6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
49 #include <asm/mmu_context.h>
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags) (0)
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len) (addr)
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 static void unmap_region(struct mm_struct *mm,
74 struct vm_area_struct *vma, struct vm_area_struct *prev,
75 unsigned long start, unsigned long end);
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 pgprot_t protection_map[16] = {
93 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
94 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 pgprot_t vm_get_page_prot(unsigned long vm_flags)
99 return __pgprot(pgprot_val(protection_map[vm_flags &
100 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
101 pgprot_val(arch_vm_get_page_prot(vm_flags)));
103 EXPORT_SYMBOL(vm_get_page_prot);
105 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
107 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
111 void vma_set_page_prot(struct vm_area_struct *vma)
113 unsigned long vm_flags = vma->vm_flags;
115 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
116 if (vma_wants_writenotify(vma)) {
117 vm_flags &= ~VM_SHARED;
118 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
124 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
125 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
126 unsigned long sysctl_overcommit_kbytes __read_mostly;
127 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
128 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
129 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
131 * Make sure vm_committed_as in one cacheline and not cacheline shared with
132 * other variables. It can be updated by several CPUs frequently.
134 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
137 * The global memory commitment made in the system can be a metric
138 * that can be used to drive ballooning decisions when Linux is hosted
139 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
140 * balancing memory across competing virtual machines that are hosted.
141 * Several metrics drive this policy engine including the guest reported
144 unsigned long vm_memory_committed(void)
146 return percpu_counter_read_positive(&vm_committed_as);
148 EXPORT_SYMBOL_GPL(vm_memory_committed);
151 * Check that a process has enough memory to allocate a new virtual
152 * mapping. 0 means there is enough memory for the allocation to
153 * succeed and -ENOMEM implies there is not.
155 * We currently support three overcommit policies, which are set via the
156 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
158 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
159 * Additional code 2002 Jul 20 by Robert Love.
161 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
163 * Note this is a helper function intended to be used by LSMs which
164 * wish to use this logic.
166 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
168 long free, allowed, reserve;
170 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
171 -(s64)vm_committed_as_batch * num_online_cpus(),
172 "memory commitment underflow");
174 vm_acct_memory(pages);
177 * Sometimes we want to use more memory than we have
179 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
182 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
183 free = global_page_state(NR_FREE_PAGES);
184 free += global_page_state(NR_FILE_PAGES);
187 * shmem pages shouldn't be counted as free in this
188 * case, they can't be purged, only swapped out, and
189 * that won't affect the overall amount of available
190 * memory in the system.
192 free -= global_page_state(NR_SHMEM);
194 free += get_nr_swap_pages();
197 * Any slabs which are created with the
198 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
199 * which are reclaimable, under pressure. The dentry
200 * cache and most inode caches should fall into this
202 free += global_page_state(NR_SLAB_RECLAIMABLE);
205 * Leave reserved pages. The pages are not for anonymous pages.
207 if (free <= totalreserve_pages)
210 free -= totalreserve_pages;
213 * Reserve some for root
216 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
224 allowed = vm_commit_limit();
226 * Reserve some for root
229 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
232 * Don't let a single process grow so big a user can't recover
235 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
236 allowed -= min_t(long, mm->total_vm / 32, reserve);
239 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
242 vm_unacct_memory(pages);
248 * Requires inode->i_mapping->i_mmap_rwsem
250 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
251 struct file *file, struct address_space *mapping)
253 if (vma->vm_flags & VM_DENYWRITE)
254 atomic_inc(&file_inode(file)->i_writecount);
255 if (vma->vm_flags & VM_SHARED)
256 mapping_unmap_writable(mapping);
258 flush_dcache_mmap_lock(mapping);
259 vma_interval_tree_remove(vma, &mapping->i_mmap);
260 flush_dcache_mmap_unlock(mapping);
264 * Unlink a file-based vm structure from its interval tree, to hide
265 * vma from rmap and vmtruncate before freeing its page tables.
267 void unlink_file_vma(struct vm_area_struct *vma)
269 struct file *file = vma->vm_file;
272 struct address_space *mapping = file->f_mapping;
273 i_mmap_lock_write(mapping);
274 __remove_shared_vm_struct(vma, file, mapping);
275 i_mmap_unlock_write(mapping);
280 * Close a vm structure and free it, returning the next.
282 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
284 struct vm_area_struct *next = vma->vm_next;
287 if (vma->vm_ops && vma->vm_ops->close)
288 vma->vm_ops->close(vma);
291 mpol_put(vma_policy(vma));
292 kmem_cache_free(vm_area_cachep, vma);
296 static unsigned long do_brk(unsigned long addr, unsigned long len);
298 SYSCALL_DEFINE1(brk, unsigned long, brk)
300 unsigned long retval;
301 unsigned long newbrk, oldbrk;
302 struct mm_struct *mm = current->mm;
303 unsigned long min_brk;
306 down_write(&mm->mmap_sem);
308 #ifdef CONFIG_COMPAT_BRK
310 * CONFIG_COMPAT_BRK can still be overridden by setting
311 * randomize_va_space to 2, which will still cause mm->start_brk
312 * to be arbitrarily shifted
314 if (current->brk_randomized)
315 min_brk = mm->start_brk;
317 min_brk = mm->end_data;
319 min_brk = mm->start_brk;
325 * Check against rlimit here. If this check is done later after the test
326 * of oldbrk with newbrk then it can escape the test and let the data
327 * segment grow beyond its set limit the in case where the limit is
328 * not page aligned -Ram Gupta
330 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
331 mm->end_data, mm->start_data))
334 newbrk = PAGE_ALIGN(brk);
335 oldbrk = PAGE_ALIGN(mm->brk);
336 if (oldbrk == newbrk)
339 /* Always allow shrinking brk. */
340 if (brk <= mm->brk) {
341 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
346 /* Check against existing mmap mappings. */
347 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
350 /* Ok, looks good - let it rip. */
351 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
356 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
357 up_write(&mm->mmap_sem);
359 mm_populate(oldbrk, newbrk - oldbrk);
364 up_write(&mm->mmap_sem);
368 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
370 unsigned long max, subtree_gap;
373 max -= vma->vm_prev->vm_end;
374 if (vma->vm_rb.rb_left) {
375 subtree_gap = rb_entry(vma->vm_rb.rb_left,
376 struct vm_area_struct, vm_rb)->rb_subtree_gap;
377 if (subtree_gap > max)
380 if (vma->vm_rb.rb_right) {
381 subtree_gap = rb_entry(vma->vm_rb.rb_right,
382 struct vm_area_struct, vm_rb)->rb_subtree_gap;
383 if (subtree_gap > max)
389 #ifdef CONFIG_DEBUG_VM_RB
390 static int browse_rb(struct rb_root *root)
392 int i = 0, j, bug = 0;
393 struct rb_node *nd, *pn = NULL;
394 unsigned long prev = 0, pend = 0;
396 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
397 struct vm_area_struct *vma;
398 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
399 if (vma->vm_start < prev) {
400 pr_emerg("vm_start %lx < prev %lx\n",
401 vma->vm_start, prev);
404 if (vma->vm_start < pend) {
405 pr_emerg("vm_start %lx < pend %lx\n",
406 vma->vm_start, pend);
409 if (vma->vm_start > vma->vm_end) {
410 pr_emerg("vm_start %lx > vm_end %lx\n",
411 vma->vm_start, vma->vm_end);
414 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
415 pr_emerg("free gap %lx, correct %lx\n",
417 vma_compute_subtree_gap(vma));
422 prev = vma->vm_start;
426 for (nd = pn; nd; nd = rb_prev(nd))
429 pr_emerg("backwards %d, forwards %d\n", j, i);
435 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
439 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
440 struct vm_area_struct *vma;
441 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
442 VM_BUG_ON_VMA(vma != ignore &&
443 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
448 static void validate_mm(struct mm_struct *mm)
452 unsigned long highest_address = 0;
453 struct vm_area_struct *vma = mm->mmap;
456 struct anon_vma *anon_vma = vma->anon_vma;
457 struct anon_vma_chain *avc;
460 anon_vma_lock_read(anon_vma);
461 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
462 anon_vma_interval_tree_verify(avc);
463 anon_vma_unlock_read(anon_vma);
466 highest_address = vma->vm_end;
470 if (i != mm->map_count) {
471 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
474 if (highest_address != mm->highest_vm_end) {
475 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
476 mm->highest_vm_end, highest_address);
479 i = browse_rb(&mm->mm_rb);
480 if (i != mm->map_count) {
482 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
485 VM_BUG_ON_MM(bug, mm);
488 #define validate_mm_rb(root, ignore) do { } while (0)
489 #define validate_mm(mm) do { } while (0)
492 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
493 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
496 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
497 * vma->vm_prev->vm_end values changed, without modifying the vma's position
500 static void vma_gap_update(struct vm_area_struct *vma)
503 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
504 * function that does exacltly what we want.
506 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
509 static inline void vma_rb_insert(struct vm_area_struct *vma,
510 struct rb_root *root)
512 /* All rb_subtree_gap values must be consistent prior to insertion */
513 validate_mm_rb(root, NULL);
515 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
518 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
521 * All rb_subtree_gap values must be consistent prior to erase,
522 * with the possible exception of the vma being erased.
524 validate_mm_rb(root, vma);
527 * Note rb_erase_augmented is a fairly large inline function,
528 * so make sure we instantiate it only once with our desired
529 * augmented rbtree callbacks.
531 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
535 * vma has some anon_vma assigned, and is already inserted on that
536 * anon_vma's interval trees.
538 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
539 * vma must be removed from the anon_vma's interval trees using
540 * anon_vma_interval_tree_pre_update_vma().
