Merge branch 'perf/core' into perf/uprobes
[firefly-linux-kernel-4.4.55.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags)       (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len)              (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51                 struct vm_area_struct *vma, struct vm_area_struct *prev,
52                 unsigned long start, unsigned long end);
53
54 /*
55  * WARNING: the debugging will use recursive algorithms so never enable this
56  * unless you know what you are doing.
57  */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type     prot
65  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
66  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *              
70  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82         return __pgprot(pgprot_val(protection_map[vm_flags &
83                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92  * Make sure vm_committed_as in one cacheline and not cacheline shared with
93  * other variables. It can be updated by several CPUs frequently.
94  */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98  * Check that a process has enough memory to allocate a new virtual
99  * mapping. 0 means there is enough memory for the allocation to
100  * succeed and -ENOMEM implies there is not.
101  *
102  * We currently support three overcommit policies, which are set via the
103  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
104  *
105  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106  * Additional code 2002 Jul 20 by Robert Love.
107  *
108  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109  *
110  * Note this is a helper function intended to be used by LSMs which
111  * wish to use this logic.
112  */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115         unsigned long free, allowed;
116
117         vm_acct_memory(pages);
118
119         /*
120          * Sometimes we want to use more memory than we have
121          */
122         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123                 return 0;
124
125         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126                 free = global_page_state(NR_FREE_PAGES);
127                 free += global_page_state(NR_FILE_PAGES);
128
129                 /*
130                  * shmem pages shouldn't be counted as free in this
131                  * case, they can't be purged, only swapped out, and
132                  * that won't affect the overall amount of available
133                  * memory in the system.
134                  */
135                 free -= global_page_state(NR_SHMEM);
136
137                 free += nr_swap_pages;
138
139                 /*
140                  * Any slabs which are created with the
141                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142                  * which are reclaimable, under pressure.  The dentry
143                  * cache and most inode caches should fall into this
144                  */
145                 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147                 /*
148                  * Leave reserved pages. The pages are not for anonymous pages.
149                  */
150                 if (free <= totalreserve_pages)
151                         goto error;
152                 else
153                         free -= totalreserve_pages;
154
155                 /*
156                  * Leave the last 3% for root
157                  */
158                 if (!cap_sys_admin)
159                         free -= free / 32;
160
161                 if (free > pages)
162                         return 0;
163
164                 goto error;
165         }
166
167         allowed = (totalram_pages - hugetlb_total_pages())
168                 * sysctl_overcommit_ratio / 100;
169         /*
170          * Leave the last 3% for root
171          */
172         if (!cap_sys_admin)
173                 allowed -= allowed / 32;
174         allowed += total_swap_pages;
175
176         /* Don't let a single process grow too big:
177            leave 3% of the size of this process for other processes */
178         if (mm)
179                 allowed -= mm->total_vm / 32;
180
181         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182                 return 0;
183 error:
184         vm_unacct_memory(pages);
185
186         return -ENOMEM;
187 }
188
189 /*
190  * Requires inode->i_mapping->i_mmap_mutex
191  */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193                 struct file *file, struct address_space *mapping)
194 {
195         if (vma->vm_flags & VM_DENYWRITE)
196                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197         if (vma->vm_flags & VM_SHARED)
198                 mapping->i_mmap_writable--;
199
200         flush_dcache_mmap_lock(mapping);
201         if (unlikely(vma->vm_flags & VM_NONLINEAR))
202                 list_del_init(&vma->shared.vm_set.list);
203         else
204                 vma_prio_tree_remove(vma, &mapping->i_mmap);
205         flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209  * Unlink a file-based vm structure from its prio_tree, to hide
210  * vma from rmap and vmtruncate before freeing its page tables.
211  */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214         struct file *file = vma->vm_file;
215
216         if (file) {
217                 struct address_space *mapping = file->f_mapping;
218                 mutex_lock(&mapping->i_mmap_mutex);
219                 __remove_shared_vm_struct(vma, file, mapping);
220                 mutex_unlock(&mapping->i_mmap_mutex);
221                 uprobe_munmap(vma);
222         }
223 }
224
225 /*
226  * Close a vm structure and free it, returning the next.
227  */
228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229 {
230         struct vm_area_struct *next = vma->vm_next;
231
232         might_sleep();
233         if (vma->vm_ops && vma->vm_ops->close)
234                 vma->vm_ops->close(vma);
235         if (vma->vm_file) {
236                 fput(vma->vm_file);
237                 if (vma->vm_flags & VM_EXECUTABLE)
238                         removed_exe_file_vma(vma->vm_mm);
239         }
240         mpol_put(vma_policy(vma));
241         kmem_cache_free(vm_area_cachep, vma);
242         return next;
243 }
244
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
246 {
247         unsigned long rlim, retval;
248         unsigned long newbrk, oldbrk;
249         struct mm_struct *mm = current->mm;
250         unsigned long min_brk;
251
252         down_write(&mm->mmap_sem);
253
254 #ifdef CONFIG_COMPAT_BRK
255         /*
256          * CONFIG_COMPAT_BRK can still be overridden by setting
257          * randomize_va_space to 2, which will still cause mm->start_brk
258          * to be arbitrarily shifted
259          */
260         if (current->brk_randomized)
261                 min_brk = mm->start_brk;
262         else
263                 min_brk = mm->end_data;
264 #else
265         min_brk = mm->start_brk;
266 #endif
267         if (brk < min_brk)
268                 goto out;
269
270         /*
271          * Check against rlimit here. If this check is done later after the test
272          * of oldbrk with newbrk then it can escape the test and let the data
273          * segment grow beyond its set limit the in case where the limit is
274          * not page aligned -Ram Gupta
275          */
276         rlim = rlimit(RLIMIT_DATA);
277         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
278                         (mm->end_data - mm->start_data) > rlim)
279                 goto out;
280
281         newbrk = PAGE_ALIGN(brk);
282         oldbrk = PAGE_ALIGN(mm->brk);
283         if (oldbrk == newbrk)
284                 goto set_brk;
285
286         /* Always allow shrinking brk. */
287         if (brk <= mm->brk) {
288                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
289                         goto set_brk;
290                 goto out;
291         }
292
293         /* Check against existing mmap mappings. */
294         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
295                 goto out;
296
297         /* Ok, looks good - let it rip. */
298         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
299                 goto out;
300 set_brk:
301         mm->brk = brk;
302 out:
303         retval = mm->brk;
304         up_write(&mm->mmap_sem);
305         return retval;
306 }
307
308 #ifdef DEBUG_MM_RB
309 static int browse_rb(struct rb_root *root)
310 {
311         int i = 0, j;
312         struct rb_node *nd, *pn = NULL;
