5a863d328a443f420135ff52f91e2326aa86973d
[firefly-linux-kernel-4.4.55.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags)       (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len)              (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51                 struct vm_area_struct *vma, struct vm_area_struct *prev,
52                 unsigned long start, unsigned long end);
53
54 /*
55  * WARNING: the debugging will use recursive algorithms so never enable this
56  * unless you know what you are doing.
57  */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type     prot
65  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
66  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *              
70  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82         return __pgprot(pgprot_val(protection_map[vm_flags &
83                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92  * Make sure vm_committed_as in one cacheline and not cacheline shared with
93  * other variables. It can be updated by several CPUs frequently.
94  */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98  * Check that a process has enough memory to allocate a new virtual
99  * mapping. 0 means there is enough memory for the allocation to
100  * succeed and -ENOMEM implies there is not.
101  *
102  * We currently support three overcommit policies, which are set via the
103  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
104  *
105  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106  * Additional code 2002 Jul 20 by Robert Love.
107  *
108  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109  *
110  * Note this is a helper function intended to be used by LSMs which
111  * wish to use this logic.
112  */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115         unsigned long free, allowed;
116
117         vm_acct_memory(pages);
118
119         /*
120          * Sometimes we want to use more memory than we have
121          */
122         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123                 return 0;
124
125         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126                 free = global_page_state(NR_FREE_PAGES);
127                 free += global_page_state(NR_FILE_PAGES);
128
129                 /*
130                  * shmem pages shouldn't be counted as free in this
131                  * case, they can't be purged, only swapped out, and
132                  * that won't affect the overall amount of available
133                  * memory in the system.
134                  */
135                 free -= global_page_state(NR_SHMEM);
136
137                 free += nr_swap_pages;
138
139                 /*
140                  * Any slabs which are created with the
141                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142                  * which are reclaimable, under pressure.  The dentry
143                  * cache and most inode caches should fall into this
144                  */
145                 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147                 /*
148                  * Leave reserved pages. The pages are not for anonymous pages.
149                  */
150                 if (free <= totalreserve_pages)
151                         goto error;
152                 else
153                         free -= totalreserve_pages;
154
155                 /*
156                  * Leave the last 3% for root
157                  */
158                 if (!cap_sys_admin)
159                         free -= free / 32;
160
161                 if (free > pages)
162                         return 0;
163
164                 goto error;
165         }
166
167         allowed = (totalram_pages - hugetlb_total_pages())
168                 * sysctl_overcommit_ratio / 100;
169         /*
170          * Leave the last 3% for root
171          */
172         if (!cap_sys_admin)
173                 allowed -= allowed / 32;
174         allowed += total_swap_pages;
175
176         /* Don't let a single process grow too big:
177            leave 3% of the size of this process for other processes */
178         if (mm)
179                 allowed -= mm->total_vm / 32;
180
181         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182                 return 0;
183 error:
184         vm_unacct_memory(pages);
185
186         return -ENOMEM;
187 }
188
189 /*
190  * Requires inode->i_mapping->i_mmap_mutex
191  */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193                 struct file *file, struct address_space *mapping)
194 {
195         if (vma->vm_flags & VM_DENYWRITE)
196                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197         if (vma->vm_flags & VM_SHARED)
198                 mapping->i_mmap_writable--;
199
200         flush_dcache_mmap_lock(mapping);
201         if (unlikely(vma->vm_flags & VM_NONLINEAR))
202                 list_del_init(&vma->shared.vm_set.list);
203         else
204                 vma_prio_tree_remove(vma, &mapping->i_mmap);
205         flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209  * Unlink a file-based vm structure from its prio_tree, to hide
210  * vma from rmap and vmtruncate before freeing its page tables.
211  */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214         struct file *file = vma->vm_file;
215
216         if (file) {
217                 struct address_space *mapping = file->f_mapping;
218                 mutex_lock(&mapping->i_mmap_mutex);
219                 __remove_shared_vm_struct(vma, file, mapping);
220                 mutex_unlock(&mapping->i_mmap_mutex);
221         }
222 }
223
224 /*
225  * Close a vm structure and free it, returning the next.
226  */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229         struct vm_area_struct *next = vma->vm_next;
230
231         might_sleep();
232         if (vma->vm_ops && vma->vm_ops->close)
233                 vma->vm_ops->close(vma);
234         if (vma->vm_file) {
235                 fput(vma->vm_file);
236                 if (vma->vm_flags & VM_EXECUTABLE)
237                         removed_exe_file_vma(vma->vm_mm);
238         }
239         mpol_put(vma_policy(vma));
240         kmem_cache_free(vm_area_cachep, vma);
241         return next;
242 }
243
244 SYSCALL_DEFINE1(brk, unsigned long, brk)
245 {
246         unsigned long rlim, retval;
247         unsigned long newbrk, oldbrk;
248         struct mm_struct *mm = current->mm;
249         unsigned long min_brk;
250
251         down_write(&mm->mmap_sem);
252
253 #ifdef CONFIG_COMPAT_BRK
254         /*
255          * CONFIG_COMPAT_BRK can still be overridden by setting
256          * randomize_va_space to 2, which will still cause mm->start_brk
257          * to be arbitrarily shifted
258          */
259         if (current->brk_randomized)
260                 min_brk = mm->start_brk;
261         else
262                 min_brk = mm->end_data;
263 #else
264         min_brk = mm->start_brk;
265 #endif
266         if (brk < min_brk)
267                 goto out;
268
269         /*
270          * Check against rlimit here. If this check is done later after the test
271          * of oldbrk with newbrk then it can escape the test and let the data
272          * segment grow beyond its set limit the in case where the limit is
273          * not page aligned -Ram Gupta
274          */
275         rlim = rlimit(RLIMIT_DATA);
276         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
277                         (mm->end_data - mm->start_data) > rlim)
278                 goto out;
279
280         newbrk = PAGE_ALIGN(brk);
281         oldbrk = PAGE_ALIGN(mm->brk);
282         if (oldbrk == newbrk)
283                 goto set_brk;
284
285         /* Always allow shrinking brk. */
286         if (brk <= mm->brk) {
287                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
288                         goto set_brk;
289                 goto out;
290         }
291
292         /* Check against existing mmap mappings. */
293         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
294                 goto out;
295
296         /* Ok, looks good - let it rip. */
297         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
298                 goto out;
299 set_brk:
300         mm->brk = brk;
301 out:
302         retval = mm->brk;
303         up_write(&mm->mmap_sem);
304         return retval;
305 }
306
307 #ifdef DEBUG_MM_RB
308 static int browse_rb(struct rb_root *root)
309 {
310         int i = 0, j;
311         struct rb_node *nd, *pn = NULL;
312         unsigned long prev = 0, pend = 0;
313
314         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
315                 struct vm_area_struct *vma;
316                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
317                 if (vma->vm_start < prev)
318                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
319                 if (vma->vm_start < pend)
320                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
321                 if (vma->vm_start > vma->vm_end)
322                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
323                 i++;
324                 pn = nd;
325                 prev = vma->vm_start;
326                 pend = vma->vm_end;
327         }
328         j = 0;
329         for (nd = pn; nd; nd = rb_prev(nd)) {
330                 j++;
331         }
332         if (i != j)
333                 printk("backwards %d, forwards %d\n", j, i), i = 0;
334         return i;
335 }
336
337 void validate_mm(struct mm_struct *mm)
338 {
339         int bug = 0;
340         int i = 0;
341         struct vm_area_struct *tmp = mm->mmap;
342         while (tmp) {
343                 tmp = tmp->vm_next;
344                 i++;
345         }
346         if (i != mm->map_count)
347                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
348         i = browse_rb(&mm->mm_rb);
349         if (i != mm->map_count)
350                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
351         BUG_ON(bug);
352 }
353 #else
354 #define validate_mm(mm) do { } while (0)
355 #endif
356
357 static struct vm_area_struct *
358 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
359                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
360                 struct rb_node ** rb_parent)
361 {
362         struct vm_area_struct * vma;
363         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
364
365         __rb_link = &mm->mm_rb.rb_node;
366         rb_prev = __rb_parent = NULL;
367         vma = NULL;
368
369         while (*__rb_link) {
370                 struct vm_area_struct *vma_tmp;
371
372                 __rb_parent = *__rb_link;
373                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
374
375                 if (vma_tmp->vm_end > addr) {
376                         vma = vma_tmp;
377                         if (vma_tmp->vm_start <= addr)
378                                 break;
379                         __rb_link = &__rb_parent->rb_left;
380                 } else {
381                         rb_prev = __rb_parent;
382                         __rb_link = &__rb_parent->rb_right;
383                 }
384         }
385
386         *pprev = NULL;
387         if (rb_prev)
388                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
389         *rb_link = __rb_link;
390         *rb_parent = __rb_parent;
391         return vma;
392 }
393
394 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
395                 struct rb_node **rb_link, struct rb_node *rb_parent)
396 {
397         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
398         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
399 }
400
401 static void __vma_link_file(struct vm_area_struct *vma)
402 {
403         struct file *file;
404
405         file = vma->vm_file;
406         if (file) {
407                 struct address_space *mapping = file->f_mapping;
408
409                 if (vma->vm_flags & VM_DENYWRITE)
410                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
411                 if (vma->vm_flags & VM_SHARED)
412                         mapping->i_mmap_writable++;
413
414                 flush_dcache_mmap_lock(mapping);
415                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
416                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
417                 else
418                         vma_prio_tree_insert(vma, &mapping->i_mmap);
419                 flush_dcache_mmap_unlock(mapping);
420         }
421 }
422
423 static void
424 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
425         struct vm_area_struct *prev, struct rb_node **rb_link,
426         struct rb_node *rb_parent)
427 {
428         __vma_link_list(mm, vma, prev, rb_parent);
429         __vma_link_rb(mm, vma, rb_link, rb_parent);
430 }
431
432 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
433                         struct vm_area_struct *prev, struct rb_node **rb_link,
434                         struct rb_node *rb_parent)
435 {
436         struct address_space *mapping = NULL;
437
438         if (vma->vm_file)
439                 mapping = vma->vm_file->f_mapping;
440
441         if (mapping)
442                 mutex_lock(&mapping->i_mmap_mutex);
443
444         __vma_link(mm, vma, prev, rb_link, rb_parent);
445         __vma_link_file(vma);
446
447         if (mapping)
448                 mutex_unlock(&mapping->i_mmap_mutex);
449
450         mm->map_count++;
451         validate_mm(mm);
452 }
453
454 /*
455  * Helper for vma_adjust in the split_vma insert case:
456  * insert vm structure into list and rbtree and anon_vma,
457  * but it has already been inserted into prio_tree earlier.
