)
1969 if (flags & MAP_FIXED)
1972 /* requesting a specific address */
1974 addr = PAGE_ALIGN(addr);
1975 vma = find_vma(mm, addr);
1976 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1977 (!vma || addr + len <= vma->vm_start))
1981 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1983 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1984 info.high_limit = mm->mmap_base;
1985 info.align_mask = 0;
1986 addr = vm_unmapped_area(&info);
1989 * A failed mmap() very likely causes application failure,
1990 * so fall back to the bottom-up function here. This scenario
1991 * can happen with large stack limits and large mmap()
1994 if (offset_in_page(addr)) {
1995 VM_BUG_ON(addr != -ENOMEM);
1997 info.low_limit = TASK_UNMAPPED_BASE;
1998 info.high_limit = TASK_SIZE;
1999 addr = vm_unmapped_area(&info);
2007 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2008 unsigned long pgoff, unsigned long flags)
2010 unsigned long (*get_area)(struct file *, unsigned long,
2011 unsigned long, unsigned long, unsigned long);
2013 unsigned long error = arch_mmap_check(addr, len, flags);
2017 /* Careful about overflows.. */
2018 if (len > TASK_SIZE)
2021 get_area = current->mm->get_unmapped_area;
2022 if (file && file->f_op->get_unmapped_area)
2023 get_area = file->f_op->get_unmapped_area;
2024 addr = get_area(file, addr, len, pgoff, flags);
2025 if (IS_ERR_VALUE(addr))
2028 if (addr > TASK_SIZE - len)
2030 if (offset_in_page(addr))
2033 addr = arch_rebalance_pgtables(addr, len);
2034 error = security_mmap_addr(addr);
2035 return error ? error : addr;
2038 EXPORT_SYMBOL(get_unmapped_area);
2040 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2041 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2043 struct rb_node *rb_node;
2044 struct vm_area_struct *vma;
2046 /* Check the cache first. */
2047 vma = vmacache_find(mm, addr);
2051 rb_node = mm->mm_rb.rb_node;
2054 struct vm_area_struct *tmp;
2056 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2058 if (tmp->vm_end > addr) {
2060 if (tmp->vm_start <= addr)
2062 rb_node = rb_node->rb_left;
2064 rb_node = rb_node->rb_right;
2068 vmacache_update(addr, vma);
2072 EXPORT_SYMBOL(find_vma);
2075 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2077 struct vm_area_struct *
2078 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2079 struct vm_area_struct **pprev)
2081 struct vm_area_struct *vma;
2083 vma = find_vma(mm, addr);
2085 *pprev = vma->vm_prev;
2087 struct rb_node *rb_node = mm->mm_rb.rb_node;
2090 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2091 rb_node = rb_node->rb_right;
2098 * Verify that the stack growth is acceptable and
2099 * update accounting. This is shared with both the
2100 * grow-up and grow-down cases.
2102 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2104 struct mm_struct *mm = vma->vm_mm;
2105 struct rlimit *rlim = current->signal->rlim;
2106 unsigned long new_start, actual_size;
2108 /* address space limit tests */
2109 if (!may_expand_vm(mm, grow))
2112 /* Stack limit test */
2114 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2115 actual_size -= PAGE_SIZE;
2116 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2119 /* mlock limit tests */
2120 if (vma->vm_flags & VM_LOCKED) {
2121 unsigned long locked;
2122 unsigned long limit;
2123 locked = mm->locked_vm + grow;
2124 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2125 limit >>= PAGE_SHIFT;
2126 if (locked > limit && !capable(CAP_IPC_LOCK))
2130 /* Check to ensure the stack will not grow into a hugetlb-only region */
2131 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2133 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2137 * Overcommit.. This must be the final test, as it will
2138 * update security statistics.
2140 if (security_vm_enough_memory_mm(mm, grow))
2146 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2148 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2149 * vma is the last one with address > vma->vm_end. Have to extend vma.
2151 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2153 struct mm_struct *mm = vma->vm_mm;
2156 if (!(vma->vm_flags & VM_GROWSUP))
2159 /* Guard against wrapping around to address 0. */
2160 if (address < PAGE_ALIGN(address+4))
2161 address = PAGE_ALIGN(address+4);
2165 /* We must make sure the anon_vma is allocated. */
2166 if (unlikely(anon_vma_prepare(vma)))
2170 * vma->vm_start/vm_end cannot change under us because the caller
2171 * is required to hold the mmap_sem in read mode. We need the
2172 * anon_vma lock to serialize against concurrent expand_stacks.