542 * After the update, the vma will be reinserted using
543 * anon_vma_interval_tree_post_update_vma().
545 * The entire update must be protected by exclusive mmap_sem and by
546 * the root anon_vma's mutex.
549 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
551 struct anon_vma_chain *avc;
553 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
554 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
558 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
560 struct anon_vma_chain *avc;
562 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
563 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
566 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
567 unsigned long end, struct vm_area_struct **pprev,
568 struct rb_node ***rb_link, struct rb_node **rb_parent)
570 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
572 __rb_link = &mm->mm_rb.rb_node;
573 rb_prev = __rb_parent = NULL;
576 struct vm_area_struct *vma_tmp;
578 __rb_parent = *__rb_link;
579 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
581 if (vma_tmp->vm_end > addr) {
582 /* Fail if an existing vma overlaps the area */
583 if (vma_tmp->vm_start < end)
585 __rb_link = &__rb_parent->rb_left;
587 rb_prev = __rb_parent;
588 __rb_link = &__rb_parent->rb_right;
594 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
595 *rb_link = __rb_link;
596 *rb_parent = __rb_parent;
600 static unsigned long count_vma_pages_range(struct mm_struct *mm,
601 unsigned long addr, unsigned long end)
603 unsigned long nr_pages = 0;
604 struct vm_area_struct *vma;
606 /* Find first overlaping mapping */
607 vma = find_vma_intersection(mm, addr, end);
611 nr_pages = (min(end, vma->vm_end) -
612 max(addr, vma->vm_start)) >> PAGE_SHIFT;
614 /* Iterate over the rest of the overlaps */
615 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
616 unsigned long overlap_len;
618 if (vma->vm_start > end)
621 overlap_len = min(end, vma->vm_end) - vma->vm_start;
622 nr_pages += overlap_len >> PAGE_SHIFT;
628 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
629 struct rb_node **rb_link, struct rb_node *rb_parent)
631 /* Update tracking information for the gap following the new vma. */
633 vma_gap_update(vma->vm_next);
635 mm->highest_vm_end = vma->vm_end;
638 * vma->vm_prev wasn't known when we followed the rbtree to find the
639 * correct insertion point for that vma. As a result, we could not
640 * update the vma vm_rb parents rb_subtree_gap values on the way down.
641 * So, we first insert the vma with a zero rb_subtree_gap value
642 * (to be consistent with what we did on the way down), and then
643 * immediately update the gap to the correct value. Finally we
644 * rebalance the rbtree after all augmented values have been set.
646 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
647 vma->rb_subtree_gap = 0;
649 vma_rb_insert(vma, &mm->mm_rb);
652 static void __vma_link_file(struct vm_area_struct *vma)
658 struct address_space *mapping = file->f_mapping;
660 if (vma->vm_flags & VM_DENYWRITE)
661 atomic_dec(&file_inode(file)->i_writecount);
662 if (vma->vm_flags & VM_SHARED)
663 atomic_inc(&mapping->i_mmap_writable);
665 flush_dcache_mmap_lock(mapping);
666 vma_interval_tree_insert(vma, &mapping->i_mmap);
667 flush_dcache_mmap_unlock(mapping);
672 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
673 struct vm_area_struct *prev, struct rb_node **rb_link,
674 struct rb_node *rb_parent)
676 __vma_link_list(mm, vma, prev, rb_parent);
677 __vma_link_rb(mm, vma, rb_link, rb_parent);
680 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
681 struct vm_area_struct *prev, struct rb_node **rb_link,
682 struct rb_node *rb_parent)
684 struct address_space *mapping = NULL;
687 mapping = vma->vm_file->f_mapping;
688 i_mmap_lock_write(mapping);
691 __vma_link(mm, vma, prev, rb_link, rb_parent);
692 __vma_link_file(vma);
695 i_mmap_unlock_write(mapping);
702 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
703 * mm's list and rbtree. It has already been inserted into the interval tree.
705 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
707 struct vm_area_struct *prev;
708 struct rb_node **rb_link, *rb_parent;
710 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
711 &prev, &rb_link, &rb_parent))
713 __vma_link(mm, vma, prev, rb_link, rb_parent);
718 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
719 struct vm_area_struct *prev)
721 struct vm_area_struct *next;
723 vma_rb_erase(vma, &mm->mm_rb);
724 prev->vm_next = next = vma->vm_next;
726 next->vm_prev = prev;
729 vmacache_invalidate(mm);
733 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
734 * is already present in an i_mmap tree without adjusting the tree.
735 * The following helper function should be used when such adjustments
736 * are necessary. The "insert" vma (if any) is to be inserted
737 * before we drop the necessary locks.
739 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
740 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
742 struct mm_struct *mm = vma->vm_mm;
743 struct vm_area_struct *next = vma->vm_next;
744 struct vm_area_struct *importer = NULL;
745 struct address_space *mapping = NULL;
746 struct rb_root *root = NULL;
747 struct anon_vma *anon_vma = NULL;
748 struct file *file = vma->vm_file;
749 bool start_changed = false, end_changed = false;
750 long adjust_next = 0;
753 if (next && !insert) {
754 struct vm_area_struct *exporter = NULL;
756 if (end >= next->vm_end) {
758 * vma expands, overlapping all the next, and
759 * perhaps the one after too (mprotect case 6).
761 again: remove_next = 1 + (end > next->vm_end);
765 } else if (end > next->vm_start) {
767 * vma expands, overlapping part of the next:
768 * mprotect case 5 shifting the boundary up.
770 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
773 } else if (end < vma->vm_end) {
775 * vma shrinks, and !insert tells it's not
776 * split_vma inserting another: so it must be
777 * mprotect case 4 shifting the boundary down.
779 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
785 * Easily overlooked: when mprotect shifts the boundary,
786 * make sure the expanding vma has anon_vma set if the
787 * shrinking vma had, to cover any anon pages imported.
789 if (exporter && exporter->anon_vma && !importer->anon_vma) {
792 importer->anon_vma = exporter->anon_vma;
793 error = anon_vma_clone(importer, exporter);
800 mapping = file->f_mapping;
801 root = &mapping->i_mmap;
802 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
805 uprobe_munmap(next, next->vm_start, next->vm_end);
807 i_mmap_lock_write(mapping);
810 * Put into interval tree now, so instantiated pages
811 * are visible to arm/parisc __flush_dcache_page
812 * throughout; but we cannot insert into address
813 * space until vma start or end is updated.
815 __vma_link_file(insert);
819 vma_adjust_trans_huge(vma, start, end, adjust_next);
821 anon_vma = vma->anon_vma;
822 if (!anon_vma && adjust_next)
823 anon_vma = next->anon_vma;
825 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
826 anon_vma != next->anon_vma, next);
827 anon_vma_lock_write(anon_vma);
828 anon_vma_interval_tree_pre_update_vma(vma);
830 anon_vma_interval_tree_pre_update_vma(next);
834 flush_dcache_mmap_lock(mapping);
835 vma_interval_tree_remove(vma, root);
837 vma_interval_tree_remove(next, root);
840 if (start != vma->vm_start) {
841 vma->vm_start = start;
842 start_changed = true;
844 if (end != vma->vm_end) {
848 vma->vm_pgoff = pgoff;
850 next->vm_start += adjust_next << PAGE_SHIFT;
851 next->vm_pgoff += adjust_next;
856 vma_interval_tree_insert(next, root);
857 vma_interval_tree_insert(vma, root);
858 flush_dcache_mmap_unlock(mapping);
863 * vma_merge has merged next into vma, and needs
864 * us to remove next before dropping the locks.
866 __vma_unlink(mm, next, vma);
868 __remove_shared_vm_struct(next, file, mapping);
871 * split_vma has split insert from vma, and needs
872 * us to insert it before dropping the locks
873 * (it may either follow vma or precede it).
875 __insert_vm_struct(mm, insert);
881 mm->highest_vm_end = end;
882 else if (!adjust_next)
883 vma_gap_update(next);
888 anon_vma_interval_tree_post_update_vma(vma);
890 anon_vma_interval_tree_post_update_vma(next);
891 anon_vma_unlock_write(anon_vma);
894 i_mmap_unlock_write(mapping);
905 uprobe_munmap(next, next->vm_start, next->vm_end);
909 anon_vma_merge(vma, next);
911 mpol_put(vma_policy(next));
912 kmem_cache_free(vm_area_cachep, next);
914 * In mprotect's case 6 (see comments on vma_merge),
915 * we must remove another next too. It would clutter
916 * up the code too much to do both in one go.
919 if (remove_next == 2)
922 vma_gap_update(next);
924 mm->highest_vm_end = end;
935 * If the vma has a ->close operation then the driver probably needs to release
936 * per-vma resources, so we don't attempt to merge those.
938 static inline int is_mergeable_vma(struct vm_area_struct *vma,
939 struct file *file, unsigned long vm_flags,
940 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
941 const char __user *anon_name)
944 * VM_SOFTDIRTY should not prevent from VMA merging, if we
945 * match the flags but dirty bit -- the caller should mark
946 * merged VMA as dirty. If dirty bit won't be excluded from
947 * comparison, we increase pressue on the memory system forcing
948 * the kernel to generate new VMAs when old one could be
951 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
953 if (vma->vm_file != file)
955 if (vma->vm_ops && vma->vm_ops->close)
957 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
959 if (vma_get_anon_name(vma) != anon_name)
964 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
965 struct anon_vma *anon_vma2,
966 struct vm_area_struct *vma)
969 * The list_is_singular() test is to avoid merging VMA cloned from
970 * parents. This can improve scalability caused by anon_vma lock.
972 if ((!anon_vma1 || !anon_vma2) && (!vma ||
973 list_is_singular(&vma->anon_vma_chain)))
975 return anon_vma1 == anon_vma2;
979 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
980 * in front of (at a lower virtual address and file offset than) the vma.