458  */
459 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
460 {
461         struct vm_area_struct *__vma, *prev;
462         struct rb_node **rb_link, *rb_parent;
463
464         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
465         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
466         __vma_link(mm, vma, prev, rb_link, rb_parent);
467         mm->map_count++;
468 }
469
470 static inline void
471 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
472                 struct vm_area_struct *prev)
473 {
474         struct vm_area_struct *next = vma->vm_next;
475
476         prev->vm_next = next;
477         if (next)
478                 next->vm_prev = prev;
479         rb_erase(&vma->vm_rb, &mm->mm_rb);
480         if (mm->mmap_cache == vma)
481                 mm->mmap_cache = prev;
482 }
483
484 /*
485  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
486  * is already present in an i_mmap tree without adjusting the tree.
487  * The following helper function should be used when such adjustments
488  * are necessary.  The "insert" vma (if any) is to be inserted
489  * before we drop the necessary locks.
490  */
491 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
492         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
493 {
494         struct mm_struct *mm = vma->vm_mm;
495         struct vm_area_struct *next = vma->vm_next;
496         struct vm_area_struct *importer = NULL;
497         struct address_space *mapping = NULL;
498         struct prio_tree_root *root = NULL;
499         struct anon_vma *anon_vma = NULL;
500         struct file *file = vma->vm_file;
501         long adjust_next = 0;
502         int remove_next = 0;
503
504         if (next && !insert) {
505                 struct vm_area_struct *exporter = NULL;
506
507                 if (end >= next->vm_end) {
508                         /*
509                          * vma expands, overlapping all the next, and
510                          * perhaps the one after too (mprotect case 6).
511                          */
512 again:                  remove_next = 1 + (end > next->vm_end);
513                         end = next->vm_end;
514                         exporter = next;
515                         importer = vma;
516                 } else if (end > next->vm_start) {
517                         /*
518                          * vma expands, overlapping part of the next:
519                          * mprotect case 5 shifting the boundary up.
520                          */
521                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
522                         exporter = next;
523                         importer = vma;
524                 } else if (end < vma->vm_end) {
525                         /*
526                          * vma shrinks, and !insert tells it's not
527                          * split_vma inserting another: so it must be
528                          * mprotect case 4 shifting the boundary down.
529                          */
530                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
531                         exporter = vma;
532                         importer = next;
533                 }
534
535                 /*
536                  * Easily overlooked: when mprotect shifts the boundary,
537                  * make sure the expanding vma has anon_vma set if the
538                  * shrinking vma had, to cover any anon pages imported.
539                  */
540                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
541                         if (anon_vma_clone(importer, exporter))
542                                 return -ENOMEM;
543                         importer->anon_vma = exporter->anon_vma;
544                 }
545         }
546
547         if (file) {
548                 mapping = file->f_mapping;
549                 if (!(vma->vm_flags & VM_NONLINEAR))
550                         root = &mapping->i_mmap;
551                 mutex_lock(&mapping->i_mmap_mutex);
552                 if (insert) {
553                         /*
554                          * Put into prio_tree now, so instantiated pages
555                          * are visible to arm/parisc __flush_dcache_page
556                          * throughout; but we cannot insert into address
557                          * space until vma start or end is updated.
558                          */
559                         __vma_link_file(insert);
560                 }
561         }
562
563         vma_adjust_trans_huge(vma, start, end, adjust_next);
564
565         /*
566          * When changing only vma->vm_end, we don't really need anon_vma
567          * lock. This is a fairly rare case by itself, but the anon_vma
568          * lock may be shared between many sibling processes.  Skipping
569          * the lock for brk adjustments makes a difference sometimes.
570          */
571         if (vma->anon_vma && (importer || start != vma->vm_start)) {
572                 anon_vma = vma->anon_vma;
573                 anon_vma_lock(anon_vma);
574         }
575
576         if (root) {
577                 flush_dcache_mmap_lock(mapping);
578                 vma_prio_tree_remove(vma, root);
579                 if (adjust_next)
580                         vma_prio_tree_remove(next, root);
581         }
582
583         vma->vm_start = start;
584         vma->vm_end = end;
585         vma->vm_pgoff = pgoff;
586         if (adjust_next) {
587                 next->vm_start += adjust_next << PAGE_SHIFT;
588                 next->vm_pgoff += adjust_next;
589         }
590
591         if (root) {
592                 if (adjust_next)
593                         vma_prio_tree_insert(next, root);
594                 vma_prio_tree_insert(vma, root);
595                 flush_dcache_mmap_unlock(mapping);
596         }
597
598         if (remove_next) {
599                 /*
600                  * vma_merge has merged next into vma, and needs
601                  * us to remove next before dropping the locks.
602                  */
603                 __vma_unlink(mm, next, vma);
604                 if (file)
605                         __remove_shared_vm_struct(next, file, mapping);
606         } else if (insert) {
607                 /*
608                  * split_vma has split insert from vma, and needs
609                  * us to insert it before dropping the locks
610                  * (it may either follow vma or precede it).
611                  */
612                 __insert_vm_struct(mm, insert);
613         }
614
615         if (anon_vma)
616                 anon_vma_unlock(anon_vma);
617         if (mapping)
618                 mutex_unlock(&mapping->i_mmap_mutex);
619
620         if (root) {
621                 uprobe_mmap(vma);
622
623                 if (adjust_next)
624                         uprobe_mmap(next);
625         }
626
627         if (remove_next) {
628                 if (file) {
629                         fput(file);
630                         if (next->vm_flags & VM_EXECUTABLE)
631                                 removed_exe_file_vma(mm);
632                 }
633                 if (next->anon_vma)
634                         anon_vma_merge(vma, next);
635                 mm->map_count--;
636                 mpol_put(vma_policy(next));
637                 kmem_cache_free(vm_area_cachep, next);
638                 /*
639                  * In mprotect's case 6 (see comments on vma_merge),
640                  * we must remove another next too. It would clutter
641                  * up the code too much to do both in one go.
642                  */
643                 if (remove_next == 2) {
644                         next = vma->vm_next;
645                         goto again;
646                 }
647         }
648         if (insert && file)
649                 uprobe_mmap(insert);
650
651         validate_mm(mm);
652
653         return 0;
654 }
655
656 /*
657  * If the vma has a ->close operation then the driver probably needs to release
658  * per-vma resources, so we don't attempt to merge those.
659  */
660 static inline int is_mergeable_vma(struct vm_area_struct *vma,
661                         struct file *file, unsigned long vm_flags)
662 {
663         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
664         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
665                 return 0;
666         if (vma->vm_file != file)
667                 return 0;
668         if (vma->vm_ops && vma->vm_ops->close)
669                 return 0;
670         return 1;
671 }
672
673 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
674                                         struct anon_vma *anon_vma2,
675                                         struct vm_area_struct *vma)
676 {
677         /*
678          * The list_is_singular() test is to avoid merging VMA cloned from
679          * parents. This can improve scalability caused by anon_vma lock.
680          */
681         if ((!anon_vma1 || !anon_vma2) && (!vma ||
682                 list_is_singular(&vma->anon_vma_chain)))
683                 return 1;
684         return anon_vma1 == anon_vma2;
685 }
686
687 /*
688  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
689  * in front of (at a lower virtual address and file offset than) the vma.
690  *
691  * We cannot merge two vmas if they have differently assigned (non-NULL)
692  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
693  *
694  * We don't check here for the merged mmap wrapping around the end of pagecache
695  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
696  * wrap, nor mmaps which cover the final page at index -1UL.
697  */
698 static int
699 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
700         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
701 {
702         if (is_mergeable_vma(vma, file, vm_flags) &&
703             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
704                 if (vma->vm_pgoff == vm_pgoff)
705                         return 1;
706         }
707         return 0;
708 }
709
710 /*
711  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
712  * beyond (at a higher virtual address and file offset than) the vma.
713  *
714  * We cannot merge two vmas if they have differently assigned (non-NULL)
715  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
716  */
717 static int
718 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
719         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
720 {
721         if (is_mergeable_vma(vma, file, vm_flags) &&
722             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
723                 pgoff_t vm_pglen;
724                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
725                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
726                         return 1;
727         }
728         return 0;
729 }
730
731 /*
732  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
733  * whether that can be merged with its predecessor or its successor.
734  * Or both (it neatly fills a hole).
735  *
736  * In most cases - when called for mmap, brk or mremap - [addr,end) is
737  * certain not to be mapped by the time vma_merge is called; but when
738  * called for mprotect, it is certain to be already mapped (either at
739  * an offset within prev, or at the start of next), and the flags of
740  * this area are about to be changed to vm_flags - and the no-change
741  * case has already been eliminated.
742  *
743  * The following mprotect cases have to be considered, where AAAA is
744  * the area passed down from mprotect_fixup, never extending beyond one
745  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
746  *
747  *     AAAA             AAAA                AAAA          AAAA
748  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
749  *    cannot merge    might become    might become    might become
750  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
751  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
752  *    mremap move:                                    PPPPNNNNNNNN 8
753  *        AAAA
754  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
755  *    might become    case 1 below    case 2 below    case 3 below
756  *
757  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
758  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
759  */
760 struct vm_area_struct *vma_merge(struct mm_struct *mm,
761                         struct vm_area_struct *prev, unsigned long addr,
762                         unsigned long end, unsigned long vm_flags,
763                         struct anon_vma *anon_vma, struct file *file,
764                         pgoff_t pgoff, struct mempolicy *policy)
765 {
766         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
767         struct vm_area_struct *area, *next;
768         int err;
769
770         /*
771          * We later require that vma->vm_flags == vm_flags,
772          * so this tests vma->vm_flags & VM_SPECIAL, too.
