watchdog: dw_wdt: fix overflow issue in dw_wdt_top_in_seconds
[firefly-linux-kernel-4.4.55.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50
51 #include "internal.h"
52
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)       (0)
55 #endif
56
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)              (addr)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  *
91  */
92 pgprot_t protection_map[16] = {
93         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
94         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
95 };
96
97 pgprot_t vm_get_page_prot(unsigned long vm_flags)
98 {
99         return __pgprot(pgprot_val(protection_map[vm_flags &
100                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
101                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
102 }
103 EXPORT_SYMBOL(vm_get_page_prot);
104
105 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
106 {
107         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
108 }
109
110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
111 void vma_set_page_prot(struct vm_area_struct *vma)
112 {
113         unsigned long vm_flags = vma->vm_flags;
114
115         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
116         if (vma_wants_writenotify(vma)) {
117                 vm_flags &= ~VM_SHARED;
118                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
119                                                      vm_flags);
120         }
121 }
122
123
124 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
125 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
126 unsigned long sysctl_overcommit_kbytes __read_mostly;
127 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
128 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
129 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
130 /*
131  * Make sure vm_committed_as in one cacheline and not cacheline shared with
132  * other variables. It can be updated by several CPUs frequently.
133  */
134 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
135
136 /*
137  * The global memory commitment made in the system can be a metric
138  * that can be used to drive ballooning decisions when Linux is hosted
139  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
140  * balancing memory across competing virtual machines that are hosted.
141  * Several metrics drive this policy engine including the guest reported
142  * memory commitment.
143  */
144 unsigned long vm_memory_committed(void)
145 {
146         return percpu_counter_read_positive(&vm_committed_as);
147 }
148 EXPORT_SYMBOL_GPL(vm_memory_committed);
149
150 /*
151  * Check that a process has enough memory to allocate a new virtual
152  * mapping. 0 means there is enough memory for the allocation to
153  * succeed and -ENOMEM implies there is not.
154  *
155  * We currently support three overcommit policies, which are set via the
156  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
157  *
158  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
159  * Additional code 2002 Jul 20 by Robert Love.
160  *
161  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
162  *
163  * Note this is a helper function intended to be used by LSMs which
164  * wish to use this logic.
165  */
166 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
167 {
168         long free, allowed, reserve;
169
170         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
171                         -(s64)vm_committed_as_batch * num_online_cpus(),
172                         "memory commitment underflow");
173
174         vm_acct_memory(pages);
175
176         /*
177          * Sometimes we want to use more memory than we have
178          */
179         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
180                 return 0;
181
182         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
183                 free = global_page_state(NR_FREE_PAGES);
184                 free += global_page_state(NR_FILE_PAGES);
185
186                 /*
187                  * shmem pages shouldn't be counted as free in this
188                  * case, they can't be purged, only swapped out, and
189                  * that won't affect the overall amount of available
190                  * memory in the system.
191                  */
192                 free -= global_page_state(NR_SHMEM);
193
194                 free += get_nr_swap_pages();
195
196                 /*
197                  * Any slabs which are created with the
198                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
199                  * which are reclaimable, under pressure.  The dentry
200                  * cache and most inode caches should fall into this
201                  */
202                 free += global_page_state(NR_SLAB_RECLAIMABLE);
203
204                 /*
205                  * Leave reserved pages. The pages are not for anonymous pages.
206                  */
207                 if (free <= totalreserve_pages)
208                         goto error;
209                 else
210                         free -= totalreserve_pages;
211
212                 /*
213                  * Reserve some for root
214                  */
215                 if (!cap_sys_admin)
216                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217
218                 if (free > pages)
219                         return 0;
220
221                 goto error;
222         }
223
224         allowed = vm_commit_limit();
225         /*
226          * Reserve some for root
227          */
228         if (!cap_sys_admin)
229                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
230
231         /*
232          * Don't let a single process grow so big a user can't recover
233          */
234         if (mm) {
235                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
236                 allowed -= min_t(long, mm->total_vm / 32, reserve);
237         }
238
239         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
240                 return 0;
241 error:
242         vm_unacct_memory(pages);
243
244         return -ENOMEM;
245 }
246
247 /*
248  * Requires inode->i_mapping->i_mmap_rwsem
249  */
250 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
251                 struct file *file, struct address_space *mapping)
252 {
253         if (vma->vm_flags & VM_DENYWRITE)
254                 atomic_inc(&file_inode(file)->i_writecount);
255         if (vma->vm_flags & VM_SHARED)
256                 mapping_unmap_writable(mapping);
257
258         flush_dcache_mmap_lock(mapping);
259         vma_interval_tree_remove(vma, &mapping->i_mmap);
260         flush_dcache_mmap_unlock(mapping);
261 }
262
263 /*
264  * Unlink a file-based vm structure from its interval tree, to hide
265  * vma from rmap and vmtruncate before freeing its page tables.
266  */
267 void unlink_file_vma(struct vm_area_struct *vma)
268 {
269         struct file *file = vma->vm_file;
270
271         if (file) {
272                 struct address_space *mapping = file->f_mapping;
273                 i_mmap_lock_write(mapping);
274                 __remove_shared_vm_struct(vma, file, mapping);
275                 i_mmap_unlock_write(mapping);
276         }
277 }
278
279 /*
280  * Close a vm structure and free it, returning the next.
281  */
282 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
283 {
284         struct vm_area_struct *next = vma->vm_next;
285
286         might_sleep();
287         if (vma->vm_ops && vma->vm_ops->close)
288                 vma->vm_ops->close(vma);
289         if (vma->vm_file)
290                 fput(vma->vm_file);
291         mpol_put(vma_policy(vma));
292         kmem_cache_free(vm_area_cachep, vma);
293         return next;
294 }
295
296 static unsigned long do_brk(unsigned long addr, unsigned long len);
297
298 SYSCALL_DEFINE1(brk, unsigned long, brk)
299 {
300         unsigned long retval;
301         unsigned long newbrk, oldbrk;
302         struct mm_struct *mm = current->mm;
303         struct vm_area_struct *next;
304         unsigned long min_brk;
305         bool populate;
306
307         down_write(&mm->mmap_sem);
308
309 #ifdef CONFIG_COMPAT_BRK
310         /*
311          * CONFIG_COMPAT_BRK can still be overridden by setting
312          * randomize_va_space to 2, which will still cause mm->start_brk
313          * to be arbitrarily shifted
314          */
315         if (current->brk_randomized)
316                 min_brk = mm->start_brk;
317         else
318                 min_brk = mm->end_data;
319 #else
320         min_brk = mm->start_brk;
321 #endif
322         if (brk < min_brk)
323                 goto out;
324
325         /*
326          * Check against rlimit here. If this check is done later after the test
327          * of oldbrk with newbrk then it can escape the test and let the data
328          * segment grow beyond its set limit the in case where the limit is
329          * not page aligned -Ram Gupta
330          */
331         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
332                               mm->end_data, mm->start_data))
333                 goto out;
334
335         newbrk = PAGE_ALIGN(brk);
336         oldbrk = PAGE_ALIGN(mm->brk);
337         if (oldbrk == newbrk)
338                 goto set_brk;
339
340         /* Always allow shrinking brk. */
341         if (brk <= mm->brk) {
342                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
343                         goto set_brk;
344                 goto out;
345         }
346
347         /* Check against existing mmap mappings. */
348         next = find_vma(mm, oldbrk);
349         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
350                 goto out;
351
352         /* Ok, looks good - let it rip. */
353         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
354                 goto out;
355
356 set_brk:
357         mm->brk = brk;
358         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
359         up_write(&mm->mmap_sem);
360         if (populate)
361                 mm_populate(oldbrk, newbrk - oldbrk);
362         return brk;
363
364 out:
365         retval = mm->brk;
366         up_write(&mm->mmap_sem);
367         return retval;
368 }
369
370 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
371 {
372         unsigned long max, prev_end, subtree_gap;
373
374         /*
375          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
376          * allow two stack_guard_gaps between them here, and when choosing
377          * an unmapped area; whereas when expanding we only require one.
378          * That's a little inconsistent, but keeps the code here simpler.
379          */
380         max = vm_start_gap(vma);
381         if (vma->vm_prev) {
382                 prev_end = vm_end_gap(vma->vm_prev);
383                 if (max > prev_end)
384                         max -= prev_end;
385                 else
386                         max = 0;
387         }
388         if (vma->vm_rb.rb_left) {
389                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
390                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
391                 if (subtree_gap > max)
392                         max = subtree_gap;
393         }
394         if (vma->vm_rb.rb_right) {
395                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
396                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
397                 if (subtree_gap > max)
398                         max = subtree_gap;
399         }
400         return max;
401 }
402
403 #ifdef CONFIG_DEBUG_VM_RB
404 static int browse_rb(struct rb_root *root)
405 {
406         int i = 0, j, bug = 0;
407         struct rb_node *nd, *pn = NULL;
408         unsigned long prev = 0, pend = 0;
409
410         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
411                 struct vm_area_struct *vma;
412                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
413                 if (vma->vm_start < prev) {
414                         pr_emerg("vm_start %lx < prev %lx\n",
415                                   vma->vm_start, prev);
416                         bug = 1;
417                 }
418                 if (vma->vm_start < pend) {
419                         pr_emerg("vm_start %lx < pend %lx\n",
420                                   vma->vm_start, pend);
421                         bug = 1;
422                 }
423                 if (vma->vm_start > vma->vm_end) {
424                         pr_emerg("vm_start %lx > vm_end %lx\n",
425                                   vma->vm_start, vma->vm_end);
426                         bug = 1;
427                 }
428                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
429                         pr_emerg("free gap %lx, correct %lx\n",
430                                vma->rb_subtree_gap,
431                                vma_compute_subtree_gap(vma));
432                         bug = 1;
433                 }
434                 i++;
435                 pn = nd;
436                 prev = vma->vm_start;
437                 pend = vma->vm_end;
438         }
439         j = 0;
440         for (nd = pn; nd; nd = rb_prev(nd))
441                 j++;
442         if (i != j) {
443                 pr_emerg("backwards %d, forwards %d\n", j, i);
444                 bug = 1;
445         }
446         return bug ? -1 : i;
447 }
448
449 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
450 {
451         struct rb_node *nd;
452
453         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
454                 struct vm_area_struct *vma;
455                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
456                 VM_BUG_ON_VMA(vma != ignore &&
457                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
458                         vma);
459         }
460 }
461
462 static void validate_mm(struct mm_struct *mm)
463 {
464         int bug = 0;
465         int i = 0;
466         unsigned long highest_address = 0;
467         struct vm_area_struct *vma = mm->mmap;
468
469         while (vma) {
470                 struct anon_vma *anon_vma = vma->anon_vma;
471                 struct anon_vma_chain *avc;
472
473                 if (anon_vma) {
474                         anon_vma_lock_read(anon_vma);
475                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
476                                 anon_vma_interval_tree_verify(avc);
477                         anon_vma_unlock_read(anon_vma);
478                 }
479
480                 highest_address = vm_end_gap(vma);
481                 vma = vma->vm_next;
482                 i++;
483         }
484         if (i != mm->map_count) {
485                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
486                 bug = 1;
487         }
488         if (highest_address != mm->highest_vm_end) {
489                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
490                           mm->highest_vm_end, highest_address);
491                 bug = 1;
492         }
493         i = browse_rb(&mm->mm_rb);
494         if (i != mm->map_count) {
495                 if (i != -1)
496                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
497                 bug = 1;
498         }
499         VM_BUG_ON_MM(bug, mm);
500 }
501 #else
502 #define validate_mm_rb(root, ignore) do { } while (0)
503 #define validate_mm(mm) do { } while (0)
504 #endif
505
506 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
507                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
508
509 /*
510  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
511  * vma->vm_prev->vm_end values changed, without modifying the vma's position
512  * in the rbtree.
513  */
514 static void vma_gap_update(struct vm_area_struct *vma)
515 {
516         /*
517          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
518          * function that does exacltly what we want.
519          */
520         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
521 }
522
523 static inline void vma_rb_insert(struct vm_area_struct *vma,
524                                  struct rb_root *root)
525 {
526         /* All rb_subtree_gap values must be consistent prior to insertion */
527         validate_mm_rb(root, NULL);
528
529         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
530 }
531
532 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
533 {
534         /*
535          * All rb_subtree_gap values must be consistent prior to erase,
536          * with the possible exception of the vma being erased.
537          */
538         validate_mm_rb(root, vma);
539
540         /*
541          * Note rb_erase_augmented is a fairly large inline function,
542          * so make sure we instantiate it only once with our desired
543          * augmented rbtree callbacks.
544          */
545         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
546 }
547
548 /*
549  * vma has some anon_vma assigned, and is already inserted on that
550  * anon_vma's interval trees.
551  *
552  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
553  * vma must be removed from the anon_vma's interval trees using
554  * anon_vma_interval_tree_pre_update_vma().
555  *
556  * After the update, the vma will be reinserted using
557  * anon_vma_interval_tree_post_update_vma().