982 * We cannot merge two vmas if they have differently assigned (non-NULL)
983 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
985 * We don't check here for the merged mmap wrapping around the end of pagecache
986 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
987 * wrap, nor mmaps which cover the final page at index -1UL.
990 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
991 struct anon_vma *anon_vma, struct file *file,
993 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
994 const char __user *anon_name)
996 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
997 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
998 if (vma->vm_pgoff == vm_pgoff)
1005 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1006 * beyond (at a higher virtual address and file offset than) the vma.
1008 * We cannot merge two vmas if they have differently assigned (non-NULL)
1009 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1012 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1013 struct anon_vma *anon_vma, struct file *file,
1015 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1016 const char __user *anon_name)
1018 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1019 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1021 vm_pglen = vma_pages(vma);
1022 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1029 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1030 * figure out whether that can be merged with its predecessor or its
1031 * successor. Or both (it neatly fills a hole).
1033 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1034 * certain not to be mapped by the time vma_merge is called; but when
1035 * called for mprotect, it is certain to be already mapped (either at
1036 * an offset within prev, or at the start of next), and the flags of
1037 * this area are about to be changed to vm_flags - and the no-change
1038 * case has already been eliminated.
1040 * The following mprotect cases have to be considered, where AAAA is
1041 * the area passed down from mprotect_fixup, never extending beyond one
1042 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1044 * AAAA AAAA AAAA AAAA
1045 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1046 * cannot merge might become might become might become
1047 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1048 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1049 * mremap move: PPPPNNNNNNNN 8
1051 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1052 * might become case 1 below case 2 below case 3 below
1054 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1055 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1057 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1058 struct vm_area_struct *prev, unsigned long addr,
1059 unsigned long end, unsigned long vm_flags,
1060 struct anon_vma *anon_vma, struct file *file,
1061 pgoff_t pgoff, struct mempolicy *policy,
1062 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1063 const char __user *anon_name)
1065 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1066 struct vm_area_struct *area, *next;
1070 * We later require that vma->vm_flags == vm_flags,
1071 * so this tests vma->vm_flags & VM_SPECIAL, too.
1073 if (vm_flags & VM_SPECIAL)
1077 next = prev->vm_next;
1081 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1082 next = next->vm_next;
1085 * Can it merge with the predecessor?
1087 if (prev && prev->vm_end == addr &&
1088 mpol_equal(vma_policy(prev), policy) &&
1089 can_vma_merge_after(prev, vm_flags,
1090 anon_vma, file, pgoff,
1094 * OK, it can. Can we now merge in the successor as well?
1096 if (next && end == next->vm_start &&
1097 mpol_equal(policy, vma_policy(next)) &&
1098 can_vma_merge_before(next, vm_flags,
1103 is_mergeable_anon_vma(prev->anon_vma,
1104 next->anon_vma, NULL)) {
1106 err = vma_adjust(prev, prev->vm_start,
1107 next->vm_end, prev->vm_pgoff, NULL);
1108 } else /* cases 2, 5, 7 */
1109 err = vma_adjust(prev, prev->vm_start,
1110 end, prev->vm_pgoff, NULL);
1113 khugepaged_enter_vma_merge(prev, vm_flags);
1118 * Can this new request be merged in front of next?
1120 if (next && end == next->vm_start &&
1121 mpol_equal(policy, vma_policy(next)) &&
1122 can_vma_merge_before(next, vm_flags,
1123 anon_vma, file, pgoff+pglen,
1126 if (prev && addr < prev->vm_end) /* case 4 */
1127 err = vma_adjust(prev, prev->vm_start,
1128 addr, prev->vm_pgoff, NULL);
1129 else /* cases 3, 8 */
1130 err = vma_adjust(area, addr, next->vm_end,
1131 next->vm_pgoff - pglen, NULL);
1134 khugepaged_enter_vma_merge(area, vm_flags);
1142 * Rough compatbility check to quickly see if it's even worth looking
1143 * at sharing an anon_vma.
1145 * They need to have the same vm_file, and the flags can only differ
1146 * in things that mprotect may change.
1148 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1149 * we can merge the two vma's. For example, we refuse to merge a vma if
1150 * there is a vm_ops->close() function, because that indicates that the
1151 * driver is doing some kind of reference counting. But that doesn't
1152 * really matter for the anon_vma sharing case.
1154 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1156 return a->vm_end == b->vm_start &&
1157 mpol_equal(vma_policy(a), vma_policy(b)) &&
1158 a->vm_file == b->vm_file &&
1159 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1160 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1164 * Do some basic sanity checking to see if we can re-use the anon_vma
1165 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1166 * the same as 'old', the other will be the new one that is trying
1167 * to share the anon_vma.
1169 * NOTE! This runs with mm_sem held for reading, so it is possible that
1170 * the anon_vma of 'old' is concurrently in the process of being set up
1171 * by another page fault trying to merge _that_. But that's ok: if it
1172 * is being set up, that automatically means that it will be a singleton
1173 * acceptable for merging, so we can do all of this optimistically. But
1174 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1176 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1177 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1178 * is to return an anon_vma that is "complex" due to having gone through
1181 * We also make sure that the two vma's are compatible (adjacent,
1182 * and with the same memory policies). That's all stable, even with just
1183 * a read lock on the mm_sem.
1185 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1187 if (anon_vma_compatible(a, b)) {
1188 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1190 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1197 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1198 * neighbouring vmas for a suitable anon_vma, before it goes off
1199 * to allocate a new anon_vma. It checks because a repetitive
1200 * sequence of mprotects and faults may otherwise lead to distinct
1201 * anon_vmas being allocated, preventing vma merge in subsequent
1204 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1206 struct anon_vma *anon_vma;
1207 struct vm_area_struct *near;
1209 near = vma->vm_next;
1213 anon_vma = reusable_anon_vma(near, vma, near);
1217 near = vma->vm_prev;
1221 anon_vma = reusable_anon_vma(near, near, vma);
1226 * There's no absolute need to look only at touching neighbours:
1227 * we could search further afield for "compatible" anon_vmas.
1228 * But it would probably just be a waste of time searching,
1229 * or lead to too many vmas hanging off the same anon_vma.
1230 * We're trying to allow mprotect remerging later on,
1231 * not trying to minimize memory used for anon_vmas.
1236 #ifdef CONFIG_PROC_FS
1237 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1238 struct file *file, long pages)
1240 const unsigned long stack_flags
1241 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1243 mm->total_vm += pages;
1246 mm->shared_vm += pages;
1247 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1248 mm->exec_vm += pages;
1249 } else if (flags & stack_flags)
1250 mm->stack_vm += pages;
1252 #endif /* CONFIG_PROC_FS */
1255 * If a hint addr is less than mmap_min_addr change hint to be as
1256 * low as possible but still greater than mmap_min_addr
1258 static inline unsigned long round_hint_to_min(unsigned long hint)
1261 if (((void *)hint != NULL) &&
1262 (hint < mmap_min_addr))
1263 return PAGE_ALIGN(mmap_min_addr);
1267 static inline int mlock_future_check(struct mm_struct *mm,
1268 unsigned long flags,
1271 unsigned long locked, lock_limit;
1273 /* mlock MCL_FUTURE? */
1274 if (flags & VM_LOCKED) {
1275 locked = len >> PAGE_SHIFT;
1276 locked += mm->locked_vm;
1277 lock_limit = rlimit(RLIMIT_MEMLOCK);
1278 lock_limit >>= PAGE_SHIFT;
1279 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1286 * The caller must hold down_write(¤t->mm->mmap_sem).
1288 unsigned long do_mmap(struct file *file, unsigned long addr,
1289 unsigned long len, unsigned long prot,
1290 unsigned long flags, vm_flags_t vm_flags,
1291 unsigned long pgoff, unsigned long *populate)
1293 struct mm_struct *mm = current->mm;
1301 * Does the application expect PROT_READ to imply PROT_EXEC?
1303 * (the exception is when the underlying filesystem is noexec
1304 * mounted, in which case we dont add PROT_EXEC.)
1306 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1307 if (!(file && path_noexec(&file->f_path)))
1310 if (!(flags & MAP_FIXED))
1311 addr = round_hint_to_min(addr);
1313 /* Careful about overflows.. */
1314 len = PAGE_ALIGN(len);
1318 /* offset overflow? */
1319 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1322 /* Too many mappings? */
1323 if (mm->map_count > sysctl_max_map_count)
1326 /* Obtain the address to map to. we verify (or select) it and ensure
1327 * that it represents a valid section of the address space.
1329 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1330 if (offset_in_page(addr))
1333 /* Do simple checking here so the lower-level routines won't have
1334 * to. we assume access permissions have been handled by the open
1335 * of the memory object, so we don't do any here.
1337 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1338 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1340 if (flags & MAP_LOCKED)
1341 if (!can_do_mlock())
1344 if (mlock_future_check(mm, vm_flags, len))
1348 struct inode *inode = file_inode(file);
1350 switch (flags & MAP_TYPE) {
1352 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1356 * Make sure we don't allow writing to an append-only
1359 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1363 * Make sure there are no mandatory locks on the file.
1365 if (locks_verify_locked(file))
1368 vm_flags |= VM_SHARED | VM_MAYSHARE;
1369 if (!(file->f_mode & FMODE_WRITE))
1370 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1374 if (!(file->f_mode & FMODE_READ))
1376 if (path_noexec(&file->f_path)) {
1377 if (vm_flags & VM_EXEC)
1379 vm_flags &= ~VM_MAYEXEC;
1382 if (!file->f_op->mmap)
1384 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1392 switch (flags & MAP_TYPE) {
1394 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1400 vm_flags |= VM_SHARED | VM_MAYSHARE;
1404 * Set pgoff according to addr for anon_vma.