773          */
774         if (vm_flags & VM_SPECIAL)
775                 return NULL;
776
777         if (prev)
778                 next = prev->vm_next;
779         else
780                 next = mm->mmap;
781         area = next;
782         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
783                 next = next->vm_next;
784
785         /*
786          * Can it merge with the predecessor?
787          */
788         if (prev && prev->vm_end == addr &&
789                         mpol_equal(vma_policy(prev), policy) &&
790                         can_vma_merge_after(prev, vm_flags,
791                                                 anon_vma, file, pgoff)) {
792                 /*
793                  * OK, it can.  Can we now merge in the successor as well?
794                  */
795                 if (next && end == next->vm_start &&
796                                 mpol_equal(policy, vma_policy(next)) &&
797                                 can_vma_merge_before(next, vm_flags,
798                                         anon_vma, file, pgoff+pglen) &&
799                                 is_mergeable_anon_vma(prev->anon_vma,
800                                                       next->anon_vma, NULL)) {
801                                                         /* cases 1, 6 */
802                         err = vma_adjust(prev, prev->vm_start,
803                                 next->vm_end, prev->vm_pgoff, NULL);
804                 } else                                  /* cases 2, 5, 7 */
805                         err = vma_adjust(prev, prev->vm_start,
806                                 end, prev->vm_pgoff, NULL);
807                 if (err)
808                         return NULL;
809                 khugepaged_enter_vma_merge(prev);
810                 return prev;
811         }
812
813         /*
814          * Can this new request be merged in front of next?
815          */
816         if (next && end == next->vm_start &&
817                         mpol_equal(policy, vma_policy(next)) &&
818                         can_vma_merge_before(next, vm_flags,
819                                         anon_vma, file, pgoff+pglen)) {
820                 if (prev && addr < prev->vm_end)        /* case 4 */
821                         err = vma_adjust(prev, prev->vm_start,
822                                 addr, prev->vm_pgoff, NULL);
823                 else                                    /* cases 3, 8 */
824                         err = vma_adjust(area, addr, next->vm_end,
825                                 next->vm_pgoff - pglen, NULL);
826                 if (err)
827                         return NULL;
828                 khugepaged_enter_vma_merge(area);
829                 return area;
830         }
831
832         return NULL;
833 }
834
835 /*
836  * Rough compatbility check to quickly see if it's even worth looking
837  * at sharing an anon_vma.
838  *
839  * They need to have the same vm_file, and the flags can only differ
840  * in things that mprotect may change.
841  *
842  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
843  * we can merge the two vma's. For example, we refuse to merge a vma if
844  * there is a vm_ops->close() function, because that indicates that the
845  * driver is doing some kind of reference counting. But that doesn't
846  * really matter for the anon_vma sharing case.
847  */
848 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
849 {
850         return a->vm_end == b->vm_start &&
851                 mpol_equal(vma_policy(a), vma_policy(b)) &&
852                 a->vm_file == b->vm_file &&
853                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
854                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
855 }
856
857 /*
858  * Do some basic sanity checking to see if we can re-use the anon_vma
859  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
860  * the same as 'old', the other will be the new one that is trying
861  * to share the anon_vma.
862  *
863  * NOTE! This runs with mm_sem held for reading, so it is possible that
864  * the anon_vma of 'old' is concurrently in the process of being set up
865  * by another page fault trying to merge _that_. But that's ok: if it
866  * is being set up, that automatically means that it will be a singleton
867  * acceptable for merging, so we can do all of this optimistically. But
868  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
869  *
870  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
871  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
872  * is to return an anon_vma that is "complex" due to having gone through
873  * a fork).
874  *
875  * We also make sure that the two vma's are compatible (adjacent,
876  * and with the same memory policies). That's all stable, even with just
877  * a read lock on the mm_sem.
878  */
879 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
880 {
881         if (anon_vma_compatible(a, b)) {
882                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
883
884                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
885                         return anon_vma;
886         }
887         return NULL;
888 }
889
890 /*
891  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
892  * neighbouring vmas for a suitable anon_vma, before it goes off
893  * to allocate a new anon_vma.  It checks because a repetitive
894  * sequence of mprotects and faults may otherwise lead to distinct
895  * anon_vmas being allocated, preventing vma merge in subsequent
896  * mprotect.
897  */
898 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
899 {
900         struct anon_vma *anon_vma;
901         struct vm_area_struct *near;
902
903         near = vma->vm_next;
904         if (!near)
905                 goto try_prev;
906
907         anon_vma = reusable_anon_vma(near, vma, near);
908         if (anon_vma)
909                 return anon_vma;
910 try_prev:
911         near = vma->vm_prev;
912         if (!near)
913                 goto none;
914
915         anon_vma = reusable_anon_vma(near, near, vma);
916         if (anon_vma)
917                 return anon_vma;
918 none:
919         /*
920          * There's no absolute need to look only at touching neighbours:
921          * we could search further afield for "compatible" anon_vmas.
922          * But it would probably just be a waste of time searching,
923          * or lead to too many vmas hanging off the same anon_vma.
924          * We're trying to allow mprotect remerging later on,
925          * not trying to minimize memory used for anon_vmas.
926          */
927         return NULL;
928 }
929
930 #ifdef CONFIG_PROC_FS
931 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
932                                                 struct file *file, long pages)
933 {
934         const unsigned long stack_flags
935                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
936
937         if (file) {
938                 mm->shared_vm += pages;
939                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
940                         mm->exec_vm += pages;
941         } else if (flags & stack_flags)
942                 mm->stack_vm += pages;
943         if (flags & (VM_RESERVED|VM_IO))
944                 mm->reserved_vm += pages;
945 }
946 #endif /* CONFIG_PROC_FS */
947
948 /*
949  * The caller must hold down_write(&current->mm->mmap_sem).
950  */
951
952 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
953                         unsigned long len, unsigned long prot,
954                         unsigned long flags, unsigned long pgoff)
955 {
956         struct mm_struct * mm = current->mm;
957         struct inode *inode;
958         vm_flags_t vm_flags;
959         int error;
960         unsigned long reqprot = prot;
961
962         /*
963          * Does the application expect PROT_READ to imply PROT_EXEC?
964          *
965          * (the exception is when the underlying filesystem is noexec
966          *  mounted, in which case we dont add PROT_EXEC.)
967          */
968         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
969                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
970                         prot |= PROT_EXEC;
971
972         if (!len)
973                 return -EINVAL;
974
975         if (!(flags & MAP_FIXED))
976                 addr = round_hint_to_min(addr);
977
978         /* Careful about overflows.. */
979         len = PAGE_ALIGN(len);
980         if (!len)
981                 return -ENOMEM;
982
983         /* offset overflow? */
984         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
985                return -EOVERFLOW;
986
987         /* Too many mappings? */
988         if (mm->map_count > sysctl_max_map_count)
989                 return -ENOMEM;
990
991         /* Obtain the address to map to. we verify (or select) it and ensure
992          * that it represents a valid section of the address space.
993          */
994         addr = get_unmapped_area(file, addr, len, pgoff, flags);
995         if (addr & ~PAGE_MASK)
996                 return addr;
997
998         /* Do simple checking here so the lower-level routines won't have
999          * to. we assume access permissions have been handled by the open
1000          * of the memory object, so we don't do any here.
1001          */
1002         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1003                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1004
1005         if (flags & MAP_LOCKED)
1006                 if (!can_do_mlock())
1007                         return -EPERM;
1008
1009         /* mlock MCL_FUTURE? */
1010         if (vm_flags & VM_LOCKED) {
1011                 unsigned long locked, lock_limit;
1012                 locked = len >> PAGE_SHIFT;
1013                 locked += mm->locked_vm;
1014                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1015                 lock_limit >>= PAGE_SHIFT;
1016                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1017                         return -EAGAIN;
1018         }
1019
1020         inode = file ? file->f_path.dentry->d_inode : NULL;
1021
1022         if (file) {
1023                 switch (flags & MAP_TYPE) {
1024                 case MAP_SHARED:
1025                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1026                                 return -EACCES;
1027
1028                         /*
1029                          * Make sure we don't allow writing to an append-only
1030                          * file..
1031                          */
1032                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1033                                 return -EACCES;
1034
1035                         /*
1036                          * Make sure there are no mandatory locks on the file.
1037                          */
1038                         if (locks_verify_locked(inode))
1039                                 return -EAGAIN;
1040
1041                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1042                         if (!(file->f_mode & FMODE_WRITE))
1043                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1044
1045                         /* fall through */
1046                 case MAP_PRIVATE:
1047                         if (!(file->f_mode & FMODE_READ))
1048                                 return -EACCES;
1049                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1050                                 if (vm_flags & VM_EXEC)
1051                                         return -EPERM;
1052                                 vm_flags &= ~VM_MAYEXEC;
1053                         }
1054
1055                         if (!file->f_op || !file->f_op->mmap)
1056                                 return -ENODEV;
1057                         break;
1058
1059                 default:
1060                         return -EINVAL;
1061                 }
1062         } else {
1063                 switch (flags & MAP_TYPE) {
1064                 case MAP_SHARED:
1065                         /*
1066                          * Ignore pgoff.
1067                          */
1068                         pgoff = 0;
1069                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1070                         break;
1071                 case MAP_PRIVATE:
1072                         /*
1073                          * Set pgoff according to addr for anon_vma.
