Revert "FROMLIST: arm64: Handle faults caused by inadvertent user access with PAN...
[firefly-linux-kernel-4.4.55.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50
51 #include "internal.h"
52
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)       (0)
55 #endif
56
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)              (addr)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  *
91  */
92 pgprot_t protection_map[16] = {
93         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
94         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
95 };
96
97 pgprot_t vm_get_page_prot(unsigned long vm_flags)
98 {
99         return __pgprot(pgprot_val(protection_map[vm_flags &
100                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
101                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
102 }
103 EXPORT_SYMBOL(vm_get_page_prot);
104
105 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
106 {
107         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
108 }
109
110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
111 void vma_set_page_prot(struct vm_area_struct *vma)
112 {
113         unsigned long vm_flags = vma->vm_flags;
114
115         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
116         if (vma_wants_writenotify(vma)) {
117                 vm_flags &= ~VM_SHARED;
118                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
119                                                      vm_flags);
120         }
121 }
122
123
124 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
125 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
126 unsigned long sysctl_overcommit_kbytes __read_mostly;
127 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
128 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
129 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
130 /*
131  * Make sure vm_committed_as in one cacheline and not cacheline shared with
132  * other variables. It can be updated by several CPUs frequently.
133  */
134 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
135
136 /*
137  * The global memory commitment made in the system can be a metric
138  * that can be used to drive ballooning decisions when Linux is hosted
139  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
140  * balancing memory across competing virtual machines that are hosted.
141  * Several metrics drive this policy engine including the guest reported
142  * memory commitment.
143  */
144 unsigned long vm_memory_committed(void)
145 {
146         return percpu_counter_read_positive(&vm_committed_as);
147 }
148 EXPORT_SYMBOL_GPL(vm_memory_committed);
149
150 /*
151  * Check that a process has enough memory to allocate a new virtual
152  * mapping. 0 means there is enough memory for the allocation to
153  * succeed and -ENOMEM implies there is not.
154  *
155  * We currently support three overcommit policies, which are set via the
156  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
157  *
158  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
159  * Additional code 2002 Jul 20 by Robert Love.
160  *
161  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
162  *
163  * Note this is a helper function intended to be used by LSMs which
164  * wish to use this logic.
165  */
166 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
167 {
168         long free, allowed, reserve;
169
170         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
171                         -(s64)vm_committed_as_batch * num_online_cpus(),
172                         "memory commitment underflow");
173
174         vm_acct_memory(pages);
175
176         /*
177          * Sometimes we want to use more memory than we have
178          */
179         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
180                 return 0;
181
182         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
183                 free = global_page_state(NR_FREE_PAGES);
184                 free += global_page_state(NR_FILE_PAGES);
185
186                 /*
187                  * shmem pages shouldn't be counted as free in this
188                  * case, they can't be purged, only swapped out, and
189                  * that won't affect the overall amount of available
190                  * memory in the system.
191                  */
192                 free -= global_page_state(NR_SHMEM);
193
194                 free += get_nr_swap_pages();
195
196                 /*
197                  * Any slabs which are created with the
198                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
199                  * which are reclaimable, under pressure.  The dentry
200                  * cache and most inode caches should fall into this
201                  */
202                 free += global_page_state(NR_SLAB_RECLAIMABLE);
203
204                 /*
205                  * Leave reserved pages. The pages are not for anonymous pages.
206                  */
207                 if (free <= totalreserve_pages)
208                         goto error;
209                 else
210                         free -= totalreserve_pages;
211
212                 /*
213                  * Reserve some for root
214                  */
215                 if (!cap_sys_admin)
216                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217
218                 if (free > pages)
219                         return 0;
220
221                 goto error;
222         }
223
224         allowed = vm_commit_limit();
225         /*
226          * Reserve some for root
227          */
228         if (!cap_sys_admin)
229                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
230
231         /*
232          * Don't let a single process grow so big a user can't recover
233          */
234         if (mm) {
235                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
236                 allowed -= min_t(long, mm->total_vm / 32, reserve);
237         }
238
239         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
240                 return 0;
241 error:
242         vm_unacct_memory(pages);
243
244         return -ENOMEM;
245 }
246
247 /*
248  * Requires inode->i_mapping->i_mmap_rwsem
249  */
250 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
251                 struct file *file, struct address_space *mapping)
252 {
253         if (vma->vm_flags & VM_DENYWRITE)
254                 atomic_inc(&file_inode(file)->i_writecount);
255         if (vma->vm_flags & VM_SHARED)
256                 mapping_unmap_writable(mapping);
257
258         flush_dcache_mmap_lock(mapping);
259         vma_interval_tree_remove(vma, &mapping->i_mmap);
260         flush_dcache_mmap_unlock(mapping);
261 }
262
263 /*
264  * Unlink a file-based vm structure from its interval tree, to hide
265  * vma from rmap and vmtruncate before freeing its page tables.
266  */
267 void unlink_file_vma(struct vm_area_struct *vma)
268 {
269         struct file *file = vma->vm_file;
270
271         if (file) {
272                 struct address_space *mapping = file->f_mapping;
273                 i_mmap_lock_write(mapping);
274                 __remove_shared_vm_struct(vma, file, mapping);
275                 i_mmap_unlock_write(mapping);
276         }
277 }
278
279 /*
280  * Close a vm structure and free it, returning the next.
281  */
282 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
283 {
284         struct vm_area_struct *next = vma->vm_next;
285
286         might_sleep();
287         if (vma->vm_ops && vma->vm_ops->close)
288                 vma->vm_ops->close(vma);
289         if (vma->vm_file)
290                 fput(vma->vm_file);
291         mpol_put(vma_policy(vma));
292         kmem_cache_free(vm_area_cachep, vma);
293         return next;
294 }
295
296 static unsigned long do_brk(unsigned long addr, unsigned long len);
297
298 SYSCALL_DEFINE1(brk, unsigned long, brk)
299 {
300         unsigned long retval;
301         unsigned long newbrk, oldbrk;
302         struct mm_struct *mm = current->mm;
303         unsigned long min_brk;
304         bool populate;
305
306         down_write(&mm->mmap_sem);
307
308 #ifdef CONFIG_COMPAT_BRK
309         /*
310          * CONFIG_COMPAT_BRK can still be overridden by setting
311          * randomize_va_space to 2, which will still cause mm->start_brk
312          * to be arbitrarily shifted
313          */
314         if (current->brk_randomized)
315                 min_brk = mm->start_brk;
316         else
317                 min_brk = mm->end_data;
318 #else
319         min_brk = mm->start_brk;
320 #endif
321         if (brk < min_brk)
322                 goto out;
323
324         /*
325          * Check against rlimit here. If this check is done later after the test
326          * of oldbrk with newbrk then it can escape the test and let the data
327          * segment grow beyond its set limit the in case where the limit is
328          * not page aligned -Ram Gupta
329          */
330         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
331                               mm->end_data, mm->start_data))
332                 goto out;
333
334         newbrk = PAGE_ALIGN(brk);
335         oldbrk = PAGE_ALIGN(mm->brk);
336         if (oldbrk == newbrk)
337                 goto set_brk;
338
339         /* Always allow shrinking brk. */
340         if (brk <= mm->brk) {
341                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
342                         goto set_brk;
343                 goto out;
344         }
345
346         /* Check against existing mmap mappings. */
347         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
348                 goto out;
349
350         /* Ok, looks good - let it rip. */
351         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
352                 goto out;
353
354 set_brk:
355         mm->brk = brk;
356         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
357         up_write(&mm->mmap_sem);
358         if (populate)
359                 mm_populate(oldbrk, newbrk - oldbrk);
360         return brk;
361
362 out:
363         retval = mm->brk;
364         up_write(&mm->mmap_sem);
365         return retval;
366 }
367
368 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
369 {
370         unsigned long max, subtree_gap;
371         max = vma->vm_start;
372         if (vma->vm_prev)
373                 max -= vma->vm_prev->vm_end;
374         if (vma->vm_rb.rb_left) {
375                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
376                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
377                 if (subtree_gap > max)
378                         max = subtree_gap;
379         }
380         if (vma->vm_rb.rb_right) {
381                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
382                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
383                 if (subtree_gap > max)
384                         max = subtree_gap;
385         }
386         return max;
387 }
388
389 #ifdef CONFIG_DEBUG_VM_RB
390 static int browse_rb(struct rb_root *root)
391 {
392         int i = 0, j, bug = 0;
393         struct rb_node *nd, *pn = NULL;
394         unsigned long prev = 0, pend = 0;
395
396         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
397                 struct vm_area_struct *vma;
398                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
399                 if (vma->vm_start < prev) {
400                         pr_emerg("vm_start %lx < prev %lx\n",
401                                   vma->vm_start, prev);
402                         bug = 1;
403                 }
404                 if (vma->vm_start < pend) {
405                         pr_emerg("vm_start %lx < pend %lx\n",
406                                   vma->vm_start, pend);
407                         bug = 1;
408                 }
409                 if (vma->vm_start > vma->vm_end) {
410                         pr_emerg("vm_start %lx > vm_end %lx\n",
411                                   vma->vm_start, vma->vm_end);
412                         bug = 1;
413                 }
414                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
415                         pr_emerg("free gap %lx, correct %lx\n",
416                                vma->rb_subtree_gap,
417                                vma_compute_subtree_gap(vma));
418                         bug = 1;
419                 }
420                 i++;
421                 pn = nd;
422                 prev = vma->vm_start;
423                 pend = vma->vm_end;
424         }
425         j = 0;
426         for (nd = pn; nd; nd = rb_prev(nd))
427                 j++;
428         if (i != j) {
429                 pr_emerg("backwards %d, forwards %d\n", j, i);
430                 bug = 1;
431         }
432         return bug ? -1 : i;
433 }
434
435 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
436 {
437         struct rb_node *nd;
438
439         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
440                 struct vm_area_struct *vma;
441                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
442                 VM_BUG_ON_VMA(vma != ignore &&
443                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
444                         vma);
445         }
446 }
447
448 static void validate_mm(struct mm_struct *mm)
449 {
450         int bug = 0;
451         int i = 0;
452         unsigned long highest_address = 0;
453         struct vm_area_struct *vma = mm->mmap;
454
455         while (vma) {
456                 struct anon_vma *anon_vma = vma->anon_vma;
457                 struct anon_vma_chain *avc;
458
459                 if (anon_vma) {
460                         anon_vma_lock_read(anon_vma);
461                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
462                                 anon_vma_interval_tree_verify(avc);
463                         anon_vma_unlock_read(anon_vma);
464                 }
465
466                 highest_address = vma->vm_end;
467                 vma = vma->vm_next;
468                 i++;
469         }
470         if (i != mm->map_count) {
471                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
472                 bug = 1;
473         }
474         if (highest_address != mm->highest_vm_end) {
475                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
476                           mm->highest_vm_end, highest_address);
477                 bug = 1;
478         }
479         i = browse_rb(&mm->mm_rb);
480         if (i != mm->map_count) {
481                 if (i != -1)
482                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
483                 bug = 1;
484         }
485         VM_BUG_ON_MM(bug, mm);
486 }
487 #else
488 #define validate_mm_rb(root, ignore) do { } while (0)
489 #define validate_mm(mm) do { } while (0)
490 #endif
491
492 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
493                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
494
495 /*
496  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
497  * vma->vm_prev->vm_end values changed, without modifying the vma's position
498  * in the rbtree.
499  */
500 static void vma_gap_update(struct vm_area_struct *vma)
501 {
502         /*
503          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
504          * function that does exacltly what we want.
505          */
506         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
507 }
508
509 static inline void vma_rb_insert(struct vm_area_struct *vma,
510                                  struct rb_root *root)
511 {
512         /* All rb_subtree_gap values must be consistent prior to insertion */
513         validate_mm_rb(root, NULL);
514
515         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
516 }
517
518 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
519 {
520         /*
521          * All rb_subtree_gap values must be consistent prior to erase,
522          * with the possible exception of the vma being erased.
523          */
524         validate_mm_rb(root, vma);
525
526         /*
527          * Note rb_erase_augmented is a fairly large inline function,
528          * so make sure we instantiate it only once with our desired
529          * augmented rbtree callbacks.
530          */
531         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
532 }
533
534 /*
535  * vma has some anon_vma assigned, and is already inserted on that
536  * anon_vma's interval trees.
537  *
538  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
539  * vma must be removed from the anon_vma's interval trees using
540  * anon_vma_interval_tree_pre_update_vma().
541  *
542  * After the update, the vma will be reinserted using
543  * anon_vma_interval_tree_post_update_vma().
544  *
545  * The entire update must be protected by exclusive mmap_sem and by
546  * the root anon_vma's mutex.