558  *
559  * The entire update must be protected by exclusive mmap_sem and by
560  * the root anon_vma's mutex.
561  */
562 static inline void
563 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
564 {
565         struct anon_vma_chain *avc;
566
567         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
568                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
569 }
570
571 static inline void
572 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
573 {
574         struct anon_vma_chain *avc;
575
576         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
577                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
578 }
579
580 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
581                 unsigned long end, struct vm_area_struct **pprev,
582                 struct rb_node ***rb_link, struct rb_node **rb_parent)
583 {
584         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
585
586         __rb_link = &mm->mm_rb.rb_node;
587         rb_prev = __rb_parent = NULL;
588
589         while (*__rb_link) {
590                 struct vm_area_struct *vma_tmp;
591
592                 __rb_parent = *__rb_link;
593                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
594
595                 if (vma_tmp->vm_end > addr) {
596                         /* Fail if an existing vma overlaps the area */
597                         if (vma_tmp->vm_start < end)
598                                 return -ENOMEM;
599                         __rb_link = &__rb_parent->rb_left;
600                 } else {
601                         rb_prev = __rb_parent;
602                         __rb_link = &__rb_parent->rb_right;
603                 }
604         }
605
606         *pprev = NULL;
607         if (rb_prev)
608                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
609         *rb_link = __rb_link;
610         *rb_parent = __rb_parent;
611         return 0;
612 }
613
614 static unsigned long count_vma_pages_range(struct mm_struct *mm,
615                 unsigned long addr, unsigned long end)
616 {
617         unsigned long nr_pages = 0;
618         struct vm_area_struct *vma;
619
620         /* Find first overlaping mapping */
621         vma = find_vma_intersection(mm, addr, end);
622         if (!vma)
623                 return 0;
624
625         nr_pages = (min(end, vma->vm_end) -
626                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
627
628         /* Iterate over the rest of the overlaps */
629         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
630                 unsigned long overlap_len;
631
632                 if (vma->vm_start > end)
633                         break;
634
635                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
636                 nr_pages += overlap_len >> PAGE_SHIFT;
637         }
638
639         return nr_pages;
640 }
641
642 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
643                 struct rb_node **rb_link, struct rb_node *rb_parent)
644 {
645         /* Update tracking information for the gap following the new vma. */
646         if (vma->vm_next)
647                 vma_gap_update(vma->vm_next);
648         else
649                 mm->highest_vm_end = vm_end_gap(vma);
650
651         /*
652          * vma->vm_prev wasn't known when we followed the rbtree to find the
653          * correct insertion point for that vma. As a result, we could not
654          * update the vma vm_rb parents rb_subtree_gap values on the way down.
655          * So, we first insert the vma with a zero rb_subtree_gap value
656          * (to be consistent with what we did on the way down), and then
657          * immediately update the gap to the correct value. Finally we
658          * rebalance the rbtree after all augmented values have been set.
659          */
660         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
661         vma->rb_subtree_gap = 0;
662         vma_gap_update(vma);
663         vma_rb_insert(vma, &mm->mm_rb);
664 }
665
666 static void __vma_link_file(struct vm_area_struct *vma)
667 {
668         struct file *file;
669
670         file = vma->vm_file;
671         if (file) {
672                 struct address_space *mapping = file->f_mapping;
673
674                 if (vma->vm_flags & VM_DENYWRITE)
675                         atomic_dec(&file_inode(file)->i_writecount);
676                 if (vma->vm_flags & VM_SHARED)
677                         atomic_inc(&mapping->i_mmap_writable);
678
679                 flush_dcache_mmap_lock(mapping);
680                 vma_interval_tree_insert(vma, &mapping->i_mmap);
681                 flush_dcache_mmap_unlock(mapping);
682         }
683 }
684
685 static void
686 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
687         struct vm_area_struct *prev, struct rb_node **rb_link,
688         struct rb_node *rb_parent)
689 {
690         __vma_link_list(mm, vma, prev, rb_parent);
691         __vma_link_rb(mm, vma, rb_link, rb_parent);
692 }
693
694 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
695                         struct vm_area_struct *prev, struct rb_node **rb_link,
696                         struct rb_node *rb_parent)
697 {
698         struct address_space *mapping = NULL;
699
700         if (vma->vm_file) {
701                 mapping = vma->vm_file->f_mapping;
702                 i_mmap_lock_write(mapping);
703         }
704
705         __vma_link(mm, vma, prev, rb_link, rb_parent);
706         __vma_link_file(vma);
707
708         if (mapping)
709                 i_mmap_unlock_write(mapping);
710
711         mm->map_count++;
712         validate_mm(mm);
713 }
714
715 /*
716  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
717  * mm's list and rbtree.  It has already been inserted into the interval tree.
718  */
719 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
720 {
721         struct vm_area_struct *prev;
722         struct rb_node **rb_link, *rb_parent;
723
724         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
725                            &prev, &rb_link, &rb_parent))
726                 BUG();
727         __vma_link(mm, vma, prev, rb_link, rb_parent);
728         mm->map_count++;
729 }
730
731 static inline void
732 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
733                 struct vm_area_struct *prev)
734 {
735         struct vm_area_struct *next;
736
737         vma_rb_erase(vma, &mm->mm_rb);
738         prev->vm_next = next = vma->vm_next;
739         if (next)
740                 next->vm_prev = prev;
741
742         /* Kill the cache */
743         vmacache_invalidate(mm);
744 }
745
746 /*
747  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
748  * is already present in an i_mmap tree without adjusting the tree.
749  * The following helper function should be used when such adjustments
750  * are necessary.  The "insert" vma (if any) is to be inserted
751  * before we drop the necessary locks.
752  */
753 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
754         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
755 {
756         struct mm_struct *mm = vma->vm_mm;
757         struct vm_area_struct *next = vma->vm_next;
758         struct vm_area_struct *importer = NULL;
759         struct address_space *mapping = NULL;
760         struct rb_root *root = NULL;
761         struct anon_vma *anon_vma = NULL;
762         struct file *file = vma->vm_file;
763         bool start_changed = false, end_changed = false;
764         long adjust_next = 0;
765         int remove_next = 0;
766
767         if (next && !insert) {
768                 struct vm_area_struct *exporter = NULL;
769
770                 if (end >= next->vm_end) {
771                         /*
772                          * vma expands, overlapping all the next, and
773                          * perhaps the one after too (mprotect case 6).
774                          */
775 again:                  remove_next = 1 + (end > next->vm_end);
776                         end = next->vm_end;
777                         exporter = next;
778                         importer = vma;
779                 } else if (end > next->vm_start) {
780                         /*
781                          * vma expands, overlapping part of the next:
782                          * mprotect case 5 shifting the boundary up.
783                          */
784                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
785                         exporter = next;
786                         importer = vma;
787                 } else if (end < vma->vm_end) {
788                         /*
789                          * vma shrinks, and !insert tells it's not
790                          * split_vma inserting another: so it must be
791                          * mprotect case 4 shifting the boundary down.
792                          */
793                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
794                         exporter = vma;
795                         importer = next;
796                 }
797
798                 /*
799                  * Easily overlooked: when mprotect shifts the boundary,
800                  * make sure the expanding vma has anon_vma set if the
801                  * shrinking vma had, to cover any anon pages imported.
802                  */
803                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
804                         int error;
805
806                         importer->anon_vma = exporter->anon_vma;
807                         error = anon_vma_clone(importer, exporter);
808                         if (error)
809                                 return error;
810                 }
811         }
812
813         if (file) {
814                 mapping = file->f_mapping;
815                 root = &mapping->i_mmap;
816                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
817
818                 if (adjust_next)
819                         uprobe_munmap(next, next->vm_start, next->vm_end);
820
821                 i_mmap_lock_write(mapping);
822                 if (insert) {
823                         /*
824                          * Put into interval tree now, so instantiated pages
825                          * are visible to arm/parisc __flush_dcache_page
826                          * throughout; but we cannot insert into address
827                          * space until vma start or end is updated.
828                          */
829                         __vma_link_file(insert);
830                 }
831         }
832
833         vma_adjust_trans_huge(vma, start, end, adjust_next);
834
835         anon_vma = vma->anon_vma;
836         if (!anon_vma && adjust_next)
837                 anon_vma = next->anon_vma;
838         if (anon_vma) {
839                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
840                           anon_vma != next->anon_vma, next);
841                 anon_vma_lock_write(anon_vma);
842                 anon_vma_interval_tree_pre_update_vma(vma);
843                 if (adjust_next)
844                         anon_vma_interval_tree_pre_update_vma(next);
845         }
846
847         if (root) {
848                 flush_dcache_mmap_lock(mapping);
849                 vma_interval_tree_remove(vma, root);
850                 if (adjust_next)
851                         vma_interval_tree_remove(next, root);
852         }
853
854         if (start != vma->vm_start) {
855                 vma->vm_start = start;
856                 start_changed = true;
857         }
858         if (end != vma->vm_end) {
859                 vma->vm_end = end;
860                 end_changed = true;
861         }
862         vma->vm_pgoff = pgoff;
863         if (adjust_next) {
864                 next->vm_start += adjust_next << PAGE_SHIFT;
865                 next->vm_pgoff += adjust_next;
866         }
867
868         if (root) {
869                 if (adjust_next)
870                         vma_interval_tree_insert(next, root);
871                 vma_interval_tree_insert(vma, root);
872                 flush_dcache_mmap_unlock(mapping);
873         }
874
875         if (remove_next) {
876                 /*
877                  * vma_merge has merged next into vma, and needs
878                  * us to remove next before dropping the locks.
879                  */
880                 __vma_unlink(mm, next, vma);
881                 if (file)
882                         __remove_shared_vm_struct(next, file, mapping);
883         } else if (insert) {
884                 /*
885                  * split_vma has split insert from vma, and needs
886                  * us to insert it before dropping the locks
887                  * (it may either follow vma or precede it).
888                  */
889                 __insert_vm_struct(mm, insert);
890         } else {
891                 if (start_changed)
892                         vma_gap_update(vma);
893                 if (end_changed) {
894                         if (!next)
895                                 mm->highest_vm_end = vm_end_gap(vma);
896                         else if (!adjust_next)
897                                 vma_gap_update(next);
898                 }
899         }
900
901         if (anon_vma) {
902                 anon_vma_interval_tree_post_update_vma(vma);
903                 if (adjust_next)
904                         anon_vma_interval_tree_post_update_vma(next);
905                 anon_vma_unlock_write(anon_vma);
906         }
907         if (mapping)
908                 i_mmap_unlock_write(mapping);
909
910         if (root) {
911                 uprobe_mmap(vma);
912
913                 if (adjust_next)
914                         uprobe_mmap(next);
915         }
916
917         if (remove_next) {
918                 if (file) {
919                         uprobe_munmap(next, next->vm_start, next->vm_end);
920                         fput(file);
921                 }
922                 if (next->anon_vma)
923                         anon_vma_merge(vma, next);
924                 mm->map_count--;
925                 mpol_put(vma_policy(next));
926                 kmem_cache_free(vm_area_cachep, next);
927                 /*
928                  * In mprotect's case 6 (see comments on vma_merge),
929                  * we must remove another next too. It would clutter
930                  * up the code too much to do both in one go.
931                  */
932                 next = vma->vm_next;
933                 if (remove_next == 2)
934                         goto again;
935                 else if (next)
936                         vma_gap_update(next);
937                 else
938                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
939         }
940         if (insert && file)
941                 uprobe_mmap(insert);
942
943         validate_mm(mm);
944
945         return 0;
946 }
947
948 /*
949  * If the vma has a ->close operation then the driver probably needs to release
950  * per-vma resources, so we don't attempt to merge those.
951  */
952 static inline int is_mergeable_vma(struct vm_area_struct *vma,
953                                 struct file *file, unsigned long vm_flags,
954                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
955                                 const char __user *anon_name)
956 {
957         /*
958          * VM_SOFTDIRTY should not prevent from VMA merging, if we
959          * match the flags but dirty bit -- the caller should mark
960          * merged VMA as dirty. If dirty bit won't be excluded from
961          * comparison, we increase pressue on the memory system forcing
962          * the kernel to generate new VMAs when old one could be
963          * extended instead.
964          */
965         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
966                 return 0;
967         if (vma->vm_file != file)
968                 return 0;
969         if (vma->vm_ops && vma->vm_ops->close)
970                 return 0;
971         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
972                 return 0;
973         if (vma_get_anon_name(vma) != anon_name)
974                 return 0;
975         return 1;
976 }
977
978 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
979                                         struct anon_vma *anon_vma2,
980                                         struct vm_area_struct *vma)
981 {
982         /*
983          * The list_is_singular() test is to avoid merging VMA cloned from
984          * parents. This can improve scalability caused by anon_vma lock.
985          */
986         if ((!anon_vma1 || !anon_vma2) && (!vma ||
987                 list_is_singular(&vma->anon_vma_chain)))
988                 return 1;
989         return anon_vma1 == anon_vma2;
990 }
991
992 /*
993  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
994  * in front of (at a lower virtual address and file offset than) the vma.