1074                          */
1075                         pgoff = addr >> PAGE_SHIFT;
1076                         break;
1077                 default:
1078                         return -EINVAL;
1079                 }
1080         }
1081
1082         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1083         if (error)
1084                 return error;
1085
1086         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1087 }
1088 EXPORT_SYMBOL(do_mmap_pgoff);
1089
1090 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1091                 unsigned long, prot, unsigned long, flags,
1092                 unsigned long, fd, unsigned long, pgoff)
1093 {
1094         struct file *file = NULL;
1095         unsigned long retval = -EBADF;
1096
1097         if (!(flags & MAP_ANONYMOUS)) {
1098                 audit_mmap_fd(fd, flags);
1099                 if (unlikely(flags & MAP_HUGETLB))
1100                         return -EINVAL;
1101                 file = fget(fd);
1102                 if (!file)
1103                         goto out;
1104         } else if (flags & MAP_HUGETLB) {
1105                 struct user_struct *user = NULL;
1106                 /*
1107                  * VM_NORESERVE is used because the reservations will be
1108                  * taken when vm_ops->mmap() is called
1109                  * A dummy user value is used because we are not locking
1110                  * memory so no accounting is necessary
1111                  */
1112                 len = ALIGN(len, huge_page_size(&default_hstate));
1113                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1114                                                 &user, HUGETLB_ANONHUGE_INODE);
1115                 if (IS_ERR(file))
1116                         return PTR_ERR(file);
1117         }
1118
1119         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1120
1121         down_write(&current->mm->mmap_sem);
1122         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1123         up_write(&current->mm->mmap_sem);
1124
1125         if (file)
1126                 fput(file);
1127 out:
1128         return retval;
1129 }
1130
1131 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1132 struct mmap_arg_struct {
1133         unsigned long addr;
1134         unsigned long len;
1135         unsigned long prot;
1136         unsigned long flags;
1137         unsigned long fd;
1138         unsigned long offset;
1139 };
1140
1141 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1142 {
1143         struct mmap_arg_struct a;
1144
1145         if (copy_from_user(&a, arg, sizeof(a)))
1146                 return -EFAULT;
1147         if (a.offset & ~PAGE_MASK)
1148                 return -EINVAL;
1149
1150         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1151                               a.offset >> PAGE_SHIFT);
1152 }
1153 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1154
1155 /*
1156  * Some shared mappigns will want the pages marked read-only
1157  * to track write events. If so, we'll downgrade vm_page_prot
1158  * to the private version (using protection_map[] without the
1159  * VM_SHARED bit).
1160  */
1161 int vma_wants_writenotify(struct vm_area_struct *vma)
1162 {
1163         vm_flags_t vm_flags = vma->vm_flags;
1164
1165         /* If it was private or non-writable, the write bit is already clear */
1166         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1167                 return 0;
1168
1169         /* The backer wishes to know when pages are first written to? */
1170         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1171                 return 1;
1172
1173         /* The open routine did something to the protections already? */
1174         if (pgprot_val(vma->vm_page_prot) !=
1175             pgprot_val(vm_get_page_prot(vm_flags)))
1176                 return 0;
1177
1178         /* Specialty mapping? */
1179         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1180                 return 0;
1181
1182         /* Can the mapping track the dirty pages? */
1183         return vma->vm_file && vma->vm_file->f_mapping &&
1184                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1185 }
1186
1187 /*
1188  * We account for memory if it's a private writeable mapping,
1189  * not hugepages and VM_NORESERVE wasn't set.
1190  */
1191 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1192 {
1193         /*
1194          * hugetlb has its own accounting separate from the core VM
1195          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1196          */
1197         if (file && is_file_hugepages(file))
1198                 return 0;
1199
1200         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1201 }
1202
1203 unsigned long mmap_region(struct file *file, unsigned long addr,
1204                           unsigned long len, unsigned long flags,
1205                           vm_flags_t vm_flags, unsigned long pgoff)
1206 {
1207         struct mm_struct *mm = current->mm;
1208         struct vm_area_struct *vma, *prev;
1209         int correct_wcount = 0;
1210         int error;
1211         struct rb_node **rb_link, *rb_parent;
1212         unsigned long charged = 0;
1213         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1214
1215         /* Clear old maps */
1216         error = -ENOMEM;
1217 munmap_back:
1218         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1219         if (vma && vma->vm_start < addr + len) {
1220                 if (do_munmap(mm, addr, len))
1221                         return -ENOMEM;
1222                 goto munmap_back;
1223         }
1224
1225         /* Check against address space limit. */
1226         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1227                 return -ENOMEM;
1228
1229         /*
1230          * Set 'VM_NORESERVE' if we should not account for the
1231          * memory use of this mapping.
1232          */
1233         if ((flags & MAP_NORESERVE)) {
1234                 /* We honor MAP_NORESERVE if allowed to overcommit */
1235                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1236                         vm_flags |= VM_NORESERVE;
1237
1238                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1239                 if (file && is_file_hugepages(file))
1240                         vm_flags |= VM_NORESERVE;
1241         }
1242
1243         /*
1244          * Private writable mapping: check memory availability
1245          */
1246         if (accountable_mapping(file, vm_flags)) {
1247                 charged = len >> PAGE_SHIFT;
1248                 if (security_vm_enough_memory(charged))
1249                         return -ENOMEM;
1250                 vm_flags |= VM_ACCOUNT;
1251         }
1252
1253         /*
1254          * Can we just expand an old mapping?
1255          */
1256         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1257         if (vma)
1258                 goto out;
1259
1260         /*
1261          * Determine the object being mapped and call the appropriate
1262          * specific mapper. the address has already been validated, but
1263          * not unmapped, but the maps are removed from the list.
1264          */
1265         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1266         if (!vma) {
1267                 error = -ENOMEM;
1268                 goto unacct_error;
1269         }
1270
1271         vma->vm_mm = mm;
1272         vma->vm_start = addr;
1273         vma->vm_end = addr + len;
1274         vma->vm_flags = vm_flags;
1275         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1276         vma->vm_pgoff = pgoff;
1277         INIT_LIST_HEAD(&vma->anon_vma_chain);
1278
1279         if (file) {
1280                 error = -EINVAL;
1281                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1282                         goto free_vma;
1283                 if (vm_flags & VM_DENYWRITE) {
1284                         error = deny_write_access(file);
1285                         if (error)
1286                                 goto free_vma;
1287                         correct_wcount = 1;
1288                 }
1289                 vma->vm_file = file;
1290                 get_file(file);
1291                 error = file->f_op->mmap(file, vma);
1292                 if (error)
1293                         goto unmap_and_free_vma;
1294                 if (vm_flags & VM_EXECUTABLE)
1295                         added_exe_file_vma(mm);
1296
1297                 /* Can addr have changed??
1298                  *
1299                  * Answer: Yes, several device drivers can do it in their
1300                  *         f_op->mmap method. -DaveM
1301                  */
1302                 addr = vma->vm_start;
1303                 pgoff = vma->vm_pgoff;
1304                 vm_flags = vma->vm_flags;
1305         } else if (vm_flags & VM_SHARED) {
1306                 error = shmem_zero_setup(vma);
1307                 if (error)
1308                         goto free_vma;
1309         }
1310
1311         if (vma_wants_writenotify(vma)) {
1312                 pgprot_t pprot = vma->vm_page_prot;
1313
1314                 /* Can vma->vm_page_prot have changed??
1315                  *
1316                  * Answer: Yes, drivers may have changed it in their
1317                  *         f_op->mmap method.
1318                  *
1319                  * Ensures that vmas marked as uncached stay that way.
1320                  */
1321                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1322                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1323                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1324         }
1325
1326         vma_link(mm, vma, prev, rb_link, rb_parent);
1327         file = vma->vm_file;
1328
1329         /* Once vma denies write, undo our temporary denial count */
1330         if (correct_wcount)
1331                 atomic_inc(&inode->i_writecount);
1332 out:
1333         perf_event_mmap(vma);
1334
1335         mm->total_vm += len >> PAGE_SHIFT;
1336         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1337         if (vm_flags & VM_LOCKED) {
1338                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1339                         mm->locked_vm += (len >> PAGE_SHIFT);
1340         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1341                 make_pages_present(addr, addr + len);
1342
1343         if (file && uprobe_mmap(vma))
1344                 /* matching probes but cannot insert */
1345                 goto unmap_and_free_vma;
1346
1347         return addr;
1348
1349 unmap_and_free_vma:
1350         if (correct_wcount)
1351                 atomic_inc(&inode->i_writecount);
1352         vma->vm_file = NULL;
1353         fput(file);
1354
1355         /* Undo any partial mapping done by a device driver. */
1356         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1357         charged = 0;
1358 free_vma:
1359         kmem_cache_free(vm_area_cachep, vma);
1360 unacct_error:
1361         if (charged)
1362                 vm_unacct_memory(charged);
1363         return error;
1364 }
1365
1366 /* Get an address range which is currently unmapped.
1367  * For shmat() with addr=0.
1368  *
1369  * Ugly calling convention alert:
1370  * Return value with the low bits set means error value,
1371  * ie
1372  *      if (ret & ~PAGE_MASK)
1373  *              error = ret;
1374  *
1375  * This function "knows" that -ENOMEM has the bits set.
1376  */
1377 #ifndef HAVE_ARCH_UNMAPPED_AREA
1378 unsigned long
1379 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1380                 unsigned long len, unsigned long pgoff, unsigned long flags)
1381 {
1382         struct mm_struct *mm = current->mm;
1383         struct vm_area_struct *vma;
1384         unsigned long start_addr;
1385
1386         if (len > TASK_SIZE)
1387                 return -ENOMEM;
1388
1389         if (flags & MAP_FIXED)
1390                 return addr;
1391
1392         if (addr) {
1393                 addr = PAGE_ALIGN(addr);
1394                 vma = find_vma(mm, addr);
1395                 if (TASK_SIZE - len >= addr &&
1396                     (!vma || addr + len <= vma->vm_start))
1397                         return addr;
1398         }
1399         if (len > mm->cached_hole_size) {
1400                 start_addr = addr = mm->free_area_cache;
1401         } else {
1402                 start_addr = addr = TASK_UNMAPPED_BASE;
1403                 mm->cached_hole_size = 0;
1404         }
1405
1406 full_search:
1407         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1408                 /* At this point:  (!vma || addr < vma->vm_end). */
1409                 if (TASK_SIZE - len < addr) {
1410                         /*
1411                          * Start a new search - just in case we missed
1412                          * some holes.