547  */
548 static inline void
549 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
550 {
551         struct anon_vma_chain *avc;
552
553         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
554                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
555 }
556
557 static inline void
558 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
559 {
560         struct anon_vma_chain *avc;
561
562         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
563                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
564 }
565
566 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
567                 unsigned long end, struct vm_area_struct **pprev,
568                 struct rb_node ***rb_link, struct rb_node **rb_parent)
569 {
570         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
571
572         __rb_link = &mm->mm_rb.rb_node;
573         rb_prev = __rb_parent = NULL;
574
575         while (*__rb_link) {
576                 struct vm_area_struct *vma_tmp;
577
578                 __rb_parent = *__rb_link;
579                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
580
581                 if (vma_tmp->vm_end > addr) {
582                         /* Fail if an existing vma overlaps the area */
583                         if (vma_tmp->vm_start < end)
584                                 return -ENOMEM;
585                         __rb_link = &__rb_parent->rb_left;
586                 } else {
587                         rb_prev = __rb_parent;
588                         __rb_link = &__rb_parent->rb_right;
589                 }
590         }
591
592         *pprev = NULL;
593         if (rb_prev)
594                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
595         *rb_link = __rb_link;
596         *rb_parent = __rb_parent;
597         return 0;
598 }
599
600 static unsigned long count_vma_pages_range(struct mm_struct *mm,
601                 unsigned long addr, unsigned long end)
602 {
603         unsigned long nr_pages = 0;
604         struct vm_area_struct *vma;
605
606         /* Find first overlaping mapping */
607         vma = find_vma_intersection(mm, addr, end);
608         if (!vma)
609                 return 0;
610
611         nr_pages = (min(end, vma->vm_end) -
612                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
613
614         /* Iterate over the rest of the overlaps */
615         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
616                 unsigned long overlap_len;
617
618                 if (vma->vm_start > end)
619                         break;
620
621                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
622                 nr_pages += overlap_len >> PAGE_SHIFT;
623         }
624
625         return nr_pages;
626 }
627
628 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
629                 struct rb_node **rb_link, struct rb_node *rb_parent)
630 {
631         /* Update tracking information for the gap following the new vma. */
632         if (vma->vm_next)
633                 vma_gap_update(vma->vm_next);
634         else
635                 mm->highest_vm_end = vma->vm_end;
636
637         /*
638          * vma->vm_prev wasn't known when we followed the rbtree to find the
639          * correct insertion point for that vma. As a result, we could not
640          * update the vma vm_rb parents rb_subtree_gap values on the way down.
641          * So, we first insert the vma with a zero rb_subtree_gap value
642          * (to be consistent with what we did on the way down), and then
643          * immediately update the gap to the correct value. Finally we
644          * rebalance the rbtree after all augmented values have been set.
645          */
646         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
647         vma->rb_subtree_gap = 0;
648         vma_gap_update(vma);
649         vma_rb_insert(vma, &mm->mm_rb);
650 }
651
652 static void __vma_link_file(struct vm_area_struct *vma)
653 {
654         struct file *file;
655
656         file = vma->vm_file;
657         if (file) {
658                 struct address_space *mapping = file->f_mapping;
659
660                 if (vma->vm_flags & VM_DENYWRITE)
661                         atomic_dec(&file_inode(file)->i_writecount);
662                 if (vma->vm_flags & VM_SHARED)
663                         atomic_inc(&mapping->i_mmap_writable);
664
665                 flush_dcache_mmap_lock(mapping);
666                 vma_interval_tree_insert(vma, &mapping->i_mmap);
667                 flush_dcache_mmap_unlock(mapping);
668         }
669 }
670
671 static void
672 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
673         struct vm_area_struct *prev, struct rb_node **rb_link,
674         struct rb_node *rb_parent)
675 {
676         __vma_link_list(mm, vma, prev, rb_parent);
677         __vma_link_rb(mm, vma, rb_link, rb_parent);
678 }
679
680 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
681                         struct vm_area_struct *prev, struct rb_node **rb_link,
682                         struct rb_node *rb_parent)
683 {
684         struct address_space *mapping = NULL;
685
686         if (vma->vm_file) {
687                 mapping = vma->vm_file->f_mapping;
688                 i_mmap_lock_write(mapping);
689         }
690
691         __vma_link(mm, vma, prev, rb_link, rb_parent);
692         __vma_link_file(vma);
693
694         if (mapping)
695                 i_mmap_unlock_write(mapping);
696
697         mm->map_count++;
698         validate_mm(mm);
699 }
700
701 /*
702  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
703  * mm's list and rbtree.  It has already been inserted into the interval tree.
704  */
705 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
706 {
707         struct vm_area_struct *prev;
708         struct rb_node **rb_link, *rb_parent;
709
710         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
711                            &prev, &rb_link, &rb_parent))
712                 BUG();
713         __vma_link(mm, vma, prev, rb_link, rb_parent);
714         mm->map_count++;
715 }
716
717 static inline void
718 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
719                 struct vm_area_struct *prev)
720 {
721         struct vm_area_struct *next;
722
723         vma_rb_erase(vma, &mm->mm_rb);
724         prev->vm_next = next = vma->vm_next;
725         if (next)
726                 next->vm_prev = prev;
727
728         /* Kill the cache */
729         vmacache_invalidate(mm);
730 }
731
732 /*
733  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
734  * is already present in an i_mmap tree without adjusting the tree.
735  * The following helper function should be used when such adjustments
736  * are necessary.  The "insert" vma (if any) is to be inserted
737  * before we drop the necessary locks.
738  */
739 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
740         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
741 {
742         struct mm_struct *mm = vma->vm_mm;
743         struct vm_area_struct *next = vma->vm_next;
744         struct vm_area_struct *importer = NULL;
745         struct address_space *mapping = NULL;
746         struct rb_root *root = NULL;
747         struct anon_vma *anon_vma = NULL;
748         struct file *file = vma->vm_file;
749         bool start_changed = false, end_changed = false;
750         long adjust_next = 0;
751         int remove_next = 0;
752
753         if (next && !insert) {
754                 struct vm_area_struct *exporter = NULL;
755
756                 if (end >= next->vm_end) {
757                         /*
758                          * vma expands, overlapping all the next, and
759                          * perhaps the one after too (mprotect case 6).
760                          */
761 again:                  remove_next = 1 + (end > next->vm_end);
762                         end = next->vm_end;
763                         exporter = next;
764                         importer = vma;
765                 } else if (end > next->vm_start) {
766                         /*
767                          * vma expands, overlapping part of the next:
768                          * mprotect case 5 shifting the boundary up.
769                          */
770                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
771                         exporter = next;
772                         importer = vma;
773                 } else if (end < vma->vm_end) {
774                         /*
775                          * vma shrinks, and !insert tells it's not
776                          * split_vma inserting another: so it must be
777                          * mprotect case 4 shifting the boundary down.
778                          */
779                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
780                         exporter = vma;
781                         importer = next;
782                 }
783
784                 /*
785                  * Easily overlooked: when mprotect shifts the boundary,
786                  * make sure the expanding vma has anon_vma set if the
787                  * shrinking vma had, to cover any anon pages imported.
788                  */
789                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
790                         int error;
791
792                         importer->anon_vma = exporter->anon_vma;
793                         error = anon_vma_clone(importer, exporter);
794                         if (error)
795                                 return error;
796                 }
797         }
798
799         if (file) {
800                 mapping = file->f_mapping;
801                 root = &mapping->i_mmap;
802                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
803
804                 if (adjust_next)
805                         uprobe_munmap(next, next->vm_start, next->vm_end);
806
807                 i_mmap_lock_write(mapping);
808                 if (insert) {
809                         /*
810                          * Put into interval tree now, so instantiated pages
811                          * are visible to arm/parisc __flush_dcache_page
812                          * throughout; but we cannot insert into address
813                          * space until vma start or end is updated.
814                          */
815                         __vma_link_file(insert);
816                 }
817         }
818
819         vma_adjust_trans_huge(vma, start, end, adjust_next);
820
821         anon_vma = vma->anon_vma;
822         if (!anon_vma && adjust_next)
823                 anon_vma = next->anon_vma;
824         if (anon_vma) {
825                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
826                           anon_vma != next->anon_vma, next);
827                 anon_vma_lock_write(anon_vma);
828                 anon_vma_interval_tree_pre_update_vma(vma);
829                 if (adjust_next)
830                         anon_vma_interval_tree_pre_update_vma(next);
831         }
832
833         if (root) {
834                 flush_dcache_mmap_lock(mapping);
835                 vma_interval_tree_remove(vma, root);
836                 if (adjust_next)
837                         vma_interval_tree_remove(next, root);
838         }
839
840         if (start != vma->vm_start) {
841                 vma->vm_start = start;
842                 start_changed = true;
843         }
844         if (end != vma->vm_end) {
845                 vma->vm_end = end;
846                 end_changed = true;
847         }
848         vma->vm_pgoff = pgoff;
849         if (adjust_next) {
850                 next->vm_start += adjust_next << PAGE_SHIFT;
851                 next->vm_pgoff += adjust_next;
852         }
853
854         if (root) {
855                 if (adjust_next)
856                         vma_interval_tree_insert(next, root);
857                 vma_interval_tree_insert(vma, root);
858                 flush_dcache_mmap_unlock(mapping);
859         }
860
861         if (remove_next) {
862                 /*
863                  * vma_merge has merged next into vma, and needs
864                  * us to remove next before dropping the locks.
865                  */
866                 __vma_unlink(mm, next, vma);
867                 if (file)
868                         __remove_shared_vm_struct(next, file, mapping);
869         } else if (insert) {
870                 /*
871                  * split_vma has split insert from vma, and needs
872                  * us to insert it before dropping the locks
873                  * (it may either follow vma or precede it).
874                  */
875                 __insert_vm_struct(mm, insert);
876         } else {
877                 if (start_changed)
878                         vma_gap_update(vma);
879                 if (end_changed) {
880                         if (!next)
881                                 mm->highest_vm_end = end;
882                         else if (!adjust_next)
883                                 vma_gap_update(next);
884                 }
885         }
886
887         if (anon_vma) {
888                 anon_vma_interval_tree_post_update_vma(vma);
889                 if (adjust_next)
890                         anon_vma_interval_tree_post_update_vma(next);
891                 anon_vma_unlock_write(anon_vma);
892         }
893         if (mapping)
894                 i_mmap_unlock_write(mapping);
895
896         if (root) {
897                 uprobe_mmap(vma);
898
899                 if (adjust_next)
900                         uprobe_mmap(next);
901         }
902
903         if (remove_next) {
904                 if (file) {
905                         uprobe_munmap(next, next->vm_start, next->vm_end);
906                         fput(file);
907                 }
908                 if (next->anon_vma)
909                         anon_vma_merge(vma, next);
910                 mm->map_count--;
911                 mpol_put(vma_policy(next));
912                 kmem_cache_free(vm_area_cachep, next);
913                 /*
914                  * In mprotect's case 6 (see comments on vma_merge),
915                  * we must remove another next too. It would clutter
916                  * up the code too much to do both in one go.
917                  */
918                 next = vma->vm_next;
919                 if (remove_next == 2)
920                         goto again;
921                 else if (next)
922                         vma_gap_update(next);
923                 else
924                         mm->highest_vm_end = end;
925         }
926         if (insert && file)
927                 uprobe_mmap(insert);
928
929         validate_mm(mm);
930
931         return 0;
932 }
933
934 /*
935  * If the vma has a ->close operation then the driver probably needs to release
936  * per-vma resources, so we don't attempt to merge those.
937  */
938 static inline int is_mergeable_vma(struct vm_area_struct *vma,
939                                 struct file *file, unsigned long vm_flags,
940                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
941                                 const char __user *anon_name)
942 {
943         /*
944          * VM_SOFTDIRTY should not prevent from VMA merging, if we
945          * match the flags but dirty bit -- the caller should mark
946          * merged VMA as dirty. If dirty bit won't be excluded from
947          * comparison, we increase pressue on the memory system forcing
948          * the kernel to generate new VMAs when old one could be
949          * extended instead.
950          */
951         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
952                 return 0;
953         if (vma->vm_file != file)
954                 return 0;
955         if (vma->vm_ops && vma->vm_ops->close)
956                 return 0;
957         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
958                 return 0;
959         if (vma_get_anon_name(vma) != anon_name)
960                 return 0;
961         return 1;
962 }
963
964 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
965                                         struct anon_vma *anon_vma2,
966                                         struct vm_area_struct *vma)
967 {
968         /*
969          * The list_is_singular() test is to avoid merging VMA cloned from
970          * parents. This can improve scalability caused by anon_vma lock.
971          */
972         if ((!anon_vma1 || !anon_vma2) && (!vma ||
973                 list_is_singular(&vma->anon_vma_chain)))
974                 return 1;
975         return anon_vma1 == anon_vma2;
976 }
977
978 /*
979  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
980  * in front of (at a lower virtual address and file offset than) the vma.