995  *
996  * We cannot merge two vmas if they have differently assigned (non-NULL)
997  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
998  *
999  * We don't check here for the merged mmap wrapping around the end of pagecache
1000  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1001  * wrap, nor mmaps which cover the final page at index -1UL.
1002  */
1003 static int
1004 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1005                      struct anon_vma *anon_vma, struct file *file,
1006                      pgoff_t vm_pgoff,
1007                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1008                      const char __user *anon_name)
1009 {
1010         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1011             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1012                 if (vma->vm_pgoff == vm_pgoff)
1013                         return 1;
1014         }
1015         return 0;
1016 }
1017
1018 /*
1019  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1020  * beyond (at a higher virtual address and file offset than) the vma.
1021  *
1022  * We cannot merge two vmas if they have differently assigned (non-NULL)
1023  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1024  */
1025 static int
1026 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1027                     struct anon_vma *anon_vma, struct file *file,
1028                     pgoff_t vm_pgoff,
1029                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1030                     const char __user *anon_name)
1031 {
1032         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1033             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1034                 pgoff_t vm_pglen;
1035                 vm_pglen = vma_pages(vma);
1036                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1037                         return 1;
1038         }
1039         return 0;
1040 }
1041
1042 /*
1043  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1044  * figure out whether that can be merged with its predecessor or its
1045  * successor.  Or both (it neatly fills a hole).
1046  *
1047  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1048  * certain not to be mapped by the time vma_merge is called; but when
1049  * called for mprotect, it is certain to be already mapped (either at
1050  * an offset within prev, or at the start of next), and the flags of
1051  * this area are about to be changed to vm_flags - and the no-change
1052  * case has already been eliminated.
1053  *
1054  * The following mprotect cases have to be considered, where AAAA is
1055  * the area passed down from mprotect_fixup, never extending beyond one
1056  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1057  *
1058  *     AAAA             AAAA                AAAA          AAAA
1059  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1060  *    cannot merge    might become    might become    might become
1061  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1062  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1063  *    mremap move:                                    PPPPNNNNNNNN 8
1064  *        AAAA
1065  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1066  *    might become    case 1 below    case 2 below    case 3 below
1067  *
1068  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1069  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1070  */
1071 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1072                         struct vm_area_struct *prev, unsigned long addr,
1073                         unsigned long end, unsigned long vm_flags,
1074                         struct anon_vma *anon_vma, struct file *file,
1075                         pgoff_t pgoff, struct mempolicy *policy,
1076                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1077                         const char __user *anon_name)
1078 {
1079         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1080         struct vm_area_struct *area, *next;
1081         int err;
1082
1083         /*
1084          * We later require that vma->vm_flags == vm_flags,
1085          * so this tests vma->vm_flags & VM_SPECIAL, too.
1086          */
1087         if (vm_flags & VM_SPECIAL)
1088                 return NULL;
1089
1090         if (prev)
1091                 next = prev->vm_next;
1092         else
1093                 next = mm->mmap;
1094         area = next;
1095         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1096                 next = next->vm_next;
1097
1098         /*
1099          * Can it merge with the predecessor?
1100          */
1101         if (prev && prev->vm_end == addr &&
1102                         mpol_equal(vma_policy(prev), policy) &&
1103                         can_vma_merge_after(prev, vm_flags,
1104                                             anon_vma, file, pgoff,
1105                                             vm_userfaultfd_ctx,
1106                                             anon_name)) {
1107                 /*
1108                  * OK, it can.  Can we now merge in the successor as well?
1109                  */
1110                 if (next && end == next->vm_start &&
1111                                 mpol_equal(policy, vma_policy(next)) &&
1112                                 can_vma_merge_before(next, vm_flags,
1113                                                      anon_vma, file,
1114                                                      pgoff+pglen,
1115                                                      vm_userfaultfd_ctx,
1116                                                      anon_name) &&
1117                                 is_mergeable_anon_vma(prev->anon_vma,
1118                                                       next->anon_vma, NULL)) {
1119                                                         /* cases 1, 6 */
1120                         err = vma_adjust(prev, prev->vm_start,
1121                                 next->vm_end, prev->vm_pgoff, NULL);
1122                 } else                                  /* cases 2, 5, 7 */
1123                         err = vma_adjust(prev, prev->vm_start,
1124                                 end, prev->vm_pgoff, NULL);
1125                 if (err)
1126                         return NULL;
1127                 khugepaged_enter_vma_merge(prev, vm_flags);
1128                 return prev;
1129         }
1130
1131         /*
1132          * Can this new request be merged in front of next?
1133          */
1134         if (next && end == next->vm_start &&
1135                         mpol_equal(policy, vma_policy(next)) &&
1136                         can_vma_merge_before(next, vm_flags,
1137                                              anon_vma, file, pgoff+pglen,
1138                                              vm_userfaultfd_ctx,
1139                                              anon_name)) {
1140                 if (prev && addr < prev->vm_end)        /* case 4 */
1141                         err = vma_adjust(prev, prev->vm_start,
1142                                 addr, prev->vm_pgoff, NULL);
1143                 else                                    /* cases 3, 8 */
1144                         err = vma_adjust(area, addr, next->vm_end,
1145                                 next->vm_pgoff - pglen, NULL);
1146                 if (err)
1147                         return NULL;
1148                 khugepaged_enter_vma_merge(area, vm_flags);
1149                 return area;
1150         }
1151
1152         return NULL;
1153 }
1154
1155 /*
1156  * Rough compatbility check to quickly see if it's even worth looking
1157  * at sharing an anon_vma.
1158  *
1159  * They need to have the same vm_file, and the flags can only differ
1160  * in things that mprotect may change.
1161  *
1162  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1163  * we can merge the two vma's. For example, we refuse to merge a vma if
1164  * there is a vm_ops->close() function, because that indicates that the
1165  * driver is doing some kind of reference counting. But that doesn't
1166  * really matter for the anon_vma sharing case.
1167  */
1168 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1169 {
1170         return a->vm_end == b->vm_start &&
1171                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1172                 a->vm_file == b->vm_file &&
1173                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1174                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1175 }
1176
1177 /*
1178  * Do some basic sanity checking to see if we can re-use the anon_vma
1179  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1180  * the same as 'old', the other will be the new one that is trying
1181  * to share the anon_vma.
1182  *
1183  * NOTE! This runs with mm_sem held for reading, so it is possible that
1184  * the anon_vma of 'old' is concurrently in the process of being set up
1185  * by another page fault trying to merge _that_. But that's ok: if it
1186  * is being set up, that automatically means that it will be a singleton
1187  * acceptable for merging, so we can do all of this optimistically. But
1188  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1189  *
1190  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1191  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1192  * is to return an anon_vma that is "complex" due to having gone through
1193  * a fork).
1194  *
1195  * We also make sure that the two vma's are compatible (adjacent,
1196  * and with the same memory policies). That's all stable, even with just
1197  * a read lock on the mm_sem.
1198  */
1199 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1200 {
1201         if (anon_vma_compatible(a, b)) {
1202                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1203
1204                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1205                         return anon_vma;
1206         }
1207         return NULL;
1208 }
1209
1210 /*
1211  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1212  * neighbouring vmas for a suitable anon_vma, before it goes off
1213  * to allocate a new anon_vma.  It checks because a repetitive
1214  * sequence of mprotects and faults may otherwise lead to distinct
1215  * anon_vmas being allocated, preventing vma merge in subsequent
1216  * mprotect.
1217  */
1218 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1219 {
1220         struct anon_vma *anon_vma;
1221         struct vm_area_struct *near;
1222
1223         near = vma->vm_next;
1224         if (!near)
1225                 goto try_prev;
1226
1227         anon_vma = reusable_anon_vma(near, vma, near);
1228         if (anon_vma)
1229                 return anon_vma;
1230 try_prev:
1231         near = vma->vm_prev;
1232         if (!near)
1233                 goto none;
1234
1235         anon_vma = reusable_anon_vma(near, near, vma);
1236         if (anon_vma)
1237                 return anon_vma;
1238 none:
1239         /*
1240          * There's no absolute need to look only at touching neighbours:
1241          * we could search further afield for "compatible" anon_vmas.
1242          * But it would probably just be a waste of time searching,
1243          * or lead to too many vmas hanging off the same anon_vma.
1244          * We're trying to allow mprotect remerging later on,
1245          * not trying to minimize memory used for anon_vmas.
1246          */
1247         return NULL;
1248 }
1249
1250 #ifdef CONFIG_PROC_FS
1251 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1252                                                 struct file *file, long pages)
1253 {
1254         const unsigned long stack_flags
1255                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1256
1257         mm->total_vm += pages;
1258
1259         if (file) {
1260                 mm->shared_vm += pages;
1261                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1262                         mm->exec_vm += pages;
1263         } else if (flags & stack_flags)
1264                 mm->stack_vm += pages;
1265 }
1266 #endif /* CONFIG_PROC_FS */
1267
1268 /*
1269  * If a hint addr is less than mmap_min_addr change hint to be as
1270  * low as possible but still greater than mmap_min_addr
1271  */
1272 static inline unsigned long round_hint_to_min(unsigned long hint)
1273 {
1274         hint &= PAGE_MASK;
1275         if (((void *)hint != NULL) &&
1276             (hint < mmap_min_addr))
1277                 return PAGE_ALIGN(mmap_min_addr);
1278         return hint;
1279 }
1280
1281 static inline int mlock_future_check(struct mm_struct *mm,
1282                                      unsigned long flags,
1283                                      unsigned long len)
1284 {
1285         unsigned long locked, lock_limit;
1286
1287         /*  mlock MCL_FUTURE? */
1288         if (flags & VM_LOCKED) {
1289                 locked = len >> PAGE_SHIFT;
1290                 locked += mm->locked_vm;
1291                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1292                 lock_limit >>= PAGE_SHIFT;
1293                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1294                         return -EAGAIN;
1295         }
1296         return 0;
1297 }
1298
1299 /*
1300  * The caller must hold down_write(&current->mm->mmap_sem).
1301  */
1302 unsigned long do_mmap(struct file *file, unsigned long addr,
1303                         unsigned long len, unsigned long prot,
1304                         unsigned long flags, vm_flags_t vm_flags,
1305                         unsigned long pgoff, unsigned long *populate)
1306 {
1307         struct mm_struct *mm = current->mm;
1308
1309         *populate = 0;
1310
1311         if (!len)
1312                 return -EINVAL;
1313
1314         /*
1315          * Does the application expect PROT_READ to imply PROT_EXEC?
1316          *
1317          * (the exception is when the underlying filesystem is noexec
1318          *  mounted, in which case we dont add PROT_EXEC.)
1319          */
1320         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1321                 if (!(file && path_noexec(&file->f_path)))
1322                         prot |= PROT_EXEC;
1323
1324         if (!(flags & MAP_FIXED))
1325                 addr = round_hint_to_min(addr);
1326
1327         /* Careful about overflows.. */
1328         len = PAGE_ALIGN(len);
1329         if (!len)
1330                 return -ENOMEM;
1331
1332         /* offset overflow? */
1333         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1334                 return -EOVERFLOW;
1335
1336         /* Too many mappings? */
1337         if (mm->map_count > sysctl_max_map_count)
1338                 return -ENOMEM;
1339
1340         /* Obtain the address to map to. we verify (or select) it and ensure
1341          * that it represents a valid section of the address space.
1342          */
1343         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1344         if (offset_in_page(addr))
1345                 return addr;
1346
1347         /* Do simple checking here so the lower-level routines won't have
1348          * to. we assume access permissions have been handled by the open
1349          * of the memory object, so we don't do any here.
1350          */
1351         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1352                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1353
1354         if (flags & MAP_LOCKED)
1355                 if (!can_do_mlock())
1356                         return -EPERM;
1357
1358         if (mlock_future_check(mm, vm_flags, len))
1359                 return -EAGAIN;
1360
1361         if (file) {
1362                 struct inode *inode = file_inode(file);
1363
1364                 switch (flags & MAP_TYPE) {
1365                 case MAP_SHARED:
1366                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1367                                 return -EACCES;
1368
1369                         /*
1370                          * Make sure we don't allow writing to an append-only
1371                          * file..
1372                          */
1373                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1374                                 return -EACCES;
1375
1376                         /*
1377                          * Make sure there are no mandatory locks on the file.
1378                          */
1379                         if (locks_verify_locked(file))
1380                                 return -EAGAIN;
1381
1382                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1383                         if (!(file->f_mode & FMODE_WRITE))
1384                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1385
1386                         /* fall through */
1387                 case MAP_PRIVATE:
1388                         if (!(file->f_mode & FMODE_READ))
1389                                 return -EACCES;
1390                         if (path_noexec(&file->f_path)) {
1391                                 if (vm_flags & VM_EXEC)
1392                                         return -EPERM;
1393                                 vm_flags &= ~VM_MAYEXEC;
1394                         }
1395
1396                         if (!file->f_op->mmap)
1397                                 return -ENODEV;
1398                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1399                                 return -EINVAL;
1400                         break;
1401
1402                 default:
1403                         return -EINVAL;
1404                 }
1405         } else {
1406                 switch (flags & MAP_TYPE) {
1407                 case MAP_SHARED:
1408                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1409                                 return -EINVAL;
1410                         /*
1411                          * Ignore pgoff.