1406 pgoff = addr >> PAGE_SHIFT;
1414 * Set 'VM_NORESERVE' if we should not account for the
1415 * memory use of this mapping.
1417 if (flags & MAP_NORESERVE) {
1418 /* We honor MAP_NORESERVE if allowed to overcommit */
1419 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1420 vm_flags |= VM_NORESERVE;
1422 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1423 if (file && is_file_hugepages(file))
1424 vm_flags |= VM_NORESERVE;
1427 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1428 if (!IS_ERR_VALUE(addr) &&
1429 ((vm_flags & VM_LOCKED) ||
1430 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1435 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1436 unsigned long, prot, unsigned long, flags,
1437 unsigned long, fd, unsigned long, pgoff)
1439 struct file *file = NULL;
1440 unsigned long retval;
1442 if (!(flags & MAP_ANONYMOUS)) {
1443 audit_mmap_fd(fd, flags);
1447 if (is_file_hugepages(file))
1448 len = ALIGN(len, huge_page_size(hstate_file(file)));
1450 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1452 } else if (flags & MAP_HUGETLB) {
1453 struct user_struct *user = NULL;
1456 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1460 len = ALIGN(len, huge_page_size(hs));
1462 * VM_NORESERVE is used because the reservations will be
1463 * taken when vm_ops->mmap() is called
1464 * A dummy user value is used because we are not locking
1465 * memory so no accounting is necessary
1467 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1469 &user, HUGETLB_ANONHUGE_INODE,
1470 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1472 return PTR_ERR(file);
1475 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1477 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1484 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1485 struct mmap_arg_struct {
1489 unsigned long flags;
1491 unsigned long offset;
1494 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1496 struct mmap_arg_struct a;
1498 if (copy_from_user(&a, arg, sizeof(a)))
1500 if (offset_in_page(a.offset))
1503 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1504 a.offset >> PAGE_SHIFT);
1506 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1509 * Some shared mappigns will want the pages marked read-only
1510 * to track write events. If so, we'll downgrade vm_page_prot
1511 * to the private version (using protection_map[] without the
1514 int vma_wants_writenotify(struct vm_area_struct *vma)
1516 vm_flags_t vm_flags = vma->vm_flags;
1517 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1519 /* If it was private or non-writable, the write bit is already clear */
1520 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1523 /* The backer wishes to know when pages are first written to? */
1524 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1527 /* The open routine did something to the protections that pgprot_modify
1528 * won't preserve? */
1529 if (pgprot_val(vma->vm_page_prot) !=
1530 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1533 /* Do we need to track softdirty? */
1534 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1537 /* Specialty mapping? */
1538 if (vm_flags & VM_PFNMAP)
1541 /* Can the mapping track the dirty pages? */
1542 return vma->vm_file && vma->vm_file->f_mapping &&
1543 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1547 * We account for memory if it's a private writeable mapping,
1548 * not hugepages and VM_NORESERVE wasn't set.
1550 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1553 * hugetlb has its own accounting separate from the core VM
1554 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1556 if (file && is_file_hugepages(file))
1559 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1562 unsigned long mmap_region(struct file *file, unsigned long addr,
1563 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1565 struct mm_struct *mm = current->mm;
1566 struct vm_area_struct *vma, *prev;
1568 struct rb_node **rb_link, *rb_parent;
1569 unsigned long charged = 0;
1571 /* Check against address space limit. */
1572 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1573 unsigned long nr_pages;
1576 * MAP_FIXED may remove pages of mappings that intersects with
1577 * requested mapping. Account for the pages it would unmap.
1579 if (!(vm_flags & MAP_FIXED))
1582 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1584 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1588 /* Clear old maps */
1589 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1591 if (do_munmap(mm, addr, len))
1596 * Private writable mapping: check memory availability
1598 if (accountable_mapping(file, vm_flags)) {
1599 charged = len >> PAGE_SHIFT;
1600 if (security_vm_enough_memory_mm(mm, charged))
1602 vm_flags |= VM_ACCOUNT;
1606 * Can we just expand an old mapping?
1608 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1609 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1614 * Determine the object being mapped and call the appropriate
1615 * specific mapper. the address has already been validated, but
1616 * not unmapped, but the maps are removed from the list.
1618 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1625 vma->vm_start = addr;
1626 vma->vm_end = addr + len;
1627 vma->vm_flags = vm_flags;
1628 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1629 vma->vm_pgoff = pgoff;
1630 INIT_LIST_HEAD(&vma->anon_vma_chain);
1633 if (vm_flags & VM_DENYWRITE) {
1634 error = deny_write_access(file);
1638 if (vm_flags & VM_SHARED) {
1639 error = mapping_map_writable(file->f_mapping);
1641 goto allow_write_and_free_vma;
1644 /* ->mmap() can change vma->vm_file, but must guarantee that
1645 * vma_link() below can deny write-access if VM_DENYWRITE is set
1646 * and map writably if VM_SHARED is set. This usually means the
1647 * new file must not have been exposed to user-space, yet.
1649 vma->vm_file = get_file(file);
1650 error = file->f_op->mmap(file, vma);
1652 goto unmap_and_free_vma;
1654 /* Can addr have changed??
1656 * Answer: Yes, several device drivers can do it in their
1657 * f_op->mmap method. -DaveM
1658 * Bug: If addr is changed, prev, rb_link, rb_parent should
1659 * be updated for vma_link()
1661 WARN_ON_ONCE(addr != vma->vm_start);
1663 addr = vma->vm_start;
1664 vm_flags = vma->vm_flags;
1665 } else if (vm_flags & VM_SHARED) {
1666 error = shmem_zero_setup(vma);
1671 vma_link(mm, vma, prev, rb_link, rb_parent);
1672 /* Once vma denies write, undo our temporary denial count */
1674 if (vm_flags & VM_SHARED)
1675 mapping_unmap_writable(file->f_mapping);
1676 if (vm_flags & VM_DENYWRITE)
1677 allow_write_access(file);
1679 file = vma->vm_file;
1681 perf_event_mmap(vma);
1683 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1684 if (vm_flags & VM_LOCKED) {
1685 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1686 vma == get_gate_vma(current->mm)))
1687 mm->locked_vm += (len >> PAGE_SHIFT);
1689 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1696 * New (or expanded) vma always get soft dirty status.
1697 * Otherwise user-space soft-dirty page tracker won't
1698 * be able to distinguish situation when vma area unmapped,
1699 * then new mapped in-place (which must be aimed as
1700 * a completely new data area).
1702 vma->vm_flags |= VM_SOFTDIRTY;
1704 vma_set_page_prot(vma);
1709 vma->vm_file = NULL;
1712 /* Undo any partial mapping done by a device driver. */
1713 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1715 if (vm_flags & VM_SHARED)
1716 mapping_unmap_writable(file->f_mapping);
1717 allow_write_and_free_vma:
1718 if (vm_flags & VM_DENYWRITE)
1719 allow_write_access(file);
1721 kmem_cache_free(vm_area_cachep, vma);
1724 vm_unacct_memory(charged);
1728 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1731 * We implement the search by looking for an rbtree node that
1732 * immediately follows a suitable gap. That is,
1733 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1734 * - gap_end = vma->vm_start >= info->low_limit + length;
1735 * - gap_end - gap_start >= length
1738 struct mm_struct *mm = current->mm;
1739 struct vm_area_struct *vma;
1740 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1742 /* Adjust search length to account for worst case alignment overhead */
1743 length = info->length + info->align_mask;
1744 if (length < info->length)
1747 /* Adjust search limits by the desired length */
1748 if (info->high_limit < length)
1750 high_limit = info->high_limit - length;
1752 if (info->low_limit > high_limit)
1754 low_limit = info->low_limit + length;
1756 /* Check if rbtree root looks promising */
1757 if (RB_EMPTY_ROOT(&mm->mm_rb))
1759 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1760 if (vma->rb_subtree_gap < length)
1764 /* Visit left subtree if it looks promising */
1765 gap_end = vma->vm_start;
1766 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1767 struct vm_area_struct *left =
1768 rb_entry(vma->vm_rb.rb_left,
1769 struct vm_area_struct, vm_rb);
1770 if (left->rb_subtree_gap >= length) {
1776 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1778 /* Check if current node has a suitable gap */
1779 if (gap_start > high_limit)
1781 if (gap_end >= low_limit && gap_end - gap_start >= length)
1784 /* Visit right subtree if it looks promising */
1785 if (vma->vm_rb.rb_right) {
1786 struct vm_area_struct *right =
1787 rb_entry(vma->vm_rb.rb_right,
1788 struct vm_area_struct, vm_rb);
1789 if (right->rb_subtree_gap >= length) {
1795 /* Go back up the rbtree to find next candidate node */
1797 struct rb_node *prev = &vma->vm_rb;
1798 if (!rb_parent(prev))
1800 vma = rb_entry(rb_parent(prev),
1801 struct vm_area_struct, vm_rb);
1802 if (prev == vma->vm_rb.rb_left) {
1803 gap_start = vma->vm_prev->vm_end;
1804 gap_end = vma->vm_start;
1811 /* Check highest gap, which does not precede any rbtree node */
1812 gap_start = mm->highest_vm_end;
1813 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1814 if (gap_start > high_limit)
1818 /* We found a suitable gap. Clip it with the original low_limit. */
1819 if (gap_start < info->low_limit)
1820 gap_start = info->low_limit;
1822 /* Adjust gap address to the desired alignment */
1823 gap_start += (info->align_offset - gap_start) & info->align_mask;
1825 VM_BUG_ON(gap_start + info->length > info->high_limit);
1826 VM_BUG_ON(gap_start + info->length > gap_end);
1830 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1832 struct mm_struct *mm = current->mm;
1833 struct vm_area_struct *vma;
1834 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1836 /* Adjust search length to account for worst case alignment overhead */
1837 length = info->length + info->align_mask;
1838 if (length < info->length)
1842 * Adjust search limits by the desired length.