981  *
982  * We cannot merge two vmas if they have differently assigned (non-NULL)
983  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
984  *
985  * We don't check here for the merged mmap wrapping around the end of pagecache
986  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
987  * wrap, nor mmaps which cover the final page at index -1UL.
988  */
989 static int
990 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
991                      struct anon_vma *anon_vma, struct file *file,
992                      pgoff_t vm_pgoff,
993                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
994                      const char __user *anon_name)
995 {
996         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
997             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
998                 if (vma->vm_pgoff == vm_pgoff)
999                         return 1;
1000         }
1001         return 0;
1002 }
1003
1004 /*
1005  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1006  * beyond (at a higher virtual address and file offset than) the vma.
1007  *
1008  * We cannot merge two vmas if they have differently assigned (non-NULL)
1009  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1010  */
1011 static int
1012 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1013                     struct anon_vma *anon_vma, struct file *file,
1014                     pgoff_t vm_pgoff,
1015                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1016                     const char __user *anon_name)
1017 {
1018         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1019             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1020                 pgoff_t vm_pglen;
1021                 vm_pglen = vma_pages(vma);
1022                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1023                         return 1;
1024         }
1025         return 0;
1026 }
1027
1028 /*
1029  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1030  * figure out whether that can be merged with its predecessor or its
1031  * successor.  Or both (it neatly fills a hole).
1032  *
1033  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1034  * certain not to be mapped by the time vma_merge is called; but when
1035  * called for mprotect, it is certain to be already mapped (either at
1036  * an offset within prev, or at the start of next), and the flags of
1037  * this area are about to be changed to vm_flags - and the no-change
1038  * case has already been eliminated.
1039  *
1040  * The following mprotect cases have to be considered, where AAAA is
1041  * the area passed down from mprotect_fixup, never extending beyond one
1042  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1043  *
1044  *     AAAA             AAAA                AAAA          AAAA
1045  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1046  *    cannot merge    might become    might become    might become
1047  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1048  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1049  *    mremap move:                                    PPPPNNNNNNNN 8
1050  *        AAAA
1051  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1052  *    might become    case 1 below    case 2 below    case 3 below
1053  *
1054  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1055  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1056  */
1057 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1058                         struct vm_area_struct *prev, unsigned long addr,
1059                         unsigned long end, unsigned long vm_flags,
1060                         struct anon_vma *anon_vma, struct file *file,
1061                         pgoff_t pgoff, struct mempolicy *policy,
1062                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1063                         const char __user *anon_name)
1064 {
1065         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1066         struct vm_area_struct *area, *next;
1067         int err;
1068
1069         /*
1070          * We later require that vma->vm_flags == vm_flags,
1071          * so this tests vma->vm_flags & VM_SPECIAL, too.
1072          */
1073         if (vm_flags & VM_SPECIAL)
1074                 return NULL;
1075
1076         if (prev)
1077                 next = prev->vm_next;
1078         else
1079                 next = mm->mmap;
1080         area = next;
1081         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1082                 next = next->vm_next;
1083
1084         /*
1085          * Can it merge with the predecessor?
1086          */
1087         if (prev && prev->vm_end == addr &&
1088                         mpol_equal(vma_policy(prev), policy) &&
1089                         can_vma_merge_after(prev, vm_flags,
1090                                             anon_vma, file, pgoff,
1091                                             vm_userfaultfd_ctx,
1092                                             anon_name)) {
1093                 /*
1094                  * OK, it can.  Can we now merge in the successor as well?
1095                  */
1096                 if (next && end == next->vm_start &&
1097                                 mpol_equal(policy, vma_policy(next)) &&
1098                                 can_vma_merge_before(next, vm_flags,
1099                                                      anon_vma, file,
1100                                                      pgoff+pglen,
1101                                                      vm_userfaultfd_ctx,
1102                                                      anon_name) &&
1103                                 is_mergeable_anon_vma(prev->anon_vma,
1104                                                       next->anon_vma, NULL)) {
1105                                                         /* cases 1, 6 */
1106                         err = vma_adjust(prev, prev->vm_start,
1107                                 next->vm_end, prev->vm_pgoff, NULL);
1108                 } else                                  /* cases 2, 5, 7 */
1109                         err = vma_adjust(prev, prev->vm_start,
1110                                 end, prev->vm_pgoff, NULL);
1111                 if (err)
1112                         return NULL;
1113                 khugepaged_enter_vma_merge(prev, vm_flags);
1114                 return prev;
1115         }
1116
1117         /*
1118          * Can this new request be merged in front of next?
1119          */
1120         if (next && end == next->vm_start &&
1121                         mpol_equal(policy, vma_policy(next)) &&
1122                         can_vma_merge_before(next, vm_flags,
1123                                              anon_vma, file, pgoff+pglen,
1124                                              vm_userfaultfd_ctx,
1125                                              anon_name)) {
1126                 if (prev && addr < prev->vm_end)        /* case 4 */
1127                         err = vma_adjust(prev, prev->vm_start,
1128                                 addr, prev->vm_pgoff, NULL);
1129                 else                                    /* cases 3, 8 */
1130                         err = vma_adjust(area, addr, next->vm_end,
1131                                 next->vm_pgoff - pglen, NULL);
1132                 if (err)
1133                         return NULL;
1134                 khugepaged_enter_vma_merge(area, vm_flags);
1135                 return area;
1136         }
1137
1138         return NULL;
1139 }
1140
1141 /*
1142  * Rough compatbility check to quickly see if it's even worth looking
1143  * at sharing an anon_vma.
1144  *
1145  * They need to have the same vm_file, and the flags can only differ
1146  * in things that mprotect may change.
1147  *
1148  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1149  * we can merge the two vma's. For example, we refuse to merge a vma if
1150  * there is a vm_ops->close() function, because that indicates that the
1151  * driver is doing some kind of reference counting. But that doesn't
1152  * really matter for the anon_vma sharing case.
1153  */
1154 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1155 {
1156         return a->vm_end == b->vm_start &&
1157                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1158                 a->vm_file == b->vm_file &&
1159                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1160                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1161 }
1162
1163 /*
1164  * Do some basic sanity checking to see if we can re-use the anon_vma
1165  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1166  * the same as 'old', the other will be the new one that is trying
1167  * to share the anon_vma.
1168  *
1169  * NOTE! This runs with mm_sem held for reading, so it is possible that
1170  * the anon_vma of 'old' is concurrently in the process of being set up
1171  * by another page fault trying to merge _that_. But that's ok: if it
1172  * is being set up, that automatically means that it will be a singleton
1173  * acceptable for merging, so we can do all of this optimistically. But
1174  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1175  *
1176  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1177  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1178  * is to return an anon_vma that is "complex" due to having gone through
1179  * a fork).
1180  *
1181  * We also make sure that the two vma's are compatible (adjacent,
1182  * and with the same memory policies). That's all stable, even with just
1183  * a read lock on the mm_sem.
1184  */
1185 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1186 {
1187         if (anon_vma_compatible(a, b)) {
1188                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1189
1190                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1191                         return anon_vma;
1192         }
1193         return NULL;
1194 }
1195
1196 /*
1197  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1198  * neighbouring vmas for a suitable anon_vma, before it goes off
1199  * to allocate a new anon_vma.  It checks because a repetitive
1200  * sequence of mprotects and faults may otherwise lead to distinct
1201  * anon_vmas being allocated, preventing vma merge in subsequent
1202  * mprotect.
1203  */
1204 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1205 {
1206         struct anon_vma *anon_vma;
1207         struct vm_area_struct *near;
1208
1209         near = vma->vm_next;
1210         if (!near)
1211                 goto try_prev;
1212
1213         anon_vma = reusable_anon_vma(near, vma, near);
1214         if (anon_vma)
1215                 return anon_vma;
1216 try_prev:
1217         near = vma->vm_prev;
1218         if (!near)
1219                 goto none;
1220
1221         anon_vma = reusable_anon_vma(near, near, vma);
1222         if (anon_vma)
1223                 return anon_vma;
1224 none:
1225         /*
1226          * There's no absolute need to look only at touching neighbours:
1227          * we could search further afield for "compatible" anon_vmas.
1228          * But it would probably just be a waste of time searching,
1229          * or lead to too many vmas hanging off the same anon_vma.
1230          * We're trying to allow mprotect remerging later on,
1231          * not trying to minimize memory used for anon_vmas.
1232          */
1233         return NULL;
1234 }
1235
1236 #ifdef CONFIG_PROC_FS
1237 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1238                                                 struct file *file, long pages)
1239 {
1240         const unsigned long stack_flags
1241                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1242
1243         mm->total_vm += pages;
1244
1245         if (file) {
1246                 mm->shared_vm += pages;
1247                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1248                         mm->exec_vm += pages;
1249         } else if (flags & stack_flags)
1250                 mm->stack_vm += pages;
1251 }
1252 #endif /* CONFIG_PROC_FS */
1253
1254 /*
1255  * If a hint addr is less than mmap_min_addr change hint to be as
1256  * low as possible but still greater than mmap_min_addr
1257  */
1258 static inline unsigned long round_hint_to_min(unsigned long hint)
1259 {
1260         hint &= PAGE_MASK;
1261         if (((void *)hint != NULL) &&
1262             (hint < mmap_min_addr))
1263                 return PAGE_ALIGN(mmap_min_addr);
1264         return hint;
1265 }
1266
1267 static inline int mlock_future_check(struct mm_struct *mm,
1268                                      unsigned long flags,
1269                                      unsigned long len)
1270 {
1271         unsigned long locked, lock_limit;
1272
1273         /*  mlock MCL_FUTURE? */
1274         if (flags & VM_LOCKED) {
1275                 locked = len >> PAGE_SHIFT;
1276                 locked += mm->locked_vm;
1277                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1278                 lock_limit >>= PAGE_SHIFT;
1279                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1280                         return -EAGAIN;
1281         }
1282         return 0;
1283 }
1284
1285 /*
1286  * The caller must hold down_write(&current->mm->mmap_sem).
1287  */
1288 unsigned long do_mmap(struct file *file, unsigned long addr,
1289                         unsigned long len, unsigned long prot,
1290                         unsigned long flags, vm_flags_t vm_flags,
1291                         unsigned long pgoff, unsigned long *populate)
1292 {
1293         struct mm_struct *mm = current->mm;
1294
1295         *populate = 0;
1296
1297         if (!len)
1298                 return -EINVAL;
1299
1300         /*
1301          * Does the application expect PROT_READ to imply PROT_EXEC?
1302          *
1303          * (the exception is when the underlying filesystem is noexec
1304          *  mounted, in which case we dont add PROT_EXEC.)
1305          */
1306         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1307                 if (!(file && path_noexec(&file->f_path)))
1308                         prot |= PROT_EXEC;
1309
1310         if (!(flags & MAP_FIXED))
1311                 addr = round_hint_to_min(addr);
1312
1313         /* Careful about overflows.. */
1314         len = PAGE_ALIGN(len);
1315         if (!len)
1316                 return -ENOMEM;
1317
1318         /* offset overflow? */
1319         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1320                 return -EOVERFLOW;
1321
1322         /* Too many mappings? */
1323         if (mm->map_count > sysctl_max_map_count)
1324                 return -ENOMEM;
1325
1326         /* Obtain the address to map to. we verify (or select) it and ensure
1327          * that it represents a valid section of the address space.
1328          */
1329         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1330         if (offset_in_page(addr))
1331                 return addr;
1332
1333         /* Do simple checking here so the lower-level routines won't have
1334          * to. we assume access permissions have been handled by the open
1335          * of the memory object, so we don't do any here.
1336          */
1337         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1338                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1339
1340         if (flags & MAP_LOCKED)
1341                 if (!can_do_mlock())
1342                         return -EPERM;
1343
1344         if (mlock_future_check(mm, vm_flags, len))
1345                 return -EAGAIN;
1346
1347         if (file) {
1348                 struct inode *inode = file_inode(file);
1349
1350                 switch (flags & MAP_TYPE) {
1351                 case MAP_SHARED:
1352                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1353                                 return -EACCES;
1354
1355                         /*
1356                          * Make sure we don't allow writing to an append-only
1357                          * file..
1358                          */
1359                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1360                                 return -EACCES;
1361
1362                         /*
1363                          * Make sure there are no mandatory locks on the file.
1364                          */
1365                         if (locks_verify_locked(file))
1366                                 return -EAGAIN;
1367
1368                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1369                         if (!(file->f_mode & FMODE_WRITE))
1370                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1371
1372                         /* fall through */
1373                 case MAP_PRIVATE:
1374                         if (!(file->f_mode & FMODE_READ))
1375                                 return -EACCES;
1376                         if (path_noexec(&file->f_path)) {
1377                                 if (vm_flags & VM_EXEC)
1378                                         return -EPERM;
1379                                 vm_flags &= ~VM_MAYEXEC;
1380                         }
1381
1382                         if (!file->f_op->mmap)
1383                                 return -ENODEV;
1384                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1385                                 return -EINVAL;
1386                         break;
1387
1388                 default:
1389                         return -EINVAL;
1390                 }
1391         } else {
1392                 switch (flags & MAP_TYPE) {
1393                 case MAP_SHARED:
1394                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1395                                 return -EINVAL;
1396                         /*
1397                          * Ignore pgoff.