2174 anon_vma_lock_write(vma->anon_vma);
2176 /* Somebody else might have raced and expanded it already */
2177 if (address > vma->vm_end) {
2178 unsigned long size, grow;
2180 size = address - vma->vm_start;
2181 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2184 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2185 error = acct_stack_growth(vma, size, grow);
2188 * vma_gap_update() doesn't support concurrent
2189 * updates, but we only hold a shared mmap_sem
2190 * lock here, so we need to protect against
2191 * concurrent vma expansions.
2192 * anon_vma_lock_write() doesn't help here, as
2193 * we don't guarantee that all growable vmas
2194 * in a mm share the same root anon vma.
2195 * So, we reuse mm->page_table_lock to guard
2196 * against concurrent vma expansions.
2198 spin_lock(&mm->page_table_lock);
2199 if (vma->vm_flags & VM_LOCKED)
2200 mm->locked_vm += grow;
2201 vm_stat_account(mm, vma->vm_flags,
2202 vma->vm_file, grow);
2203 anon_vma_interval_tree_pre_update_vma(vma);
2204 vma->vm_end = address;
2205 anon_vma_interval_tree_post_update_vma(vma);
2207 vma_gap_update(vma->vm_next);
2209 mm->highest_vm_end = address;
2210 spin_unlock(&mm->page_table_lock);
2212 perf_event_mmap(vma);
2216 anon_vma_unlock_write(vma->anon_vma);
2217 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2221 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2224 * vma is the first one with address < vma->vm_start. Have to extend vma.
2226 int expand_downwards(struct vm_area_struct *vma,
2227 unsigned long address)
2229 struct mm_struct *mm = vma->vm_mm;
2232 address &= PAGE_MASK;
2233 error = security_mmap_addr(address);
2237 /* We must make sure the anon_vma is allocated. */
2238 if (unlikely(anon_vma_prepare(vma)))
2242 * vma->vm_start/vm_end cannot change under us because the caller
2243 * is required to hold the mmap_sem in read mode. We need the
2244 * anon_vma lock to serialize against concurrent expand_stacks.
2246 anon_vma_lock_write(vma->anon_vma);
2248 /* Somebody else might have raced and expanded it already */
2249 if (address < vma->vm_start) {
2250 unsigned long size, grow;
2252 size = vma->vm_end - address;
2253 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2256 if (grow <= vma->vm_pgoff) {
2257 error = acct_stack_growth(vma, size, grow);
2260 * vma_gap_update() doesn't support concurrent
2261 * updates, but we only hold a shared mmap_sem
2262 * lock here, so we need to protect against
2263 * concurrent vma expansions.
2264 * anon_vma_lock_write() doesn't help here, as
2265 * we don't guarantee that all growable vmas
2266 * in a mm share the same root anon vma.
2267 * So, we reuse mm->page_table_lock to guard
2268 * against concurrent vma expansions.
2270 spin_lock(&mm->page_table_lock);
2271 if (vma->vm_flags & VM_LOCKED)
2272 mm->locked_vm += grow;
2273 vm_stat_account(mm, vma->vm_flags,
2274 vma->vm_file, grow);
2275 anon_vma_interval_tree_pre_update_vma(vma);
2276 vma->vm_start = address;
2277 vma->vm_pgoff -= grow;
2278 anon_vma_interval_tree_post_update_vma(vma);
2279 vma_gap_update(vma);
2280 spin_unlock(&mm->page_table_lock);
2282 perf_event_mmap(vma);
2286 anon_vma_unlock_write(vma->anon_vma);
2287 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2293 * Note how expand_stack() refuses to expand the stack all the way to
2294 * abut the next virtual mapping, *unless* that mapping itself is also
2295 * a stack mapping. We want to leave room for a guard page, after all
2296 * (the guard page itself is not added here, that is done by the
2297 * actual page faulting logic)
2299 * This matches the behavior of the guard page logic (see mm/memory.c:
2300 * check_stack_guard_page()), which only allows the guard page to be
2301 * removed under these circumstances.