1843 * See implementation comment at top of unmapped_area().
1845 gap_end = info->high_limit;
1846 if (gap_end < length)
1848 high_limit = gap_end - length;
1850 if (info->low_limit > high_limit)
1852 low_limit = info->low_limit + length;
1854 /* Check highest gap, which does not precede any rbtree node */
1855 gap_start = mm->highest_vm_end;
1856 if (gap_start <= high_limit)
1859 /* Check if rbtree root looks promising */
1860 if (RB_EMPTY_ROOT(&mm->mm_rb))
1862 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1863 if (vma->rb_subtree_gap < length)
1867 /* Visit right subtree if it looks promising */
1868 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1869 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1870 struct vm_area_struct *right =
1871 rb_entry(vma->vm_rb.rb_right,
1872 struct vm_area_struct, vm_rb);
1873 if (right->rb_subtree_gap >= length) {
1880 /* Check if current node has a suitable gap */
1881 gap_end = vma->vm_start;
1882 if (gap_end < low_limit)
1884 if (gap_start <= high_limit && gap_end - gap_start >= length)
1887 /* Visit left subtree if it looks promising */
1888 if (vma->vm_rb.rb_left) {
1889 struct vm_area_struct *left =
1890 rb_entry(vma->vm_rb.rb_left,
1891 struct vm_area_struct, vm_rb);
1892 if (left->rb_subtree_gap >= length) {
1898 /* Go back up the rbtree to find next candidate node */
1900 struct rb_node *prev = &vma->vm_rb;
1901 if (!rb_parent(prev))
1903 vma = rb_entry(rb_parent(prev),
1904 struct vm_area_struct, vm_rb);
1905 if (prev == vma->vm_rb.rb_right) {
1906 gap_start = vma->vm_prev ?
1907 vma->vm_prev->vm_end : 0;
1914 /* We found a suitable gap. Clip it with the original high_limit. */
1915 if (gap_end > info->high_limit)
1916 gap_end = info->high_limit;
1919 /* Compute highest gap address at the desired alignment */
1920 gap_end -= info->length;
1921 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1923 VM_BUG_ON(gap_end < info->low_limit);
1924 VM_BUG_ON(gap_end < gap_start);
1928 /* Get an address range which is currently unmapped.
1929 * For shmat() with addr=0.
1931 * Ugly calling convention alert:
1932 * Return value with the low bits set means error value,
1934 * if (ret & ~PAGE_MASK)
1937 * This function "knows" that -ENOMEM has the bits set.
1939 #ifndef HAVE_ARCH_UNMAPPED_AREA
1941 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1942 unsigned long len, unsigned long pgoff, unsigned long flags)
1944 struct mm_struct *mm = current->mm;
1945 struct vm_area_struct *vma;
1946 struct vm_unmapped_area_info info;
1948 if (len > TASK_SIZE - mmap_min_addr)
1951 if (flags & MAP_FIXED)
1955 addr = PAGE_ALIGN(addr);
1956 vma = find_vma(mm, addr);
1957 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1958 (!vma || addr + len <= vma->vm_start))
1964 info.low_limit = mm->mmap_base;
1965 info.high_limit = TASK_SIZE;
1966 info.align_mask = 0;
1967 return vm_unmapped_area(&info);
1972 * This mmap-allocator allocates new areas top-down from below the
1973 * stack's low limit (the base):
1975 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1977 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1978 const unsigned long len, const unsigned long pgoff,
1979 const unsigned long flags)
1981 struct vm_area_struct *vma;
1982 struct mm_struct *mm = current->mm;
1983 unsigned long addr = addr0;
1984 struct vm_unmapped_area_info info;
1986 /* requested length too big for entire address space */
1987 if (len > TASK_SIZE - mmap_min_addr)
1990 if (flags & MAP_FIXED)
1993 /* requesting a specific address */
1995 addr = PAGE_ALIGN(addr);
1996 vma = find_vma(mm, addr);
1997 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1998 (!vma || addr + len <= vma->vm_start))
2002 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2004 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2005 info.high_limit = mm->mmap_base;
2006 info.align_mask = 0;
2007 addr = vm_unmapped_area(&info);
2010 * A failed mmap() very likely causes application failure,
2011 * so fall back to the bottom-up function here. This scenario
2012 * can happen with large stack limits and large mmap()
2015 if (offset_in_page(addr)) {
2016 VM_BUG_ON(addr != -ENOMEM);
2018 info.low_limit = TASK_UNMAPPED_BASE;
2019 info.high_limit = TASK_SIZE;
2020 addr = vm_unmapped_area(&info);
2028 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2029 unsigned long pgoff, unsigned long flags)
2031 unsigned long (*get_area)(struct file *, unsigned long,
2032 unsigned long, unsigned long, unsigned long);
2034 unsigned long error = arch_mmap_check(addr, len, flags);
2038 /* Careful about overflows.. */
2039 if (len > TASK_SIZE)
2042 get_area = current->mm->get_unmapped_area;
2043 if (file && file->f_op->get_unmapped_area)
2044 get_area = file->f_op->get_unmapped_area;
2045 addr = get_area(file, addr, len, pgoff, flags);
2046 if (IS_ERR_VALUE(addr))
2049 if (addr > TASK_SIZE - len)
2051 if (offset_in_page(addr))
2054 addr = arch_rebalance_pgtables(addr, len);
2055 error = security_mmap_addr(addr);
2056 return error ? error : addr;
2059 EXPORT_SYMBOL(get_unmapped_area);
2061 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2062 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2064 struct rb_node *rb_node;
2065 struct vm_area_struct *vma;
2067 /* Check the cache first. */
2068 vma = vmacache_find(mm, addr);
2072 rb_node = mm->mm_rb.rb_node;
2075 struct vm_area_struct *tmp;
2077 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2079 if (tmp->vm_end > addr) {
2081 if (tmp->vm_start <= addr)
2083 rb_node = rb_node->rb_left;
2085 rb_node = rb_node->rb_right;
2089 vmacache_update(addr, vma);
2093 EXPORT_SYMBOL(find_vma);
2096 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2098 struct vm_area_struct *
2099 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2100 struct vm_area_struct **pprev)
2102 struct vm_area_struct *vma;
2104 vma = find_vma(mm, addr);
2106 *pprev = vma->vm_prev;
2108 struct rb_node *rb_node = mm->mm_rb.rb_node;
2111 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2112 rb_node = rb_node->rb_right;
2119 * Verify that the stack growth is acceptable and
2120 * update accounting. This is shared with both the
2121 * grow-up and grow-down cases.
2123 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2125 struct mm_struct *mm = vma->vm_mm;
2126 struct rlimit *rlim = current->signal->rlim;
2127 unsigned long new_start, actual_size;
2129 /* address space limit tests */
2130 if (!may_expand_vm(mm, grow))
2133 /* Stack limit test */
2135 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2136 actual_size -= PAGE_SIZE;
2137 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2140 /* mlock limit tests */
2141 if (vma->vm_flags & VM_LOCKED) {
2142 unsigned long locked;
2143 unsigned long limit;
2144 locked = mm->locked_vm + grow;
2145 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2146 limit >>= PAGE_SHIFT;
2147 if (locked > limit && !capable(CAP_IPC_LOCK))
2151 /* Check to ensure the stack will not grow into a hugetlb-only region */
2152 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2154 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2158 * Overcommit.. This must be the final test, as it will
2159 * update security statistics.
2161 if (security_vm_enough_memory_mm(mm, grow))
2167 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2169 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2170 * vma is the last one with address > vma->vm_end. Have to extend vma.
2172 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2174 struct mm_struct *mm = vma->vm_mm;
2177 if (!(vma->vm_flags & VM_GROWSUP))
2180 /* Guard against wrapping around to address 0. */
2181 if (address < PAGE_ALIGN(address+4))
2182 address = PAGE_ALIGN(address+4);
2186 /* We must make sure the anon_vma is allocated. */
2187 if (unlikely(anon_vma_prepare(vma)))
2191 * vma->vm_start/vm_end cannot change under us because the caller
2192 * is required to hold the mmap_sem in read mode. We need the
2193 * anon_vma lock to serialize against concurrent expand_stacks.
2195 anon_vma_lock_write(vma->anon_vma);
2197 /* Somebody else might have raced and expanded it already */
2198 if (address > vma->vm_end) {
2199 unsigned long size, grow;
2201 size = address - vma->vm_start;
2202 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2205 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2206 error = acct_stack_growth(vma, size, grow);
2209 * vma_gap_update() doesn't support concurrent
2210 * updates, but we only hold a shared mmap_sem
2211 * lock here, so we need to protect against
2212 * concurrent vma expansions.
2213 * anon_vma_lock_write() doesn't help here, as
2214 * we don't guarantee that all growable vmas
2215 * in a mm share the same root anon vma.
2216 * So, we reuse mm->page_table_lock to guard
2217 * against concurrent vma expansions.
2219 spin_lock(&mm->page_table_lock);
2220 if (vma->vm_flags & VM_LOCKED)
2221 mm->locked_vm += grow;
2222 vm_stat_account(mm, vma->vm_flags,
2223 vma->vm_file, grow);
2224 anon_vma_interval_tree_pre_update_vma(vma);
2225 vma->vm_end = address;
2226 anon_vma_interval_tree_post_update_vma(vma);
2228 vma_gap_update(vma->vm_next);
2230 mm->highest_vm_end = address;
2231 spin_unlock(&mm->page_table_lock);
2233 perf_event_mmap(vma);
2237 anon_vma_unlock_write(vma->anon_vma);
2238 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2242 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2245 * vma is the first one with address < vma->vm_start. Have to extend vma.