1398                          */
1399                         pgoff = 0;
1400                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1401                         break;
1402                 case MAP_PRIVATE:
1403                         /*
1404                          * Set pgoff according to addr for anon_vma.
1405                          */
1406                         pgoff = addr >> PAGE_SHIFT;
1407                         break;
1408                 default:
1409                         return -EINVAL;
1410                 }
1411         }
1412
1413         /*
1414          * Set 'VM_NORESERVE' if we should not account for the
1415          * memory use of this mapping.
1416          */
1417         if (flags & MAP_NORESERVE) {
1418                 /* We honor MAP_NORESERVE if allowed to overcommit */
1419                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1420                         vm_flags |= VM_NORESERVE;
1421
1422                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1423                 if (file && is_file_hugepages(file))
1424                         vm_flags |= VM_NORESERVE;
1425         }
1426
1427         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1428         if (!IS_ERR_VALUE(addr) &&
1429             ((vm_flags & VM_LOCKED) ||
1430              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1431                 *populate = len;
1432         return addr;
1433 }
1434
1435 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1436                 unsigned long, prot, unsigned long, flags,
1437                 unsigned long, fd, unsigned long, pgoff)
1438 {
1439         struct file *file = NULL;
1440         unsigned long retval;
1441
1442         if (!(flags & MAP_ANONYMOUS)) {
1443                 audit_mmap_fd(fd, flags);
1444                 file = fget(fd);
1445                 if (!file)
1446                         return -EBADF;
1447                 if (is_file_hugepages(file))
1448                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1449                 retval = -EINVAL;
1450                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1451                         goto out_fput;
1452         } else if (flags & MAP_HUGETLB) {
1453                 struct user_struct *user = NULL;
1454                 struct hstate *hs;
1455
1456                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1457                 if (!hs)
1458                         return -EINVAL;
1459
1460                 len = ALIGN(len, huge_page_size(hs));
1461                 /*
1462                  * VM_NORESERVE is used because the reservations will be
1463                  * taken when vm_ops->mmap() is called
1464                  * A dummy user value is used because we are not locking
1465                  * memory so no accounting is necessary
1466                  */
1467                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1468                                 VM_NORESERVE,
1469                                 &user, HUGETLB_ANONHUGE_INODE,
1470                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1471                 if (IS_ERR(file))
1472                         return PTR_ERR(file);
1473         }
1474
1475         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1476
1477         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1478 out_fput:
1479         if (file)
1480                 fput(file);
1481         return retval;
1482 }
1483
1484 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1485 struct mmap_arg_struct {
1486         unsigned long addr;
1487         unsigned long len;
1488         unsigned long prot;
1489         unsigned long flags;
1490         unsigned long fd;
1491         unsigned long offset;
1492 };
1493
1494 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1495 {
1496         struct mmap_arg_struct a;
1497
1498         if (copy_from_user(&a, arg, sizeof(a)))
1499                 return -EFAULT;
1500         if (offset_in_page(a.offset))
1501                 return -EINVAL;
1502
1503         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1504                               a.offset >> PAGE_SHIFT);
1505 }
1506 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1507
1508 /*
1509  * Some shared mappigns will want the pages marked read-only
1510  * to track write events. If so, we'll downgrade vm_page_prot
1511  * to the private version (using protection_map[] without the
1512  * VM_SHARED bit).
1513  */
1514 int vma_wants_writenotify(struct vm_area_struct *vma)
1515 {
1516         vm_flags_t vm_flags = vma->vm_flags;
1517         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1518
1519         /* If it was private or non-writable, the write bit is already clear */
1520         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1521                 return 0;
1522
1523         /* The backer wishes to know when pages are first written to? */
1524         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1525                 return 1;
1526
1527         /* The open routine did something to the protections that pgprot_modify
1528          * won't preserve? */
1529         if (pgprot_val(vma->vm_page_prot) !=
1530             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1531                 return 0;
1532
1533         /* Do we need to track softdirty? */
1534         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1535                 return 1;
1536
1537         /* Specialty mapping? */
1538         if (vm_flags & VM_PFNMAP)
1539                 return 0;
1540
1541         /* Can the mapping track the dirty pages? */
1542         return vma->vm_file && vma->vm_file->f_mapping &&
1543                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1544 }
1545
1546 /*
1547  * We account for memory if it's a private writeable mapping,
1548  * not hugepages and VM_NORESERVE wasn't set.
1549  */
1550 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1551 {
1552         /*
1553          * hugetlb has its own accounting separate from the core VM
1554          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1555          */
1556         if (file && is_file_hugepages(file))
1557                 return 0;
1558
1559         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1560 }
1561
1562 unsigned long mmap_region(struct file *file, unsigned long addr,
1563                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1564 {
1565         struct mm_struct *mm = current->mm;
1566         struct vm_area_struct *vma, *prev;
1567         int error;
1568         struct rb_node **rb_link, *rb_parent;
1569         unsigned long charged = 0;
1570
1571         /* Check against address space limit. */
1572         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1573                 unsigned long nr_pages;
1574
1575                 /*
1576                  * MAP_FIXED may remove pages of mappings that intersects with
1577                  * requested mapping. Account for the pages it would unmap.
1578                  */
1579                 if (!(vm_flags & MAP_FIXED))
1580                         return -ENOMEM;
1581
1582                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1583
1584                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1585                         return -ENOMEM;
1586         }
1587
1588         /* Clear old maps */
1589         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1590                               &rb_parent)) {
1591                 if (do_munmap(mm, addr, len))
1592                         return -ENOMEM;
1593         }
1594
1595         /*
1596          * Private writable mapping: check memory availability
1597          */
1598         if (accountable_mapping(file, vm_flags)) {
1599                 charged = len >> PAGE_SHIFT;
1600                 if (security_vm_enough_memory_mm(mm, charged))
1601                         return -ENOMEM;
1602                 vm_flags |= VM_ACCOUNT;
1603         }
1604
1605         /*
1606          * Can we just expand an old mapping?
1607          */
1608         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1609                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1610         if (vma)
1611                 goto out;
1612
1613         /*
1614          * Determine the object being mapped and call the appropriate
1615          * specific mapper. the address has already been validated, but
1616          * not unmapped, but the maps are removed from the list.
1617          */
1618         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1619         if (!vma) {
1620                 error = -ENOMEM;
1621                 goto unacct_error;
1622         }
1623
1624         vma->vm_mm = mm;
1625         vma->vm_start = addr;
1626         vma->vm_end = addr + len;
1627         vma->vm_flags = vm_flags;
1628         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1629         vma->vm_pgoff = pgoff;
1630         INIT_LIST_HEAD(&vma->anon_vma_chain);
1631
1632         if (file) {
1633                 if (vm_flags & VM_DENYWRITE) {
1634                         error = deny_write_access(file);
1635                         if (error)
1636                                 goto free_vma;
1637                 }
1638                 if (vm_flags & VM_SHARED) {
1639                         error = mapping_map_writable(file->f_mapping);
1640                         if (error)
1641                                 goto allow_write_and_free_vma;
1642                 }
1643
1644                 /* ->mmap() can change vma->vm_file, but must guarantee that
1645                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1646                  * and map writably if VM_SHARED is set. This usually means the
1647                  * new file must not have been exposed to user-space, yet.
1648                  */
1649                 vma->vm_file = get_file(file);
1650                 error = file->f_op->mmap(file, vma);
1651                 if (error)
1652                         goto unmap_and_free_vma;
1653
1654                 /* Can addr have changed??
1655                  *
1656                  * Answer: Yes, several device drivers can do it in their
1657                  *         f_op->mmap method. -DaveM
1658                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1659                  *      be updated for vma_link()
1660                  */
1661                 WARN_ON_ONCE(addr != vma->vm_start);
1662
1663                 addr = vma->vm_start;
1664                 vm_flags = vma->vm_flags;
1665         } else if (vm_flags & VM_SHARED) {
1666                 error = shmem_zero_setup(vma);
1667                 if (error)
1668                         goto free_vma;
1669         }
1670
1671         vma_link(mm, vma, prev, rb_link, rb_parent);
1672         /* Once vma denies write, undo our temporary denial count */
1673         if (file) {
1674                 if (vm_flags & VM_SHARED)
1675                         mapping_unmap_writable(file->f_mapping);
1676                 if (vm_flags & VM_DENYWRITE)
1677                         allow_write_access(file);
1678         }
1679         file = vma->vm_file;
1680 out:
1681         perf_event_mmap(vma);
1682
1683         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1684         if (vm_flags & VM_LOCKED) {
1685                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1686                                         vma == get_gate_vma(current->mm)))
1687                         mm->locked_vm += (len >> PAGE_SHIFT);
1688                 else
1689                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1690         }
1691
1692         if (file)
1693                 uprobe_mmap(vma);
1694
1695         /*
1696          * New (or expanded) vma always get soft dirty status.
1697          * Otherwise user-space soft-dirty page tracker won't
1698          * be able to distinguish situation when vma area unmapped,
1699          * then new mapped in-place (which must be aimed as
1700          * a completely new data area).
1701          */
1702         vma->vm_flags |= VM_SOFTDIRTY;
1703
1704         vma_set_page_prot(vma);
1705
1706         return addr;
1707
1708 unmap_and_free_vma:
1709         vma->vm_file = NULL;
1710         fput(file);
1711
1712         /* Undo any partial mapping done by a device driver. */
1713         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1714         charged = 0;
1715         if (vm_flags & VM_SHARED)
1716                 mapping_unmap_writable(file->f_mapping);
1717 allow_write_and_free_vma:
1718         if (vm_flags & VM_DENYWRITE)
1719                 allow_write_access(file);
1720 free_vma:
1721         kmem_cache_free(vm_area_cachep, vma);
1722 unacct_error:
1723         if (charged)
1724                 vm_unacct_memory(charged);
1725         return error;
1726 }
1727
1728 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1729 {
1730         /*
1731          * We implement the search by looking for an rbtree node that
1732          * immediately follows a suitable gap. That is,
1733          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1734          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1735          * - gap_end - gap_start >= length
1736          */
1737
1738         struct mm_struct *mm = current->mm;
1739         struct vm_area_struct *vma;
1740         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1741
1742         /* Adjust search length to account for worst case alignment overhead */
1743         length = info->length + info->align_mask;
1744         if (length < info->length)
1745                 return -ENOMEM;
1746
1747         /* Adjust search limits by the desired length */
1748         if (info->high_limit < length)
1749                 return -ENOMEM;
1750         high_limit = info->high_limit - length;
1751
1752         if (info->low_limit > high_limit)
1753                 return -ENOMEM;
1754         low_limit = info->low_limit + length;
1755
1756         /* Check if rbtree root looks promising */
1757         if (RB_EMPTY_ROOT(&mm->mm_rb))
1758                 goto check_highest;
1759         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1760         if (vma->rb_subtree_gap < length)
1761                 goto check_highest;
1762
1763         while (true) {
1764                 /* Visit left subtree if it looks promising */
1765                 gap_end = vma->vm_start;
1766                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1767                         struct vm_area_struct *left =
1768                                 rb_entry(vma->vm_rb.rb_left,
1769                                          struct vm_area_struct, vm_rb);
1770                         if (left->rb_subtree_gap >= length) {
1771                                 vma = left;
1772                                 continue;
1773                         }
1774                 }
1775
1776                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1777 check_current:
1778                 /* Check if current node has a suitable gap */
1779                 if (gap_start > high_limit)
1780                         return -ENOMEM;
1781                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1782                         goto found;
1783
1784                 /* Visit right subtree if it looks promising */
1785                 if (vma->vm_rb.rb_right) {
1786                         struct vm_area_struct *right =
1787                                 rb_entry(vma->vm_rb.rb_right,
1788                                          struct vm_area_struct, vm_rb);
1789                         if (right->rb_subtree_gap >= length) {
1790                                 vma = right;
1791                                 continue;
1792                         }
1793                 }
1794
1795                 /* Go back up the rbtree to find next candidate node */
1796                 while (true) {
1797                         struct rb_node *prev = &vma->vm_rb;
1798                         if (!rb_parent(prev))
1799                                 goto check_highest;
1800                         vma = rb_entry(rb_parent(prev),
1801                                        struct vm_area_struct, vm_rb);
1802                         if (prev == vma->vm_rb.rb_left) {
1803                                 gap_start = vma->vm_prev->vm_end;
1804                                 gap_end = vma->vm_start;
1805                                 goto check_current;
1806                         }
1807                 }
1808         }
1809
1810 check_highest:
1811         /* Check highest gap, which does not precede any rbtree node */
1812         gap_start = mm->highest_vm_end;
1813         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1814         if (gap_start > high_limit)
1815                 return -ENOMEM;
1816
1817 found:
1818         /* We found a suitable gap. Clip it with the original low_limit. */
1819         if (gap_start < info->low_limit)
1820                 gap_start = info->low_limit;
1821
1822         /* Adjust gap address to the desired alignment */
1823         gap_start += (info->align_offset - gap_start) & info->align_mask;
1824
1825         VM_BUG_ON(gap_start + info->length > info->high_limit);
1826         VM_BUG_ON(gap_start + info->length > gap_end);
1827         return gap_start;
1828 }
1829
1830 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1831 {
1832         struct mm_struct *mm = current->mm;
1833         struct vm_area_struct *vma;
1834         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1835
1836         /* Adjust search length to account for worst case alignment overhead */
1837         length = info->length + info->align_mask;
1838         if (length < info->length)
1839                 return -ENOMEM;
1840
1841         /*
1842          * Adjust search limits by the desired length.