1412                          */
1413                         pgoff = 0;
1414                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1415                         break;
1416                 case MAP_PRIVATE:
1417                         /*
1418                          * Set pgoff according to addr for anon_vma.
1419                          */
1420                         pgoff = addr >> PAGE_SHIFT;
1421                         break;
1422                 default:
1423                         return -EINVAL;
1424                 }
1425         }
1426
1427         /*
1428          * Set 'VM_NORESERVE' if we should not account for the
1429          * memory use of this mapping.
1430          */
1431         if (flags & MAP_NORESERVE) {
1432                 /* We honor MAP_NORESERVE if allowed to overcommit */
1433                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1434                         vm_flags |= VM_NORESERVE;
1435
1436                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1437                 if (file && is_file_hugepages(file))
1438                         vm_flags |= VM_NORESERVE;
1439         }
1440
1441         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1442         if (!IS_ERR_VALUE(addr) &&
1443             ((vm_flags & VM_LOCKED) ||
1444              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1445                 *populate = len;
1446         return addr;
1447 }
1448
1449 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1450                 unsigned long, prot, unsigned long, flags,
1451                 unsigned long, fd, unsigned long, pgoff)
1452 {
1453         struct file *file = NULL;
1454         unsigned long retval;
1455
1456         if (!(flags & MAP_ANONYMOUS)) {
1457                 audit_mmap_fd(fd, flags);
1458                 file = fget(fd);
1459                 if (!file)
1460                         return -EBADF;
1461                 if (is_file_hugepages(file))
1462                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1463                 retval = -EINVAL;
1464                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1465                         goto out_fput;
1466         } else if (flags & MAP_HUGETLB) {
1467                 struct user_struct *user = NULL;
1468                 struct hstate *hs;
1469
1470                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1471                 if (!hs)
1472                         return -EINVAL;
1473
1474                 len = ALIGN(len, huge_page_size(hs));
1475                 /*
1476                  * VM_NORESERVE is used because the reservations will be
1477                  * taken when vm_ops->mmap() is called
1478                  * A dummy user value is used because we are not locking
1479                  * memory so no accounting is necessary
1480                  */
1481                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1482                                 VM_NORESERVE,
1483                                 &user, HUGETLB_ANONHUGE_INODE,
1484                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1485                 if (IS_ERR(file))
1486                         return PTR_ERR(file);
1487         }
1488
1489         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1490
1491         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1492 out_fput:
1493         if (file)
1494                 fput(file);
1495         return retval;
1496 }
1497
1498 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1499 struct mmap_arg_struct {
1500         unsigned long addr;
1501         unsigned long len;
1502         unsigned long prot;
1503         unsigned long flags;
1504         unsigned long fd;
1505         unsigned long offset;
1506 };
1507
1508 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1509 {
1510         struct mmap_arg_struct a;
1511
1512         if (copy_from_user(&a, arg, sizeof(a)))
1513                 return -EFAULT;
1514         if (offset_in_page(a.offset))
1515                 return -EINVAL;
1516
1517         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1518                               a.offset >> PAGE_SHIFT);
1519 }
1520 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1521
1522 /*
1523  * Some shared mappigns will want the pages marked read-only
1524  * to track write events. If so, we'll downgrade vm_page_prot
1525  * to the private version (using protection_map[] without the
1526  * VM_SHARED bit).
1527  */
1528 int vma_wants_writenotify(struct vm_area_struct *vma)
1529 {
1530         vm_flags_t vm_flags = vma->vm_flags;
1531         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1532
1533         /* If it was private or non-writable, the write bit is already clear */
1534         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1535                 return 0;
1536
1537         /* The backer wishes to know when pages are first written to? */
1538         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1539                 return 1;
1540
1541         /* The open routine did something to the protections that pgprot_modify
1542          * won't preserve? */
1543         if (pgprot_val(vma->vm_page_prot) !=
1544             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1545                 return 0;
1546
1547         /* Do we need to track softdirty? */
1548         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1549                 return 1;
1550
1551         /* Specialty mapping? */
1552         if (vm_flags & VM_PFNMAP)
1553                 return 0;
1554
1555         /* Can the mapping track the dirty pages? */
1556         return vma->vm_file && vma->vm_file->f_mapping &&
1557                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1558 }
1559
1560 /*
1561  * We account for memory if it's a private writeable mapping,
1562  * not hugepages and VM_NORESERVE wasn't set.
1563  */
1564 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1565 {
1566         /*
1567          * hugetlb has its own accounting separate from the core VM
1568          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1569          */
1570         if (file && is_file_hugepages(file))
1571                 return 0;
1572
1573         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1574 }
1575
1576 unsigned long mmap_region(struct file *file, unsigned long addr,
1577                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1578 {
1579         struct mm_struct *mm = current->mm;
1580         struct vm_area_struct *vma, *prev;
1581         int error;
1582         struct rb_node **rb_link, *rb_parent;
1583         unsigned long charged = 0;
1584
1585         /* Check against address space limit. */
1586         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1587                 unsigned long nr_pages;
1588
1589                 /*
1590                  * MAP_FIXED may remove pages of mappings that intersects with
1591                  * requested mapping. Account for the pages it would unmap.
1592                  */
1593                 if (!(vm_flags & MAP_FIXED))
1594                         return -ENOMEM;
1595
1596                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1597
1598                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1599                         return -ENOMEM;
1600         }
1601
1602         /* Clear old maps */
1603         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1604                               &rb_parent)) {
1605                 if (do_munmap(mm, addr, len))
1606                         return -ENOMEM;
1607         }
1608
1609         /*
1610          * Private writable mapping: check memory availability
1611          */
1612         if (accountable_mapping(file, vm_flags)) {
1613                 charged = len >> PAGE_SHIFT;
1614                 if (security_vm_enough_memory_mm(mm, charged))
1615                         return -ENOMEM;
1616                 vm_flags |= VM_ACCOUNT;
1617         }
1618
1619         /*
1620          * Can we just expand an old mapping?
1621          */
1622         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1623                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1624         if (vma)
1625                 goto out;
1626
1627         /*
1628          * Determine the object being mapped and call the appropriate
1629          * specific mapper. the address has already been validated, but
1630          * not unmapped, but the maps are removed from the list.
1631          */
1632         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1633         if (!vma) {
1634                 error = -ENOMEM;
1635                 goto unacct_error;
1636         }
1637
1638         vma->vm_mm = mm;
1639         vma->vm_start = addr;
1640         vma->vm_end = addr + len;
1641         vma->vm_flags = vm_flags;
1642         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1643         vma->vm_pgoff = pgoff;
1644         INIT_LIST_HEAD(&vma->anon_vma_chain);
1645
1646         if (file) {
1647                 if (vm_flags & VM_DENYWRITE) {
1648                         error = deny_write_access(file);
1649                         if (error)
1650                                 goto free_vma;
1651                 }
1652                 if (vm_flags & VM_SHARED) {
1653                         error = mapping_map_writable(file->f_mapping);
1654                         if (error)
1655                                 goto allow_write_and_free_vma;
1656                 }
1657
1658                 /* ->mmap() can change vma->vm_file, but must guarantee that
1659                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1660                  * and map writably if VM_SHARED is set. This usually means the
1661                  * new file must not have been exposed to user-space, yet.
1662                  */
1663                 vma->vm_file = get_file(file);
1664                 error = file->f_op->mmap(file, vma);
1665                 if (error)
1666                         goto unmap_and_free_vma;
1667
1668                 /* Can addr have changed??
1669                  *
1670                  * Answer: Yes, several device drivers can do it in their
1671                  *         f_op->mmap method. -DaveM
1672                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1673                  *      be updated for vma_link()
1674                  */
1675                 WARN_ON_ONCE(addr != vma->vm_start);
1676
1677                 addr = vma->vm_start;
1678                 vm_flags = vma->vm_flags;
1679         } else if (vm_flags & VM_SHARED) {
1680                 error = shmem_zero_setup(vma);
1681                 if (error)
1682                         goto free_vma;
1683         }
1684
1685         vma_link(mm, vma, prev, rb_link, rb_parent);
1686         /* Once vma denies write, undo our temporary denial count */
1687         if (file) {
1688                 if (vm_flags & VM_SHARED)
1689                         mapping_unmap_writable(file->f_mapping);
1690                 if (vm_flags & VM_DENYWRITE)
1691                         allow_write_access(file);
1692         }
1693         file = vma->vm_file;
1694 out:
1695         perf_event_mmap(vma);
1696
1697         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1698         if (vm_flags & VM_LOCKED) {
1699                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1700                                         vma == get_gate_vma(current->mm)))
1701                         mm->locked_vm += (len >> PAGE_SHIFT);
1702                 else
1703                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1704         }
1705
1706         if (file)
1707                 uprobe_mmap(vma);
1708
1709         /*
1710          * New (or expanded) vma always get soft dirty status.
1711          * Otherwise user-space soft-dirty page tracker won't
1712          * be able to distinguish situation when vma area unmapped,
1713          * then new mapped in-place (which must be aimed as
1714          * a completely new data area).
1715          */
1716         vma->vm_flags |= VM_SOFTDIRTY;
1717
1718         vma_set_page_prot(vma);
1719
1720         return addr;
1721
1722 unmap_and_free_vma:
1723         vma->vm_file = NULL;
1724         fput(file);
1725
1726         /* Undo any partial mapping done by a device driver. */
1727         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1728         charged = 0;
1729         if (vm_flags & VM_SHARED)
1730                 mapping_unmap_writable(file->f_mapping);
1731 allow_write_and_free_vma:
1732         if (vm_flags & VM_DENYWRITE)
1733                 allow_write_access(file);
1734 free_vma:
1735         kmem_cache_free(vm_area_cachep, vma);
1736 unacct_error:
1737         if (charged)
1738                 vm_unacct_memory(charged);
1739         return error;
1740 }
1741
1742 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1743 {
1744         /*
1745          * We implement the search by looking for an rbtree node that
1746          * immediately follows a suitable gap. That is,
1747          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1748          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1749          * - gap_end - gap_start >= length
1750          */
1751
1752         struct mm_struct *mm = current->mm;
1753         struct vm_area_struct *vma;
1754         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1755
1756         /* Adjust search length to account for worst case alignment overhead */
1757         length = info->length + info->align_mask;
1758         if (length < info->length)
1759                 return -ENOMEM;
1760
1761         /* Adjust search limits by the desired length */
1762         if (info->high_limit < length)
1763                 return -ENOMEM;
1764         high_limit = info->high_limit - length;
1765
1766         if (info->low_limit > high_limit)
1767                 return -ENOMEM;
1768         low_limit = info->low_limit + length;
1769
1770         /* Check if rbtree root looks promising */
1771         if (RB_EMPTY_ROOT(&mm->mm_rb))
1772                 goto check_highest;
1773         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1774         if (vma->rb_subtree_gap < length)
1775                 goto check_highest;
1776
1777         while (true) {
1778                 /* Visit left subtree if it looks promising */
1779                 gap_end = vm_start_gap(vma);
1780                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1781                         struct vm_area_struct *left =
1782                                 rb_entry(vma->vm_rb.rb_left,
1783                                          struct vm_area_struct, vm_rb);
1784                         if (left->rb_subtree_gap >= length) {
1785                                 vma = left;
1786                                 continue;
1787                         }
1788                 }
1789
1790                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1791 check_current:
1792                 /* Check if current node has a suitable gap */
1793                 if (gap_start > high_limit)
1794                         return -ENOMEM;
1795                 if (gap_end >= low_limit &&
1796                     gap_end > gap_start && gap_end - gap_start >= length)
1797                         goto found;
1798
1799                 /* Visit right subtree if it looks promising */
1800                 if (vma->vm_rb.rb_right) {
1801                         struct vm_area_struct *right =
1802                                 rb_entry(vma->vm_rb.rb_right,
1803                                          struct vm_area_struct, vm_rb);
1804                         if (right->rb_subtree_gap >= length) {
1805                                 vma = right;
1806                                 continue;
1807                         }
1808                 }
1809
1810                 /* Go back up the rbtree to find next candidate node */
1811                 while (true) {
1812                         struct rb_node *prev = &vma->vm_rb;
1813                         if (!rb_parent(prev))
1814                                 goto check_highest;
1815                         vma = rb_entry(rb_parent(prev),
1816                                        struct vm_area_struct, vm_rb);
1817                         if (prev == vma->vm_rb.rb_left) {
1818                                 gap_start = vm_end_gap(vma->vm_prev);
1819                                 gap_end = vm_start_gap(vma);
1820                                 goto check_current;
1821                         }
1822                 }
1823         }
1824
1825 check_highest:
1826         /* Check highest gap, which does not precede any rbtree node */
1827         gap_start = mm->highest_vm_end;
1828         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1829         if (gap_start > high_limit)
1830                 return -ENOMEM;
1831
1832 found:
1833         /* We found a suitable gap. Clip it with the original low_limit. */
1834         if (gap_start < info->low_limit)
1835                 gap_start = info->low_limit;
1836
1837         /* Adjust gap address to the desired alignment */
1838         gap_start += (info->align_offset - gap_start) & info->align_mask;
1839
1840         VM_BUG_ON(gap_start + info->length > info->high_limit);
1841         VM_BUG_ON(gap_start + info->length > gap_end);
1842         return gap_start;
1843 }
1844
1845 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1846 {
1847         struct mm_struct *mm = current->mm;
1848         struct vm_area_struct *vma;
1849         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1850
1851         /* Adjust search length to account for worst case alignment overhead */
1852         length = info->length + info->align_mask;
1853         if (length < info->length)
1854                 return -ENOMEM;
1855
1856         /*
1857          * Adjust search limits by the desired length.