313         unsigned long prev = 0, pend = 0;
314
315         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
316                 struct vm_area_struct *vma;
317                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
318                 if (vma->vm_start < prev)
319                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
320                 if (vma->vm_start < pend)
321                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
322                 if (vma->vm_start > vma->vm_end)
323                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
324                 i++;
325                 pn = nd;
326                 prev = vma->vm_start;
327                 pend = vma->vm_end;
328         }
329         j = 0;
330         for (nd = pn; nd; nd = rb_prev(nd)) {
331                 j++;
332         }
333         if (i != j)
334                 printk("backwards %d, forwards %d\n", j, i), i = 0;
335         return i;
336 }
337
338 void validate_mm(struct mm_struct *mm)
339 {
340         int bug = 0;
341         int i = 0;
342         struct vm_area_struct *tmp = mm->mmap;
343         while (tmp) {
344                 tmp = tmp->vm_next;
345                 i++;
346         }
347         if (i != mm->map_count)
348                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
349         i = browse_rb(&mm->mm_rb);
350         if (i != mm->map_count)
351                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
352         BUG_ON(bug);
353 }
354 #else
355 #define validate_mm(mm) do { } while (0)
356 #endif
357
358 static struct vm_area_struct *
359 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
360                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
361                 struct rb_node ** rb_parent)
362 {
363         struct vm_area_struct * vma;
364         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
365
366         __rb_link = &mm->mm_rb.rb_node;
367         rb_prev = __rb_parent = NULL;
368         vma = NULL;
369
370         while (*__rb_link) {
371                 struct vm_area_struct *vma_tmp;
372
373                 __rb_parent = *__rb_link;
374                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
375
376                 if (vma_tmp->vm_end > addr) {
377                         vma = vma_tmp;
378                         if (vma_tmp->vm_start <= addr)
379                                 break;
380                         __rb_link = &__rb_parent->rb_left;
381                 } else {
382                         rb_prev = __rb_parent;
383                         __rb_link = &__rb_parent->rb_right;
384                 }
385         }
386
387         *pprev = NULL;
388         if (rb_prev)
389                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
390         *rb_link = __rb_link;
391         *rb_parent = __rb_parent;
392         return vma;
393 }
394
395 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
396                 struct rb_node **rb_link, struct rb_node *rb_parent)
397 {
398         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
399         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
400 }
401
402 static void __vma_link_file(struct vm_area_struct *vma)
403 {
404         struct file *file;
405
406         file = vma->vm_file;
407         if (file) {
408                 struct address_space *mapping = file->f_mapping;
409
410                 if (vma->vm_flags & VM_DENYWRITE)
411                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
412                 if (vma->vm_flags & VM_SHARED)
413                         mapping->i_mmap_writable++;
414
415                 flush_dcache_mmap_lock(mapping);
416                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
417                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
418                 else
419                         vma_prio_tree_insert(vma, &mapping->i_mmap);
420                 flush_dcache_mmap_unlock(mapping);
421         }
422 }
423
424 static void
425 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
426         struct vm_area_struct *prev, struct rb_node **rb_link,
427         struct rb_node *rb_parent)
428 {
429         __vma_link_list(mm, vma, prev, rb_parent);
430         __vma_link_rb(mm, vma, rb_link, rb_parent);
431 }
432
433 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
434                         struct vm_area_struct *prev, struct rb_node **rb_link,
435                         struct rb_node *rb_parent)
436 {
437         struct address_space *mapping = NULL;
438
439         if (vma->vm_file)
440                 mapping = vma->vm_file->f_mapping;
441
442         if (mapping)
443                 mutex_lock(&mapping->i_mmap_mutex);
444
445         __vma_link(mm, vma, prev, rb_link, rb_parent);
446         __vma_link_file(vma);
447
448         if (mapping)
449                 mutex_unlock(&mapping->i_mmap_mutex);
450
451         mm->map_count++;
452         validate_mm(mm);
453 }
454
455 /*
456  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
457  * mm's list and rbtree.  It has already been inserted into the prio_tree.
458  */
459 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
460 {
461         struct vm_area_struct *__vma, *prev;
462         struct rb_node **rb_link, *rb_parent;
463
464         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
465         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
466         __vma_link(mm, vma, prev, rb_link, rb_parent);
467         mm->map_count++;
468 }
469
470 static inline void
471 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
472                 struct vm_area_struct *prev)
473 {
474         struct vm_area_struct *next = vma->vm_next;
475
476         prev->vm_next = next;
477         if (next)
478                 next->vm_prev = prev;
479         rb_erase(&vma->vm_rb, &mm->mm_rb);
480         if (mm->mmap_cache == vma)
481                 mm->mmap_cache = prev;
482 }
483
484 /*
485  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
486  * is already present in an i_mmap tree without adjusting the tree.
487  * The following helper function should be used when such adjustments
488  * are necessary.  The "insert" vma (if any) is to be inserted
489  * before we drop the necessary locks.
490  */
491 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
492         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
493 {
494         struct mm_struct *mm = vma->vm_mm;
495         struct vm_area_struct *next = vma->vm_next;
496         struct vm_area_struct *importer = NULL;
497         struct address_space *mapping = NULL;
498         struct prio_tree_root *root = NULL;
499         struct anon_vma *anon_vma = NULL;
500         struct file *file = vma->vm_file;
501         long adjust_next = 0;
502         int remove_next = 0;
503
504         if (next && !insert) {
505                 struct vm_area_struct *exporter = NULL;
506
507                 if (end >= next->vm_end) {
508                         /*
509                          * vma expands, overlapping all the next, and
510                          * perhaps the one after too (mprotect case 6).
511                          */
512 again:                  remove_next = 1 + (end > next->vm_end);
513                         end = next->vm_end;
514                         exporter = next;
515                         importer = vma;
516                 } else if (end > next->vm_start) {
517                         /*
518                          * vma expands, overlapping part of the next:
519                          * mprotect case 5 shifting the boundary up.
520                          */
521                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
522                         exporter = next;
523                         importer = vma;
524                 } else if (end < vma->vm_end) {
525                         /*
526                          * vma shrinks, and !insert tells it's not
527                          * split_vma inserting another: so it must be
528                          * mprotect case 4 shifting the boundary down.
529                          */
530                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
531                         exporter = vma;
532                         importer = next;
533                 }
534
535                 /*
536                  * Easily overlooked: when mprotect shifts the boundary,
537                  * make sure the expanding vma has anon_vma set if the
538                  * shrinking vma had, to cover any anon pages imported.