1843          * See implementation comment at top of unmapped_area().
1844          */
1845         gap_end = info->high_limit;
1846         if (gap_end < length)
1847                 return -ENOMEM;
1848         high_limit = gap_end - length;
1849
1850         if (info->low_limit > high_limit)
1851                 return -ENOMEM;
1852         low_limit = info->low_limit + length;
1853
1854         /* Check highest gap, which does not precede any rbtree node */
1855         gap_start = mm->highest_vm_end;
1856         if (gap_start <= high_limit)
1857                 goto found_highest;
1858
1859         /* Check if rbtree root looks promising */
1860         if (RB_EMPTY_ROOT(&mm->mm_rb))
1861                 return -ENOMEM;
1862         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1863         if (vma->rb_subtree_gap < length)
1864                 return -ENOMEM;
1865
1866         while (true) {
1867                 /* Visit right subtree if it looks promising */
1868                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1869                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1870                         struct vm_area_struct *right =
1871                                 rb_entry(vma->vm_rb.rb_right,
1872                                          struct vm_area_struct, vm_rb);
1873                         if (right->rb_subtree_gap >= length) {
1874                                 vma = right;
1875                                 continue;
1876                         }
1877                 }
1878
1879 check_current:
1880                 /* Check if current node has a suitable gap */
1881                 gap_end = vma->vm_start;
1882                 if (gap_end < low_limit)
1883                         return -ENOMEM;
1884                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1885                         goto found;
1886
1887                 /* Visit left subtree if it looks promising */
1888                 if (vma->vm_rb.rb_left) {
1889                         struct vm_area_struct *left =
1890                                 rb_entry(vma->vm_rb.rb_left,
1891                                          struct vm_area_struct, vm_rb);
1892                         if (left->rb_subtree_gap >= length) {
1893                                 vma = left;
1894                                 continue;
1895                         }
1896                 }
1897
1898                 /* Go back up the rbtree to find next candidate node */
1899                 while (true) {
1900                         struct rb_node *prev = &vma->vm_rb;
1901                         if (!rb_parent(prev))
1902                                 return -ENOMEM;
1903                         vma = rb_entry(rb_parent(prev),
1904                                        struct vm_area_struct, vm_rb);
1905                         if (prev == vma->vm_rb.rb_right) {
1906                                 gap_start = vma->vm_prev ?
1907                                         vma->vm_prev->vm_end : 0;
1908                                 goto check_current;
1909                         }
1910                 }
1911         }
1912
1913 found:
1914         /* We found a suitable gap. Clip it with the original high_limit. */
1915         if (gap_end > info->high_limit)
1916                 gap_end = info->high_limit;
1917
1918 found_highest:
1919         /* Compute highest gap address at the desired alignment */
1920         gap_end -= info->length;
1921         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1922
1923         VM_BUG_ON(gap_end < info->low_limit);
1924         VM_BUG_ON(gap_end < gap_start);
1925         return gap_end;
1926 }
1927
1928 /* Get an address range which is currently unmapped.
1929  * For shmat() with addr=0.
1930  *
1931  * Ugly calling convention alert:
1932  * Return value with the low bits set means error value,
1933  * ie
1934  *      if (ret & ~PAGE_MASK)
1935  *              error = ret;
1936  *
1937  * This function "knows" that -ENOMEM has the bits set.
1938  */
1939 #ifndef HAVE_ARCH_UNMAPPED_AREA
1940 unsigned long
1941 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1942                 unsigned long len, unsigned long pgoff, unsigned long flags)
1943 {
1944         struct mm_struct *mm = current->mm;
1945         struct vm_area_struct *vma;
1946         struct vm_unmapped_area_info info;
1947
1948         if (len > TASK_SIZE - mmap_min_addr)
1949                 return -ENOMEM;
1950
1951         if (flags & MAP_FIXED)
1952                 return addr;
1953
1954         if (addr) {
1955                 addr = PAGE_ALIGN(addr);
1956                 vma = find_vma(mm, addr);
1957                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1958                     (!vma || addr + len <= vma->vm_start))
1959                         return addr;
1960         }
1961
1962         info.flags = 0;
1963         info.length = len;
1964         info.low_limit = mm->mmap_base;
1965         info.high_limit = TASK_SIZE;
1966         info.align_mask = 0;
1967         return vm_unmapped_area(&info);
1968 }
1969 #endif
1970
1971 /*
1972  * This mmap-allocator allocates new areas top-down from below the
1973  * stack's low limit (the base):
1974  */
1975 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1976 unsigned long
1977 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1978                           const unsigned long len, const unsigned long pgoff,
1979                           const unsigned long flags)
1980 {
1981         struct vm_area_struct *vma;
1982         struct mm_struct *mm = current->mm;
1983         unsigned long addr = addr0;
1984         struct vm_unmapped_area_info info;
1985
1986         /* requested length too big for entire address space */
1987         if (len > TASK_SIZE - mmap_min_addr)
1988                 return -ENOMEM;
1989
1990         if (flags & MAP_FIXED)
1991                 return addr;
1992
1993         /* requesting a specific address */
1994         if (addr) {
1995                 addr = PAGE_ALIGN(addr);
1996                 vma = find_vma(mm, addr);
1997                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1998                                 (!vma || addr + len <= vma->vm_start))
1999                         return addr;
2000         }
2001
2002         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2003         info.length = len;
2004         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2005         info.high_limit = mm->mmap_base;
2006         info.align_mask = 0;
2007         addr = vm_unmapped_area(&info);
2008
2009         /*
2010          * A failed mmap() very likely causes application failure,
2011          * so fall back to the bottom-up function here. This scenario
2012          * can happen with large stack limits and large mmap()
2013          * allocations.
2014          */
2015         if (offset_in_page(addr)) {
2016                 VM_BUG_ON(addr != -ENOMEM);
2017                 info.flags = 0;
2018                 info.low_limit = TASK_UNMAPPED_BASE;
2019                 info.high_limit = TASK_SIZE;
2020                 addr = vm_unmapped_area(&info);
2021         }
2022
2023         return addr;
2024 }
2025 #endif
2026
2027 unsigned long
2028 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2029                 unsigned long pgoff, unsigned long flags)
2030 {
2031         unsigned long (*get_area)(struct file *, unsigned long,
2032                                   unsigned long, unsigned long, unsigned long);
2033
2034         unsigned long error = arch_mmap_check(addr, len, flags);
2035         if (error)
2036                 return error;
2037
2038         /* Careful about overflows.. */
2039         if (len > TASK_SIZE)
2040                 return -ENOMEM;
2041
2042         get_area = current->mm->get_unmapped_area;
2043         if (file && file->f_op->get_unmapped_area)
2044                 get_area = file->f_op->get_unmapped_area;
2045         addr = get_area(file, addr, len, pgoff, flags);
2046         if (IS_ERR_VALUE(addr))
2047                 return addr;
2048
2049         if (addr > TASK_SIZE - len)
2050                 return -ENOMEM;
2051         if (offset_in_page(addr))
2052                 return -EINVAL;
2053
2054         addr = arch_rebalance_pgtables(addr, len);
2055         error = security_mmap_addr(addr);
2056         return error ? error : addr;
2057 }
2058
2059 EXPORT_SYMBOL(get_unmapped_area);
2060
2061 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2062 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2063 {
2064         struct rb_node *rb_node;
2065         struct vm_area_struct *vma;
2066
2067         /* Check the cache first. */
2068         vma = vmacache_find(mm, addr);
2069         if (likely(vma))
2070                 return vma;
2071
2072         rb_node = mm->mm_rb.rb_node;
2073
2074         while (rb_node) {
2075                 struct vm_area_struct *tmp;
2076
2077                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2078
2079                 if (tmp->vm_end > addr) {
2080                         vma = tmp;
2081                         if (tmp->vm_start <= addr)
2082                                 break;
2083                         rb_node = rb_node->rb_left;
2084                 } else
2085                         rb_node = rb_node->rb_right;
2086         }
2087
2088         if (vma)
2089                 vmacache_update(addr, vma);
2090         return vma;
2091 }
2092
2093 EXPORT_SYMBOL(find_vma);
2094
2095 /*
2096  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2097  */
2098 struct vm_area_struct *
2099 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2100                         struct vm_area_struct **pprev)
2101 {
2102         struct vm_area_struct *vma;
2103
2104         vma = find_vma(mm, addr);
2105         if (vma) {
2106                 *pprev = vma->vm_prev;
2107         } else {
2108                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2109                 *pprev = NULL;
2110                 while (rb_node) {
2111                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2112                         rb_node = rb_node->rb_right;
2113                 }
2114         }
2115         return vma;
2116 }
2117
2118 /*
2119  * Verify that the stack growth is acceptable and
2120  * update accounting. This is shared with both the
2121  * grow-up and grow-down cases.
2122  */
2123 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2124 {
2125         struct mm_struct *mm = vma->vm_mm;
2126         struct rlimit *rlim = current->signal->rlim;
2127         unsigned long new_start, actual_size;
2128
2129         /* address space limit tests */
2130         if (!may_expand_vm(mm, grow))
2131                 return -ENOMEM;
2132
2133         /* Stack limit test */
2134         actual_size = size;
2135         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2136                 actual_size -= PAGE_SIZE;
2137         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2138                 return -ENOMEM;
2139
2140         /* mlock limit tests */
2141         if (vma->vm_flags & VM_LOCKED) {
2142                 unsigned long locked;
2143                 unsigned long limit;
2144                 locked = mm->locked_vm + grow;
2145                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2146                 limit >>= PAGE_SHIFT;
2147                 if (locked > limit && !capable(CAP_IPC_LOCK))
2148                         return -ENOMEM;
2149         }
2150
2151         /* Check to ensure the stack will not grow into a hugetlb-only region */
2152         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2153                         vma->vm_end - size;
2154         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2155                 return -EFAULT;
2156
2157         /*
2158          * Overcommit..  This must be the final test, as it will
2159          * update security statistics.
2160          */
2161         if (security_vm_enough_memory_mm(mm, grow))
2162                 return -ENOMEM;
2163
2164         return 0;
2165 }
2166
2167 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2168 /*
2169  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2170  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2171  */
2172 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2173 {
2174         struct mm_struct *mm = vma->vm_mm;
2175         int error = 0;
2176
2177         if (!(vma->vm_flags & VM_GROWSUP))
2178                 return -EFAULT;
2179
2180         /* Guard against wrapping around to address 0. */
2181         if (address < PAGE_ALIGN(address+4))
2182                 address = PAGE_ALIGN(address+4);
2183         else
2184                 return -ENOMEM;
2185
2186         /* We must make sure the anon_vma is allocated. */
2187         if (unlikely(anon_vma_prepare(vma)))
2188                 return -ENOMEM;
2189
2190         /*
2191          * vma->vm_start/vm_end cannot change under us because the caller
2192          * is required to hold the mmap_sem in read mode.  We need the
2193          * anon_vma lock to serialize against concurrent expand_stacks.
2194          */
2195         anon_vma_lock_write(vma->anon_vma);
2196
2197         /* Somebody else might have raced and expanded it already */
2198         if (address > vma->vm_end) {
2199                 unsigned long size, grow;
2200
2201                 size = address - vma->vm_start;
2202                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2203
2204                 error = -ENOMEM;
2205                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2206                         error = acct_stack_growth(vma, size, grow);
2207                         if (!error) {
2208                                 /*
2209                                  * vma_gap_update() doesn't support concurrent
2210                                  * updates, but we only hold a shared mmap_sem
2211                                  * lock here, so we need to protect against
2212                                  * concurrent vma expansions.
2213                                  * anon_vma_lock_write() doesn't help here, as
2214                                  * we don't guarantee that all growable vmas
2215                                  * in a mm share the same root anon vma.