1858          * See implementation comment at top of unmapped_area().
1859          */
1860         gap_end = info->high_limit;
1861         if (gap_end < length)
1862                 return -ENOMEM;
1863         high_limit = gap_end - length;
1864
1865         if (info->low_limit > high_limit)
1866                 return -ENOMEM;
1867         low_limit = info->low_limit + length;
1868
1869         /* Check highest gap, which does not precede any rbtree node */
1870         gap_start = mm->highest_vm_end;
1871         if (gap_start <= high_limit)
1872                 goto found_highest;
1873
1874         /* Check if rbtree root looks promising */
1875         if (RB_EMPTY_ROOT(&mm->mm_rb))
1876                 return -ENOMEM;
1877         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1878         if (vma->rb_subtree_gap < length)
1879                 return -ENOMEM;
1880
1881         while (true) {
1882                 /* Visit right subtree if it looks promising */
1883                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1884                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1885                         struct vm_area_struct *right =
1886                                 rb_entry(vma->vm_rb.rb_right,
1887                                          struct vm_area_struct, vm_rb);
1888                         if (right->rb_subtree_gap >= length) {
1889                                 vma = right;
1890                                 continue;
1891                         }
1892                 }
1893
1894 check_current:
1895                 /* Check if current node has a suitable gap */
1896                 gap_end = vm_start_gap(vma);
1897                 if (gap_end < low_limit)
1898                         return -ENOMEM;
1899                 if (gap_start <= high_limit &&
1900                     gap_end > gap_start && gap_end - gap_start >= length)
1901                         goto found;
1902
1903                 /* Visit left subtree if it looks promising */
1904                 if (vma->vm_rb.rb_left) {
1905                         struct vm_area_struct *left =
1906                                 rb_entry(vma->vm_rb.rb_left,
1907                                          struct vm_area_struct, vm_rb);
1908                         if (left->rb_subtree_gap >= length) {
1909                                 vma = left;
1910                                 continue;
1911                         }
1912                 }
1913
1914                 /* Go back up the rbtree to find next candidate node */
1915                 while (true) {
1916                         struct rb_node *prev = &vma->vm_rb;
1917                         if (!rb_parent(prev))
1918                                 return -ENOMEM;
1919                         vma = rb_entry(rb_parent(prev),
1920                                        struct vm_area_struct, vm_rb);
1921                         if (prev == vma->vm_rb.rb_right) {
1922                                 gap_start = vma->vm_prev ?
1923                                         vm_end_gap(vma->vm_prev) : 0;
1924                                 goto check_current;
1925                         }
1926                 }
1927         }
1928
1929 found:
1930         /* We found a suitable gap. Clip it with the original high_limit. */
1931         if (gap_end > info->high_limit)
1932                 gap_end = info->high_limit;
1933
1934 found_highest:
1935         /* Compute highest gap address at the desired alignment */
1936         gap_end -= info->length;
1937         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1938
1939         VM_BUG_ON(gap_end < info->low_limit);
1940         VM_BUG_ON(gap_end < gap_start);
1941         return gap_end;
1942 }
1943
1944 /* Get an address range which is currently unmapped.
1945  * For shmat() with addr=0.
1946  *
1947  * Ugly calling convention alert:
1948  * Return value with the low bits set means error value,
1949  * ie
1950  *      if (ret & ~PAGE_MASK)
1951  *              error = ret;
1952  *
1953  * This function "knows" that -ENOMEM has the bits set.
1954  */
1955 #ifndef HAVE_ARCH_UNMAPPED_AREA
1956 unsigned long
1957 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1958                 unsigned long len, unsigned long pgoff, unsigned long flags)
1959 {
1960         struct mm_struct *mm = current->mm;
1961         struct vm_area_struct *vma, *prev;
1962         struct vm_unmapped_area_info info;
1963
1964         if (len > TASK_SIZE - mmap_min_addr)
1965                 return -ENOMEM;
1966
1967         if (flags & MAP_FIXED)
1968                 return addr;
1969
1970         if (addr) {
1971                 addr = PAGE_ALIGN(addr);
1972                 vma = find_vma_prev(mm, addr, &prev);
1973                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1974                     (!vma || addr + len <= vm_start_gap(vma)) &&
1975                     (!prev || addr >= vm_end_gap(prev)))
1976                         return addr;
1977         }
1978
1979         info.flags = 0;
1980         info.length = len;
1981         info.low_limit = mm->mmap_base;
1982         info.high_limit = TASK_SIZE;
1983         info.align_mask = 0;
1984         return vm_unmapped_area(&info);
1985 }
1986 #endif
1987
1988 /*
1989  * This mmap-allocator allocates new areas top-down from below the
1990  * stack's low limit (the base):
1991  */
1992 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1993 unsigned long
1994 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1995                           const unsigned long len, const unsigned long pgoff,
1996                           const unsigned long flags)
1997 {
1998         struct vm_area_struct *vma, *prev;
1999         struct mm_struct *mm = current->mm;
2000         unsigned long addr = addr0;
2001         struct vm_unmapped_area_info info;
2002
2003         /* requested length too big for entire address space */
2004         if (len > TASK_SIZE - mmap_min_addr)
2005                 return -ENOMEM;
2006
2007         if (flags & MAP_FIXED)
2008                 return addr;
2009
2010         /* requesting a specific address */
2011         if (addr) {
2012                 addr = PAGE_ALIGN(addr);
2013                 vma = find_vma_prev(mm, addr, &prev);
2014                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2015                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2016                                 (!prev || addr >= vm_end_gap(prev)))
2017                         return addr;
2018         }
2019
2020         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2021         info.length = len;
2022         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2023         info.high_limit = mm->mmap_base;
2024         info.align_mask = 0;
2025         addr = vm_unmapped_area(&info);
2026
2027         /*
2028          * A failed mmap() very likely causes application failure,
2029          * so fall back to the bottom-up function here. This scenario
2030          * can happen with large stack limits and large mmap()
2031          * allocations.
2032          */
2033         if (offset_in_page(addr)) {
2034                 VM_BUG_ON(addr != -ENOMEM);
2035                 info.flags = 0;
2036                 info.low_limit = TASK_UNMAPPED_BASE;
2037                 info.high_limit = TASK_SIZE;
2038                 addr = vm_unmapped_area(&info);
2039         }
2040
2041         return addr;
2042 }
2043 #endif
2044
2045 unsigned long
2046 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2047                 unsigned long pgoff, unsigned long flags)
2048 {
2049         unsigned long (*get_area)(struct file *, unsigned long,
2050                                   unsigned long, unsigned long, unsigned long);
2051
2052         unsigned long error = arch_mmap_check(addr, len, flags);
2053         if (error)
2054                 return error;
2055
2056         /* Careful about overflows.. */
2057         if (len > TASK_SIZE)
2058                 return -ENOMEM;
2059
2060         get_area = current->mm->get_unmapped_area;
2061         if (file && file->f_op->get_unmapped_area)
2062                 get_area = file->f_op->get_unmapped_area;
2063         addr = get_area(file, addr, len, pgoff, flags);
2064         if (IS_ERR_VALUE(addr))
2065                 return addr;
2066
2067         if (addr > TASK_SIZE - len)
2068                 return -ENOMEM;
2069         if (offset_in_page(addr))
2070                 return -EINVAL;
2071
2072         addr = arch_rebalance_pgtables(addr, len);
2073         error = security_mmap_addr(addr);
2074         return error ? error : addr;
2075 }
2076
2077 EXPORT_SYMBOL(get_unmapped_area);
2078
2079 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2080 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2081 {
2082         struct rb_node *rb_node;
2083         struct vm_area_struct *vma;
2084
2085         /* Check the cache first. */
2086         vma = vmacache_find(mm, addr);
2087         if (likely(vma))
2088                 return vma;
2089
2090         rb_node = mm->mm_rb.rb_node;
2091
2092         while (rb_node) {
2093                 struct vm_area_struct *tmp;
2094
2095                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2096
2097                 if (tmp->vm_end > addr) {
2098                         vma = tmp;
2099                         if (tmp->vm_start <= addr)
2100                                 break;
2101                         rb_node = rb_node->rb_left;
2102                 } else
2103                         rb_node = rb_node->rb_right;
2104         }
2105
2106         if (vma)
2107                 vmacache_update(addr, vma);
2108         return vma;
2109 }
2110
2111 EXPORT_SYMBOL(find_vma);
2112
2113 /*
2114  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2115  */
2116 struct vm_area_struct *
2117 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2118                         struct vm_area_struct **pprev)
2119 {
2120         struct vm_area_struct *vma;
2121
2122         vma = find_vma(mm, addr);
2123         if (vma) {
2124                 *pprev = vma->vm_prev;
2125         } else {
2126                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2127                 *pprev = NULL;
2128                 while (rb_node) {
2129                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2130                         rb_node = rb_node->rb_right;
2131                 }
2132         }
2133         return vma;
2134 }
2135
2136 /*
2137  * Verify that the stack growth is acceptable and
2138  * update accounting. This is shared with both the
2139  * grow-up and grow-down cases.
2140  */
2141 static int acct_stack_growth(struct vm_area_struct *vma,
2142                              unsigned long size, unsigned long grow)
2143 {
2144         struct mm_struct *mm = vma->vm_mm;
2145         struct rlimit *rlim = current->signal->rlim;
2146         unsigned long new_start;
2147
2148         /* address space limit tests */
2149         if (!may_expand_vm(mm, grow))
2150                 return -ENOMEM;
2151
2152         /* Stack limit test */
2153         if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2154                 return -ENOMEM;
2155
2156         /* mlock limit tests */
2157         if (vma->vm_flags & VM_LOCKED) {
2158                 unsigned long locked;
2159                 unsigned long limit;
2160                 locked = mm->locked_vm + grow;
2161                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2162                 limit >>= PAGE_SHIFT;
2163                 if (locked > limit && !capable(CAP_IPC_LOCK))
2164                         return -ENOMEM;
2165         }
2166
2167         /* Check to ensure the stack will not grow into a hugetlb-only region */
2168         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2169                         vma->vm_end - size;
2170         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2171                 return -EFAULT;
2172
2173         /*
2174          * Overcommit..  This must be the final test, as it will
2175          * update security statistics.
2176          */
2177         if (security_vm_enough_memory_mm(mm, grow))
2178                 return -ENOMEM;
2179
2180         return 0;
2181 }
2182
2183 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2184 /*
2185  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2186  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2187  */
2188 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2189 {
2190         struct mm_struct *mm = vma->vm_mm;
2191         struct vm_area_struct *next;
2192         unsigned long gap_addr;
2193         int error = 0;
2194
2195         if (!(vma->vm_flags & VM_GROWSUP))
2196                 return -EFAULT;
2197
2198         /* Guard against exceeding limits of the address space. */
2199         address &= PAGE_MASK;
2200         if (address >= TASK_SIZE)
2201                 return -ENOMEM;
2202         address += PAGE_SIZE;
2203
2204         /* Enforce stack_guard_gap */
2205         gap_addr = address + stack_guard_gap;
2206
2207         /* Guard against overflow */
2208         if (gap_addr < address || gap_addr > TASK_SIZE)
2209                 gap_addr = TASK_SIZE;
2210
2211         next = vma->vm_next;
2212         if (next && next->vm_start < gap_addr) {
2213                 if (!(next->vm_flags & VM_GROWSUP))
2214                         return -ENOMEM;
2215                 /* Check that both stack segments have the same anon_vma? */
2216         }
2217
2218         /* We must make sure the anon_vma is allocated. */
2219         if (unlikely(anon_vma_prepare(vma)))
2220                 return -ENOMEM;
2221
2222         /*
2223          * vma->vm_start/vm_end cannot change under us because the caller
2224          * is required to hold the mmap_sem in read mode.  We need the
2225          * anon_vma lock to serialize against concurrent expand_stacks.