539                  */
540                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
541                         if (anon_vma_clone(importer, exporter))
542                                 return -ENOMEM;
543                         importer->anon_vma = exporter->anon_vma;
544                 }
545         }
546
547         if (file) {
548                 mapping = file->f_mapping;
549                 if (!(vma->vm_flags & VM_NONLINEAR)) {
550                         root = &mapping->i_mmap;
551                         uprobe_munmap(vma);
552
553                         if (adjust_next)
554                                 uprobe_munmap(next);
555                 }
556
557                 mutex_lock(&mapping->i_mmap_mutex);
558                 if (insert) {
559                         /*
560                          * Put into prio_tree now, so instantiated pages
561                          * are visible to arm/parisc __flush_dcache_page
562                          * throughout; but we cannot insert into address
563                          * space until vma start or end is updated.
564                          */
565                         __vma_link_file(insert);
566                 }
567         }
568
569         vma_adjust_trans_huge(vma, start, end, adjust_next);
570
571         /*
572          * When changing only vma->vm_end, we don't really need anon_vma
573          * lock. This is a fairly rare case by itself, but the anon_vma
574          * lock may be shared between many sibling processes.  Skipping
575          * the lock for brk adjustments makes a difference sometimes.
576          */
577         if (vma->anon_vma && (importer || start != vma->vm_start)) {
578                 anon_vma = vma->anon_vma;
579                 anon_vma_lock(anon_vma);
580         }
581
582         if (root) {
583                 flush_dcache_mmap_lock(mapping);
584                 vma_prio_tree_remove(vma, root);
585                 if (adjust_next)
586                         vma_prio_tree_remove(next, root);
587         }
588
589         vma->vm_start = start;
590         vma->vm_end = end;
591         vma->vm_pgoff = pgoff;
592         if (adjust_next) {
593                 next->vm_start += adjust_next << PAGE_SHIFT;
594                 next->vm_pgoff += adjust_next;
595         }
596
597         if (root) {
598                 if (adjust_next)
599                         vma_prio_tree_insert(next, root);
600                 vma_prio_tree_insert(vma, root);
601                 flush_dcache_mmap_unlock(mapping);
602         }
603
604         if (remove_next) {
605                 /*
606                  * vma_merge has merged next into vma, and needs
607                  * us to remove next before dropping the locks.
608                  */
609                 __vma_unlink(mm, next, vma);
610                 if (file)
611                         __remove_shared_vm_struct(next, file, mapping);
612         } else if (insert) {
613                 /*
614                  * split_vma has split insert from vma, and needs
615                  * us to insert it before dropping the locks
616                  * (it may either follow vma or precede it).
617                  */
618                 __insert_vm_struct(mm, insert);
619         }
620
621         if (anon_vma)
622                 anon_vma_unlock(anon_vma);
623         if (mapping)
624                 mutex_unlock(&mapping->i_mmap_mutex);
625
626         if (root) {
627                 uprobe_mmap(vma);
628
629                 if (adjust_next)
630                         uprobe_mmap(next);
631         }
632
633         if (remove_next) {
634                 if (file) {
635                         uprobe_munmap(next);
636                         fput(file);
637                         if (next->vm_flags & VM_EXECUTABLE)
638                                 removed_exe_file_vma(mm);
639                 }
640                 if (next->anon_vma)
641                         anon_vma_merge(vma, next);
642                 mm->map_count--;
643                 mpol_put(vma_policy(next));
644                 kmem_cache_free(vm_area_cachep, next);
645                 /*
646                  * In mprotect's case 6 (see comments on vma_merge),
647                  * we must remove another next too. It would clutter
648                  * up the code too much to do both in one go.
649                  */
650                 if (remove_next == 2) {
651                         next = vma->vm_next;
652                         goto again;
653                 }
654         }
655         if (insert && file)
656                 uprobe_mmap(insert);
657
658         validate_mm(mm);
659
660         return 0;
661 }
662
663 /*
664  * If the vma has a ->close operation then the driver probably needs to release
665  * per-vma resources, so we don't attempt to merge those.
666  */
667 static inline int is_mergeable_vma(struct vm_area_struct *vma,
668                         struct file *file, unsigned long vm_flags)
669 {
670         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
671         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
672                 return 0;
673         if (vma->vm_file != file)
674                 return 0;
675         if (vma->vm_ops && vma->vm_ops->close)
676                 return 0;
677         return 1;
678 }
679
680 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
681                                         struct anon_vma *anon_vma2,
682                                         struct vm_area_struct *vma)
683 {
684         /*
685          * The list_is_singular() test is to avoid merging VMA cloned from
686          * parents. This can improve scalability caused by anon_vma lock.
687          */
688         if ((!anon_vma1 || !anon_vma2) && (!vma ||
689                 list_is_singular(&vma->anon_vma_chain)))
690                 return 1;
691         return anon_vma1 == anon_vma2;
692 }
693
694 /*
695  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
696  * in front of (at a lower virtual address and file offset than) the vma.
697  *
698  * We cannot merge two vmas if they have differently assigned (non-NULL)
699  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
700  *
701  * We don't check here for the merged mmap wrapping around the end of pagecache
702  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
703  * wrap, nor mmaps which cover the final page at index -1UL.
704  */
705 static int
706 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
707         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
708 {
709         if (is_mergeable_vma(vma, file, vm_flags) &&
710             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
711                 if (vma->vm_pgoff == vm_pgoff)
712                         return 1;
713         }
714         return 0;
715 }
716
717 /*
718  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
719  * beyond (at a higher virtual address and file offset than) the vma.
720  *
721  * We cannot merge two vmas if they have differently assigned (non-NULL)
722  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
723  */
724 static int
725 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
726         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
727 {
728         if (is_mergeable_vma(vma, file, vm_flags) &&
729             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
730                 pgoff_t vm_pglen;
731                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
732                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
733                         return 1;
734         }
735         return 0;
736 }
737
738 /*
739  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
740  * whether that can be merged with its predecessor or its successor.
741  * Or both (it neatly fills a hole).
742  *
743  * In most cases - when called for mmap, brk or mremap - [addr,end) is
744  * certain not to be mapped by the time vma_merge is called; but when
745  * called for mprotect, it is certain to be already mapped (either at
746  * an offset within prev, or at the start of next), and the flags of
747  * this area are about to be changed to vm_flags - and the no-change
748  * case has already been eliminated.