2247 int expand_downwards(struct vm_area_struct *vma,
2248 unsigned long address)
2250 struct mm_struct *mm = vma->vm_mm;
2253 address &= PAGE_MASK;
2254 error = security_mmap_addr(address);
2258 /* We must make sure the anon_vma is allocated. */
2259 if (unlikely(anon_vma_prepare(vma)))
2263 * vma->vm_start/vm_end cannot change under us because the caller
2264 * is required to hold the mmap_sem in read mode. We need the
2265 * anon_vma lock to serialize against concurrent expand_stacks.
2267 anon_vma_lock_write(vma->anon_vma);
2269 /* Somebody else might have raced and expanded it already */
2270 if (address < vma->vm_start) {
2271 unsigned long size, grow;
2273 size = vma->vm_end - address;
2274 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2277 if (grow <= vma->vm_pgoff) {
2278 error = acct_stack_growth(vma, size, grow);
2281 * vma_gap_update() doesn't support concurrent
2282 * updates, but we only hold a shared mmap_sem
2283 * lock here, so we need to protect against
2284 * concurrent vma expansions.
2285 * anon_vma_lock_write() doesn't help here, as
2286 * we don't guarantee that all growable vmas
2287 * in a mm share the same root anon vma.
2288 * So, we reuse mm->page_table_lock to guard
2289 * against concurrent vma expansions.
2291 spin_lock(&mm->page_table_lock);
2292 if (vma->vm_flags & VM_LOCKED)
2293 mm->locked_vm += grow;
2294 vm_stat_account(mm, vma->vm_flags,
2295 vma->vm_file, grow);
2296 anon_vma_interval_tree_pre_update_vma(vma);
2297 vma->vm_start = address;
2298 vma->vm_pgoff -= grow;
2299 anon_vma_interval_tree_post_update_vma(vma);
2300 vma_gap_update(vma);
2301 spin_unlock(&mm->page_table_lock);
2303 perf_event_mmap(vma);
2307 anon_vma_unlock_write(vma->anon_vma);
2308 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2314 * Note how expand_stack() refuses to expand the stack all the way to
2315 * abut the next virtual mapping, *unless* that mapping itself is also
2316 * a stack mapping. We want to leave room for a guard page, after all
2317 * (the guard page itself is not added here, that is done by the
2318 * actual page faulting logic)
2320 * This matches the behavior of the guard page logic (see mm/memory.c:
2321 * check_stack_guard_page()), which only allows the guard page to be
2322 * removed under these circumstances.
2324 #ifdef CONFIG_STACK_GROWSUP
2325 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2327 struct vm_area_struct *next;
2329 address &= PAGE_MASK;
2330 next = vma->vm_next;
2331 if (next && next->vm_start == address + PAGE_SIZE) {
2332 if (!(next->vm_flags & VM_GROWSUP))
2335 return expand_upwards(vma, address);
2338 struct vm_area_struct *
2339 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2341 struct vm_area_struct *vma, *prev;
2344 vma = find_vma_prev(mm, addr, &prev);
2345 if (vma && (vma->vm_start <= addr))
2347 if (!prev || expand_stack(prev, addr))
2349 if (prev->vm_flags & VM_LOCKED)
2350 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2354 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2356 struct vm_area_struct *prev;
2358 address &= PAGE_MASK;
2359 prev = vma->vm_prev;
2360 if (prev && prev->vm_end == address) {
2361 if (!(prev->vm_flags & VM_GROWSDOWN))
2364 return expand_downwards(vma, address);
2367 struct vm_area_struct *
2368 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2370 struct vm_area_struct *vma;
2371 unsigned long start;
2374 vma = find_vma(mm, addr);
2377 if (vma->vm_start <= addr)
2379 if (!(vma->vm_flags & VM_GROWSDOWN))
2381 start = vma->vm_start;
2382 if (expand_stack(vma, addr))
2384 if (vma->vm_flags & VM_LOCKED)
2385 populate_vma_page_range(vma, addr, start, NULL);
2390 EXPORT_SYMBOL_GPL(find_extend_vma);
2393 * Ok - we have the memory areas we should free on the vma list,
2394 * so release them, and do the vma updates.
2396 * Called with the mm semaphore held.
2398 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2400 unsigned long nr_accounted = 0;
2402 /* Update high watermark before we lower total_vm */
2403 update_hiwater_vm(mm);
2405 long nrpages = vma_pages(vma);
2407 if (vma->vm_flags & VM_ACCOUNT)
2408 nr_accounted += nrpages;
2409 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2410 vma = remove_vma(vma);
2412 vm_unacct_memory(nr_accounted);
2417 * Get rid of page table information in the indicated region.
2419 * Called with the mm semaphore held.
2421 static void unmap_region(struct mm_struct *mm,
2422 struct vm_area_struct *vma, struct vm_area_struct *prev,
2423 unsigned long start, unsigned long end)
2425 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2426 struct mmu_gather tlb;
2429 tlb_gather_mmu(&tlb, mm, start, end);
2430 update_hiwater_rss(mm);
2431 unmap_vmas(&tlb, vma, start, end);
2432 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2433 next ? next->vm_start : USER_PGTABLES_CEILING);
2434 tlb_finish_mmu(&tlb, start, end);
2438 * Create a list of vma's touched by the unmap, removing them from the mm's
2439 * vma list as we go..
2442 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2443 struct vm_area_struct *prev, unsigned long end)
2445 struct vm_area_struct **insertion_point;
2446 struct vm_area_struct *tail_vma = NULL;
2448 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2449 vma->vm_prev = NULL;
2451 vma_rb_erase(vma, &mm->mm_rb);
2455 } while (vma && vma->vm_start < end);
2456 *insertion_point = vma;
2458 vma->vm_prev = prev;
2459 vma_gap_update(vma);
2461 mm->highest_vm_end = prev ? prev->vm_end : 0;
2462 tail_vma->vm_next = NULL;
2464 /* Kill the cache */
2465 vmacache_invalidate(mm);
2469 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2470 * munmap path where it doesn't make sense to fail.
2472 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2473 unsigned long addr, int new_below)
2475 struct vm_area_struct *new;
2478 if (is_vm_hugetlb_page(vma) && (addr &
2479 ~(huge_page_mask(hstate_vma(vma)))))
2482 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2486 /* most fields are the same, copy all, and then fixup */
2489 INIT_LIST_HEAD(&new->anon_vma_chain);
2494 new->vm_start = addr;
2495 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2498 err = vma_dup_policy(vma, new);
2502 err = anon_vma_clone(new, vma);
2507 get_file(new->vm_file);
2509 if (new->vm_ops && new->vm_ops->open)
2510 new->vm_ops->open(new);
2513 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2514 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2516 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2522 /* Clean everything up if vma_adjust failed. */
2523 if (new->vm_ops && new->vm_ops->close)
2524 new->vm_ops->close(new);
2527 unlink_anon_vmas(new);
2529 mpol_put(vma_policy(new));
2531 kmem_cache_free(vm_area_cachep, new);
2536 * Split a vma into two pieces at address 'addr', a new vma is allocated
2537 * either for the first part or the tail.
2539 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2540 unsigned long addr, int new_below)
2542 if (mm->map_count >= sysctl_max_map_count)
2545 return __split_vma(mm, vma, addr, new_below);
2548 /* Munmap is split into 2 main parts -- this part which finds
2549 * what needs doing, and the areas themselves, which do the
2550 * work. This now handles partial unmappings.
2551 * Jeremy Fitzhardinge <jeremy@goop.org>
2553 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2556 struct vm_area_struct *vma, *prev, *last;
2558 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2561 len = PAGE_ALIGN(len);
2565 /* Find the first overlapping VMA */
2566 vma = find_vma(mm, start);
2569 prev = vma->vm_prev;
2570 /* we have start < vma->vm_end */
2572 /* if it doesn't overlap, we have nothing.. */
2574 if (vma->vm_start >= end)
2578 * If we need to split any vma, do it now to save pain later.
2580 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2581 * unmapped vm_area_struct will remain in use: so lower split_vma
2582 * places tmp vma above, and higher split_vma places tmp vma below.
2584 if (start > vma->vm_start) {
2588 * Make sure that map_count on return from munmap() will
2589 * not exceed its limit; but let map_count go just above
2590 * its limit temporarily, to help free resources as expected.
2592 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2595 error = __split_vma(mm, vma, start, 0);
2601 /* Does it split the last one? */
2602 last = find_vma(mm, end);
2603 if (last && end > last->vm_start) {
2604 int error = __split_vma(mm, last, end, 1);
2608 vma = prev ? prev->vm_next : mm->mmap;
2611 * unlock any mlock()ed ranges before detaching vmas
2613 if (mm->locked_vm) {
2614 struct vm_area_struct *tmp = vma;
2615 while (tmp && tmp->vm_start < end) {
2616 if (tmp->vm_flags & VM_LOCKED) {
2617 mm->locked_vm -= vma_pages(tmp);
2618 munlock_vma_pages_all(tmp);
2625 * Remove the vma's, and unmap the actual pages
2627 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2628 unmap_region(mm, vma, prev, start, end);
2630 arch_unmap(mm, vma, start, end);
2632 /* Fix up all other VM information */
2633 remove_vma_list(mm, vma);
2637 EXPORT_SYMBOL(do_munmap);
2639 int vm_munmap(unsigned long start, size_t len)
2642 struct mm_struct *mm = current->mm;
2644 down_write(&mm->mmap_sem);
2645 ret = do_munmap(mm, start, len);
2646 up_write(&mm->mmap_sem);
2649 EXPORT_SYMBOL(vm_munmap);
2651 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2653 profile_munmap(addr);
2654 return vm_munmap(addr, len);
2659 * Emulation of deprecated remap_file_pages() syscall.