2226          */
2227         anon_vma_lock_write(vma->anon_vma);
2228
2229         /* Somebody else might have raced and expanded it already */
2230         if (address > vma->vm_end) {
2231                 unsigned long size, grow;
2232
2233                 size = address - vma->vm_start;
2234                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2235
2236                 error = -ENOMEM;
2237                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2238                         error = acct_stack_growth(vma, size, grow);
2239                         if (!error) {
2240                                 /*
2241                                  * vma_gap_update() doesn't support concurrent
2242                                  * updates, but we only hold a shared mmap_sem
2243                                  * lock here, so we need to protect against
2244                                  * concurrent vma expansions.
2245                                  * anon_vma_lock_write() doesn't help here, as
2246                                  * we don't guarantee that all growable vmas
2247                                  * in a mm share the same root anon vma.
2248                                  * So, we reuse mm->page_table_lock to guard
2249                                  * against concurrent vma expansions.
2250                                  */
2251                                 spin_lock(&mm->page_table_lock);
2252                                 if (vma->vm_flags & VM_LOCKED)
2253                                         mm->locked_vm += grow;
2254                                 vm_stat_account(mm, vma->vm_flags,
2255                                                 vma->vm_file, grow);
2256                                 anon_vma_interval_tree_pre_update_vma(vma);
2257                                 vma->vm_end = address;
2258                                 anon_vma_interval_tree_post_update_vma(vma);
2259                                 if (vma->vm_next)
2260                                         vma_gap_update(vma->vm_next);
2261                                 else
2262                                         mm->highest_vm_end = vm_end_gap(vma);
2263                                 spin_unlock(&mm->page_table_lock);
2264
2265                                 perf_event_mmap(vma);
2266                         }
2267                 }
2268         }
2269         anon_vma_unlock_write(vma->anon_vma);
2270         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2271         validate_mm(mm);
2272         return error;
2273 }
2274 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2275
2276 /*
2277  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2278  */
2279 int expand_downwards(struct vm_area_struct *vma,
2280                                    unsigned long address)
2281 {
2282         struct mm_struct *mm = vma->vm_mm;
2283         struct vm_area_struct *prev;
2284         unsigned long gap_addr;
2285         int error;
2286
2287         address &= PAGE_MASK;
2288         error = security_mmap_addr(address);
2289         if (error)
2290                 return error;
2291
2292         /* Enforce stack_guard_gap */
2293         gap_addr = address - stack_guard_gap;
2294         if (gap_addr > address)
2295                 return -ENOMEM;
2296         prev = vma->vm_prev;
2297         if (prev && prev->vm_end > gap_addr) {
2298                 if (!(prev->vm_flags & VM_GROWSDOWN))
2299                         return -ENOMEM;
2300                 /* Check that both stack segments have the same anon_vma? */
2301         }
2302
2303         /* We must make sure the anon_vma is allocated. */
2304         if (unlikely(anon_vma_prepare(vma)))
2305                 return -ENOMEM;
2306
2307         /*
2308          * vma->vm_start/vm_end cannot change under us because the caller
2309          * is required to hold the mmap_sem in read mode.  We need the
2310          * anon_vma lock to serialize against concurrent expand_stacks.
2311          */
2312         anon_vma_lock_write(vma->anon_vma);
2313
2314         /* Somebody else might have raced and expanded it already */
2315         if (address < vma->vm_start) {
2316                 unsigned long size, grow;
2317
2318                 size = vma->vm_end - address;
2319                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2320
2321                 error = -ENOMEM;
2322                 if (grow <= vma->vm_pgoff) {
2323                         error = acct_stack_growth(vma, size, grow);
2324                         if (!error) {
2325                                 /*
2326                                  * vma_gap_update() doesn't support concurrent
2327                                  * updates, but we only hold a shared mmap_sem
2328                                  * lock here, so we need to protect against
2329                                  * concurrent vma expansions.
2330                                  * anon_vma_lock_write() doesn't help here, as
2331                                  * we don't guarantee that all growable vmas
2332                                  * in a mm share the same root anon vma.
2333                                  * So, we reuse mm->page_table_lock to guard
2334                                  * against concurrent vma expansions.
2335                                  */
2336                                 spin_lock(&mm->page_table_lock);
2337                                 if (vma->vm_flags & VM_LOCKED)
2338                                         mm->locked_vm += grow;
2339                                 vm_stat_account(mm, vma->vm_flags,
2340                                                 vma->vm_file, grow);
2341                                 anon_vma_interval_tree_pre_update_vma(vma);
2342                                 vma->vm_start = address;
2343                                 vma->vm_pgoff -= grow;
2344                                 anon_vma_interval_tree_post_update_vma(vma);
2345                                 vma_gap_update(vma);
2346                                 spin_unlock(&mm->page_table_lock);
2347
2348                                 perf_event_mmap(vma);
2349                         }
2350                 }
2351         }
2352         anon_vma_unlock_write(vma->anon_vma);
2353         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2354         validate_mm(mm);
2355         return error;
2356 }
2357
2358 /* enforced gap between the expanding stack and other mappings. */
2359 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2360
2361 static int __init cmdline_parse_stack_guard_gap(char *p)
2362 {
2363         unsigned long val;
2364         char *endptr;
2365
2366         val = simple_strtoul(p, &endptr, 10);
2367         if (!*endptr)
2368                 stack_guard_gap = val << PAGE_SHIFT;
2369
2370         return 0;
2371 }
2372 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2373
2374 #ifdef CONFIG_STACK_GROWSUP
2375 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2376 {
2377         return expand_upwards(vma, address);
2378 }
2379
2380 struct vm_area_struct *
2381 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2382 {
2383         struct vm_area_struct *vma, *prev;
2384
2385         addr &= PAGE_MASK;
2386         vma = find_vma_prev(mm, addr, &prev);
2387         if (vma && (vma->vm_start <= addr))
2388                 return vma;
2389         if (!prev || expand_stack(prev, addr))
2390                 return NULL;
2391         if (prev->vm_flags & VM_LOCKED)
2392                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2393         return prev;
2394 }
2395 #else
2396 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2397 {
2398         return expand_downwards(vma, address);
2399 }
2400
2401 struct vm_area_struct *
2402 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2403 {
2404         struct vm_area_struct *vma;
2405         unsigned long start;
2406
2407         addr &= PAGE_MASK;
2408         vma = find_vma(mm, addr);
2409         if (!vma)
2410                 return NULL;
2411         if (vma->vm_start <= addr)
2412                 return vma;
2413         if (!(vma->vm_flags & VM_GROWSDOWN))
2414                 return NULL;
2415         start = vma->vm_start;
2416         if (expand_stack(vma, addr))
2417                 return NULL;
2418         if (vma->vm_flags & VM_LOCKED)
2419                 populate_vma_page_range(vma, addr, start, NULL);
2420         return vma;
2421 }
2422 #endif
2423
2424 EXPORT_SYMBOL_GPL(find_extend_vma);
2425
2426 /*
2427  * Ok - we have the memory areas we should free on the vma list,
2428  * so release them, and do the vma updates.
2429  *
2430  * Called with the mm semaphore held.
2431  */
2432 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2433 {
2434         unsigned long nr_accounted = 0;
2435
2436         /* Update high watermark before we lower total_vm */
2437         update_hiwater_vm(mm);
2438         do {
2439                 long nrpages = vma_pages(vma);
2440
2441                 if (vma->vm_flags & VM_ACCOUNT)
2442                         nr_accounted += nrpages;
2443                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2444                 vma = remove_vma(vma);
2445         } while (vma);
2446         vm_unacct_memory(nr_accounted);
2447         validate_mm(mm);
2448 }
2449
2450 /*
2451  * Get rid of page table information in the indicated region.
2452  *
2453  * Called with the mm semaphore held.
2454  */
2455 static void unmap_region(struct mm_struct *mm,
2456                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2457                 unsigned long start, unsigned long end)
2458 {
2459         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2460         struct mmu_gather tlb;
2461
2462         lru_add_drain();
2463         tlb_gather_mmu(&tlb, mm, start, end);
2464         update_hiwater_rss(mm);
2465         unmap_vmas(&tlb, vma, start, end);
2466         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2467                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2468         tlb_finish_mmu(&tlb, start, end);
2469 }
2470
2471 /*
2472  * Create a list of vma's touched by the unmap, removing them from the mm's
2473  * vma list as we go..
2474  */
2475 static void
2476 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2477         struct vm_area_struct *prev, unsigned long end)
2478 {
2479         struct vm_area_struct **insertion_point;
2480         struct vm_area_struct *tail_vma = NULL;
2481
2482         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2483         vma->vm_prev = NULL;
2484         do {
2485                 vma_rb_erase(vma, &mm->mm_rb);
2486                 mm->map_count--;
2487                 tail_vma = vma;
2488                 vma = vma->vm_next;
2489         } while (vma && vma->vm_start < end);
2490         *insertion_point = vma;
2491         if (vma) {
2492                 vma->vm_prev = prev;
2493                 vma_gap_update(vma);
2494         } else
2495                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2496         tail_vma->vm_next = NULL;
2497
2498         /* Kill the cache */
2499         vmacache_invalidate(mm);
2500 }
2501
2502 /*
2503  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2504  * munmap path where it doesn't make sense to fail.
2505  */
2506 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2507               unsigned long addr, int new_below)
2508 {
2509         struct vm_area_struct *new;
2510         int err;
2511
2512         if (is_vm_hugetlb_page(vma) && (addr &
2513                                         ~(huge_page_mask(hstate_vma(vma)))))
2514                 return -EINVAL;
2515
2516         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2517         if (!new)
2518                 return -ENOMEM;
2519
2520         /* most fields are the same, copy all, and then fixup */
2521         *new = *vma;
2522
2523         INIT_LIST_HEAD(&new->anon_vma_chain);
2524
2525         if (new_below)
2526                 new->vm_end = addr;
2527         else {
2528                 new->vm_start = addr;
2529                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2530         }
2531
2532         err = vma_dup_policy(vma, new);
2533         if (err)
2534                 goto out_free_vma;
2535
2536         err = anon_vma_clone(new, vma);
2537         if (err)
2538                 goto out_free_mpol;
2539
2540         if (new->vm_file)
2541                 get_file(new->vm_file);
2542
2543         if (new->vm_ops && new->vm_ops->open)
2544                 new->vm_ops->open(new);
2545
2546         if (new_below)
2547                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2548                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2549         else
2550                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2551
2552         /* Success. */
2553         if (!err)
2554                 return 0;
2555
2556         /* Clean everything up if vma_adjust failed. */
2557         if (new->vm_ops && new->vm_ops->close)
2558                 new->vm_ops->close(new);
2559         if (new->vm_file)
2560                 fput(new->vm_file);
2561         unlink_anon_vmas(new);
2562  out_free_mpol:
2563         mpol_put(vma_policy(new));
2564  out_free_vma:
2565         kmem_cache_free(vm_area_cachep, new);
2566         return err;
2567 }
2568
2569 /*
2570  * Split a vma into two pieces at address 'addr', a new vma is allocated
2571  * either for the first part or the tail.
2572  */
2573 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2574               unsigned long addr, int new_below)
2575 {
2576         if (mm->map_count >= sysctl_max_map_count)
2577                 return -ENOMEM;
2578
2579         return __split_vma(mm, vma, addr, new_below);
2580 }
2581
2582 /* Munmap is split into 2 main parts -- this part which finds
2583  * what needs doing, and the areas themselves, which do the
2584  * work.  This now handles partial unmappings.
2585  * Jeremy Fitzhardinge <jeremy@goop.org>
2586  */
2587 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2588 {
2589         unsigned long end;
2590         struct vm_area_struct *vma, *prev, *last;
2591
2592         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2593                 return -EINVAL;
2594
2595         len = PAGE_ALIGN(len);
2596         if (len == 0)
2597                 return -EINVAL;
2598
2599         /* Find the first overlapping VMA */
2600         vma = find_vma(mm, start);
2601         if (!vma)
2602                 return 0;
2603         prev = vma->vm_prev;
2604         /* we have  start < vma->vm_end  */
2605
2606         /* if it doesn't overlap, we have nothing.. */
2607         end = start + len;
2608         if (vma->vm_start >= end)
2609                 return 0;
2610
2611         /*
2612          * If we need to split any vma, do it now to save pain later.
2613          *
2614          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2615          * unmapped vm_area_struct will remain in use: so lower split_vma
2616          * places tmp vma above, and higher split_vma places tmp vma below.
2617          */
2618         if (start > vma->vm_start) {
2619                 int error;
2620
2621                 /*
2622                  * Make sure that map_count on return from munmap() will
2623                  * not exceed its limit; but let map_count go just above
2624                  * its limit temporarily, to help free resources as expected.