749  *
750  * The following mprotect cases have to be considered, where AAAA is
751  * the area passed down from mprotect_fixup, never extending beyond one
752  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
753  *
754  *     AAAA             AAAA                AAAA          AAAA
755  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
756  *    cannot merge    might become    might become    might become
757  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
758  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
759  *    mremap move:                                    PPPPNNNNNNNN 8
760  *        AAAA
761  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
762  *    might become    case 1 below    case 2 below    case 3 below
763  *
764  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
765  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
766  */
767 struct vm_area_struct *vma_merge(struct mm_struct *mm,
768                         struct vm_area_struct *prev, unsigned long addr,
769                         unsigned long end, unsigned long vm_flags,
770                         struct anon_vma *anon_vma, struct file *file,
771                         pgoff_t pgoff, struct mempolicy *policy)
772 {
773         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
774         struct vm_area_struct *area, *next;
775         int err;
776
777         /*
778          * We later require that vma->vm_flags == vm_flags,
779          * so this tests vma->vm_flags & VM_SPECIAL, too.
780          */
781         if (vm_flags & VM_SPECIAL)
782                 return NULL;
783
784         if (prev)
785                 next = prev->vm_next;
786         else
787                 next = mm->mmap;
788         area = next;
789         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
790                 next = next->vm_next;
791
792         /*
793          * Can it merge with the predecessor?
794          */
795         if (prev && prev->vm_end == addr &&
796                         mpol_equal(vma_policy(prev), policy) &&
797                         can_vma_merge_after(prev, vm_flags,
798                                                 anon_vma, file, pgoff)) {
799                 /*
800                  * OK, it can.  Can we now merge in the successor as well?
801                  */
802                 if (next && end == next->vm_start &&
803                                 mpol_equal(policy, vma_policy(next)) &&
804                                 can_vma_merge_before(next, vm_flags,
805                                         anon_vma, file, pgoff+pglen) &&
806                                 is_mergeable_anon_vma(prev->anon_vma,
807                                                       next->anon_vma, NULL)) {
808                                                         /* cases 1, 6 */
809                         err = vma_adjust(prev, prev->vm_start,
810                                 next->vm_end, prev->vm_pgoff, NULL);
811                 } else                                  /* cases 2, 5, 7 */
812                         err = vma_adjust(prev, prev->vm_start,
813                                 end, prev->vm_pgoff, NULL);
814                 if (err)
815                         return NULL;
816                 khugepaged_enter_vma_merge(prev);
817                 return prev;
818         }
819
820         /*
821          * Can this new request be merged in front of next?
822          */
823         if (next && end == next->vm_start &&
824                         mpol_equal(policy, vma_policy(next)) &&
825                         can_vma_merge_before(next, vm_flags,
826                                         anon_vma, file, pgoff+pglen)) {
827                 if (prev && addr < prev->vm_end)        /* case 4 */
828                         err = vma_adjust(prev, prev->vm_start,
829                                 addr, prev->vm_pgoff, NULL);
830                 else                                    /* cases 3, 8 */
831                         err = vma_adjust(area, addr, next->vm_end,
832                                 next->vm_pgoff - pglen, NULL);
833                 if (err)
834                         return NULL;
835                 khugepaged_enter_vma_merge(area);
836                 return area;
837         }
838
839         return NULL;
840 }
841
842 /*
843  * Rough compatbility check to quickly see if it's even worth looking
844  * at sharing an anon_vma.
845  *
846  * They need to have the same vm_file, and the flags can only differ
847  * in things that mprotect may change.
848  *
849  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
850  * we can merge the two vma's. For example, we refuse to merge a vma if
851  * there is a vm_ops->close() function, because that indicates that the
852  * driver is doing some kind of reference counting. But that doesn't
853  * really matter for the anon_vma sharing case.
854  */
855 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
856 {
857         return a->vm_end == b->vm_start &&
858                 mpol_equal(vma_policy(a), vma_policy(b)) &&
859                 a->vm_file == b->vm_file &&
860                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
861                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
862 }
863
864 /*
865  * Do some basic sanity checking to see if we can re-use the anon_vma
866  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
867  * the same as 'old', the other will be the new one that is trying
868  * to share the anon_vma.
869  *
870  * NOTE! This runs with mm_sem held for reading, so it is possible that
871  * the anon_vma of 'old' is concurrently in the process of being set up
872  * by another page fault trying to merge _that_. But that's ok: if it
873  * is being set up, that automatically means that it will be a singleton
874  * acceptable for merging, so we can do all of this optimistically. But
875  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
876  *
877  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
878  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
879  * is to return an anon_vma that is "complex" due to having gone through
880  * a fork).
881  *
882  * We also make sure that the two vma's are compatible (adjacent,
883  * and with the same memory policies). That's all stable, even with just
884  * a read lock on the mm_sem.
885  */
886 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
887 {
888         if (anon_vma_compatible(a, b)) {
889                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
890
891                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
892                         return anon_vma;
893         }
894         return NULL;
895 }
896
897 /*
898  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
899  * neighbouring vmas for a suitable anon_vma, before it goes off
900  * to allocate a new anon_vma.  It checks because a repetitive
901  * sequence of mprotects and faults may otherwise lead to distinct
902  * anon_vmas being allocated, preventing vma merge in subsequent
903  * mprotect.
904  */
905 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
906 {
907         struct anon_vma *anon_vma;
908         struct vm_area_struct *near;
909
910         near = vma->vm_next;
911         if (!near)
912                 goto try_prev;
913
914         anon_vma = reusable_anon_vma(near, vma, near);
915         if (anon_vma)
916                 return anon_vma;
917 try_prev:
918         near = vma->vm_prev;
919         if (!near)
920                 goto none;
921
922         anon_vma = reusable_anon_vma(near, near, vma);
923         if (anon_vma)
924                 return anon_vma;
925 none:
926         /*
927          * There's no absolute need to look only at touching neighbours:
928          * we could search further afield for "compatible" anon_vmas.
929          * But it would probably just be a waste of time searching,
930          * or lead to too many vmas hanging off the same anon_vma.
931          * We're trying to allow mprotect remerging later on,
932          * not trying to minimize memory used for anon_vmas.