1413                          */
1414                         if (start_addr != TASK_UNMAPPED_BASE) {
1415                                 addr = TASK_UNMAPPED_BASE;
1416                                 start_addr = addr;
1417                                 mm->cached_hole_size = 0;
1418                                 goto full_search;
1419                         }
1420                         return -ENOMEM;
1421                 }
1422                 if (!vma || addr + len <= vma->vm_start) {
1423                         /*
1424                          * Remember the place where we stopped the search:
1425                          */
1426                         mm->free_area_cache = addr + len;
1427                         return addr;
1428                 }
1429                 if (addr + mm->cached_hole_size < vma->vm_start)
1430                         mm->cached_hole_size = vma->vm_start - addr;
1431                 addr = vma->vm_end;
1432         }
1433 }
1434 #endif  
1435
1436 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1437 {
1438         /*
1439          * Is this a new hole at the lowest possible address?
1440          */
1441         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1442                 mm->free_area_cache = addr;
1443                 mm->cached_hole_size = ~0UL;
1444         }
1445 }
1446
1447 /*
1448  * This mmap-allocator allocates new areas top-down from below the
1449  * stack's low limit (the base):
1450  */
1451 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1452 unsigned long
1453 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1454                           const unsigned long len, const unsigned long pgoff,
1455                           const unsigned long flags)
1456 {
1457         struct vm_area_struct *vma;
1458         struct mm_struct *mm = current->mm;
1459         unsigned long addr = addr0;
1460
1461         /* requested length too big for entire address space */
1462         if (len > TASK_SIZE)
1463                 return -ENOMEM;
1464
1465         if (flags & MAP_FIXED)
1466                 return addr;
1467
1468         /* requesting a specific address */
1469         if (addr) {
1470                 addr = PAGE_ALIGN(addr);
1471                 vma = find_vma(mm, addr);
1472                 if (TASK_SIZE - len >= addr &&
1473                                 (!vma || addr + len <= vma->vm_start))
1474                         return addr;
1475         }
1476
1477         /* check if free_area_cache is useful for us */
1478         if (len <= mm->cached_hole_size) {
1479                 mm->cached_hole_size = 0;
1480                 mm->free_area_cache = mm->mmap_base;
1481         }
1482
1483         /* either no address requested or can't fit in requested address hole */
1484         addr = mm->free_area_cache;
1485
1486         /* make sure it can fit in the remaining address space */
1487         if (addr > len) {
1488                 vma = find_vma(mm, addr-len);
1489                 if (!vma || addr <= vma->vm_start)
1490                         /* remember the address as a hint for next time */
1491                         return (mm->free_area_cache = addr-len);
1492         }
1493
1494         if (mm->mmap_base < len)
1495                 goto bottomup;
1496
1497         addr = mm->mmap_base-len;
1498
1499         do {
1500                 /*
1501                  * Lookup failure means no vma is above this address,
1502                  * else if new region fits below vma->vm_start,
1503                  * return with success:
1504                  */
1505                 vma = find_vma(mm, addr);
1506                 if (!vma || addr+len <= vma->vm_start)
1507                         /* remember the address as a hint for next time */
1508                         return (mm->free_area_cache = addr);
1509
1510                 /* remember the largest hole we saw so far */
1511                 if (addr + mm->cached_hole_size < vma->vm_start)
1512                         mm->cached_hole_size = vma->vm_start - addr;
1513
1514                 /* try just below the current vma->vm_start */
1515                 addr = vma->vm_start-len;
1516         } while (len < vma->vm_start);
1517
1518 bottomup:
1519         /*
1520          * A failed mmap() very likely causes application failure,
1521          * so fall back to the bottom-up function here. This scenario
1522          * can happen with large stack limits and large mmap()
1523          * allocations.
1524          */
1525         mm->cached_hole_size = ~0UL;
1526         mm->free_area_cache = TASK_UNMAPPED_BASE;
1527         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1528         /*
1529          * Restore the topdown base:
1530          */
1531         mm->free_area_cache = mm->mmap_base;
1532         mm->cached_hole_size = ~0UL;
1533
1534         return addr;
1535 }
1536 #endif
1537
1538 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1539 {
1540         /*
1541          * Is this a new hole at the highest possible address?
1542          */
1543         if (addr > mm->free_area_cache)
1544                 mm->free_area_cache = addr;
1545
1546         /* dont allow allocations above current base */
1547         if (mm->free_area_cache > mm->mmap_base)
1548                 mm->free_area_cache = mm->mmap_base;
1549 }
1550
1551 unsigned long
1552 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1553                 unsigned long pgoff, unsigned long flags)
1554 {
1555         unsigned long (*get_area)(struct file *, unsigned long,
1556                                   unsigned long, unsigned long, unsigned long);
1557
1558         unsigned long error = arch_mmap_check(addr, len, flags);
1559         if (error)
1560                 return error;
1561
1562         /* Careful about overflows.. */
1563         if (len > TASK_SIZE)
1564                 return -ENOMEM;
1565
1566         get_area = current->mm->get_unmapped_area;
1567         if (file && file->f_op && file->f_op->get_unmapped_area)
1568                 get_area = file->f_op->get_unmapped_area;
1569         addr = get_area(file, addr, len, pgoff, flags);
1570         if (IS_ERR_VALUE(addr))
1571                 return addr;
1572
1573         if (addr > TASK_SIZE - len)
1574                 return -ENOMEM;
1575         if (addr & ~PAGE_MASK)
1576                 return -EINVAL;
1577
1578         return arch_rebalance_pgtables(addr, len);
1579 }
1580
1581 EXPORT_SYMBOL(get_unmapped_area);
1582
1583 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1584 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1585 {
1586         struct vm_area_struct *vma = NULL;
1587
1588         if (mm) {
1589                 /* Check the cache first. */
1590                 /* (Cache hit rate is typically around 35%.) */
1591                 vma = mm->mmap_cache;
1592                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1593                         struct rb_node * rb_node;
1594
1595                         rb_node = mm->mm_rb.rb_node;
1596                         vma = NULL;
1597
1598                         while (rb_node) {
1599                                 struct vm_area_struct * vma_tmp;
1600
1601                                 vma_tmp = rb_entry(rb_node,
1602                                                 struct vm_area_struct, vm_rb);
1603
1604                                 if (vma_tmp->vm_end > addr) {
1605                                         vma = vma_tmp;
1606                                         if (vma_tmp->vm_start <= addr)
1607                                                 break;
1608                                         rb_node = rb_node->rb_left;
1609                                 } else
1610                                         rb_node = rb_node->rb_right;
1611                         }
1612                         if (vma)
1613                                 mm->mmap_cache = vma;
1614                 }
1615         }
1616         return vma;
1617 }
1618
1619 EXPORT_SYMBOL(find_vma);
1620
1621 /*
1622  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1623  * Note: pprev is set to NULL when return value is NULL.
1624  */
1625 struct vm_area_struct *
1626 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1627                         struct vm_area_struct **pprev)
1628 {
1629         struct vm_area_struct *vma;
1630
1631         vma = find_vma(mm, addr);
1632         *pprev = vma ? vma->vm_prev : NULL;
1633         return vma;
1634 }
1635
1636 /*
1637  * Verify that the stack growth is acceptable and
1638  * update accounting. This is shared with both the
1639  * grow-up and grow-down cases.
1640  */
1641 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1642 {
1643         struct mm_struct *mm = vma->vm_mm;
1644         struct rlimit *rlim = current->signal->rlim;
1645         unsigned long new_start;
1646
1647         /* address space limit tests */
1648         if (!may_expand_vm(mm, grow))
1649                 return -ENOMEM;
1650
1651         /* Stack limit test */
1652         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1653                 return -ENOMEM;
1654
1655         /* mlock limit tests */
1656         if (vma->vm_flags & VM_LOCKED) {
1657                 unsigned long locked;
1658                 unsigned long limit;
1659                 locked = mm->locked_vm + grow;
1660                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1661                 limit >>= PAGE_SHIFT;
1662                 if (locked > limit && !capable(CAP_IPC_LOCK))
1663                         return -ENOMEM;
1664         }
1665
1666         /* Check to ensure the stack will not grow into a hugetlb-only region */
1667         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1668                         vma->vm_end - size;
1669         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1670                 return -EFAULT;
1671
1672         /*
1673          * Overcommit..  This must be the final test, as it will
1674          * update security statistics.
1675          */
1676         if (security_vm_enough_memory_mm(mm, grow))
1677                 return -ENOMEM;
1678
1679         /* Ok, everything looks good - let it rip */
1680         mm->total_vm += grow;
1681         if (vma->vm_flags & VM_LOCKED)
1682                 mm->locked_vm += grow;
1683         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1684         return 0;
1685 }
1686
1687 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1688 /*
1689  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1690  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1691  */
1692 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1693 {
1694         int error;
1695
1696         if (!(vma->vm_flags & VM_GROWSUP))
1697                 return -EFAULT;
1698
1699         /*
1700          * We must make sure the anon_vma is allocated
1701          * so that the anon_vma locking is not a noop.
1702          */
1703         if (unlikely(anon_vma_prepare(vma)))
1704                 return -ENOMEM;
1705         vma_lock_anon_vma(vma);
1706
1707         /*
1708          * vma->vm_start/vm_end cannot change under us because the caller
1709          * is required to hold the mmap_sem in read mode.  We need the
1710          * anon_vma lock to serialize against concurrent expand_stacks.
1711          * Also guard against wrapping around to address 0.