2661 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2662 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2665 struct mm_struct *mm = current->mm;
2666 struct vm_area_struct *vma;
2667 unsigned long populate = 0;
2668 unsigned long ret = -EINVAL;
2671 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2672 "See Documentation/vm/remap_file_pages.txt.\n",
2673 current->comm, current->pid);
2677 start = start & PAGE_MASK;
2678 size = size & PAGE_MASK;
2680 if (start + size <= start)
2683 /* Does pgoff wrap? */
2684 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2687 down_write(&mm->mmap_sem);
2688 vma = find_vma(mm, start);
2690 if (!vma || !(vma->vm_flags & VM_SHARED))
2693 if (start < vma->vm_start)
2696 if (start + size > vma->vm_end) {
2697 struct vm_area_struct *next;
2699 for (next = vma->vm_next; next; next = next->vm_next) {
2700 /* hole between vmas ? */
2701 if (next->vm_start != next->vm_prev->vm_end)
2704 if (next->vm_file != vma->vm_file)
2707 if (next->vm_flags != vma->vm_flags)
2710 if (start + size <= next->vm_end)
2718 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2719 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2720 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2722 flags &= MAP_NONBLOCK;
2723 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2724 if (vma->vm_flags & VM_LOCKED) {
2725 struct vm_area_struct *tmp;
2726 flags |= MAP_LOCKED;
2728 /* drop PG_Mlocked flag for over-mapped range */
2729 for (tmp = vma; tmp->vm_start >= start + size;
2730 tmp = tmp->vm_next) {
2731 munlock_vma_pages_range(tmp,
2732 max(tmp->vm_start, start),
2733 min(tmp->vm_end, start + size));
2737 file = get_file(vma->vm_file);
2738 ret = do_mmap_pgoff(vma->vm_file, start, size,
2739 prot, flags, pgoff, &populate);
2742 up_write(&mm->mmap_sem);
2744 mm_populate(ret, populate);
2745 if (!IS_ERR_VALUE(ret))
2750 static inline void verify_mm_writelocked(struct mm_struct *mm)
2752 #ifdef CONFIG_DEBUG_VM
2753 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2755 up_read(&mm->mmap_sem);
2761 * this is really a simplified "do_mmap". it only handles
2762 * anonymous maps. eventually we may be able to do some
2763 * brk-specific accounting here.
2765 static unsigned long do_brk(unsigned long addr, unsigned long len)
2767 struct mm_struct *mm = current->mm;
2768 struct vm_area_struct *vma, *prev;
2769 unsigned long flags;
2770 struct rb_node **rb_link, *rb_parent;
2771 pgoff_t pgoff = addr >> PAGE_SHIFT;
2774 len = PAGE_ALIGN(len);
2778 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2780 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2781 if (offset_in_page(error))
2784 error = mlock_future_check(mm, mm->def_flags, len);
2789 * mm->mmap_sem is required to protect against another thread
2790 * changing the mappings in case we sleep.
2792 verify_mm_writelocked(mm);
2795 * Clear old maps. this also does some error checking for us
2797 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2799 if (do_munmap(mm, addr, len))
2803 /* Check against address space limits *after* clearing old maps... */
2804 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2807 if (mm->map_count > sysctl_max_map_count)
2810 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2813 /* Can we just expand an old private anonymous mapping? */
2814 vma = vma_merge(mm, prev, addr, addr + len, flags,
2815 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2820 * create a vma struct for an anonymous mapping
2822 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2824 vm_unacct_memory(len >> PAGE_SHIFT);
2828 INIT_LIST_HEAD(&vma->anon_vma_chain);
2830 vma->vm_start = addr;
2831 vma->vm_end = addr + len;
2832 vma->vm_pgoff = pgoff;
2833 vma->vm_flags = flags;
2834 vma->vm_page_prot = vm_get_page_prot(flags);
2835 vma_link(mm, vma, prev, rb_link, rb_parent);
2837 perf_event_mmap(vma);
2838 mm->total_vm += len >> PAGE_SHIFT;
2839 if (flags & VM_LOCKED)
2840 mm->locked_vm += (len >> PAGE_SHIFT);
2841 vma->vm_flags |= VM_SOFTDIRTY;
2845 unsigned long vm_brk(unsigned long addr, unsigned long len)
2847 struct mm_struct *mm = current->mm;
2851 down_write(&mm->mmap_sem);
2852 ret = do_brk(addr, len);
2853 populate = ((mm->def_flags & VM_LOCKED) != 0);
2854 up_write(&mm->mmap_sem);
2856 mm_populate(addr, len);
2859 EXPORT_SYMBOL(vm_brk);
2861 /* Release all mmaps. */
2862 void exit_mmap(struct mm_struct *mm)
2864 struct mmu_gather tlb;
2865 struct vm_area_struct *vma;
2866 unsigned long nr_accounted = 0;
2868 /* mm's last user has gone, and its about to be pulled down */
2869 mmu_notifier_release(mm);
2871 if (mm->locked_vm) {
2874 if (vma->vm_flags & VM_LOCKED)
2875 munlock_vma_pages_all(vma);
2883 if (!vma) /* Can happen if dup_mmap() received an OOM */
2888 tlb_gather_mmu(&tlb, mm, 0, -1);
2889 /* update_hiwater_rss(mm) here? but nobody should be looking */
2890 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2891 unmap_vmas(&tlb, vma, 0, -1);
2893 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2894 tlb_finish_mmu(&tlb, 0, -1);
2897 * Walk the list again, actually closing and freeing it,
2898 * with preemption enabled, without holding any MM locks.
2901 if (vma->vm_flags & VM_ACCOUNT)
2902 nr_accounted += vma_pages(vma);
2903 vma = remove_vma(vma);
2905 vm_unacct_memory(nr_accounted);
2908 /* Insert vm structure into process list sorted by address
2909 * and into the inode's i_mmap tree. If vm_file is non-NULL
2910 * then i_mmap_rwsem is taken here.
2912 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2914 struct vm_area_struct *prev;
2915 struct rb_node **rb_link, *rb_parent;
2917 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2918 &prev, &rb_link, &rb_parent))
2920 if ((vma->vm_flags & VM_ACCOUNT) &&
2921 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2925 * The vm_pgoff of a purely anonymous vma should be irrelevant
2926 * until its first write fault, when page's anon_vma and index
2927 * are set. But now set the vm_pgoff it will almost certainly
2928 * end up with (unless mremap moves it elsewhere before that
2929 * first wfault), so /proc/pid/maps tells a consistent story.
2931 * By setting it to reflect the virtual start address of the
2932 * vma, merges and splits can happen in a seamless way, just
2933 * using the existing file pgoff checks and manipulations.
2934 * Similarly in do_mmap_pgoff and in do_brk.
2936 if (vma_is_anonymous(vma)) {
2937 BUG_ON(vma->anon_vma);
2938 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2941 vma_link(mm, vma, prev, rb_link, rb_parent);
2946 * Copy the vma structure to a new location in the same mm,
2947 * prior to moving page table entries, to effect an mremap move.
2949 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2950 unsigned long addr, unsigned long len, pgoff_t pgoff,
2951 bool *need_rmap_locks)
2953 struct vm_area_struct *vma = *vmap;
2954 unsigned long vma_start = vma->vm_start;
2955 struct mm_struct *mm = vma->vm_mm;
2956 struct vm_area_struct *new_vma, *prev;
2957 struct rb_node **rb_link, *rb_parent;
2958 bool faulted_in_anon_vma = true;
2961 * If anonymous vma has not yet been faulted, update new pgoff
2962 * to match new location, to increase its chance of merging.
2964 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2965 pgoff = addr >> PAGE_SHIFT;
2966 faulted_in_anon_vma = false;
2969 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2970 return NULL; /* should never get here */
2971 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2972 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2973 vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
2976 * Source vma may have been merged into new_vma
2978 if (unlikely(vma_start >= new_vma->vm_start &&
2979 vma_start < new_vma->vm_end)) {
2981 * The only way we can get a vma_merge with
2982 * self during an mremap is if the vma hasn't
2983 * been faulted in yet and we were allowed to
2984 * reset the dst vma->vm_pgoff to the
2985 * destination address of the mremap to allow
2986 * the merge to happen. mremap must change the
2987 * vm_pgoff linearity between src and dst vmas
2988 * (in turn preventing a vma_merge) to be
2989 * safe. It is only safe to keep the vm_pgoff
2990 * linear if there are no pages mapped yet.
2992 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2993 *vmap = vma = new_vma;
2995 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2997 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3001 new_vma->vm_start = addr;
3002 new_vma->vm_end = addr + len;
3003 new_vma->vm_pgoff = pgoff;
3004 if (vma_dup_policy(vma, new_vma))
3006 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3007 if (anon_vma_clone(new_vma, vma))
3008 goto out_free_mempol;
3009 if (new_vma->vm_file)
3010 get_file(new_vma->vm_file);
3011 if (new_vma->vm_ops && new_vma->vm_ops->open)
3012 new_vma->vm_ops->open(new_vma);
3013 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3014 *need_rmap_locks = false;
3019 mpol_put(vma_policy(new_vma));
3021 kmem_cache_free(vm_area_cachep, new_vma);
3027 * Return true if the calling process may expand its vm space by the passed
3030 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3032 unsigned long cur = mm->total_vm; /* pages */
3035 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3037 if (cur + npages > lim)
3042 static int special_mapping_fault(struct vm_area_struct *vma,
3043 struct vm_fault *vmf);
3046 * Having a close hook prevents vma merging regardless of flags.