933          */
934         return NULL;
935 }
936
937 #ifdef CONFIG_PROC_FS
938 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
939                                                 struct file *file, long pages)
940 {
941         const unsigned long stack_flags
942                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
943
944         if (file) {
945                 mm->shared_vm += pages;
946                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
947                         mm->exec_vm += pages;
948         } else if (flags & stack_flags)
949                 mm->stack_vm += pages;
950         if (flags & (VM_RESERVED|VM_IO))
951                 mm->reserved_vm += pages;
952 }
953 #endif /* CONFIG_PROC_FS */
954
955 /*
956  * If a hint addr is less than mmap_min_addr change hint to be as
957  * low as possible but still greater than mmap_min_addr
958  */
959 static inline unsigned long round_hint_to_min(unsigned long hint)
960 {
961         hint &= PAGE_MASK;
962         if (((void *)hint != NULL) &&
963             (hint < mmap_min_addr))
964                 return PAGE_ALIGN(mmap_min_addr);
965         return hint;
966 }
967
968 /*
969  * The caller must hold down_write(&current->mm->mmap_sem).
970  */
971
972 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
973                         unsigned long len, unsigned long prot,
974                         unsigned long flags, unsigned long pgoff)
975 {
976         struct mm_struct * mm = current->mm;
977         struct inode *inode;
978         vm_flags_t vm_flags;
979         int error;
980         unsigned long reqprot = prot;
981
982         /*
983          * Does the application expect PROT_READ to imply PROT_EXEC?
984          *
985          * (the exception is when the underlying filesystem is noexec
986          *  mounted, in which case we dont add PROT_EXEC.)
987          */
988         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
989                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
990                         prot |= PROT_EXEC;
991
992         if (!len)
993                 return -EINVAL;
994
995         if (!(flags & MAP_FIXED))
996                 addr = round_hint_to_min(addr);
997
998         /* Careful about overflows.. */
999         len = PAGE_ALIGN(len);
1000         if (!len)
1001                 return -ENOMEM;
1002
1003         /* offset overflow? */
1004         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1005                return -EOVERFLOW;
1006
1007         /* Too many mappings? */
1008         if (mm->map_count > sysctl_max_map_count)
1009                 return -ENOMEM;
1010
1011         /* Obtain the address to map to. we verify (or select) it and ensure
1012          * that it represents a valid section of the address space.
1013          */
1014         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1015         if (addr & ~PAGE_MASK)
1016                 return addr;
1017
1018         /* Do simple checking here so the lower-level routines won't have
1019          * to. we assume access permissions have been handled by the open
1020          * of the memory object, so we don't do any here.
1021          */
1022         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1023                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1024
1025         if (flags & MAP_LOCKED)
1026                 if (!can_do_mlock())
1027                         return -EPERM;
1028
1029         /* mlock MCL_FUTURE? */
1030         if (vm_flags & VM_LOCKED) {
1031                 unsigned long locked, lock_limit;
1032                 locked = len >> PAGE_SHIFT;
1033                 locked += mm->locked_vm;
1034                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1035                 lock_limit >>= PAGE_SHIFT;
1036                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1037                         return -EAGAIN;
1038         }
1039
1040         inode = file ? file->f_path.dentry->d_inode : NULL;
1041
1042         if (file) {
1043                 switch (flags & MAP_TYPE) {
1044                 case MAP_SHARED:
1045                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1046                                 return -EACCES;
1047
1048                         /*
1049                          * Make sure we don't allow writing to an append-only
1050                          * file..
1051                          */
1052                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1053                                 return -EACCES;
1054
1055                         /*
1056                          * Make sure there are no mandatory locks on the file.
1057                          */
1058                         if (locks_verify_locked(inode))
1059                                 return -EAGAIN;
1060
1061                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1062                         if (!(file->f_mode & FMODE_WRITE))
1063                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1064
1065                         /* fall through */
1066                 case MAP_PRIVATE:
1067                         if (!(file->f_mode & FMODE_READ))
1068                                 return -EACCES;
1069                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1070                                 if (vm_flags & VM_EXEC)
1071                                         return -EPERM;
1072                                 vm_flags &= ~VM_MAYEXEC;
1073                         }
1074
1075                         if (!file->f_op || !file->f_op->mmap)
1076                                 return -ENODEV;
1077                         break;
1078
1079                 default:
1080                         return -EINVAL;
1081                 }
1082         } else {
1083                 switch (flags & MAP_TYPE) {
1084                 case MAP_SHARED:
1085                         /*
1086                          * Ignore pgoff.
1087                          */
1088                         pgoff = 0;
1089                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1090                         break;
1091                 case MAP_PRIVATE:
1092                         /*
1093                          * Set pgoff according to addr for anon_vma.
1094                          */
1095                         pgoff = addr >> PAGE_SHIFT;
1096                         break;
1097                 default:
1098                         return -EINVAL;
1099                 }
1100         }
1101
1102         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1103         if (error)
1104                 return error;
1105
1106         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1107 }
1108 EXPORT_SYMBOL(do_mmap_pgoff);
1109
1110 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1111                 unsigned long, prot, unsigned long, flags,
1112                 unsigned long, fd, unsigned long, pgoff)
1113 {
1114         struct file *file = NULL;
1115         unsigned long retval = -EBADF;
1116
1117         if (!(flags & MAP_ANONYMOUS)) {
1118                 audit_mmap_fd(fd, flags);
1119                 if (unlikely(flags & MAP_HUGETLB))
1120                         return -EINVAL;
1121                 file = fget(fd);
1122                 if (!file)
1123                         goto out;
1124         } else if (flags & MAP_HUGETLB) {
1125                 struct user_struct *user = NULL;
1126                 /*
1127                  * VM_NORESERVE is used because the reservations will be
1128                  * taken when vm_ops->mmap() is called
1129                  * A dummy user value is used because we are not locking
1130                  * memory so no accounting is necessary
1131                  */
1132                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1133                                                 VM_NORESERVE, &user,
1134                                                 HUGETLB_ANONHUGE_INODE);
1135                 if (IS_ERR(file))
1136                         return PTR_ERR(file);
1137         }
1138
1139         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1140
1141         down_write(&current->mm->mmap_sem);
1142         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1143         up_write(&current->mm->mmap_sem);
1144
1145         if (file)
1146                 fput(file);
1147 out:
1148         return retval;
1149 }
1150
1151 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1152 struct mmap_arg_struct {
1153         unsigned long addr;
1154         unsigned long len;
1155         unsigned long prot;
1156         unsigned long flags;
1157         unsigned long fd;
1158         unsigned long offset;
1159 };
1160
1161 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1162 {
1163         struct mmap_arg_struct a;
1164
1165         if (copy_from_user(&a, arg, sizeof(a)))
1166                 return -EFAULT;
1167         if (a.offset & ~PAGE_MASK)
1168                 return -EINVAL;
1169
1170         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1171                               a.offset >> PAGE_SHIFT);
1172 }
1173 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1174
1175 /*
1176  * Some shared mappigns will want the pages marked read-only
1177  * to track write events. If so, we'll downgrade vm_page_prot
1178  * to the private version (using protection_map[] without the
1179  * VM_SHARED bit).