2303 #ifdef CONFIG_STACK_GROWSUP
2304 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2306 struct vm_area_struct *next;
2308 address &= PAGE_MASK;
2309 next = vma->vm_next;
2310 if (next && next->vm_start == address + PAGE_SIZE) {
2311 if (!(next->vm_flags & VM_GROWSUP))
2314 return expand_upwards(vma, address);
2317 struct vm_area_struct *
2318 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2320 struct vm_area_struct *vma, *prev;
2323 vma = find_vma_prev(mm, addr, &prev);
2324 if (vma && (vma->vm_start <= addr))
2326 if (!prev || expand_stack(prev, addr))
2328 if (prev->vm_flags & VM_LOCKED)
2329 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2333 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2335 struct vm_area_struct *prev;
2337 address &= PAGE_MASK;
2338 prev = vma->vm_prev;
2339 if (prev && prev->vm_end == address) {
2340 if (!(prev->vm_flags & VM_GROWSDOWN))
2343 return expand_downwards(vma, address);
2346 struct vm_area_struct *
2347 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2349 struct vm_area_struct *vma;
2350 unsigned long start;
2353 vma = find_vma(mm, addr);
2356 if (vma->vm_start <= addr)
2358 if (!(vma->vm_flags & VM_GROWSDOWN))
2360 start = vma->vm_start;
2361 if (expand_stack(vma, addr))
2363 if (vma->vm_flags & VM_LOCKED)
2364 populate_vma_page_range(vma, addr, start, NULL);
2369 EXPORT_SYMBOL_GPL(find_extend_vma);
2372 * Ok - we have the memory areas we should free on the vma list,
2373 * so release them, and do the vma updates.
2375 * Called with the mm semaphore held.
2377 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2379 unsigned long nr_accounted = 0;
2381 /* Update high watermark before we lower total_vm */
2382 update_hiwater_vm(mm);
2384 long nrpages = vma_pages(vma);
2386 if (vma->vm_flags & VM_ACCOUNT)
2387 nr_accounted += nrpages;
2388 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2389 vma = remove_vma(vma);
2391 vm_unacct_memory(nr_accounted);
2396 * Get rid of page table information in the indicated region.
2398 * Called with the mm semaphore held.
2400 static void unmap_region(struct mm_struct *mm,
2401 struct vm_area_struct *vma, struct vm_area_struct *prev,
2402 unsigned long start, unsigned long end)
2404 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2405 struct mmu_gather tlb;
2408 tlb_gather_mmu(&tlb, mm, start, end);
2409 update_hiwater_rss(mm);
2410 unmap_vmas(&tlb, vma, start, end);
2411 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2412 next ? next->vm_start : USER_PGTABLES_CEILING);
2413 tlb_finish_mmu(&tlb, start, end);
2417 * Create a list of vma's touched by the unmap, removing them from the mm's
2418 * vma list as we go..
2421 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2422 struct vm_area_struct *prev, unsigned long end)
2424 struct vm_area_struct **insertion_point;
2425 struct vm_area_struct *tail_vma = NULL;
2427 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2428 vma->vm_prev = NULL;
2430 vma_rb_erase(vma, &mm->mm_rb);
2434 } while (vma && vma->vm_start < end);
2435 *insertion_point = vma;
2437 vma->vm_prev = prev;
2438 vma_gap_update(vma);
2440 mm->highest_vm_end = prev ? prev->vm_end : 0;
2441 tail_vma->vm_next = NULL;
2443 /* Kill the cache */
2444 vmacache_invalidate(mm);
2448 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2449 * munmap path where it doesn't make sense to fail.
2451 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2452 unsigned long addr, int new_below)
2454 struct vm_area_struct *new;
2457 if (is_vm_hugetlb_page(vma) && (addr &
2458 ~(huge_page_mask(hstate_vma(vma)))))
2461 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2465 /* most fields are the same, copy all, and then fixup */
2468 INIT_LIST_HEAD(&new->anon_vma_chain);
2473 new->vm_start = addr;
2474 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2477 err = vma_dup_policy(vma, new);
2481 err = anon_vma_clone(new, vma);
2486 get_file(new->vm_file);
2488 if (new->vm_ops && new->vm_ops->open)
2489 new->vm_ops->open(new);
2492 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2493 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2495 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2501 /* Clean everything up if vma_adjust failed. */
2502 if (new->vm_ops && new->vm_ops->close)
2503 new->vm_ops->close(new);
2506 unlink_anon_vmas(new);
2508 mpol_put(vma_policy(new));
2510 kmem_cache_free(vm_area_cachep, new);
2515 * Split a vma into two pieces at address 'addr', a new vma is allocated
2516 * either for the first part or the tail.