2216                                  * So, we reuse mm->page_table_lock to guard
2217                                  * against concurrent vma expansions.
2218                                  */
2219                                 spin_lock(&mm->page_table_lock);
2220                                 if (vma->vm_flags & VM_LOCKED)
2221                                         mm->locked_vm += grow;
2222                                 vm_stat_account(mm, vma->vm_flags,
2223                                                 vma->vm_file, grow);
2224                                 anon_vma_interval_tree_pre_update_vma(vma);
2225                                 vma->vm_end = address;
2226                                 anon_vma_interval_tree_post_update_vma(vma);
2227                                 if (vma->vm_next)
2228                                         vma_gap_update(vma->vm_next);
2229                                 else
2230                                         mm->highest_vm_end = address;
2231                                 spin_unlock(&mm->page_table_lock);
2232
2233                                 perf_event_mmap(vma);
2234                         }
2235                 }
2236         }
2237         anon_vma_unlock_write(vma->anon_vma);
2238         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2239         validate_mm(mm);
2240         return error;
2241 }
2242 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2243
2244 /*
2245  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2246  */
2247 int expand_downwards(struct vm_area_struct *vma,
2248                                    unsigned long address)
2249 {
2250         struct mm_struct *mm = vma->vm_mm;
2251         int error;
2252
2253         address &= PAGE_MASK;
2254         error = security_mmap_addr(address);
2255         if (error)
2256                 return error;
2257
2258         /* We must make sure the anon_vma is allocated. */
2259         if (unlikely(anon_vma_prepare(vma)))
2260                 return -ENOMEM;
2261
2262         /*
2263          * vma->vm_start/vm_end cannot change under us because the caller
2264          * is required to hold the mmap_sem in read mode.  We need the
2265          * anon_vma lock to serialize against concurrent expand_stacks.
2266          */
2267         anon_vma_lock_write(vma->anon_vma);
2268
2269         /* Somebody else might have raced and expanded it already */
2270         if (address < vma->vm_start) {
2271                 unsigned long size, grow;
2272
2273                 size = vma->vm_end - address;
2274                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2275
2276                 error = -ENOMEM;
2277                 if (grow <= vma->vm_pgoff) {
2278                         error = acct_stack_growth(vma, size, grow);
2279                         if (!error) {
2280                                 /*
2281                                  * vma_gap_update() doesn't support concurrent
2282                                  * updates, but we only hold a shared mmap_sem
2283                                  * lock here, so we need to protect against
2284                                  * concurrent vma expansions.
2285                                  * anon_vma_lock_write() doesn't help here, as
2286                                  * we don't guarantee that all growable vmas
2287                                  * in a mm share the same root anon vma.
2288                                  * So, we reuse mm->page_table_lock to guard
2289                                  * against concurrent vma expansions.
2290                                  */
2291                                 spin_lock(&mm->page_table_lock);
2292                                 if (vma->vm_flags & VM_LOCKED)
2293                                         mm->locked_vm += grow;
2294                                 vm_stat_account(mm, vma->vm_flags,
2295                                                 vma->vm_file, grow);
2296                                 anon_vma_interval_tree_pre_update_vma(vma);
2297                                 vma->vm_start = address;
2298                                 vma->vm_pgoff -= grow;
2299                                 anon_vma_interval_tree_post_update_vma(vma);
2300                                 vma_gap_update(vma);
2301                                 spin_unlock(&mm->page_table_lock);
2302
2303                                 perf_event_mmap(vma);
2304                         }
2305                 }
2306         }
2307         anon_vma_unlock_write(vma->anon_vma);
2308         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2309         validate_mm(mm);
2310         return error;
2311 }
2312
2313 /*
2314  * Note how expand_stack() refuses to expand the stack all the way to
2315  * abut the next virtual mapping, *unless* that mapping itself is also
2316  * a stack mapping. We want to leave room for a guard page, after all
2317  * (the guard page itself is not added here, that is done by the
2318  * actual page faulting logic)
2319  *
2320  * This matches the behavior of the guard page logic (see mm/memory.c:
2321  * check_stack_guard_page()), which only allows the guard page to be
2322  * removed under these circumstances.
2323  */
2324 #ifdef CONFIG_STACK_GROWSUP
2325 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2326 {
2327         struct vm_area_struct *next;
2328
2329         address &= PAGE_MASK;
2330         next = vma->vm_next;
2331         if (next && next->vm_start == address + PAGE_SIZE) {
2332                 if (!(next->vm_flags & VM_GROWSUP))
2333                         return -ENOMEM;
2334         }
2335         return expand_upwards(vma, address);
2336 }
2337
2338 struct vm_area_struct *
2339 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2340 {
2341         struct vm_area_struct *vma, *prev;
2342
2343         addr &= PAGE_MASK;
2344         vma = find_vma_prev(mm, addr, &prev);
2345         if (vma && (vma->vm_start <= addr))
2346                 return vma;
2347         if (!prev || expand_stack(prev, addr))
2348                 return NULL;
2349         if (prev->vm_flags & VM_LOCKED)
2350                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2351         return prev;
2352 }
2353 #else
2354 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2355 {
2356         struct vm_area_struct *prev;
2357
2358         address &= PAGE_MASK;
2359         prev = vma->vm_prev;
2360         if (prev && prev->vm_end == address) {
2361                 if (!(prev->vm_flags & VM_GROWSDOWN))
2362                         return -ENOMEM;
2363         }
2364         return expand_downwards(vma, address);
2365 }
2366
2367 struct vm_area_struct *
2368 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2369 {
2370         struct vm_area_struct *vma;
2371         unsigned long start;
2372
2373         addr &= PAGE_MASK;
2374         vma = find_vma(mm, addr);
2375         if (!vma)
2376                 return NULL;
2377         if (vma->vm_start <= addr)
2378                 return vma;
2379         if (!(vma->vm_flags & VM_GROWSDOWN))
2380                 return NULL;
2381         start = vma->vm_start;
2382         if (expand_stack(vma, addr))
2383                 return NULL;
2384         if (vma->vm_flags & VM_LOCKED)
2385                 populate_vma_page_range(vma, addr, start, NULL);
2386         return vma;
2387 }
2388 #endif
2389
2390 EXPORT_SYMBOL_GPL(find_extend_vma);
2391
2392 /*
2393  * Ok - we have the memory areas we should free on the vma list,
2394  * so release them, and do the vma updates.
2395  *
2396  * Called with the mm semaphore held.
2397  */
2398 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2399 {
2400         unsigned long nr_accounted = 0;
2401
2402         /* Update high watermark before we lower total_vm */
2403         update_hiwater_vm(mm);
2404         do {
2405                 long nrpages = vma_pages(vma);
2406
2407                 if (vma->vm_flags & VM_ACCOUNT)
2408                         nr_accounted += nrpages;
2409                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2410                 vma = remove_vma(vma);
2411         } while (vma);
2412         vm_unacct_memory(nr_accounted);
2413         validate_mm(mm);
2414 }
2415
2416 /*
2417  * Get rid of page table information in the indicated region.
2418  *
2419  * Called with the mm semaphore held.
2420  */
2421 static void unmap_region(struct mm_struct *mm,
2422                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2423                 unsigned long start, unsigned long end)
2424 {
2425         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2426         struct mmu_gather tlb;
2427
2428         lru_add_drain();
2429         tlb_gather_mmu(&tlb, mm, start, end);
2430         update_hiwater_rss(mm);
2431         unmap_vmas(&tlb, vma, start, end);
2432         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2433                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2434         tlb_finish_mmu(&tlb, start, end);
2435 }
2436
2437 /*
2438  * Create a list of vma's touched by the unmap, removing them from the mm's
2439  * vma list as we go..
2440  */
2441 static void
2442 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2443         struct vm_area_struct *prev, unsigned long end)
2444 {
2445         struct vm_area_struct **insertion_point;
2446         struct vm_area_struct *tail_vma = NULL;
2447
2448         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2449         vma->vm_prev = NULL;
2450         do {
2451                 vma_rb_erase(vma, &mm->mm_rb);
2452                 mm->map_count--;
2453                 tail_vma = vma;
2454                 vma = vma->vm_next;
2455         } while (vma && vma->vm_start < end);
2456         *insertion_point = vma;
2457         if (vma) {
2458                 vma->vm_prev = prev;
2459                 vma_gap_update(vma);
2460         } else
2461                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2462         tail_vma->vm_next = NULL;
2463
2464         /* Kill the cache */
2465         vmacache_invalidate(mm);
2466 }
2467
2468 /*
2469  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2470  * munmap path where it doesn't make sense to fail.
2471  */
2472 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2473               unsigned long addr, int new_below)
2474 {
2475         struct vm_area_struct *new;
2476         int err;
2477
2478         if (is_vm_hugetlb_page(vma) && (addr &
2479                                         ~(huge_page_mask(hstate_vma(vma)))))
2480                 return -EINVAL;
2481
2482         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2483         if (!new)
2484                 return -ENOMEM;
2485
2486         /* most fields are the same, copy all, and then fixup */
2487         *new = *vma;
2488
2489         INIT_LIST_HEAD(&new->anon_vma_chain);
2490
2491         if (new_below)
2492                 new->vm_end = addr;
2493         else {
2494                 new->vm_start = addr;
2495                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2496         }
2497
2498         err = vma_dup_policy(vma, new);
2499         if (err)
2500                 goto out_free_vma;
2501
2502         err = anon_vma_clone(new, vma);
2503         if (err)
2504                 goto out_free_mpol;
2505
2506         if (new->vm_file)
2507                 get_file(new->vm_file);
2508
2509         if (new->vm_ops && new->vm_ops->open)
2510                 new->vm_ops->open(new);
2511
2512         if (new_below)
2513                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2514                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2515         else
2516                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2517
2518         /* Success. */
2519         if (!err)
2520                 return 0;
2521
2522         /* Clean everything up if vma_adjust failed. */
2523         if (new->vm_ops && new->vm_ops->close)
2524                 new->vm_ops->close(new);
2525         if (new->vm_file)
2526                 fput(new->vm_file);
2527         unlink_anon_vmas(new);
2528  out_free_mpol:
2529         mpol_put(vma_policy(new));
2530  out_free_vma:
2531         kmem_cache_free(vm_area_cachep, new);
2532         return err;
2533 }
2534
2535 /*
2536  * Split a vma into two pieces at address 'addr', a new vma is allocated
2537  * either for the first part or the tail.
2538  */
2539 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2540               unsigned long addr, int new_below)
2541 {
2542         if (mm->map_count >= sysctl_max_map_count)
2543                 return -ENOMEM;
2544
2545         return __split_vma(mm, vma, addr, new_below);
2546 }
2547
2548 /* Munmap is split into 2 main parts -- this part which finds
2549  * what needs doing, and the areas themselves, which do the
2550  * work.  This now handles partial unmappings.
2551  * Jeremy Fitzhardinge <jeremy@goop.org>
2552  */
2553 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2554 {
2555         unsigned long end;
2556         struct vm_area_struct *vma, *prev, *last;
2557
2558         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2559                 return -EINVAL;
2560
2561         len = PAGE_ALIGN(len);
2562         if (len == 0)
2563                 return -EINVAL;
2564
2565         /* Find the first overlapping VMA */
2566         vma = find_vma(mm, start);
2567         if (!vma)
2568                 return 0;
2569         prev = vma->vm_prev;
2570         /* we have  start < vma->vm_end  */
2571
2572         /* if it doesn't overlap, we have nothing.. */
2573         end = start + len;
2574         if (vma->vm_start >= end)
2575                 return 0;
2576
2577         /*
2578          * If we need to split any vma, do it now to save pain later.
2579          *
2580          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2581          * unmapped vm_area_struct will remain in use: so lower split_vma
2582          * places tmp vma above, and higher split_vma places tmp vma below.
2583          */
2584         if (start > vma->vm_start) {
2585                 int error;
2586
2587                 /*
2588                  * Make sure that map_count on return from munmap() will
2589                  * not exceed its limit; but let map_count go just above
2590                  * its limit temporarily, to help free resources as expected.