1712          */
1713         if (address < PAGE_ALIGN(address+4))
1714                 address = PAGE_ALIGN(address+4);
1715         else {
1716                 vma_unlock_anon_vma(vma);
1717                 return -ENOMEM;
1718         }
1719         error = 0;
1720
1721         /* Somebody else might have raced and expanded it already */
1722         if (address > vma->vm_end) {
1723                 unsigned long size, grow;
1724
1725                 size = address - vma->vm_start;
1726                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1727
1728                 error = -ENOMEM;
1729                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1730                         error = acct_stack_growth(vma, size, grow);
1731                         if (!error) {
1732                                 vma->vm_end = address;
1733                                 perf_event_mmap(vma);
1734                         }
1735                 }
1736         }
1737         vma_unlock_anon_vma(vma);
1738         khugepaged_enter_vma_merge(vma);
1739         return error;
1740 }
1741 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1742
1743 /*
1744  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1745  */
1746 int expand_downwards(struct vm_area_struct *vma,
1747                                    unsigned long address)
1748 {
1749         int error;
1750
1751         /*
1752          * We must make sure the anon_vma is allocated
1753          * so that the anon_vma locking is not a noop.
1754          */
1755         if (unlikely(anon_vma_prepare(vma)))
1756                 return -ENOMEM;
1757
1758         address &= PAGE_MASK;
1759         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1760         if (error)
1761                 return error;
1762
1763         vma_lock_anon_vma(vma);
1764
1765         /*
1766          * vma->vm_start/vm_end cannot change under us because the caller
1767          * is required to hold the mmap_sem in read mode.  We need the
1768          * anon_vma lock to serialize against concurrent expand_stacks.
1769          */
1770
1771         /* Somebody else might have raced and expanded it already */
1772         if (address < vma->vm_start) {
1773                 unsigned long size, grow;
1774
1775                 size = vma->vm_end - address;
1776                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1777
1778                 error = -ENOMEM;
1779                 if (grow <= vma->vm_pgoff) {
1780                         error = acct_stack_growth(vma, size, grow);
1781                         if (!error) {
1782                                 vma->vm_start = address;
1783                                 vma->vm_pgoff -= grow;
1784                                 perf_event_mmap(vma);
1785                         }
1786                 }
1787         }
1788         vma_unlock_anon_vma(vma);
1789         khugepaged_enter_vma_merge(vma);
1790         return error;
1791 }
1792
1793 #ifdef CONFIG_STACK_GROWSUP
1794 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1795 {
1796         return expand_upwards(vma, address);
1797 }
1798
1799 struct vm_area_struct *
1800 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1801 {
1802         struct vm_area_struct *vma, *prev;
1803
1804         addr &= PAGE_MASK;
1805         vma = find_vma_prev(mm, addr, &prev);
1806         if (vma && (vma->vm_start <= addr))
1807                 return vma;
1808         if (!prev || expand_stack(prev, addr))
1809                 return NULL;
1810         if (prev->vm_flags & VM_LOCKED) {
1811                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1812         }
1813         return prev;
1814 }
1815 #else
1816 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1817 {
1818         return expand_downwards(vma, address);
1819 }
1820
1821 struct vm_area_struct *
1822 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1823 {
1824         struct vm_area_struct * vma;
1825         unsigned long start;
1826
1827         addr &= PAGE_MASK;
1828         vma = find_vma(mm,addr);
1829         if (!vma)
1830                 return NULL;
1831         if (vma->vm_start <= addr)
1832                 return vma;
1833         if (!(vma->vm_flags & VM_GROWSDOWN))
1834                 return NULL;
1835         start = vma->vm_start;
1836         if (expand_stack(vma, addr))
1837                 return NULL;
1838         if (vma->vm_flags & VM_LOCKED) {
1839                 mlock_vma_pages_range(vma, addr, start);
1840         }
1841         return vma;
1842 }
1843 #endif
1844
1845 /*
1846  * Ok - we have the memory areas we should free on the vma list,
1847  * so release them, and do the vma updates.
1848  *
1849  * Called with the mm semaphore held.
1850  */
1851 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1852 {
1853         /* Update high watermark before we lower total_vm */
1854         update_hiwater_vm(mm);
1855         do {
1856                 long nrpages = vma_pages(vma);
1857
1858                 mm->total_vm -= nrpages;
1859                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1860                 vma = remove_vma(vma);
1861         } while (vma);
1862         validate_mm(mm);
1863 }
1864
1865 /*
1866  * Get rid of page table information in the indicated region.
1867  *
1868  * Called with the mm semaphore held.
1869  */
1870 static void unmap_region(struct mm_struct *mm,
1871                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1872                 unsigned long start, unsigned long end)
1873 {
1874         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1875         struct mmu_gather tlb;
1876         unsigned long nr_accounted = 0;
1877
1878         lru_add_drain();
1879         tlb_gather_mmu(&tlb, mm, 0);
1880         update_hiwater_rss(mm);
1881         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1882         vm_unacct_memory(nr_accounted);
1883         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1884                                  next ? next->vm_start : 0);
1885         tlb_finish_mmu(&tlb, start, end);
1886 }
1887
1888 /*
1889  * Create a list of vma's touched by the unmap, removing them from the mm's
1890  * vma list as we go..
1891  */
1892 static void
1893 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1894         struct vm_area_struct *prev, unsigned long end)
1895 {
1896         struct vm_area_struct **insertion_point;
1897         struct vm_area_struct *tail_vma = NULL;
1898         unsigned long addr;
1899
1900         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1901         vma->vm_prev = NULL;
1902         do {
1903                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1904                 mm->map_count--;
1905                 tail_vma = vma;
1906                 vma = vma->vm_next;
1907         } while (vma && vma->vm_start < end);
1908         *insertion_point = vma;
1909         if (vma)
1910                 vma->vm_prev = prev;
1911         tail_vma->vm_next = NULL;
1912         if (mm->unmap_area == arch_unmap_area)
1913                 addr = prev ? prev->vm_end : mm->mmap_base;
1914         else
1915                 addr = vma ?  vma->vm_start : mm->mmap_base;
1916         mm->unmap_area(mm, addr);
1917         mm->mmap_cache = NULL;          /* Kill the cache. */
1918 }
1919
1920 /*
1921  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1922  * munmap path where it doesn't make sense to fail.
1923  */
1924 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1925               unsigned long addr, int new_below)
1926 {
1927         struct mempolicy *pol;
1928         struct vm_area_struct *new;
1929         int err = -ENOMEM;
1930
1931         if (is_vm_hugetlb_page(vma) && (addr &
1932                                         ~(huge_page_mask(hstate_vma(vma)))))
1933                 return -EINVAL;
1934
1935         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1936         if (!new)
1937                 goto out_err;
1938
1939         /* most fields are the same, copy all, and then fixup */
1940         *new = *vma;
1941
1942         INIT_LIST_HEAD(&new->anon_vma_chain);
1943
1944         if (new_below)
1945                 new->vm_end = addr;
1946         else {
1947                 new->vm_start = addr;
1948                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1949         }
1950
1951         pol = mpol_dup(vma_policy(vma));
1952         if (IS_ERR(pol)) {
1953                 err = PTR_ERR(pol);
1954                 goto out_free_vma;
1955         }
1956         vma_set_policy(new, pol);
1957
1958         if (anon_vma_clone(new, vma))
1959                 goto out_free_mpol;
1960
1961         if (new->vm_file) {
1962                 get_file(new->vm_file);
1963                 if (vma->vm_flags & VM_EXECUTABLE)
1964                         added_exe_file_vma(mm);
1965         }
1966
1967         if (new->vm_ops && new->vm_ops->open)
1968                 new->vm_ops->open(new);
1969
1970         if (new_below)
1971                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1972                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1973         else
1974                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1975
1976         /* Success. */
1977         if (!err)
1978                 return 0;
1979
1980         /* Clean everything up if vma_adjust failed. */
1981         if (new->vm_ops && new->vm_ops->close)
1982                 new->vm_ops->close(new);
1983         if (new->vm_file) {
1984                 if (vma->vm_flags & VM_EXECUTABLE)
1985                         removed_exe_file_vma(mm);
1986                 fput(new->vm_file);
1987         }
1988         unlink_anon_vmas(new);
1989  out_free_mpol:
1990         mpol_put(pol);
1991  out_free_vma:
1992         kmem_cache_free(vm_area_cachep, new);
1993  out_err:
1994         return err;
1995 }
1996
1997 /*
1998  * Split a vma into two pieces at address 'addr', a new vma is allocated
1999  * either for the first part or the tail.
2000  */
2001 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2002               unsigned long addr, int new_below)
2003 {
2004         if (mm->map_count >= sysctl_max_map_count)
2005                 return -ENOMEM;
2006
2007         return __split_vma(mm, vma, addr, new_below);
2008 }
2009
2010 /* Munmap is split into 2 main parts -- this part which finds
2011  * what needs doing, and the areas themselves, which do the
2012  * work.  This now handles partial unmappings.
2013  * Jeremy Fitzhardinge <jeremy@goop.org>
2014  */
2015 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2016 {
2017         unsigned long end;
2018         struct vm_area_struct *vma, *prev, *last;
2019
2020         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2021                 return -EINVAL;
2022
2023         if ((len = PAGE_ALIGN(len)) == 0)
2024                 return -EINVAL;
2025
2026         /* Find the first overlapping VMA */
2027         vma = find_vma(mm, start);
2028         if (!vma)
2029                 return 0;
2030         prev = vma->vm_prev;
2031         /* we have  start < vma->vm_end  */
2032
2033         /* if it doesn't overlap, we have nothing.. */
2034         end = start + len;
2035         if (vma->vm_start >= end)
2036                 return 0;
2037
2038         /*
2039          * If we need to split any vma, do it now to save pain later.
2040          *
2041          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2042          * unmapped vm_area_struct will remain in use: so lower split_vma
2043          * places tmp vma above, and higher split_vma places tmp vma below.