1180  */
1181 int vma_wants_writenotify(struct vm_area_struct *vma)
1182 {
1183         vm_flags_t vm_flags = vma->vm_flags;
1184
1185         /* If it was private or non-writable, the write bit is already clear */
1186         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1187                 return 0;
1188
1189         /* The backer wishes to know when pages are first written to? */
1190         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1191                 return 1;
1192
1193         /* The open routine did something to the protections already? */
1194         if (pgprot_val(vma->vm_page_prot) !=
1195             pgprot_val(vm_get_page_prot(vm_flags)))
1196                 return 0;
1197
1198         /* Specialty mapping? */
1199         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1200                 return 0;
1201
1202         /* Can the mapping track the dirty pages? */
1203         return vma->vm_file && vma->vm_file->f_mapping &&
1204                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1205 }
1206
1207 /*
1208  * We account for memory if it's a private writeable mapping,
1209  * not hugepages and VM_NORESERVE wasn't set.
1210  */
1211 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1212 {
1213         /*
1214          * hugetlb has its own accounting separate from the core VM
1215          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1216          */
1217         if (file && is_file_hugepages(file))
1218                 return 0;
1219
1220         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1221 }
1222
1223 unsigned long mmap_region(struct file *file, unsigned long addr,
1224                           unsigned long len, unsigned long flags,
1225                           vm_flags_t vm_flags, unsigned long pgoff)
1226 {
1227         struct mm_struct *mm = current->mm;
1228         struct vm_area_struct *vma, *prev;
1229         int correct_wcount = 0;
1230         int error;
1231         struct rb_node **rb_link, *rb_parent;
1232         unsigned long charged = 0;
1233         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1234
1235         /* Clear old maps */
1236         error = -ENOMEM;
1237 munmap_back:
1238         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1239         if (vma && vma->vm_start < addr + len) {
1240                 if (do_munmap(mm, addr, len))
1241                         return -ENOMEM;
1242                 goto munmap_back;
1243         }
1244
1245         /* Check against address space limit. */
1246         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1247                 return -ENOMEM;
1248
1249         /*
1250          * Set 'VM_NORESERVE' if we should not account for the
1251          * memory use of this mapping.
1252          */
1253         if ((flags & MAP_NORESERVE)) {
1254                 /* We honor MAP_NORESERVE if allowed to overcommit */
1255                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1256                         vm_flags |= VM_NORESERVE;
1257
1258                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1259                 if (file && is_file_hugepages(file))
1260                         vm_flags |= VM_NORESERVE;
1261         }
1262
1263         /*
1264          * Private writable mapping: check memory availability
1265          */
1266         if (accountable_mapping(file, vm_flags)) {
1267                 charged = len >> PAGE_SHIFT;
1268                 if (security_vm_enough_memory_mm(mm, charged))
1269                         return -ENOMEM;
1270                 vm_flags |= VM_ACCOUNT;
1271         }
1272
1273         /*
1274          * Can we just expand an old mapping?
1275          */
1276         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1277         if (vma)
1278                 goto out;
1279
1280         /*
1281          * Determine the object being mapped and call the appropriate
1282          * specific mapper. the address has already been validated, but
1283          * not unmapped, but the maps are removed from the list.
1284          */
1285         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1286         if (!vma) {
1287                 error = -ENOMEM;
1288                 goto unacct_error;
1289         }
1290
1291         vma->vm_mm = mm;
1292         vma->vm_start = addr;
1293         vma->vm_end = addr + len;
1294         vma->vm_flags = vm_flags;
1295         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1296         vma->vm_pgoff = pgoff;
1297         INIT_LIST_HEAD(&vma->anon_vma_chain);
1298
1299         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1300
1301         if (file) {
1302                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1303                         goto free_vma;
1304                 if (vm_flags & VM_DENYWRITE) {
1305                         error = deny_write_access(file);
1306                         if (error)
1307                                 goto free_vma;
1308                         correct_wcount = 1;
1309                 }
1310                 vma->vm_file = file;
1311                 get_file(file);
1312                 error = file->f_op->mmap(file, vma);
1313                 if (error)
1314                         goto unmap_and_free_vma;
1315                 if (vm_flags & VM_EXECUTABLE)
1316                         added_exe_file_vma(mm);
1317
1318                 /* Can addr have changed??
1319                  *
1320                  * Answer: Yes, several device drivers can do it in their
1321                  *         f_op->mmap method. -DaveM
1322                  */
1323                 addr = vma->vm_start;
1324                 pgoff = vma->vm_pgoff;
1325                 vm_flags = vma->vm_flags;
1326         } else if (vm_flags & VM_SHARED) {
1327                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1328                         goto free_vma;
1329                 error = shmem_zero_setup(vma);
1330                 if (error)
1331                         goto free_vma;
1332         }
1333
1334         if (vma_wants_writenotify(vma)) {
1335                 pgprot_t pprot = vma->vm_page_prot;
1336
1337                 /* Can vma->vm_page_prot have changed??
1338                  *
1339                  * Answer: Yes, drivers may have changed it in their
1340                  *         f_op->mmap method.
1341                  *
1342                  * Ensures that vmas marked as uncached stay that way.
1343                  */
1344                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1345                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1346                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1347         }
1348
1349         vma_link(mm, vma, prev, rb_link, rb_parent);
1350         file = vma->vm_file;
1351
1352         /* Once vma denies write, undo our temporary denial count */
1353         if (correct_wcount)
1354                 atomic_inc(&inode->i_writecount);
1355 out:
1356         perf_event_mmap(vma);
1357
1358         mm->total_vm += len >> PAGE_SHIFT;
1359         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1360         if (vm_flags & VM_LOCKED) {
1361                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1362                         mm->locked_vm += (len >> PAGE_SHIFT);
1363         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1364                 make_pages_present(addr, addr + len);
1365
1366         if (file && uprobe_mmap(vma))
1367                 /* matching probes but cannot insert */
1368                 goto unmap_and_free_vma;
1369
1370         return addr;
1371
1372 unmap_and_free_vma:
1373         if (correct_wcount)
1374                 atomic_inc(&inode->i_writecount);
1375         vma->vm_file = NULL;
1376         fput(file);
1377
1378         /* Undo any partial mapping done by a device driver. */
1379         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1380         charged = 0;
1381 free_vma:
1382         kmem_cache_free(vm_area_cachep, vma);
1383 unacct_error:
1384         if (charged)
1385                 vm_unacct_memory(charged);
1386         return error;
1387 }
1388
1389 /* Get an address range which is currently unmapped.