2625                  */
2626                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2627                         return -ENOMEM;
2628
2629                 error = __split_vma(mm, vma, start, 0);
2630                 if (error)
2631                         return error;
2632                 prev = vma;
2633         }
2634
2635         /* Does it split the last one? */
2636         last = find_vma(mm, end);
2637         if (last && end > last->vm_start) {
2638                 int error = __split_vma(mm, last, end, 1);
2639                 if (error)
2640                         return error;
2641         }
2642         vma = prev ? prev->vm_next : mm->mmap;
2643
2644         /*
2645          * unlock any mlock()ed ranges before detaching vmas
2646          */
2647         if (mm->locked_vm) {
2648                 struct vm_area_struct *tmp = vma;
2649                 while (tmp && tmp->vm_start < end) {
2650                         if (tmp->vm_flags & VM_LOCKED) {
2651                                 mm->locked_vm -= vma_pages(tmp);
2652                                 munlock_vma_pages_all(tmp);
2653                         }
2654                         tmp = tmp->vm_next;
2655                 }
2656         }
2657
2658         /*
2659          * Remove the vma's, and unmap the actual pages
2660          */
2661         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2662         unmap_region(mm, vma, prev, start, end);
2663
2664         arch_unmap(mm, vma, start, end);
2665
2666         /* Fix up all other VM information */
2667         remove_vma_list(mm, vma);
2668
2669         return 0;
2670 }
2671 EXPORT_SYMBOL(do_munmap);
2672
2673 int vm_munmap(unsigned long start, size_t len)
2674 {
2675         int ret;
2676         struct mm_struct *mm = current->mm;
2677
2678         down_write(&mm->mmap_sem);
2679         ret = do_munmap(mm, start, len);
2680         up_write(&mm->mmap_sem);
2681         return ret;
2682 }
2683 EXPORT_SYMBOL(vm_munmap);
2684
2685 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2686 {
2687         profile_munmap(addr);
2688         return vm_munmap(addr, len);
2689 }
2690
2691
2692 /*
2693  * Emulation of deprecated remap_file_pages() syscall.
2694  */
2695 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2696                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2697 {
2698
2699         struct mm_struct *mm = current->mm;
2700         struct vm_area_struct *vma;
2701         unsigned long populate = 0;
2702         unsigned long ret = -EINVAL;
2703         struct file *file;
2704
2705         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2706                         "See Documentation/vm/remap_file_pages.txt.\n",
2707                         current->comm, current->pid);
2708
2709         if (prot)
2710                 return ret;
2711         start = start & PAGE_MASK;
2712         size = size & PAGE_MASK;
2713
2714         if (start + size <= start)
2715                 return ret;
2716
2717         /* Does pgoff wrap? */
2718         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2719                 return ret;
2720
2721         down_write(&mm->mmap_sem);
2722         vma = find_vma(mm, start);
2723
2724         if (!vma || !(vma->vm_flags & VM_SHARED))
2725                 goto out;
2726
2727         if (start < vma->vm_start)
2728                 goto out;
2729
2730         if (start + size > vma->vm_end) {
2731                 struct vm_area_struct *next;
2732
2733                 for (next = vma->vm_next; next; next = next->vm_next) {
2734                         /* hole between vmas ? */
2735                         if (next->vm_start != next->vm_prev->vm_end)
2736                                 goto out;
2737
2738                         if (next->vm_file != vma->vm_file)
2739                                 goto out;
2740
2741                         if (next->vm_flags != vma->vm_flags)
2742                                 goto out;
2743
2744                         if (start + size <= next->vm_end)
2745                                 break;
2746                 }
2747
2748                 if (!next)
2749                         goto out;
2750         }
2751
2752         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2753         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2754         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2755
2756         flags &= MAP_NONBLOCK;
2757         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2758         if (vma->vm_flags & VM_LOCKED) {
2759                 struct vm_area_struct *tmp;
2760                 flags |= MAP_LOCKED;
2761
2762                 /* drop PG_Mlocked flag for over-mapped range */
2763                 for (tmp = vma; tmp->vm_start >= start + size;
2764                                 tmp = tmp->vm_next) {
2765                         munlock_vma_pages_range(tmp,
2766                                         max(tmp->vm_start, start),
2767                                         min(tmp->vm_end, start + size));
2768                 }
2769         }
2770
2771         file = get_file(vma->vm_file);
2772         ret = do_mmap_pgoff(vma->vm_file, start, size,
2773                         prot, flags, pgoff, &populate);
2774         fput(file);
2775 out:
2776         up_write(&mm->mmap_sem);
2777         if (populate)
2778                 mm_populate(ret, populate);
2779         if (!IS_ERR_VALUE(ret))
2780                 ret = 0;
2781         return ret;
2782 }
2783
2784 static inline void verify_mm_writelocked(struct mm_struct *mm)
2785 {
2786 #ifdef CONFIG_DEBUG_VM
2787         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2788                 WARN_ON(1);
2789                 up_read(&mm->mmap_sem);
2790         }
2791 #endif
2792 }
2793
2794 /*
2795  *  this is really a simplified "do_mmap".  it only handles
2796  *  anonymous maps.  eventually we may be able to do some
2797  *  brk-specific accounting here.
2798  */
2799 static unsigned long do_brk(unsigned long addr, unsigned long len)
2800 {
2801         struct mm_struct *mm = current->mm;
2802         struct vm_area_struct *vma, *prev;
2803         unsigned long flags;
2804         struct rb_node **rb_link, *rb_parent;
2805         pgoff_t pgoff = addr >> PAGE_SHIFT;
2806         int error;
2807
2808         len = PAGE_ALIGN(len);
2809         if (!len)
2810                 return addr;
2811
2812         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2813
2814         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2815         if (offset_in_page(error))
2816                 return error;
2817
2818         error = mlock_future_check(mm, mm->def_flags, len);
2819         if (error)
2820                 return error;
2821
2822         /*
2823          * mm->mmap_sem is required to protect against another thread
2824          * changing the mappings in case we sleep.
2825          */
2826         verify_mm_writelocked(mm);
2827
2828         /*
2829          * Clear old maps.  this also does some error checking for us
2830          */
2831         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2832                               &rb_parent)) {
2833                 if (do_munmap(mm, addr, len))
2834                         return -ENOMEM;
2835         }
2836
2837         /* Check against address space limits *after* clearing old maps... */
2838         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2839                 return -ENOMEM;
2840
2841         if (mm->map_count > sysctl_max_map_count)
2842                 return -ENOMEM;
2843
2844         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2845                 return -ENOMEM;
2846
2847         /* Can we just expand an old private anonymous mapping? */
2848         vma = vma_merge(mm, prev, addr, addr + len, flags,
2849                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2850         if (vma)
2851                 goto out;
2852
2853         /*
2854          * create a vma struct for an anonymous mapping
2855          */
2856         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2857         if (!vma) {
2858                 vm_unacct_memory(len >> PAGE_SHIFT);
2859                 return -ENOMEM;
2860         }
2861
2862         INIT_LIST_HEAD(&vma->anon_vma_chain);
2863         vma->vm_mm = mm;
2864         vma->vm_start = addr;
2865         vma->vm_end = addr + len;
2866         vma->vm_pgoff = pgoff;
2867         vma->vm_flags = flags;
2868         vma->vm_page_prot = vm_get_page_prot(flags);
2869         vma_link(mm, vma, prev, rb_link, rb_parent);
2870 out:
2871         perf_event_mmap(vma);
2872         mm->total_vm += len >> PAGE_SHIFT;
2873         if (flags & VM_LOCKED)
2874                 mm->locked_vm += (len >> PAGE_SHIFT);
2875         vma->vm_flags |= VM_SOFTDIRTY;
2876         return addr;
2877 }
2878
2879 unsigned long vm_brk(unsigned long addr, unsigned long len)
2880 {
2881         struct mm_struct *mm = current->mm;
2882         unsigned long ret;
2883         bool populate;
2884
2885         down_write(&mm->mmap_sem);
2886         ret = do_brk(addr, len);
2887         populate = ((mm->def_flags & VM_LOCKED) != 0);
2888         up_write(&mm->mmap_sem);
2889         if (populate)
2890                 mm_populate(addr, len);
2891         return ret;
2892 }
2893 EXPORT_SYMBOL(vm_brk);
2894
2895 /* Release all mmaps. */
2896 void exit_mmap(struct mm_struct *mm)
2897 {
2898         struct mmu_gather tlb;
2899         struct vm_area_struct *vma;
2900         unsigned long nr_accounted = 0;
2901
2902         /* mm's last user has gone, and its about to be pulled down */
2903         mmu_notifier_release(mm);
2904
2905         if (mm->locked_vm) {
2906                 vma = mm->mmap;
2907                 while (vma) {
2908                         if (vma->vm_flags & VM_LOCKED)
2909                                 munlock_vma_pages_all(vma);
2910                         vma = vma->vm_next;
2911                 }
2912         }
2913
2914         arch_exit_mmap(mm);
2915
2916         vma = mm->mmap;
2917         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2918                 return;
2919
2920         lru_add_drain();
2921         flush_cache_mm(mm);
2922         tlb_gather_mmu(&tlb, mm, 0, -1);
2923         /* update_hiwater_rss(mm) here? but nobody should be looking */
2924         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2925         unmap_vmas(&tlb, vma, 0, -1);
2926
2927         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2928         tlb_finish_mmu(&tlb, 0, -1);
2929
2930         /*
2931          * Walk the list again, actually closing and freeing it,
2932          * with preemption enabled, without holding any MM locks.
2933          */
2934         while (vma) {
2935                 if (vma->vm_flags & VM_ACCOUNT)
2936                         nr_accounted += vma_pages(vma);
2937                 vma = remove_vma(vma);
2938         }
2939         vm_unacct_memory(nr_accounted);
2940 }
2941
2942 /* Insert vm structure into process list sorted by address
2943  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2944  * then i_mmap_rwsem is taken here.
2945  */
2946 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2947 {
2948         struct vm_area_struct *prev;
2949         struct rb_node **rb_link, *rb_parent;
2950
2951         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2952                            &prev, &rb_link, &rb_parent))
2953                 return -ENOMEM;
2954         if ((vma->vm_flags & VM_ACCOUNT) &&
2955              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2956                 return -ENOMEM;
2957
2958         /*
2959          * The vm_pgoff of a purely anonymous vma should be irrelevant
2960          * until its first write fault, when page's anon_vma and index
2961          * are set.  But now set the vm_pgoff it will almost certainly
2962          * end up with (unless mremap moves it elsewhere before that
2963          * first wfault), so /proc/pid/maps tells a consistent story.
2964          *
2965          * By setting it to reflect the virtual start address of the
2966          * vma, merges and splits can happen in a seamless way, just
2967          * using the existing file pgoff checks and manipulations.
2968          * Similarly in do_mmap_pgoff and in do_brk.
2969          */
2970         if (vma_is_anonymous(vma)) {
2971                 BUG_ON(vma->anon_vma);
2972                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2973         }
2974
2975         vma_link(mm, vma, prev, rb_link, rb_parent);
2976         return 0;
2977 }
2978
2979 /*
2980  * Copy the vma structure to a new location in the same mm,
2981  * prior to moving page table entries, to effect an mremap move.
2982  */
2983 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2984         unsigned long addr, unsigned long len, pgoff_t pgoff,
2985         bool *need_rmap_locks)
2986 {
2987         struct vm_area_struct *vma = *vmap;
2988         unsigned long vma_start = vma->vm_start;
2989         struct mm_struct *mm = vma->vm_mm;
2990         struct vm_area_struct *new_vma, *prev;
2991         struct rb_node **rb_link, *rb_parent;
2992         bool faulted_in_anon_vma = true;
2993
2994         /*
2995          * If anonymous vma has not yet been faulted, update new pgoff
2996          * to match new location, to increase its chance of merging.
2997          */
2998         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2999                 pgoff = addr >> PAGE_SHIFT;
3000                 faulted_in_anon_vma = false;
3001         }
3002
3003         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3004                 return NULL;    /* should never get here */
3005         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3006                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3007                             vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
3008         if (new_vma) {
3009                 /*
3010                  * Source vma may have been merged into new_vma
3011                  */
3012                 if (unlikely(vma_start >= new_vma->vm_start &&
3013                              vma_start < new_vma->vm_end)) {
3014                         /*
3015                          * The only way we can get a vma_merge with
3016                          * self during an mremap is if the vma hasn't
3017                          * been faulted in yet and we were allowed to
3018                          * reset the dst vma->vm_pgoff to the
3019                          * destination address of the mremap to allow
3020                          * the merge to happen. mremap must change the
3021                          * vm_pgoff linearity between src and dst vmas
3022                          * (in turn preventing a vma_merge) to be
3023                          * safe. It is only safe to keep the vm_pgoff
3024                          * linear if there are no pages mapped yet.