2044          */
2045         if (start > vma->vm_start) {
2046                 int error;
2047
2048                 /*
2049                  * Make sure that map_count on return from munmap() will
2050                  * not exceed its limit; but let map_count go just above
2051                  * its limit temporarily, to help free resources as expected.
2052                  */
2053                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2054                         return -ENOMEM;
2055
2056                 error = __split_vma(mm, vma, start, 0);
2057                 if (error)
2058                         return error;
2059                 prev = vma;
2060         }
2061
2062         /* Does it split the last one? */
2063         last = find_vma(mm, end);
2064         if (last && end > last->vm_start) {
2065                 int error = __split_vma(mm, last, end, 1);
2066                 if (error)
2067                         return error;
2068         }
2069         vma = prev? prev->vm_next: mm->mmap;
2070
2071         /*
2072          * unlock any mlock()ed ranges before detaching vmas
2073          */
2074         if (mm->locked_vm) {
2075                 struct vm_area_struct *tmp = vma;
2076                 while (tmp && tmp->vm_start < end) {
2077                         if (tmp->vm_flags & VM_LOCKED) {
2078                                 mm->locked_vm -= vma_pages(tmp);
2079                                 munlock_vma_pages_all(tmp);
2080                         }
2081                         tmp = tmp->vm_next;
2082                 }
2083         }
2084
2085         /*
2086          * Remove the vma's, and unmap the actual pages
2087          */
2088         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2089         unmap_region(mm, vma, prev, start, end);
2090
2091         /* Fix up all other VM information */
2092         remove_vma_list(mm, vma);
2093
2094         return 0;
2095 }
2096
2097 EXPORT_SYMBOL(do_munmap);
2098
2099 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2100 {
2101         int ret;
2102         struct mm_struct *mm = current->mm;
2103
2104         profile_munmap(addr);
2105
2106         down_write(&mm->mmap_sem);
2107         ret = do_munmap(mm, addr, len);
2108         up_write(&mm->mmap_sem);
2109         return ret;
2110 }
2111
2112 static inline void verify_mm_writelocked(struct mm_struct *mm)
2113 {
2114 #ifdef CONFIG_DEBUG_VM
2115         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2116                 WARN_ON(1);
2117                 up_read(&mm->mmap_sem);
2118         }
2119 #endif
2120 }
2121
2122 /*
2123  *  this is really a simplified "do_mmap".  it only handles
2124  *  anonymous maps.  eventually we may be able to do some
2125  *  brk-specific accounting here.
2126  */
2127 unsigned long do_brk(unsigned long addr, unsigned long len)
2128 {
2129         struct mm_struct * mm = current->mm;
2130         struct vm_area_struct * vma, * prev;
2131         unsigned long flags;
2132         struct rb_node ** rb_link, * rb_parent;
2133         pgoff_t pgoff = addr >> PAGE_SHIFT;
2134         int error;
2135
2136         len = PAGE_ALIGN(len);
2137         if (!len)
2138                 return addr;
2139
2140         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2141         if (error)
2142                 return error;
2143
2144         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2145
2146         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2147         if (error & ~PAGE_MASK)
2148                 return error;
2149
2150         /*
2151          * mlock MCL_FUTURE?
2152          */
2153         if (mm->def_flags & VM_LOCKED) {
2154                 unsigned long locked, lock_limit;
2155                 locked = len >> PAGE_SHIFT;
2156                 locked += mm->locked_vm;
2157                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2158                 lock_limit >>= PAGE_SHIFT;
2159                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2160                         return -EAGAIN;
2161         }
2162
2163         /*
2164          * mm->mmap_sem is required to protect against another thread
2165          * changing the mappings in case we sleep.
2166          */
2167         verify_mm_writelocked(mm);
2168
2169         /*
2170          * Clear old maps.  this also does some error checking for us
2171          */
2172  munmap_back:
2173         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2174         if (vma && vma->vm_start < addr + len) {
2175                 if (do_munmap(mm, addr, len))
2176                         return -ENOMEM;
2177                 goto munmap_back;
2178         }
2179
2180         /* Check against address space limits *after* clearing old maps... */
2181         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2182                 return -ENOMEM;
2183
2184         if (mm->map_count > sysctl_max_map_count)
2185                 return -ENOMEM;
2186
2187         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2188                 return -ENOMEM;
2189
2190         /* Can we just expand an old private anonymous mapping? */
2191         vma = vma_merge(mm, prev, addr, addr + len, flags,
2192                                         NULL, NULL, pgoff, NULL);
2193         if (vma)
2194                 goto out;
2195
2196         /*
2197          * create a vma struct for an anonymous mapping
2198          */
2199         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2200         if (!vma) {
2201                 vm_unacct_memory(len >> PAGE_SHIFT);
2202                 return -ENOMEM;
2203         }
2204
2205         INIT_LIST_HEAD(&vma->anon_vma_chain);
2206         vma->vm_mm = mm;
2207         vma->vm_start = addr;
2208         vma->vm_end = addr + len;
2209         vma->vm_pgoff = pgoff;
2210         vma->vm_flags = flags;
2211         vma->vm_page_prot = vm_get_page_prot(flags);
2212         vma_link(mm, vma, prev, rb_link, rb_parent);
2213 out:
2214         perf_event_mmap(vma);
2215         mm->total_vm += len >> PAGE_SHIFT;
2216         if (flags & VM_LOCKED) {
2217                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2218                         mm->locked_vm += (len >> PAGE_SHIFT);
2219         }
2220         return addr;
2221 }
2222
2223 EXPORT_SYMBOL(do_brk);
2224
2225 /* Release all mmaps. */
2226 void exit_mmap(struct mm_struct *mm)
2227 {
2228         struct mmu_gather tlb;
2229         struct vm_area_struct *vma;
2230         unsigned long nr_accounted = 0;
2231         unsigned long end;
2232
2233         /* mm's last user has gone, and its about to be pulled down */
2234         mmu_notifier_release(mm);
2235
2236         if (mm->locked_vm) {
2237                 vma = mm->mmap;
2238                 while (vma) {
2239                         if (vma->vm_flags & VM_LOCKED)
2240                                 munlock_vma_pages_all(vma);
2241                         vma = vma->vm_next;
2242                 }
2243         }
2244
2245         arch_exit_mmap(mm);
2246
2247         vma = mm->mmap;
2248         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2249                 return;
2250
2251         lru_add_drain();
2252         flush_cache_mm(mm);
2253         tlb_gather_mmu(&tlb, mm, 1);
2254         /* update_hiwater_rss(mm) here? but nobody should be looking */
2255         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2256         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2257         vm_unacct_memory(nr_accounted);
2258
2259         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2260         tlb_finish_mmu(&tlb, 0, end);
2261
2262         /*
2263          * Walk the list again, actually closing and freeing it,
2264          * with preemption enabled, without holding any MM locks.
2265          */
2266         while (vma)
2267                 vma = remove_vma(vma);
2268
2269         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2270 }
2271
2272 /* Insert vm structure into process list sorted by address
2273  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2274  * then i_mmap_mutex is taken here.
2275  */
2276 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2277 {
2278         struct vm_area_struct * __vma, * prev;
2279         struct rb_node ** rb_link, * rb_parent;
2280
2281         /*
2282          * The vm_pgoff of a purely anonymous vma should be irrelevant
2283          * until its first write fault, when page's anon_vma and index
2284          * are set.  But now set the vm_pgoff it will almost certainly
2285          * end up with (unless mremap moves it elsewhere before that
2286          * first wfault), so /proc/pid/maps tells a consistent story.
2287          *
2288          * By setting it to reflect the virtual start address of the
2289          * vma, merges and splits can happen in a seamless way, just
2290          * using the existing file pgoff checks and manipulations.
2291          * Similarly in do_mmap_pgoff and in do_brk.
2292          */
2293         if (!vma->vm_file) {
2294                 BUG_ON(vma->anon_vma);
2295                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2296         }
2297         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2298         if (__vma && __vma->vm_start < vma->vm_end)
2299                 return -ENOMEM;
2300         if ((vma->vm_flags & VM_ACCOUNT) &&
2301              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2302                 return -ENOMEM;
2303
2304         if (vma->vm_file && uprobe_mmap(vma))
2305                 return -EINVAL;
2306
2307         vma_link(mm, vma, prev, rb_link, rb_parent);
2308         return 0;
2309 }
2310
2311 /*
2312  * Copy the vma structure to a new location in the same mm,
2313  * prior to moving page table entries, to effect an mremap move.
2314  */
2315 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2316         unsigned long addr, unsigned long len, pgoff_t pgoff)
2317 {
2318         struct vm_area_struct *vma = *vmap;
2319         unsigned long vma_start = vma->vm_start;
2320         struct mm_struct *mm = vma->vm_mm;
2321         struct vm_area_struct *new_vma, *prev;
2322         struct rb_node **rb_link, *rb_parent;
2323         struct mempolicy *pol;
2324         bool faulted_in_anon_vma = true;
2325
2326         /*
2327          * If anonymous vma has not yet been faulted, update new pgoff
2328          * to match new location, to increase its chance of merging.
2329          */
2330         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2331                 pgoff = addr >> PAGE_SHIFT;
2332                 faulted_in_anon_vma = false;
2333         }
2334
2335         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2336         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2337                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2338         if (new_vma) {
2339                 /*
2340                  * Source vma may have been merged into new_vma
2341                  */
2342                 if (unlikely(vma_start >= new_vma->vm_start &&
2343                              vma_start < new_vma->vm_end)) {
2344                         /*
2345                          * The only way we can get a vma_merge with
2346                          * self during an mremap is if the vma hasn't
2347                          * been faulted in yet and we were allowed to
2348                          * reset the dst vma->vm_pgoff to the
2349                          * destination address of the mremap to allow
2350                          * the merge to happen. mremap must change the
2351                          * vm_pgoff linearity between src and dst vmas
2352                          * (in turn preventing a vma_merge) to be
2353                          * safe. It is only safe to keep the vm_pgoff
2354                          * linear if there are no pages mapped yet.