2518 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2519 unsigned long addr, int new_below)
2521 if (mm->map_count >= sysctl_max_map_count)
2524 return __split_vma(mm, vma, addr, new_below);
2527 /* Munmap is split into 2 main parts -- this part which finds
2528 * what needs doing, and the areas themselves, which do the
2529 * work. This now handles partial unmappings.
2530 * Jeremy Fitzhardinge <jeremy@goop.org>
2532 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2535 struct vm_area_struct *vma, *prev, *last;
2537 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2540 len = PAGE_ALIGN(len);
2544 /* Find the first overlapping VMA */
2545 vma = find_vma(mm, start);
2548 prev = vma->vm_prev;
2549 /* we have start < vma->vm_end */
2551 /* if it doesn't overlap, we have nothing.. */
2553 if (vma->vm_start >= end)
2557 * If we need to split any vma, do it now to save pain later.
2559 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2560 * unmapped vm_area_struct will remain in use: so lower split_vma
2561 * places tmp vma above, and higher split_vma places tmp vma below.
2563 if (start > vma->vm_start) {
2567 * Make sure that map_count on return from munmap() will
2568 * not exceed its limit; but let map_count go just above
2569 * its limit temporarily, to help free resources as expected.
2571 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2574 error = __split_vma(mm, vma, start, 0);
2580 /* Does it split the last one? */
2581 last = find_vma(mm, end);
2582 if (last && end > last->vm_start) {
2583 int error = __split_vma(mm, last, end, 1);
2587 vma = prev ? prev->vm_next : mm->mmap;
2590 * unlock any mlock()ed ranges before detaching vmas
2592 if (mm->locked_vm) {
2593 struct vm_area_struct *tmp = vma;
2594 while (tmp && tmp->vm_start < end) {
2595 if (tmp->vm_flags & VM_LOCKED) {
2596 mm->locked_vm -= vma_pages(tmp);
2597 munlock_vma_pages_all(tmp);
2604 * Remove the vma's, and unmap the actual pages
2606 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2607 unmap_region(mm, vma, prev, start, end);
2609 arch_unmap(mm, vma, start, end);
2611 /* Fix up all other VM information */
2612 remove_vma_list(mm, vma);
2617 int vm_munmap(unsigned long start, size_t len)
2620 struct mm_struct *mm = current->mm;
2622 down_write(&mm->mmap_sem);
2623 ret = do_munmap(mm, start, len);
2624 up_write(&mm->mmap_sem);
2627 EXPORT_SYMBOL(vm_munmap);
2629 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2631 profile_munmap(addr);
2632 return vm_munmap(addr, len);
2637 * Emulation of deprecated remap_file_pages() syscall.
2639 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2640 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2643 struct mm_struct *mm = current->mm;
2644 struct vm_area_struct *vma;
2645 unsigned long populate = 0;
2646 unsigned long ret = -EINVAL;
2649 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2650 "See Documentation/vm/remap_file_pages.txt.\n",
2651 current->comm, current->pid);
2655 start = start & PAGE_MASK;
2656 size = size & PAGE_MASK;
2658 if (start + size <= start)
2661 /* Does pgoff wrap? */
2662 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2665 down_write(&mm->mmap_sem);
2666 vma = find_vma(mm, start);
2668 if (!vma || !(vma->vm_flags & VM_SHARED))
2671 if (start < vma->vm_start)
2674 if (start + size > vma->vm_end) {
2675 struct vm_area_struct *next;
2677 for (next = vma->vm_next; next; next = next->vm_next) {
2678 /* hole between vmas ? */
2679 if (next->vm_start != next->vm_prev->vm_end)
2682 if (next->vm_file != vma->vm_file)
2685 if (next->vm_flags != vma->vm_flags)
2688 if (start + size <= next->vm_end)
2696 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2697 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2698 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2700 flags &= MAP_NONBLOCK;
2701 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2702 if (vma->vm_flags & VM_LOCKED) {
2703 struct vm_area_struct *tmp;
2704 flags |= MAP_LOCKED;
2706 /* drop PG_Mlocked flag for over-mapped range */
2707 for (tmp = vma; tmp->vm_start >= start + size;
2708 tmp = tmp->vm_next) {
2709 munlock_vma_pages_range(tmp,
2710 max(tmp->vm_start, start),
2711 min(tmp->vm_end, start + size));
2715 file = get_file(vma->vm_file);
2716 ret = do_mmap_pgoff(vma->vm_file, start, size,
2717 prot, flags, pgoff, &populate);
2720 up_write(&mm->mmap_sem);
2722 mm_populate(ret, populate);
2723 if (!IS_ERR_VALUE(ret))
2728 static inline void verify_mm_writelocked(struct mm_struct *mm)
2730 #ifdef CONFIG_DEBUG_VM
2731 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2733 up_read(&mm->mmap_sem);
2739 * this is really a simplified "do_mmap". it only handles
2740 * anonymous maps. eventually we may be able to do some
2741 * brk-specific accounting here.