1390  * For shmat() with addr=0.
1391  *
1392  * Ugly calling convention alert:
1393  * Return value with the low bits set means error value,
1394  * ie
1395  *      if (ret & ~PAGE_MASK)
1396  *              error = ret;
1397  *
1398  * This function "knows" that -ENOMEM has the bits set.
1399  */
1400 #ifndef HAVE_ARCH_UNMAPPED_AREA
1401 unsigned long
1402 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1403                 unsigned long len, unsigned long pgoff, unsigned long flags)
1404 {
1405         struct mm_struct *mm = current->mm;
1406         struct vm_area_struct *vma;
1407         unsigned long start_addr;
1408
1409         if (len > TASK_SIZE)
1410                 return -ENOMEM;
1411
1412         if (flags & MAP_FIXED)
1413                 return addr;
1414
1415         if (addr) {
1416                 addr = PAGE_ALIGN(addr);
1417                 vma = find_vma(mm, addr);
1418                 if (TASK_SIZE - len >= addr &&
1419                     (!vma || addr + len <= vma->vm_start))
1420                         return addr;
1421         }
1422         if (len > mm->cached_hole_size) {
1423                 start_addr = addr = mm->free_area_cache;
1424         } else {
1425                 start_addr = addr = TASK_UNMAPPED_BASE;
1426                 mm->cached_hole_size = 0;
1427         }
1428
1429 full_search:
1430         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1431                 /* At this point:  (!vma || addr < vma->vm_end). */
1432                 if (TASK_SIZE - len < addr) {
1433                         /*
1434                          * Start a new search - just in case we missed
1435                          * some holes.
1436                          */
1437                         if (start_addr != TASK_UNMAPPED_BASE) {
1438                                 addr = TASK_UNMAPPED_BASE;
1439                                 start_addr = addr;
1440                                 mm->cached_hole_size = 0;
1441                                 goto full_search;
1442                         }
1443                         return -ENOMEM;
1444                 }
1445                 if (!vma || addr + len <= vma->vm_start) {
1446                         /*
1447                          * Remember the place where we stopped the search:
1448                          */
1449                         mm->free_area_cache = addr + len;
1450                         return addr;
1451                 }
1452                 if (addr + mm->cached_hole_size < vma->vm_start)
1453                         mm->cached_hole_size = vma->vm_start - addr;
1454                 addr = vma->vm_end;
1455         }
1456 }
1457 #endif  
1458
1459 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1460 {
1461         /*
1462          * Is this a new hole at the lowest possible address?
1463          */
1464         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1465                 mm->free_area_cache = addr;
1466 }
1467
1468 /*
1469  * This mmap-allocator allocates new areas top-down from below the
1470  * stack's low limit (the base):
1471  */
1472 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1473 unsigned long
1474 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1475                           const unsigned long len, const unsigned long pgoff,
1476                           const unsigned long flags)
1477 {
1478         struct vm_area_struct *vma;
1479         struct mm_struct *mm = current->mm;
1480         unsigned long addr = addr0, start_addr;
1481
1482         /* requested length too big for entire address space */
1483         if (len > TASK_SIZE)
1484                 return -ENOMEM;
1485
1486         if (flags & MAP_FIXED)
1487                 return addr;
1488
1489         /* requesting a specific address */
1490         if (addr) {
1491                 addr = PAGE_ALIGN(addr);
1492                 vma = find_vma(mm, addr);
1493                 if (TASK_SIZE - len >= addr &&
1494                                 (!vma || addr + len <= vma->vm_start))
1495                         return addr;
1496         }
1497
1498         /* check if free_area_cache is useful for us */
1499         if (len <= mm->cached_hole_size) {
1500                 mm->cached_hole_size = 0;
1501                 mm->free_area_cache = mm->mmap_base;
1502         }
1503
1504 try_again:
1505         /* either no address requested or can't fit in requested address hole */
1506         start_addr = addr = mm->free_area_cache;
1507
1508         if (addr < len)
1509                 goto fail;
1510
1511         addr -= len;
1512         do {
1513                 /*
1514                  * Lookup failure means no vma is above this address,
1515                  * else if new region fits below vma->vm_start,
1516                  * return with success:
1517                  */
1518                 vma = find_vma(mm, addr);
1519                 if (!vma || addr+len <= vma->vm_start)
1520                         /* remember the address as a hint for next time */
1521                         return (mm->free_area_cache = addr);
1522
1523                 /* remember the largest hole we saw so far */
1524                 if (addr + mm->cached_hole_size < vma->vm_start)
1525                         mm->cached_hole_size = vma->vm_start - addr;
1526
1527                 /* try just below the current vma->vm_start */
1528                 addr = vma->vm_start-len;
1529         } while (len < vma->vm_start);
1530
1531 fail:
1532         /*
1533          * if hint left us with no space for the requested
1534          * mapping then try again:
1535          *
1536          * Note: this is different with the case of bottomup
1537          * which does the fully line-search, but we use find_vma
1538          * here that causes some holes skipped.
1539          */
1540         if (start_addr != mm->mmap_base) {
1541                 mm->free_area_cache = mm->mmap_base;
1542                 mm->cached_hole_size = 0;
1543                 goto try_again;
1544         }
1545
1546         /*
1547          * A failed mmap() very likely causes application failure,
1548          * so fall back to the bottom-up function here. This scenario
1549          * can happen with large stack limits and large mmap()
1550          * allocations.
1551          */
1552         mm->cached_hole_size = ~0UL;
1553         mm->free_area_cache = TASK_UNMAPPED_BASE;
1554         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1555         /*
1556          * Restore the topdown base:
1557          */
1558         mm->free_area_cache = mm->mmap_base;
1559         mm->cached_hole_size = ~0UL;
1560
1561         return addr;
1562 }
1563 #endif
1564
1565 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1566 {
1567         /*
1568          * Is this a new hole at the highest possible address?