3048 static void special_mapping_close(struct vm_area_struct *vma)
3052 static const char *special_mapping_name(struct vm_area_struct *vma)
3054 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3057 static const struct vm_operations_struct special_mapping_vmops = {
3058 .close = special_mapping_close,
3059 .fault = special_mapping_fault,
3060 .name = special_mapping_name,
3063 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3064 .close = special_mapping_close,
3065 .fault = special_mapping_fault,
3068 static int special_mapping_fault(struct vm_area_struct *vma,
3069 struct vm_fault *vmf)
3072 struct page **pages;
3074 if (vma->vm_ops == &legacy_special_mapping_vmops)
3075 pages = vma->vm_private_data;
3077 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3080 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3084 struct page *page = *pages;
3090 return VM_FAULT_SIGBUS;
3093 static struct vm_area_struct *__install_special_mapping(
3094 struct mm_struct *mm,
3095 unsigned long addr, unsigned long len,
3096 unsigned long vm_flags, void *priv,
3097 const struct vm_operations_struct *ops)
3100 struct vm_area_struct *vma;
3102 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3103 if (unlikely(vma == NULL))
3104 return ERR_PTR(-ENOMEM);
3106 INIT_LIST_HEAD(&vma->anon_vma_chain);
3108 vma->vm_start = addr;
3109 vma->vm_end = addr + len;
3111 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3112 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3115 vma->vm_private_data = priv;
3117 ret = insert_vm_struct(mm, vma);
3121 mm->total_vm += len >> PAGE_SHIFT;
3123 perf_event_mmap(vma);
3128 kmem_cache_free(vm_area_cachep, vma);
3129 return ERR_PTR(ret);
3133 * Called with mm->mmap_sem held for writing.
3134 * Insert a new vma covering the given region, with the given flags.
3135 * Its pages are supplied by the given array of struct page *.
3136 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3137 * The region past the last page supplied will always produce SIGBUS.
3138 * The array pointer and the pages it points to are assumed to stay alive
3139 * for as long as this mapping might exist.
3141 struct vm_area_struct *_install_special_mapping(
3142 struct mm_struct *mm,
3143 unsigned long addr, unsigned long len,
3144 unsigned long vm_flags, const struct vm_special_mapping *spec)
3146 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3147 &special_mapping_vmops);
3150 int install_special_mapping(struct mm_struct *mm,
3151 unsigned long addr, unsigned long len,
3152 unsigned long vm_flags, struct page **pages)
3154 struct vm_area_struct *vma = __install_special_mapping(
3155 mm, addr, len, vm_flags, (void *)pages,
3156 &legacy_special_mapping_vmops);
3158 return PTR_ERR_OR_ZERO(vma);
3161 static DEFINE_MUTEX(mm_all_locks_mutex);
3163 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3165 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3167 * The LSB of head.next can't change from under us
3168 * because we hold the mm_all_locks_mutex.
3170 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3172 * We can safely modify head.next after taking the
3173 * anon_vma->root->rwsem. If some other vma in this mm shares
3174 * the same anon_vma we won't take it again.
3176 * No need of atomic instructions here, head.next
3177 * can't change from under us thanks to the
3178 * anon_vma->root->rwsem.
3180 if (__test_and_set_bit(0, (unsigned long *)
3181 &anon_vma->root->rb_root.rb_node))
3186 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3188 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3190 * AS_MM_ALL_LOCKS can't change from under us because
3191 * we hold the mm_all_locks_mutex.
3193 * Operations on ->flags have to be atomic because
3194 * even if AS_MM_ALL_LOCKS is stable thanks to the
3195 * mm_all_locks_mutex, there may be other cpus
3196 * changing other bitflags in parallel to us.
3198 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3200 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3205 * This operation locks against the VM for all pte/vma/mm related
3206 * operations that could ever happen on a certain mm. This includes
3207 * vmtruncate, try_to_unmap, and all page faults.
3209 * The caller must take the mmap_sem in write mode before calling
3210 * mm_take_all_locks(). The caller isn't allowed to release the
3211 * mmap_sem until mm_drop_all_locks() returns.
3213 * mmap_sem in write mode is required in order to block all operations
3214 * that could modify pagetables and free pages without need of
3215 * altering the vma layout. It's also needed in write mode to avoid new
3216 * anon_vmas to be associated with existing vmas.
3218 * A single task can't take more than one mm_take_all_locks() in a row
3219 * or it would deadlock.
3221 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3222 * mapping->flags avoid to take the same lock twice, if more than one
3223 * vma in this mm is backed by the same anon_vma or address_space.
3225 * We can take all the locks in random order because the VM code
3226 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3227 * takes more than one of them in a row. Secondly we're protected
3228 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3230 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3231 * that may have to take thousand of locks.
3233 * mm_take_all_locks() can fail if it's interrupted by signals.
3235 int mm_take_all_locks(struct mm_struct *mm)
3237 struct vm_area_struct *vma;
3238 struct anon_vma_chain *avc;
3240 BUG_ON(down_read_trylock(&mm->mmap_sem));
3242 mutex_lock(&mm_all_locks_mutex);
3244 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3245 if (signal_pending(current))
3247 if (vma->vm_file && vma->vm_file->f_mapping)
3248 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3251 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3252 if (signal_pending(current))
3255 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3256 vm_lock_anon_vma(mm, avc->anon_vma);
3262 mm_drop_all_locks(mm);
3266 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3268 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3270 * The LSB of head.next can't change to 0 from under
3271 * us because we hold the mm_all_locks_mutex.
3273 * We must however clear the bitflag before unlocking
3274 * the vma so the users using the anon_vma->rb_root will
3275 * never see our bitflag.
3277 * No need of atomic instructions here, head.next
3278 * can't change from under us until we release the
3279 * anon_vma->root->rwsem.
3281 if (!__test_and_clear_bit(0, (unsigned long *)
3282 &anon_vma->root->rb_root.rb_node))
3284 anon_vma_unlock_write(anon_vma);
3288 static void vm_unlock_mapping(struct address_space *mapping)
3290 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3292 * AS_MM_ALL_LOCKS can't change to 0 from under us
3293 * because we hold the mm_all_locks_mutex.
3295 i_mmap_unlock_write(mapping);
3296 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3303 * The mmap_sem cannot be released by the caller until
3304 * mm_drop_all_locks() returns.
3306 void mm_drop_all_locks(struct mm_struct *mm)
3308 struct vm_area_struct *vma;
3309 struct anon_vma_chain *avc;
3311 BUG_ON(down_read_trylock(&mm->mmap_sem));
3312 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3314 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3316 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3317 vm_unlock_anon_vma(avc->anon_vma);
3318 if (vma->vm_file && vma->vm_file->f_mapping)
3319 vm_unlock_mapping(vma->vm_file->f_mapping);
3322 mutex_unlock(&mm_all_locks_mutex);
3326 * initialise the VMA slab
3328 void __init mmap_init(void)
3332 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3337 * Initialise sysctl_user_reserve_kbytes.
3339 * This is intended to prevent a user from starting a single memory hogging
3340 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3343 * The default value is min(3% of free memory, 128MB)
3344 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3346 static int init_user_reserve(void)
3348 unsigned long free_kbytes;
3350 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3352 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3355 subsys_initcall(init_user_reserve);
3358 * Initialise sysctl_admin_reserve_kbytes.
3360 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3361 * to log in and kill a memory hogging process.
3363 * Systems with more than 256MB will reserve 8MB, enough to recover
3364 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3365 * only reserve 3% of free pages by default.
3367 static int init_admin_reserve(void)
3369 unsigned long free_kbytes;
3371 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3373 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3376 subsys_initcall(init_admin_reserve);
3379 * Reinititalise user and admin reserves if memory is added or removed.
3381 * The default user reserve max is 128MB, and the default max for the
3382 * admin reserve is 8MB. These are usually, but not always, enough to
3383 * enable recovery from a memory hogging process using login/sshd, a shell,
3384 * and tools like top. It may make sense to increase or even disable the
3385 * reserve depending on the existence of swap or variations in the recovery
3386 * tools. So, the admin may have changed them.
3388 * If memory is added and the reserves have been eliminated or increased above
3389 * the default max, then we'll trust the admin.
3391 * If memory is removed and there isn't enough free memory, then we
3392 * need to reset the reserves.
3394 * Otherwise keep the reserve set by the admin.
3396 static int reserve_mem_notifier(struct notifier_block *nb,
3397 unsigned long action, void *data)
3399 unsigned long tmp, free_kbytes;
3403 /* Default max is 128MB. Leave alone if modified by operator. */
3404 tmp = sysctl_user_reserve_kbytes;
3405 if (0 < tmp && tmp < (1UL << 17))
3406 init_user_reserve();
3408 /* Default max is 8MB. Leave alone if modified by operator. */
3409 tmp = sysctl_admin_reserve_kbytes;
3410 if (0 < tmp && tmp < (1UL << 13))
3411 init_admin_reserve();
3415 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3417 if (sysctl_user_reserve_kbytes > free_kbytes) {
3418 init_user_reserve();
3419 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3420 sysctl_user_reserve_kbytes);
3423 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3424 init_admin_reserve();
3425 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3426 sysctl_admin_reserve_kbytes);
3435 static struct notifier_block reserve_mem_nb = {
3436 .notifier_call = reserve_mem_notifier,
3439 static int __meminit init_reserve_notifier(void)
3441 if (register_hotmemory_notifier(&reserve_mem_nb))
3442 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3446 subsys_initcall(init_reserve_notifier);