2743 static unsigned long do_brk(unsigned long addr, unsigned long len)
2745 struct mm_struct *mm = current->mm;
2746 struct vm_area_struct *vma, *prev;
2747 unsigned long flags;
2748 struct rb_node **rb_link, *rb_parent;
2749 pgoff_t pgoff = addr >> PAGE_SHIFT;
2752 len = PAGE_ALIGN(len);
2756 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2758 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2759 if (offset_in_page(error))
2762 error = mlock_future_check(mm, mm->def_flags, len);
2767 * mm->mmap_sem is required to protect against another thread
2768 * changing the mappings in case we sleep.
2770 verify_mm_writelocked(mm);
2773 * Clear old maps. this also does some error checking for us
2775 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2777 if (do_munmap(mm, addr, len))
2781 /* Check against address space limits *after* clearing old maps... */
2782 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2785 if (mm->map_count > sysctl_max_map_count)
2788 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2791 /* Can we just expand an old private anonymous mapping? */
2792 vma = vma_merge(mm, prev, addr, addr + len, flags,
2793 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2798 * create a vma struct for an anonymous mapping
2800 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2802 vm_unacct_memory(len >> PAGE_SHIFT);
2806 INIT_LIST_HEAD(&vma->anon_vma_chain);
2808 vma->vm_start = addr;
2809 vma->vm_end = addr + len;
2810 vma->vm_pgoff = pgoff;
2811 vma->vm_flags = flags;
2812 vma->vm_page_prot = vm_get_page_prot(flags);
2813 vma_link(mm, vma, prev, rb_link, rb_parent);
2815 perf_event_mmap(vma);
2816 mm->total_vm += len >> PAGE_SHIFT;
2817 if (flags & VM_LOCKED)
2818 mm->locked_vm += (len >> PAGE_SHIFT);
2819 vma->vm_flags |= VM_SOFTDIRTY;
2823 unsigned long vm_brk(unsigned long addr, unsigned long len)
2825 struct mm_struct *mm = current->mm;
2829 down_write(&mm->mmap_sem);
2830 ret = do_brk(addr, len);
2831 populate = ((mm->def_flags & VM_LOCKED) != 0);
2832 up_write(&mm->mmap_sem);
2834 mm_populate(addr, len);
2837 EXPORT_SYMBOL(vm_brk);
2839 /* Release all mmaps. */
2840 void exit_mmap(struct mm_struct *mm)
2842 struct mmu_gather tlb;
2843 struct vm_area_struct *vma;
2844 unsigned long nr_accounted = 0;
2846 /* mm's last user has gone, and its about to be pulled down */
2847 mmu_notifier_release(mm);
2849 if (mm->locked_vm) {
2852 if (vma->vm_flags & VM_LOCKED)
2853 munlock_vma_pages_all(vma);
2861 if (!vma) /* Can happen if dup_mmap() received an OOM */
2866 tlb_gather_mmu(&tlb, mm, 0, -1);
2867 /* update_hiwater_rss(mm) here? but nobody should be looking */
2868 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2869 unmap_vmas(&tlb, vma, 0, -1);
2871 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2872 tlb_finish_mmu(&tlb, 0, -1);
2875 * Walk the list again, actually closing and freeing it,
2876 * with preemption enabled, without holding any MM locks.
2879 if (vma->vm_flags & VM_ACCOUNT)
2880 nr_accounted += vma_pages(vma);
2881 vma = remove_vma(vma);
2883 vm_unacct_memory(nr_accounted);
2886 /* Insert vm structure into process list sorted by address
2887 * and into the inode's i_mmap tree. If vm_file is non-NULL
2888 * then i_mmap_rwsem is taken here.