3025                          */
3026                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3027                         *vmap = vma = new_vma;
3028                 }
3029                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3030         } else {
3031                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3032                 if (!new_vma)
3033                         goto out;
3034                 *new_vma = *vma;
3035                 new_vma->vm_start = addr;
3036                 new_vma->vm_end = addr + len;
3037                 new_vma->vm_pgoff = pgoff;
3038                 if (vma_dup_policy(vma, new_vma))
3039                         goto out_free_vma;
3040                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3041                 if (anon_vma_clone(new_vma, vma))
3042                         goto out_free_mempol;
3043                 if (new_vma->vm_file)
3044                         get_file(new_vma->vm_file);
3045                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3046                         new_vma->vm_ops->open(new_vma);
3047                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3048                 *need_rmap_locks = false;
3049         }
3050         return new_vma;
3051
3052 out_free_mempol:
3053         mpol_put(vma_policy(new_vma));
3054 out_free_vma:
3055         kmem_cache_free(vm_area_cachep, new_vma);
3056 out:
3057         return NULL;
3058 }
3059
3060 /*
3061  * Return true if the calling process may expand its vm space by the passed
3062  * number of pages
3063  */
3064 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3065 {
3066         unsigned long cur = mm->total_vm;       /* pages */
3067         unsigned long lim;
3068
3069         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3070
3071         if (cur + npages > lim)
3072                 return 0;
3073         return 1;
3074 }
3075
3076 static int special_mapping_fault(struct vm_area_struct *vma,
3077                                  struct vm_fault *vmf);
3078
3079 /*
3080  * Having a close hook prevents vma merging regardless of flags.
3081  */
3082 static void special_mapping_close(struct vm_area_struct *vma)
3083 {
3084 }
3085
3086 static const char *special_mapping_name(struct vm_area_struct *vma)
3087 {
3088         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3089 }
3090
3091 static const struct vm_operations_struct special_mapping_vmops = {
3092         .close = special_mapping_close,
3093         .fault = special_mapping_fault,
3094         .name = special_mapping_name,
3095 };
3096
3097 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3098         .close = special_mapping_close,
3099         .fault = special_mapping_fault,
3100 };
3101
3102 static int special_mapping_fault(struct vm_area_struct *vma,
3103                                 struct vm_fault *vmf)
3104 {
3105         pgoff_t pgoff;
3106         struct page **pages;
3107
3108         if (vma->vm_ops == &legacy_special_mapping_vmops)
3109                 pages = vma->vm_private_data;
3110         else
3111                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3112                         pages;
3113
3114         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3115                 pgoff--;
3116
3117         if (*pages) {
3118                 struct page *page = *pages;
3119                 get_page(page);
3120                 vmf->page = page;
3121                 return 0;
3122         }
3123
3124         return VM_FAULT_SIGBUS;
3125 }
3126
3127 static struct vm_area_struct *__install_special_mapping(
3128         struct mm_struct *mm,
3129         unsigned long addr, unsigned long len,
3130         unsigned long vm_flags, void *priv,
3131         const struct vm_operations_struct *ops)
3132 {
3133         int ret;
3134         struct vm_area_struct *vma;
3135
3136         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3137         if (unlikely(vma == NULL))
3138                 return ERR_PTR(-ENOMEM);
3139
3140         INIT_LIST_HEAD(&vma->anon_vma_chain);
3141         vma->vm_mm = mm;
3142         vma->vm_start = addr;
3143         vma->vm_end = addr + len;
3144
3145         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3146         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3147
3148         vma->vm_ops = ops;
3149         vma->vm_private_data = priv;
3150
3151         ret = insert_vm_struct(mm, vma);
3152         if (ret)
3153                 goto out;
3154
3155         mm->total_vm += len >> PAGE_SHIFT;
3156
3157         perf_event_mmap(vma);
3158
3159         return vma;
3160
3161 out:
3162         kmem_cache_free(vm_area_cachep, vma);
3163         return ERR_PTR(ret);
3164 }
3165
3166 /*
3167  * Called with mm->mmap_sem held for writing.
3168  * Insert a new vma covering the given region, with the given flags.
3169  * Its pages are supplied by the given array of struct page *.
3170  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3171  * The region past the last page supplied will always produce SIGBUS.
3172  * The array pointer and the pages it points to are assumed to stay alive
3173  * for as long as this mapping might exist.
3174  */
3175 struct vm_area_struct *_install_special_mapping(
3176         struct mm_struct *mm,
3177         unsigned long addr, unsigned long len,
3178         unsigned long vm_flags, const struct vm_special_mapping *spec)
3179 {
3180         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3181                                         &special_mapping_vmops);
3182 }
3183
3184 int install_special_mapping(struct mm_struct *mm,
3185                             unsigned long addr, unsigned long len,
3186                             unsigned long vm_flags, struct page **pages)
3187 {
3188         struct vm_area_struct *vma = __install_special_mapping(
3189                 mm, addr, len, vm_flags, (void *)pages,
3190                 &legacy_special_mapping_vmops);
3191
3192         return PTR_ERR_OR_ZERO(vma);
3193 }
3194
3195 static DEFINE_MUTEX(mm_all_locks_mutex);
3196
3197 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3198 {
3199         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3200                 /*
3201                  * The LSB of head.next can't change from under us
3202                  * because we hold the mm_all_locks_mutex.
3203                  */
3204                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3205                 /*
3206                  * We can safely modify head.next after taking the
3207                  * anon_vma->root->rwsem. If some other vma in this mm shares
3208                  * the same anon_vma we won't take it again.
3209                  *
3210                  * No need of atomic instructions here, head.next
3211                  * can't change from under us thanks to the
3212                  * anon_vma->root->rwsem.
3213                  */
3214                 if (__test_and_set_bit(0, (unsigned long *)
3215                                        &anon_vma->root->rb_root.rb_node))
3216                         BUG();
3217         }
3218 }
3219
3220 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3221 {
3222         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3223                 /*
3224                  * AS_MM_ALL_LOCKS can't change from under us because
3225                  * we hold the mm_all_locks_mutex.
3226                  *
3227                  * Operations on ->flags have to be atomic because
3228                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3229                  * mm_all_locks_mutex, there may be other cpus
3230                  * changing other bitflags in parallel to us.
3231                  */
3232                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3233                         BUG();
3234                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3235         }
3236 }
3237
3238 /*
3239  * This operation locks against the VM for all pte/vma/mm related
3240  * operations that could ever happen on a certain mm. This includes
3241  * vmtruncate, try_to_unmap, and all page faults.
3242  *
3243  * The caller must take the mmap_sem in write mode before calling
3244  * mm_take_all_locks(). The caller isn't allowed to release the
3245  * mmap_sem until mm_drop_all_locks() returns.
3246  *
3247  * mmap_sem in write mode is required in order to block all operations
3248  * that could modify pagetables and free pages without need of
3249  * altering the vma layout. It's also needed in write mode to avoid new
3250  * anon_vmas to be associated with existing vmas.
3251  *
3252  * A single task can't take more than one mm_take_all_locks() in a row
3253  * or it would deadlock.
3254  *
3255  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3256  * mapping->flags avoid to take the same lock twice, if more than one
3257  * vma in this mm is backed by the same anon_vma or address_space.
3258  *
3259  * We can take all the locks in random order because the VM code
3260  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3261  * takes more than one of them in a row. Secondly we're protected
3262  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3263  *
3264  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3265  * that may have to take thousand of locks.
3266  *
3267  * mm_take_all_locks() can fail if it's interrupted by signals.
3268  */
3269 int mm_take_all_locks(struct mm_struct *mm)
3270 {
3271         struct vm_area_struct *vma;
3272         struct anon_vma_chain *avc;
3273
3274         BUG_ON(down_read_trylock(&mm->mmap_sem));
3275
3276         mutex_lock(&mm_all_locks_mutex);
3277
3278         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3279                 if (signal_pending(current))
3280                         goto out_unlock;
3281                 if (vma->vm_file && vma->vm_file->f_mapping)
3282                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3283         }
3284
3285         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3286                 if (signal_pending(current))
3287                         goto out_unlock;
3288                 if (vma->anon_vma)
3289                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3290                                 vm_lock_anon_vma(mm, avc->anon_vma);
3291         }
3292
3293         return 0;
3294
3295 out_unlock:
3296         mm_drop_all_locks(mm);
3297         return -EINTR;
3298 }
3299
3300 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3301 {
3302         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3303                 /*
3304                  * The LSB of head.next can't change to 0 from under
3305                  * us because we hold the mm_all_locks_mutex.
3306                  *
3307                  * We must however clear the bitflag before unlocking
3308                  * the vma so the users using the anon_vma->rb_root will
3309                  * never see our bitflag.
3310                  *
3311                  * No need of atomic instructions here, head.next
3312                  * can't change from under us until we release the
3313                  * anon_vma->root->rwsem.
3314                  */
3315                 if (!__test_and_clear_bit(0, (unsigned long *)
3316                                           &anon_vma->root->rb_root.rb_node))
3317                         BUG();
3318                 anon_vma_unlock_write(anon_vma);
3319         }
3320 }
3321
3322 static void vm_unlock_mapping(struct address_space *mapping)
3323 {
3324         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3325                 /*
3326                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3327                  * because we hold the mm_all_locks_mutex.
3328                  */
3329                 i_mmap_unlock_write(mapping);
3330                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3331                                         &mapping->flags))
3332                         BUG();
3333         }
3334 }
3335
3336 /*
3337  * The mmap_sem cannot be released by the caller until
3338  * mm_drop_all_locks() returns.
3339  */
3340 void mm_drop_all_locks(struct mm_struct *mm)
3341 {
3342         struct vm_area_struct *vma;
3343         struct anon_vma_chain *avc;
3344
3345         BUG_ON(down_read_trylock(&mm->mmap_sem));
3346         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3347
3348         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3349                 if (vma->anon_vma)
3350                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3351                                 vm_unlock_anon_vma(avc->anon_vma);
3352                 if (vma->vm_file && vma->vm_file->f_mapping)
3353                         vm_unlock_mapping(vma->vm_file->f_mapping);
3354         }
3355
3356         mutex_unlock(&mm_all_locks_mutex);
3357 }
3358
3359 /*
3360  * initialise the VMA slab
3361  */
3362 void __init mmap_init(void)
3363 {
3364         int ret;
3365
3366         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3367         VM_BUG_ON(ret);
3368 }
3369
3370 /*
3371  * Initialise sysctl_user_reserve_kbytes.
3372  *
3373  * This is intended to prevent a user from starting a single memory hogging
3374  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3375  * mode.
3376  *
3377  * The default value is min(3% of free memory, 128MB)
3378  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3379  */
3380 static int init_user_reserve(void)
3381 {
3382         unsigned long free_kbytes;
3383
3384         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3385
3386         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3387         return 0;
3388 }
3389 subsys_initcall(init_user_reserve);
3390
3391 /*
3392  * Initialise sysctl_admin_reserve_kbytes.
3393  *
3394  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3395  * to log in and kill a memory hogging process.
3396  *
3397  * Systems with more than 256MB will reserve 8MB, enough to recover
3398  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3399  * only reserve 3% of free pages by default.
3400  */
3401 static int init_admin_reserve(void)
3402 {
3403         unsigned long free_kbytes;
3404
3405         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3406
3407         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3408         return 0;
3409 }
3410 subsys_initcall(init_admin_reserve);
3411
3412 /*
3413  * Reinititalise user and admin reserves if memory is added or removed.
3414  *
3415  * The default user reserve max is 128MB, and the default max for the
3416  * admin reserve is 8MB. These are usually, but not always, enough to
3417  * enable recovery from a memory hogging process using login/sshd, a shell,
3418  * and tools like top. It may make sense to increase or even disable the
3419  * reserve depending on the existence of swap or variations in the recovery
3420  * tools. So, the admin may have changed them.
3421  *
3422  * If memory is added and the reserves have been eliminated or increased above
3423  * the default max, then we'll trust the admin.
3424  *
3425  * If memory is removed and there isn't enough free memory, then we
3426  * need to reset the reserves.
3427  *
3428  * Otherwise keep the reserve set by the admin.
3429  */
3430 static int reserve_mem_notifier(struct notifier_block *nb,
3431                              unsigned long action, void *data)
3432 {
3433         unsigned long tmp, free_kbytes;
3434
3435         switch (action) {
3436         case MEM_ONLINE:
3437                 /* Default max is 128MB. Leave alone if modified by operator. */
3438                 tmp = sysctl_user_reserve_kbytes;
3439                 if (0 < tmp && tmp < (1UL << 17))
3440                         init_user_reserve();
3441
3442                 /* Default max is 8MB.  Leave alone if modified by operator. */
3443                 tmp = sysctl_admin_reserve_kbytes;
3444                 if (0 < tmp && tmp < (1UL << 13))
3445                         init_admin_reserve();
3446
3447                 break;
3448         case MEM_OFFLINE:
3449                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3450
3451                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3452                         init_user_reserve();
3453                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3454                                 sysctl_user_reserve_kbytes);
3455                 }
3456
3457                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3458                         init_admin_reserve();
3459                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3460                                 sysctl_admin_reserve_kbytes);
3461                 }
3462                 break;
3463         default:
3464                 break;
3465         }
3466         return NOTIFY_OK;
3467 }
3468
3469 static struct notifier_block reserve_mem_nb = {
3470         .notifier_call = reserve_mem_notifier,
3471 };
3472
3473 static int __meminit init_reserve_notifier(void)
3474 {
3475         if (register_hotmemory_notifier(&reserve_mem_nb))
3476                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3477
3478         return 0;
3479 }
3480 subsys_initcall(init_reserve_notifier);