2591                  */
2592                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2593                         return -ENOMEM;
2594
2595                 error = __split_vma(mm, vma, start, 0);
2596                 if (error)
2597                         return error;
2598                 prev = vma;
2599         }
2600
2601         /* Does it split the last one? */
2602         last = find_vma(mm, end);
2603         if (last && end > last->vm_start) {
2604                 int error = __split_vma(mm, last, end, 1);
2605                 if (error)
2606                         return error;
2607         }
2608         vma = prev ? prev->vm_next : mm->mmap;
2609
2610         /*
2611          * unlock any mlock()ed ranges before detaching vmas
2612          */
2613         if (mm->locked_vm) {
2614                 struct vm_area_struct *tmp = vma;
2615                 while (tmp && tmp->vm_start < end) {
2616                         if (tmp->vm_flags & VM_LOCKED) {
2617                                 mm->locked_vm -= vma_pages(tmp);
2618                                 munlock_vma_pages_all(tmp);
2619                         }
2620                         tmp = tmp->vm_next;
2621                 }
2622         }
2623
2624         /*
2625          * Remove the vma's, and unmap the actual pages
2626          */
2627         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2628         unmap_region(mm, vma, prev, start, end);
2629
2630         arch_unmap(mm, vma, start, end);
2631
2632         /* Fix up all other VM information */
2633         remove_vma_list(mm, vma);
2634
2635         return 0;
2636 }
2637 EXPORT_SYMBOL(do_munmap);
2638
2639 int vm_munmap(unsigned long start, size_t len)
2640 {
2641         int ret;
2642         struct mm_struct *mm = current->mm;
2643
2644         down_write(&mm->mmap_sem);
2645         ret = do_munmap(mm, start, len);
2646         up_write(&mm->mmap_sem);
2647         return ret;
2648 }
2649 EXPORT_SYMBOL(vm_munmap);
2650
2651 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2652 {
2653         profile_munmap(addr);
2654         return vm_munmap(addr, len);
2655 }
2656
2657
2658 /*
2659  * Emulation of deprecated remap_file_pages() syscall.
2660  */
2661 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2662                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2663 {
2664
2665         struct mm_struct *mm = current->mm;
2666         struct vm_area_struct *vma;
2667         unsigned long populate = 0;
2668         unsigned long ret = -EINVAL;
2669         struct file *file;
2670
2671         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2672                         "See Documentation/vm/remap_file_pages.txt.\n",
2673                         current->comm, current->pid);
2674
2675         if (prot)
2676                 return ret;
2677         start = start & PAGE_MASK;
2678         size = size & PAGE_MASK;
2679
2680         if (start + size <= start)
2681                 return ret;
2682
2683         /* Does pgoff wrap? */
2684         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2685                 return ret;
2686
2687         down_write(&mm->mmap_sem);
2688         vma = find_vma(mm, start);
2689
2690         if (!vma || !(vma->vm_flags & VM_SHARED))
2691                 goto out;
2692
2693         if (start < vma->vm_start)
2694                 goto out;
2695
2696         if (start + size > vma->vm_end) {
2697                 struct vm_area_struct *next;
2698
2699                 for (next = vma->vm_next; next; next = next->vm_next) {
2700                         /* hole between vmas ? */
2701                         if (next->vm_start != next->vm_prev->vm_end)
2702                                 goto out;
2703
2704                         if (next->vm_file != vma->vm_file)
2705                                 goto out;
2706
2707                         if (next->vm_flags != vma->vm_flags)
2708                                 goto out;
2709
2710                         if (start + size <= next->vm_end)
2711                                 break;
2712                 }
2713
2714                 if (!next)
2715                         goto out;
2716         }
2717
2718         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2719         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2720         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2721
2722         flags &= MAP_NONBLOCK;
2723         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2724         if (vma->vm_flags & VM_LOCKED) {
2725                 struct vm_area_struct *tmp;
2726                 flags |= MAP_LOCKED;
2727
2728                 /* drop PG_Mlocked flag for over-mapped range */
2729                 for (tmp = vma; tmp->vm_start >= start + size;
2730                                 tmp = tmp->vm_next) {
2731                         munlock_vma_pages_range(tmp,
2732                                         max(tmp->vm_start, start),
2733                                         min(tmp->vm_end, start + size));
2734                 }
2735         }
2736
2737         file = get_file(vma->vm_file);
2738         ret = do_mmap_pgoff(vma->vm_file, start, size,
2739                         prot, flags, pgoff, &populate);
2740         fput(file);
2741 out:
2742         up_write(&mm->mmap_sem);
2743         if (populate)
2744                 mm_populate(ret, populate);
2745         if (!IS_ERR_VALUE(ret))
2746                 ret = 0;
2747         return ret;
2748 }
2749
2750 static inline void verify_mm_writelocked(struct mm_struct *mm)
2751 {
2752 #ifdef CONFIG_DEBUG_VM
2753         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2754                 WARN_ON(1);
2755                 up_read(&mm->mmap_sem);
2756         }
2757 #endif
2758 }
2759
2760 /*
2761  *  this is really a simplified "do_mmap".  it only handles
2762  *  anonymous maps.  eventually we may be able to do some
2763  *  brk-specific accounting here.
2764  */
2765 static unsigned long do_brk(unsigned long addr, unsigned long len)
2766 {
2767         struct mm_struct *mm = current->mm;
2768         struct vm_area_struct *vma, *prev;
2769         unsigned long flags;
2770         struct rb_node **rb_link, *rb_parent;
2771         pgoff_t pgoff = addr >> PAGE_SHIFT;
2772         int error;
2773
2774         len = PAGE_ALIGN(len);
2775         if (!len)
2776                 return addr;
2777
2778         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2779
2780         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2781         if (offset_in_page(error))
2782                 return error;
2783
2784         error = mlock_future_check(mm, mm->def_flags, len);
2785         if (error)
2786                 return error;
2787
2788         /*
2789          * mm->mmap_sem is required to protect against another thread
2790          * changing the mappings in case we sleep.
2791          */
2792         verify_mm_writelocked(mm);
2793
2794         /*
2795          * Clear old maps.  this also does some error checking for us
2796          */
2797         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2798                               &rb_parent)) {
2799                 if (do_munmap(mm, addr, len))
2800                         return -ENOMEM;
2801         }
2802
2803         /* Check against address space limits *after* clearing old maps... */
2804         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2805                 return -ENOMEM;
2806
2807         if (mm->map_count > sysctl_max_map_count)
2808                 return -ENOMEM;
2809
2810         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2811                 return -ENOMEM;
2812
2813         /* Can we just expand an old private anonymous mapping? */
2814         vma = vma_merge(mm, prev, addr, addr + len, flags,
2815                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2816         if (vma)
2817                 goto out;
2818
2819         /*
2820          * create a vma struct for an anonymous mapping
2821          */
2822         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2823         if (!vma) {
2824                 vm_unacct_memory(len >> PAGE_SHIFT);
2825                 return -ENOMEM;
2826         }
2827
2828         INIT_LIST_HEAD(&vma->anon_vma_chain);
2829         vma->vm_mm = mm;
2830         vma->vm_start = addr;
2831         vma->vm_end = addr + len;
2832         vma->vm_pgoff = pgoff;
2833         vma->vm_flags = flags;
2834         vma->vm_page_prot = vm_get_page_prot(flags);
2835         vma_link(mm, vma, prev, rb_link, rb_parent);
2836 out:
2837         perf_event_mmap(vma);
2838         mm->total_vm += len >> PAGE_SHIFT;
2839         if (flags & VM_LOCKED)
2840                 mm->locked_vm += (len >> PAGE_SHIFT);
2841         vma->vm_flags |= VM_SOFTDIRTY;
2842         return addr;
2843 }
2844
2845 unsigned long vm_brk(unsigned long addr, unsigned long len)
2846 {
2847         struct mm_struct *mm = current->mm;
2848         unsigned long ret;
2849         bool populate;
2850
2851         down_write(&mm->mmap_sem);
2852         ret = do_brk(addr, len);
2853         populate = ((mm->def_flags & VM_LOCKED) != 0);
2854         up_write(&mm->mmap_sem);
2855         if (populate)
2856                 mm_populate(addr, len);
2857         return ret;
2858 }
2859 EXPORT_SYMBOL(vm_brk);
2860
2861 /* Release all mmaps. */
2862 void exit_mmap(struct mm_struct *mm)
2863 {
2864         struct mmu_gather tlb;
2865         struct vm_area_struct *vma;
2866         unsigned long nr_accounted = 0;
2867
2868         /* mm's last user has gone, and its about to be pulled down */
2869         mmu_notifier_release(mm);
2870
2871         if (mm->locked_vm) {
2872                 vma = mm->mmap;
2873                 while (vma) {
2874                         if (vma->vm_flags & VM_LOCKED)
2875                                 munlock_vma_pages_all(vma);
2876                         vma = vma->vm_next;
2877                 }
2878         }
2879
2880         arch_exit_mmap(mm);
2881
2882         vma = mm->mmap;
2883         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2884                 return;
2885
2886         lru_add_drain();
2887         flush_cache_mm(mm);
2888         tlb_gather_mmu(&tlb, mm, 0, -1);
2889         /* update_hiwater_rss(mm) here? but nobody should be looking */
2890         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2891         unmap_vmas(&tlb, vma, 0, -1);
2892
2893         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2894         tlb_finish_mmu(&tlb, 0, -1);
2895
2896         /*
2897          * Walk the list again, actually closing and freeing it,
2898          * with preemption enabled, without holding any MM locks.
2899          */
2900         while (vma) {
2901                 if (vma->vm_flags & VM_ACCOUNT)
2902                         nr_accounted += vma_pages(vma);
2903                 vma = remove_vma(vma);
2904         }
2905         vm_unacct_memory(nr_accounted);
2906 }
2907
2908 /* Insert vm structure into process list sorted by address
2909  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2910  * then i_mmap_rwsem is taken here.
2911  */
2912 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2913 {
2914         struct vm_area_struct *prev;
2915         struct rb_node **rb_link, *rb_parent;
2916
2917         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2918                            &prev, &rb_link, &rb_parent))
2919                 return -ENOMEM;
2920         if ((vma->vm_flags & VM_ACCOUNT) &&
2921              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2922                 return -ENOMEM;
2923
2924         /*
2925          * The vm_pgoff of a purely anonymous vma should be irrelevant
2926          * until its first write fault, when page's anon_vma and index
2927          * are set.  But now set the vm_pgoff it will almost certainly
2928          * end up with (unless mremap moves it elsewhere before that
2929          * first wfault), so /proc/pid/maps tells a consistent story.
2930          *
2931          * By setting it to reflect the virtual start address of the
2932          * vma, merges and splits can happen in a seamless way, just
2933          * using the existing file pgoff checks and manipulations.
2934          * Similarly in do_mmap_pgoff and in do_brk.
2935          */
2936         if (vma_is_anonymous(vma)) {
2937                 BUG_ON(vma->anon_vma);
2938                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2939         }
2940
2941         vma_link(mm, vma, prev, rb_link, rb_parent);
2942         return 0;
2943 }
2944
2945 /*
2946  * Copy the vma structure to a new location in the same mm,
2947  * prior to moving page table entries, to effect an mremap move.
2948  */
2949 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2950         unsigned long addr, unsigned long len, pgoff_t pgoff,
2951         bool *need_rmap_locks)
2952 {
2953         struct vm_area_struct *vma = *vmap;
2954         unsigned long vma_start = vma->vm_start;
2955         struct mm_struct *mm = vma->vm_mm;
2956         struct vm_area_struct *new_vma, *prev;
2957         struct rb_node **rb_link, *rb_parent;
2958         bool faulted_in_anon_vma = true;
2959
2960         /*
2961          * If anonymous vma has not yet been faulted, update new pgoff
2962          * to match new location, to increase its chance of merging.
2963          */
2964         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2965                 pgoff = addr >> PAGE_SHIFT;
2966                 faulted_in_anon_vma = false;
2967         }
2968
2969         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2970                 return NULL;    /* should never get here */
2971         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2972                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2973                             vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
2974         if (new_vma) {
2975                 /*
2976                  * Source vma may have been merged into new_vma
2977                  */
2978                 if (unlikely(vma_start >= new_vma->vm_start &&
2979                              vma_start < new_vma->vm_end)) {
2980                         /*
2981                          * The only way we can get a vma_merge with
2982                          * self during an mremap is if the vma hasn't
2983                          * been faulted in yet and we were allowed to
2984                          * reset the dst vma->vm_pgoff to the
2985                          * destination address of the mremap to allow
2986                          * the merge to happen. mremap must change the
2987                          * vm_pgoff linearity between src and dst vmas
2988                          * (in turn preventing a vma_merge) to be
2989                          * safe. It is only safe to keep the vm_pgoff
2990                          * linear if there are no pages mapped yet.
2991                          */
2992                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2993                         *vmap = vma = new_vma;
2994                 }
2995                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2996         } else {
2997                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2998                 if (!new_vma)
2999                         goto out;
3000                 *new_vma = *vma;
3001                 new_vma->vm_start = addr;
3002                 new_vma->vm_end = addr + len;
3003                 new_vma->vm_pgoff = pgoff;
3004                 if (vma_dup_policy(vma, new_vma))
3005                         goto out_free_vma;
3006                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3007                 if (anon_vma_clone(new_vma, vma))
3008                         goto out_free_mempol;
3009                 if (new_vma->vm_file)
3010                         get_file(new_vma->vm_file);
3011                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3012                         new_vma->vm_ops->open(new_vma);
3013                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3014                 *need_rmap_locks = false;
3015         }
3016         return new_vma;
3017
3018 out_free_mempol:
3019         mpol_put(vma_policy(new_vma));
3020 out_free_vma:
3021         kmem_cache_free(vm_area_cachep, new_vma);
3022 out:
3023         return NULL;
3024 }
3025
3026 /*
3027  * Return true if the calling process may expand its vm space by the passed
3028  * number of pages
3029  */
3030 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3031 {
3032         unsigned long cur = mm->total_vm;       /* pages */
3033         unsigned long lim;
3034
3035         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3036
3037         if (cur + npages > lim)
3038                 return 0;
3039         return 1;
3040 }
3041
3042 static int special_mapping_fault(struct vm_area_struct *vma,
3043                                  struct vm_fault *vmf);
3044
3045 /*
3046  * Having a close hook prevents vma merging regardless of flags.