2890 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2892 struct vm_area_struct *prev;
2893 struct rb_node **rb_link, *rb_parent;
2895 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2896 &prev, &rb_link, &rb_parent))
2898 if ((vma->vm_flags & VM_ACCOUNT) &&
2899 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2903 * The vm_pgoff of a purely anonymous vma should be irrelevant
2904 * until its first write fault, when page's anon_vma and index
2905 * are set. But now set the vm_pgoff it will almost certainly
2906 * end up with (unless mremap moves it elsewhere before that
2907 * first wfault), so /proc/pid/maps tells a consistent story.
2909 * By setting it to reflect the virtual start address of the
2910 * vma, merges and splits can happen in a seamless way, just
2911 * using the existing file pgoff checks and manipulations.
2912 * Similarly in do_mmap_pgoff and in do_brk.
2914 if (vma_is_anonymous(vma)) {
2915 BUG_ON(vma->anon_vma);
2916 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2919 vma_link(mm, vma, prev, rb_link, rb_parent);
2924 * Copy the vma structure to a new location in the same mm,
2925 * prior to moving page table entries, to effect an mremap move.
2927 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2928 unsigned long addr, unsigned long len, pgoff_t pgoff,
2929 bool *need_rmap_locks)
2931 struct vm_area_struct *vma = *vmap;
2932 unsigned long vma_start = vma->vm_start;
2933 struct mm_struct *mm = vma->vm_mm;
2934 struct vm_area_struct *new_vma, *prev;
2935 struct rb_node **rb_link, *rb_parent;
2936 bool faulted_in_anon_vma = true;
2939 * If anonymous vma has not yet been faulted, update new pgoff
2940 * to match new location, to increase its chance of merging.
2942 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2943 pgoff = addr >> PAGE_SHIFT;
2944 faulted_in_anon_vma = false;
2947 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2948 return NULL; /* should never get here */
2949 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2950 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2951 vma->vm_userfaultfd_ctx);
2954 * Source vma may have been merged into new_vma
2956 if (unlikely(vma_start >= new_vma->vm_start &&
2957 vma_start < new_vma->vm_end)) {
2959 * The only way we can get a vma_merge with
2960 * self during an mremap is if the vma hasn't
2961 * been faulted in yet and we were allowed to
2962 * reset the dst vma->vm_pgoff to the
2963 * destination address of the mremap to allow
2964 * the merge to happen. mremap must change the
2965 * vm_pgoff linearity between src and dst vmas
2966 * (in turn preventing a vma_merge) to be
2967 * safe. It is only safe to keep the vm_pgoff
2968 * linear if there are no pages mapped yet.
2970 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2971 *vmap = vma = new_vma;
2973 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2975 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2979 new_vma->vm_start = addr;
2980 new_vma->vm_end = addr + len;
2981 new_vma->vm_pgoff = pgoff;
2982 if (vma_dup_policy(vma, new_vma))
2984 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2985 if (anon_vma_clone(new_vma, vma))
2986 goto out_free_mempol;
2987 if (new_vma->vm_file)
2988 get_file(new_vma->vm_file);
2989 if (new_vma->vm_ops && new_vma->vm_ops->open)
2990 new_vma->vm_ops->open(new_vma);
2991 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2992 *need_rmap_locks = false;
2997 mpol_put(vma_policy(new_vma));
2999 kmem_cache_free(vm_area_cachep, new_vma);
3005 * Return true if the calling process may expand its vm space by the passed
3008 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3010 unsigned long cur = mm->total_vm; /* pages */
3013 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3015 if (cur + npages > lim)
3020 static int special_mapping_fault(struct vm_area_struct *vma,
3021 struct vm_fault *vmf);
3024 * Having a close hook prevents vma merging regardless of flags.