2355                          */
2356                         VM_BUG_ON(faulted_in_anon_vma);
2357                         *vmap = new_vma;
2358                 } else
2359                         anon_vma_moveto_tail(new_vma);
2360         } else {
2361                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2362                 if (new_vma) {
2363                         *new_vma = *vma;
2364                         pol = mpol_dup(vma_policy(vma));
2365                         if (IS_ERR(pol))
2366                                 goto out_free_vma;
2367                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2368                         if (anon_vma_clone(new_vma, vma))
2369                                 goto out_free_mempol;
2370                         vma_set_policy(new_vma, pol);
2371                         new_vma->vm_start = addr;
2372                         new_vma->vm_end = addr + len;
2373                         new_vma->vm_pgoff = pgoff;
2374                         if (new_vma->vm_file) {
2375                                 get_file(new_vma->vm_file);
2376
2377                                 if (uprobe_mmap(new_vma))
2378                                         goto out_free_mempol;
2379
2380                                 if (vma->vm_flags & VM_EXECUTABLE)
2381                                         added_exe_file_vma(mm);
2382                         }
2383                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2384                                 new_vma->vm_ops->open(new_vma);
2385                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2386                 }
2387         }
2388         return new_vma;
2389
2390  out_free_mempol:
2391         mpol_put(pol);
2392  out_free_vma:
2393         kmem_cache_free(vm_area_cachep, new_vma);
2394         return NULL;
2395 }
2396
2397 /*
2398  * Return true if the calling process may expand its vm space by the passed
2399  * number of pages
2400  */
2401 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2402 {
2403         unsigned long cur = mm->total_vm;       /* pages */
2404         unsigned long lim;
2405
2406         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2407
2408         if (cur + npages > lim)
2409                 return 0;
2410         return 1;
2411 }
2412
2413
2414 static int special_mapping_fault(struct vm_area_struct *vma,
2415                                 struct vm_fault *vmf)
2416 {
2417         pgoff_t pgoff;
2418         struct page **pages;
2419
2420         /*
2421          * special mappings have no vm_file, and in that case, the mm
2422          * uses vm_pgoff internally. So we have to subtract it from here.
2423          * We are allowed to do this because we are the mm; do not copy
2424          * this code into drivers!
2425          */
2426         pgoff = vmf->pgoff - vma->vm_pgoff;
2427
2428         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2429                 pgoff--;
2430
2431         if (*pages) {
2432                 struct page *page = *pages;
2433                 get_page(page);
2434                 vmf->page = page;
2435                 return 0;
2436         }
2437
2438         return VM_FAULT_SIGBUS;
2439 }
2440
2441 /*
2442  * Having a close hook prevents vma merging regardless of flags.
2443  */
2444 static void special_mapping_close(struct vm_area_struct *vma)
2445 {
2446 }
2447
2448 static const struct vm_operations_struct special_mapping_vmops = {
2449         .close = special_mapping_close,
2450         .fault = special_mapping_fault,
2451 };
2452
2453 /*
2454  * Called with mm->mmap_sem held for writing.
2455  * Insert a new vma covering the given region, with the given flags.
2456  * Its pages are supplied by the given array of struct page *.
2457  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2458  * The region past the last page supplied will always produce SIGBUS.
2459  * The array pointer and the pages it points to are assumed to stay alive
2460  * for as long as this mapping might exist.
2461  */
2462 int install_special_mapping(struct mm_struct *mm,
2463                             unsigned long addr, unsigned long len,
2464                             unsigned long vm_flags, struct page **pages)
2465 {
2466         int ret;
2467         struct vm_area_struct *vma;
2468
2469         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2470         if (unlikely(vma == NULL))
2471                 return -ENOMEM;
2472
2473         INIT_LIST_HEAD(&vma->anon_vma_chain);
2474         vma->vm_mm = mm;
2475         vma->vm_start = addr;
2476         vma->vm_end = addr + len;
2477
2478         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2479         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2480
2481         vma->vm_ops = &special_mapping_vmops;
2482         vma->vm_private_data = pages;
2483
2484         ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2485         if (ret)
2486                 goto out;
2487
2488         ret = insert_vm_struct(mm, vma);
2489         if (ret)
2490                 goto out;
2491
2492         mm->total_vm += len >> PAGE_SHIFT;
2493
2494         perf_event_mmap(vma);
2495
2496         return 0;
2497
2498 out:
2499         kmem_cache_free(vm_area_cachep, vma);
2500         return ret;
2501 }
2502
2503 static DEFINE_MUTEX(mm_all_locks_mutex);
2504
2505 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2506 {
2507         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2508                 /*
2509                  * The LSB of head.next can't change from under us
2510                  * because we hold the mm_all_locks_mutex.
2511                  */
2512                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2513                 /*
2514                  * We can safely modify head.next after taking the
2515                  * anon_vma->root->mutex. If some other vma in this mm shares
2516                  * the same anon_vma we won't take it again.
2517                  *
2518                  * No need of atomic instructions here, head.next
2519                  * can't change from under us thanks to the
2520                  * anon_vma->root->mutex.
2521                  */
2522                 if (__test_and_set_bit(0, (unsigned long *)
2523                                        &anon_vma->root->head.next))
2524                         BUG();
2525         }
2526 }
2527
2528 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2529 {
2530         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2531                 /*
2532                  * AS_MM_ALL_LOCKS can't change from under us because
2533                  * we hold the mm_all_locks_mutex.
2534                  *
2535                  * Operations on ->flags have to be atomic because
2536                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2537                  * mm_all_locks_mutex, there may be other cpus
2538                  * changing other bitflags in parallel to us.
2539                  */
2540                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2541                         BUG();
2542                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2543         }
2544 }
2545
2546 /*
2547  * This operation locks against the VM for all pte/vma/mm related
2548  * operations that could ever happen on a certain mm. This includes
2549  * vmtruncate, try_to_unmap, and all page faults.
2550  *
2551  * The caller must take the mmap_sem in write mode before calling
2552  * mm_take_all_locks(). The caller isn't allowed to release the
2553  * mmap_sem until mm_drop_all_locks() returns.
2554  *
2555  * mmap_sem in write mode is required in order to block all operations
2556  * that could modify pagetables and free pages without need of
2557  * altering the vma layout (for example populate_range() with
2558  * nonlinear vmas). It's also needed in write mode to avoid new
2559  * anon_vmas to be associated with existing vmas.
2560  *
2561  * A single task can't take more than one mm_take_all_locks() in a row
2562  * or it would deadlock.
2563  *
2564  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2565  * mapping->flags avoid to take the same lock twice, if more than one
2566  * vma in this mm is backed by the same anon_vma or address_space.
2567  *
2568  * We can take all the locks in random order because the VM code
2569  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2570  * takes more than one of them in a row. Secondly we're protected
2571  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2572  *
2573  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2574  * that may have to take thousand of locks.
2575  *
2576  * mm_take_all_locks() can fail if it's interrupted by signals.
2577  */
2578 int mm_take_all_locks(struct mm_struct *mm)
2579 {
2580         struct vm_area_struct *vma;
2581         struct anon_vma_chain *avc;
2582
2583         BUG_ON(down_read_trylock(&mm->mmap_sem));
2584
2585         mutex_lock(&mm_all_locks_mutex);
2586
2587         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2588                 if (signal_pending(current))
2589                         goto out_unlock;
2590                 if (vma->vm_file && vma->vm_file->f_mapping)
2591                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2592         }
2593
2594         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2595                 if (signal_pending(current))
2596                         goto out_unlock;
2597                 if (vma->anon_vma)
2598                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2599                                 vm_lock_anon_vma(mm, avc->anon_vma);
2600         }
2601
2602         return 0;
2603
2604 out_unlock:
2605         mm_drop_all_locks(mm);
2606         return -EINTR;
2607 }
2608
2609 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2610 {
2611         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2612                 /*
2613                  * The LSB of head.next can't change to 0 from under
2614                  * us because we hold the mm_all_locks_mutex.
2615                  *
2616                  * We must however clear the bitflag before unlocking
2617                  * the vma so the users using the anon_vma->head will
2618                  * never see our bitflag.
2619                  *
2620                  * No need of atomic instructions here, head.next
2621                  * can't change from under us until we release the
2622                  * anon_vma->root->mutex.
2623                  */
2624                 if (!__test_and_clear_bit(0, (unsigned long *)
2625                                           &anon_vma->root->head.next))
2626                         BUG();
2627                 anon_vma_unlock(anon_vma);
2628         }
2629 }
2630
2631 static void vm_unlock_mapping(struct address_space *mapping)
2632 {
2633         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2634                 /*
2635                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2636                  * because we hold the mm_all_locks_mutex.
2637                  */
2638                 mutex_unlock(&mapping->i_mmap_mutex);
2639                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2640                                         &mapping->flags))
2641                         BUG();
2642         }
2643 }
2644
2645 /*
2646  * The mmap_sem cannot be released by the caller until
2647  * mm_drop_all_locks() returns.
2648  */
2649 void mm_drop_all_locks(struct mm_struct *mm)
2650 {
2651         struct vm_area_struct *vma;
2652         struct anon_vma_chain *avc;
2653
2654         BUG_ON(down_read_trylock(&mm->mmap_sem));
2655         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2656
2657         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2658                 if (vma->anon_vma)
2659                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2660                                 vm_unlock_anon_vma(avc->anon_vma);
2661                 if (vma->vm_file && vma->vm_file->f_mapping)
2662                         vm_unlock_mapping(vma->vm_file->f_mapping);
2663         }
2664
2665         mutex_unlock(&mm_all_locks_mutex);
2666 }
2667
2668 /*
2669  * initialise the VMA slab
2670  */
2671 void __init mmap_init(void)
2672 {
2673         int ret;
2674
2675         ret = percpu_counter_init(&vm_committed_as, 0);
2676         VM_BUG_ON(ret);
2677 }