3047  */
3048 static void special_mapping_close(struct vm_area_struct *vma)
3049 {
3050 }
3051
3052 static const char *special_mapping_name(struct vm_area_struct *vma)
3053 {
3054         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3055 }
3056
3057 static const struct vm_operations_struct special_mapping_vmops = {
3058         .close = special_mapping_close,
3059         .fault = special_mapping_fault,
3060         .name = special_mapping_name,
3061 };
3062
3063 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3064         .close = special_mapping_close,
3065         .fault = special_mapping_fault,
3066 };
3067
3068 static int special_mapping_fault(struct vm_area_struct *vma,
3069                                 struct vm_fault *vmf)
3070 {
3071         pgoff_t pgoff;
3072         struct page **pages;
3073
3074         if (vma->vm_ops == &legacy_special_mapping_vmops)
3075                 pages = vma->vm_private_data;
3076         else
3077                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3078                         pages;
3079
3080         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3081                 pgoff--;
3082
3083         if (*pages) {
3084                 struct page *page = *pages;
3085                 get_page(page);
3086                 vmf->page = page;
3087                 return 0;
3088         }
3089
3090         return VM_FAULT_SIGBUS;
3091 }
3092
3093 static struct vm_area_struct *__install_special_mapping(
3094         struct mm_struct *mm,
3095         unsigned long addr, unsigned long len,
3096         unsigned long vm_flags, void *priv,
3097         const struct vm_operations_struct *ops)
3098 {
3099         int ret;
3100         struct vm_area_struct *vma;
3101
3102         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3103         if (unlikely(vma == NULL))
3104                 return ERR_PTR(-ENOMEM);
3105
3106         INIT_LIST_HEAD(&vma->anon_vma_chain);
3107         vma->vm_mm = mm;
3108         vma->vm_start = addr;
3109         vma->vm_end = addr + len;
3110
3111         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3112         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3113
3114         vma->vm_ops = ops;
3115         vma->vm_private_data = priv;
3116
3117         ret = insert_vm_struct(mm, vma);
3118         if (ret)
3119                 goto out;
3120
3121         mm->total_vm += len >> PAGE_SHIFT;
3122
3123         perf_event_mmap(vma);
3124
3125         return vma;
3126
3127 out:
3128         kmem_cache_free(vm_area_cachep, vma);
3129         return ERR_PTR(ret);
3130 }
3131
3132 /*
3133  * Called with mm->mmap_sem held for writing.
3134  * Insert a new vma covering the given region, with the given flags.
3135  * Its pages are supplied by the given array of struct page *.
3136  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3137  * The region past the last page supplied will always produce SIGBUS.
3138  * The array pointer and the pages it points to are assumed to stay alive
3139  * for as long as this mapping might exist.
3140  */
3141 struct vm_area_struct *_install_special_mapping(
3142         struct mm_struct *mm,
3143         unsigned long addr, unsigned long len,
3144         unsigned long vm_flags, const struct vm_special_mapping *spec)
3145 {
3146         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3147                                         &special_mapping_vmops);
3148 }
3149
3150 int install_special_mapping(struct mm_struct *mm,
3151                             unsigned long addr, unsigned long len,
3152                             unsigned long vm_flags, struct page **pages)
3153 {
3154         struct vm_area_struct *vma = __install_special_mapping(
3155                 mm, addr, len, vm_flags, (void *)pages,
3156                 &legacy_special_mapping_vmops);
3157
3158         return PTR_ERR_OR_ZERO(vma);
3159 }
3160
3161 static DEFINE_MUTEX(mm_all_locks_mutex);
3162
3163 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3164 {
3165         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3166                 /*
3167                  * The LSB of head.next can't change from under us
3168                  * because we hold the mm_all_locks_mutex.
3169                  */
3170                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3171                 /*
3172                  * We can safely modify head.next after taking the
3173                  * anon_vma->root->rwsem. If some other vma in this mm shares
3174                  * the same anon_vma we won't take it again.
3175                  *
3176                  * No need of atomic instructions here, head.next
3177                  * can't change from under us thanks to the
3178                  * anon_vma->root->rwsem.
3179                  */
3180                 if (__test_and_set_bit(0, (unsigned long *)
3181                                        &anon_vma->root->rb_root.rb_node))
3182                         BUG();
3183         }
3184 }
3185
3186 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3187 {
3188         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3189                 /*
3190                  * AS_MM_ALL_LOCKS can't change from under us because
3191                  * we hold the mm_all_locks_mutex.
3192                  *
3193                  * Operations on ->flags have to be atomic because
3194                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3195                  * mm_all_locks_mutex, there may be other cpus
3196                  * changing other bitflags in parallel to us.
3197                  */
3198                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3199                         BUG();
3200                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3201         }
3202 }
3203
3204 /*
3205  * This operation locks against the VM for all pte/vma/mm related
3206  * operations that could ever happen on a certain mm. This includes
3207  * vmtruncate, try_to_unmap, and all page faults.
3208  *
3209  * The caller must take the mmap_sem in write mode before calling
3210  * mm_take_all_locks(). The caller isn't allowed to release the
3211  * mmap_sem until mm_drop_all_locks() returns.
3212  *
3213  * mmap_sem in write mode is required in order to block all operations
3214  * that could modify pagetables and free pages without need of
3215  * altering the vma layout. It's also needed in write mode to avoid new
3216  * anon_vmas to be associated with existing vmas.
3217  *
3218  * A single task can't take more than one mm_take_all_locks() in a row
3219  * or it would deadlock.
3220  *
3221  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3222  * mapping->flags avoid to take the same lock twice, if more than one
3223  * vma in this mm is backed by the same anon_vma or address_space.
3224  *
3225  * We can take all the locks in random order because the VM code
3226  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3227  * takes more than one of them in a row. Secondly we're protected
3228  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3229  *
3230  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3231  * that may have to take thousand of locks.
3232  *
3233  * mm_take_all_locks() can fail if it's interrupted by signals.
3234  */
3235 int mm_take_all_locks(struct mm_struct *mm)
3236 {
3237         struct vm_area_struct *vma;
3238         struct anon_vma_chain *avc;
3239
3240         BUG_ON(down_read_trylock(&mm->mmap_sem));
3241
3242         mutex_lock(&mm_all_locks_mutex);
3243
3244         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3245                 if (signal_pending(current))
3246                         goto out_unlock;
3247                 if (vma->vm_file && vma->vm_file->f_mapping)
3248                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3249         }
3250
3251         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3252                 if (signal_pending(current))
3253                         goto out_unlock;
3254                 if (vma->anon_vma)
3255                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3256                                 vm_lock_anon_vma(mm, avc->anon_vma);
3257         }
3258
3259         return 0;
3260
3261 out_unlock:
3262         mm_drop_all_locks(mm);
3263         return -EINTR;
3264 }
3265
3266 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3267 {
3268         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3269                 /*
3270                  * The LSB of head.next can't change to 0 from under
3271                  * us because we hold the mm_all_locks_mutex.
3272                  *
3273                  * We must however clear the bitflag before unlocking
3274                  * the vma so the users using the anon_vma->rb_root will
3275                  * never see our bitflag.
3276                  *
3277                  * No need of atomic instructions here, head.next
3278                  * can't change from under us until we release the
3279                  * anon_vma->root->rwsem.
3280                  */
3281                 if (!__test_and_clear_bit(0, (unsigned long *)
3282                                           &anon_vma->root->rb_root.rb_node))
3283                         BUG();
3284                 anon_vma_unlock_write(anon_vma);
3285         }
3286 }
3287
3288 static void vm_unlock_mapping(struct address_space *mapping)
3289 {
3290         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3291                 /*
3292                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3293                  * because we hold the mm_all_locks_mutex.
3294                  */
3295                 i_mmap_unlock_write(mapping);
3296                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3297                                         &mapping->flags))
3298                         BUG();
3299         }
3300 }
3301
3302 /*
3303  * The mmap_sem cannot be released by the caller until
3304  * mm_drop_all_locks() returns.
3305  */
3306 void mm_drop_all_locks(struct mm_struct *mm)
3307 {
3308         struct vm_area_struct *vma;
3309         struct anon_vma_chain *avc;
3310
3311         BUG_ON(down_read_trylock(&mm->mmap_sem));
3312         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3313
3314         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3315                 if (vma->anon_vma)
3316                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3317                                 vm_unlock_anon_vma(avc->anon_vma);
3318                 if (vma->vm_file && vma->vm_file->f_mapping)
3319                         vm_unlock_mapping(vma->vm_file->f_mapping);
3320         }
3321
3322         mutex_unlock(&mm_all_locks_mutex);
3323 }
3324
3325 /*
3326  * initialise the VMA slab
3327  */
3328 void __init mmap_init(void)
3329 {
3330         int ret;
3331
3332         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3333         VM_BUG_ON(ret);
3334 }
3335
3336 /*
3337  * Initialise sysctl_user_reserve_kbytes.
3338  *
3339  * This is intended to prevent a user from starting a single memory hogging
3340  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3341  * mode.
3342  *
3343  * The default value is min(3% of free memory, 128MB)
3344  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3345  */
3346 static int init_user_reserve(void)
3347 {
3348         unsigned long free_kbytes;
3349
3350         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3351
3352         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3353         return 0;
3354 }
3355 subsys_initcall(init_user_reserve);
3356
3357 /*
3358  * Initialise sysctl_admin_reserve_kbytes.
3359  *
3360  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3361  * to log in and kill a memory hogging process.
3362  *
3363  * Systems with more than 256MB will reserve 8MB, enough to recover
3364  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3365  * only reserve 3% of free pages by default.
3366  */
3367 static int init_admin_reserve(void)
3368 {
3369         unsigned long free_kbytes;
3370
3371         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3372
3373         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3374         return 0;
3375 }
3376 subsys_initcall(init_admin_reserve);
3377
3378 /*
3379  * Reinititalise user and admin reserves if memory is added or removed.
3380  *
3381  * The default user reserve max is 128MB, and the default max for the
3382  * admin reserve is 8MB. These are usually, but not always, enough to
3383  * enable recovery from a memory hogging process using login/sshd, a shell,
3384  * and tools like top. It may make sense to increase or even disable the
3385  * reserve depending on the existence of swap or variations in the recovery
3386  * tools. So, the admin may have changed them.
3387  *
3388  * If memory is added and the reserves have been eliminated or increased above
3389  * the default max, then we'll trust the admin.
3390  *
3391  * If memory is removed and there isn't enough free memory, then we
3392  * need to reset the reserves.
3393  *
3394  * Otherwise keep the reserve set by the admin.
3395  */
3396 static int reserve_mem_notifier(struct notifier_block *nb,
3397                              unsigned long action, void *data)
3398 {
3399         unsigned long tmp, free_kbytes;
3400
3401         switch (action) {
3402         case MEM_ONLINE:
3403                 /* Default max is 128MB. Leave alone if modified by operator. */
3404                 tmp = sysctl_user_reserve_kbytes;
3405                 if (0 < tmp && tmp < (1UL << 17))
3406                         init_user_reserve();
3407
3408                 /* Default max is 8MB.  Leave alone if modified by operator. */
3409                 tmp = sysctl_admin_reserve_kbytes;
3410                 if (0 < tmp && tmp < (1UL << 13))
3411                         init_admin_reserve();
3412
3413                 break;
3414         case MEM_OFFLINE:
3415                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3416
3417                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3418                         init_user_reserve();
3419                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3420                                 sysctl_user_reserve_kbytes);
3421                 }
3422
3423                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3424                         init_admin_reserve();
3425                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3426                                 sysctl_admin_reserve_kbytes);
3427                 }
3428                 break;
3429         default:
3430                 break;
3431         }
3432         return NOTIFY_OK;
3433 }
3434
3435 static struct notifier_block reserve_mem_nb = {
3436         .notifier_call = reserve_mem_notifier,
3437 };
3438
3439 static int __meminit init_reserve_notifier(void)
3440 {
3441         if (register_hotmemory_notifier(&reserve_mem_nb))
3442                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3443
3444         return 0;
3445 }
3446 subsys_initcall(init_reserve_notifier);