3026 static void special_mapping_close(struct vm_area_struct *vma)
3030 static const char *special_mapping_name(struct vm_area_struct *vma)
3032 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3035 static const struct vm_operations_struct special_mapping_vmops = {
3036 .close = special_mapping_close,
3037 .fault = special_mapping_fault,
3038 .name = special_mapping_name,
3041 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3042 .close = special_mapping_close,
3043 .fault = special_mapping_fault,
3046 static int special_mapping_fault(struct vm_area_struct *vma,
3047 struct vm_fault *vmf)
3050 struct page **pages;
3052 if (vma->vm_ops == &legacy_special_mapping_vmops)
3053 pages = vma->vm_private_data;
3055 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3058 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3062 struct page *page = *pages;
3068 return VM_FAULT_SIGBUS;
3071 static struct vm_area_struct *__install_special_mapping(
3072 struct mm_struct *mm,
3073 unsigned long addr, unsigned long len,
3074 unsigned long vm_flags, void *priv,
3075 const struct vm_operations_struct *ops)
3078 struct vm_area_struct *vma;
3080 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3081 if (unlikely(vma == NULL))
3082 return ERR_PTR(-ENOMEM);
3084 INIT_LIST_HEAD(&vma->anon_vma_chain);
3086 vma->vm_start = addr;
3087 vma->vm_end = addr + len;
3089 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3090 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3093 vma->vm_private_data = priv;
3095 ret = insert_vm_struct(mm, vma);
3099 mm->total_vm += len >> PAGE_SHIFT;
3101 perf_event_mmap(vma);
3106 kmem_cache_free(vm_area_cachep, vma);
3107 return ERR_PTR(ret);
3111 * Called with mm->mmap_sem held for writing.
3112 * Insert a new vma covering the given region, with the given flags.
3113 * Its pages are supplied by the given array of struct page *.
3114 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3115 * The region past the last page supplied will always produce SIGBUS.
3116 * The array pointer and the pages it points to are assumed to stay alive
3117 * for as long as this mapping might exist.
3119 struct vm_area_struct *_install_special_mapping(
3120 struct mm_struct *mm,
3121 unsigned long addr, unsigned long len,
3122 unsigned long vm_flags, const struct vm_special_mapping *spec)
3124 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3125 &special_mapping_vmops);
3128 int install_special_mapping(struct mm_struct *mm,
3129 unsigned long addr, unsigned long len,
3130 unsigned long vm_flags, struct page **pages)
3132 struct vm_area_struct *vma = __install_special_mapping(
3133 mm, addr, len, vm_flags, (void *)pages,
3134 &legacy_special_mapping_vmops);
3136 return PTR_ERR_OR_ZERO(vma);
3139 static DEFINE_MUTEX(mm_all_locks_mutex);
3141 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3143 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3145 * The LSB of head.next can't change from under us
3146 * because we hold the mm_all_locks_mutex.
3148 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3150 * We can safely modify head.next after taking the
3151 * anon_vma->root->rwsem. If some other vma in this mm shares
3152 * the same anon_vma we won't take it again.
3154 * No need of atomic instructions here, head.next
3155 * can't change from under us thanks to the
3156 * anon_vma->root->rwsem.
3158 if (__test_and_set_bit(0, (unsigned long *)
3159 &anon_vma->root->rb_root.rb_node))
3164 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3166 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3168 * AS_MM_ALL_LOCKS can't change from under us because
3169 * we hold the mm_all_locks_mutex.
3171 * Operations on ->flags have to be atomic because
3172 * even if AS_MM_ALL_LOCKS is stable thanks to the
3173 * mm_all_locks_mutex, there may be other cpus
3174 * changing other bitflags in parallel to us.
3176 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3178 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3183 * This operation locks against the VM for all pte/vma/mm related
3184 * operations that could ever happen on a certain mm. This includes
3185 * vmtruncate, try_to_unmap, and all page faults.
3187 * The caller must take the mmap_sem in write mode before calling
3188 * mm_take_all_locks(). The caller isn't allowed to release the
3189 * mmap_sem until mm_drop_all_locks() returns.
3191 * mmap_sem in write mode is required in order to block all operations
3192 * that could modify pagetables and free pages without need of
3193 * altering the vma layout. It's also needed in write mode to avoid new
3194 * anon_vmas to be associated with existing vmas.
3196 * A single task can't take more than one mm_take_all_locks() in a row
3197 * or it would deadlock.
3199 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3200 * mapping->flags avoid to take the same lock twice, if more than one
3201 * vma in this mm is backed by the same anon_vma or address_space.
3203 * We can take all the locks in random order because the VM code
3204 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3205 * takes more than one of them in a row. Secondly we're protected
3206 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3208 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3209 * that may have to take thousand of locks.
3211 * mm_take_all_locks() can fail if it's interrupted by signals.
3213 int mm_take_all_locks(struct mm_struct *mm)
3215 struct vm_area_struct *vma;
3216 struct anon_vma_chain *avc;
3218 BUG_ON(down_read_trylock(&mm->mmap_sem));
3220 mutex_lock(&mm_all_locks_mutex);
3222 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3223 if (signal_pending(current))
3225 if (vma->vm_file && vma->vm_file->f_mapping)
3226 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3229 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3230 if (signal_pending(current))
3233 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3234 vm_lock_anon_vma(mm, avc->anon_vma);
3240 mm_drop_all_locks(mm);
3244 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3246 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3248 * The LSB of head.next can't change to 0 from under
3249 * us because we hold the mm_all_locks_mutex.
3251 * We must however clear the bitflag before unlocking
3252 * the vma so the users using the anon_vma->rb_root will
3253 * never see our bitflag.
3255 * No need of atomic instructions here, head.next
3256 * can't change from under us until we release the
3257 * anon_vma->root->rwsem.
3259 if (!__test_and_clear_bit(0, (unsigned long *)
3260 &anon_vma->root->rb_root.rb_node))
3262 anon_vma_unlock_write(anon_vma);
3266 static void vm_unlock_mapping(struct address_space *mapping)
3268 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3270 * AS_MM_ALL_LOCKS can't change to 0 from under us
3271 * because we hold the mm_all_locks_mutex.
3273 i_mmap_unlock_write(mapping);
3274 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3281 * The mmap_sem cannot be released by the caller until
3282 * mm_drop_all_locks() returns.
3284 void mm_drop_all_locks(struct mm_struct *mm)
3286 struct vm_area_struct *vma;
3287 struct anon_vma_chain *avc;
3289 BUG_ON(down_read_trylock(&mm->mmap_sem));
3290 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3292 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3294 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3295 vm_unlock_anon_vma(avc->anon_vma);
3296 if (vma->vm_file && vma->vm_file->f_mapping)
3297 vm_unlock_mapping(vma->vm_file->f_mapping);
3300 mutex_unlock(&mm_all_locks_mutex);
3304 * initialise the VMA slab
3306 void __init mmap_init(void)
3310 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3315 * Initialise sysctl_user_reserve_kbytes.
3317 * This is intended to prevent a user from starting a single memory hogging
3318 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3321 * The default value is min(3% of free memory, 128MB)
3322 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3324 static int init_user_reserve(void)
3326 unsigned long free_kbytes;
3328 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3330 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3333 subsys_initcall(init_user_reserve);
3336 * Initialise sysctl_admin_reserve_kbytes.
3338 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3339 * to log in and kill a memory hogging process.
3341 * Systems with more than 256MB will reserve 8MB, enough to recover
3342 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3343 * only reserve 3% of free pages by default.
3345 static int init_admin_reserve(void)
3347 unsigned long free_kbytes;
3349 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3351 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3354 subsys_initcall(init_admin_reserve);
3357 * Reinititalise user and admin reserves if memory is added or removed.
3359 * The default user reserve max is 128MB, and the default max for the
3360 * admin reserve is 8MB. These are usually, but not always, enough to
3361 * enable recovery from a memory hogging process using login/sshd, a shell,
3362 * and tools like top. It may make sense to increase or even disable the
3363 * reserve depending on the existence of swap or variations in the recovery
3364 * tools. So, the admin may have changed them.
3366 * If memory is added and the reserves have been eliminated or increased above
3367 * the default max, then we'll trust the admin.
3369 * If memory is removed and there isn't enough free memory, then we
3370 * need to reset the reserves.
3372 * Otherwise keep the reserve set by the admin.
3374 static int reserve_mem_notifier(struct notifier_block *nb,
3375 unsigned long action, void *data)
3377 unsigned long tmp, free_kbytes;
3381 /* Default max is 128MB. Leave alone if modified by operator. */
3382 tmp = sysctl_user_reserve_kbytes;
3383 if (0 < tmp && tmp < (1UL << 17))
3384 init_user_reserve();
3386 /* Default max is 8MB. Leave alone if modified by operator. */
3387 tmp = sysctl_admin_reserve_kbytes;
3388 if (0 < tmp && tmp < (1UL << 13))
3389 init_admin_reserve();
3393 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3395 if (sysctl_user_reserve_kbytes > free_kbytes) {
3396 init_user_reserve();
3397 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3398 sysctl_user_reserve_kbytes);
3401 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3402 init_admin_reserve();
3403 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3404 sysctl_admin_reserve_kbytes);
3413 static struct notifier_block reserve_mem_nb = {
3414 .notifier_call = reserve_mem_notifier,
3417 static int __meminit init_reserve_notifier(void)
3419 if (register_hotmemory_notifier(&reserve_mem_nb))
3420 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3424 subsys_initcall(init_reserve_notifier);