1569          */
1570         if (addr > mm->free_area_cache)
1571                 mm->free_area_cache = addr;
1572
1573         /* dont allow allocations above current base */
1574         if (mm->free_area_cache > mm->mmap_base)
1575                 mm->free_area_cache = mm->mmap_base;
1576 }
1577
1578 unsigned long
1579 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1580                 unsigned long pgoff, unsigned long flags)
1581 {
1582         unsigned long (*get_area)(struct file *, unsigned long,
1583                                   unsigned long, unsigned long, unsigned long);
1584
1585         unsigned long error = arch_mmap_check(addr, len, flags);
1586         if (error)
1587                 return error;
1588
1589         /* Careful about overflows.. */
1590         if (len > TASK_SIZE)
1591                 return -ENOMEM;
1592
1593         get_area = current->mm->get_unmapped_area;
1594         if (file && file->f_op && file->f_op->get_unmapped_area)
1595                 get_area = file->f_op->get_unmapped_area;
1596         addr = get_area(file, addr, len, pgoff, flags);
1597         if (IS_ERR_VALUE(addr))
1598                 return addr;
1599
1600         if (addr > TASK_SIZE - len)
1601                 return -ENOMEM;
1602         if (addr & ~PAGE_MASK)
1603                 return -EINVAL;
1604
1605         return arch_rebalance_pgtables(addr, len);
1606 }
1607
1608 EXPORT_SYMBOL(get_unmapped_area);
1609
1610 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1611 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1612 {
1613         struct vm_area_struct *vma = NULL;
1614
1615         if (mm) {
1616                 /* Check the cache first. */
1617                 /* (Cache hit rate is typically around 35%.) */
1618                 vma = mm->mmap_cache;
1619                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1620                         struct rb_node * rb_node;
1621
1622                         rb_node = mm->mm_rb.rb_node;
1623                         vma = NULL;
1624
1625                         while (rb_node) {
1626                                 struct vm_area_struct * vma_tmp;
1627
1628                                 vma_tmp = rb_entry(rb_node,
1629                                                 struct vm_area_struct, vm_rb);
1630
1631                                 if (vma_tmp->vm_end > addr) {
1632                                         vma = vma_tmp;
1633                                         if (vma_tmp->vm_start <= addr)
1634                                                 break;
1635                                         rb_node = rb_node->rb_left;
1636                                 } else
1637                                         rb_node = rb_node->rb_right;
1638                         }
1639                         if (vma)
1640                                 mm->mmap_cache = vma;
1641                 }
1642         }
1643         return vma;
1644 }
1645
1646 EXPORT_SYMBOL(find_vma);
1647
1648 /*
1649  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1650  */
1651 struct vm_area_struct *
1652 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1653                         struct vm_area_struct **pprev)
1654 {
1655         struct vm_area_struct *vma;
1656
1657         vma = find_vma(mm, addr);
1658         if (vma) {
1659                 *pprev = vma->vm_prev;
1660         } else {
1661                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1662                 *pprev = NULL;
1663                 while (rb_node) {
1664                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1665                         rb_node = rb_node->rb_right;
1666                 }
1667         }
1668         return vma;
1669 }
1670
1671 /*
1672  * Verify that the stack growth is acceptable and
1673  * update accounting. This is shared with both the
1674  * grow-up and grow-down cases.
1675  */
1676 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1677 {
1678         struct mm_struct *mm = vma->vm_mm;
1679         struct rlimit *rlim = current->signal->rlim;
1680         unsigned long new_start;
1681
1682         /* address space limit tests */
1683         if (!may_expand_vm(mm, grow))
1684                 return -ENOMEM;
1685
1686         /* Stack limit test */
1687         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1688                 return -ENOMEM;
1689
1690         /* mlock limit tests */
1691         if (vma->vm_flags & VM_LOCKED) {
1692                 unsigned long locked;
1693                 unsigned long limit;
1694                 locked = mm->locked_vm + grow;
1695                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1696                 limit >>= PAGE_SHIFT;
1697                 if (locked > limit && !capable(CAP_IPC_LOCK))
1698                         return -ENOMEM;
1699         }
1700
1701         /* Check to ensure the stack will not grow into a hugetlb-only region */
1702         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1703                         vma->vm_end - size;
1704         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1705                 return -EFAULT;
1706
1707         /*
1708          * Overcommit..  This must be the final test, as it will
1709          * update security statistics.
1710          */
1711         if (security_vm_enough_memory_mm(mm, grow))
1712                 return -ENOMEM;
1713
1714         /* Ok, everything looks good - let it rip */
1715         mm->total_vm += grow;
1716         if (vma->vm_flags & VM_LOCKED)
1717                 mm->locked_vm += grow;
1718         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1719         return 0;
1720 }
1721
1722 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1723 /*
1724  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1725  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1726  */
1727 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1728 {
1729         int error;
1730
1731         if (!(vma->vm_flags & VM_GROWSUP))
1732                 return -EFAULT;
1733
1734         /*
1735          * We must make sure the anon_vma is allocated
1736          * so that the anon_vma locking is not a noop.
1737          */
1738         if (unlikely(anon_vma_prepare(vma)))
1739                 return -ENOMEM;
1740         vma_lock_anon_vma(vma);
1741
1742         /*
1743          * vma->vm_start/vm_end cannot change under us because the caller
1744          * is required to hold the mmap_sem in read mode.  We need the
1745          * anon_vma lock to serialize against concurrent expand_stacks.
1746          * Also guard against wrapping around to address 0.
1747          */
1748         if (address < PAGE_ALIGN(address+4))
1749                 address = PAGE_ALIGN(address+4);
1750         else {
1751                 vma_unlock_anon_vma(vma);
1752                 return -ENOMEM;
1753         }
1754         error = 0;
1755
1756         /* Somebody else might have raced and expanded it already */
1757         if (address > vma->vm_end) {
1758                 unsigned long size, grow;
1759
1760                 size = address - vma->vm_start;
1761                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1762
1763                 error = -ENOMEM;
1764                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1765                         error = acct_stack_growth(vma, size, grow);
1766                         if (!error) {
1767                                 vma->vm_end = address;
1768                                 perf_event_mmap(vma);
1769                         }
1770                 }
1771         }
1772         vma_unlock_anon_vma(vma);
1773         khugepaged_enter_vma_merge(vma);
1774         return error;
1775 }
1776 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1777
1778 /*
1779  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1780  */
1781 int expand_downwards(struct vm_area_struct *vma,
1782                                    unsigned long address)
1783 {
1784         int error;
1785
1786         /*
1787          * We must make sure the anon_vma is allocated
1788          * so that the anon_vma locking is not a noop.
1789          */
1790         if (unlikely(anon_vma_prepare(vma)))
1791                 return -ENOMEM;
1792
1793         address &= PAGE_MASK;
1794         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1795         if (error)
1796                 return error;
1797
1798         vma_lock_anon_vma(vma);
1799
1800         /*
1801          * vma->vm_start/vm_end cannot change under us because the caller
1802          * is required to hold the mmap_sem in read mode.  We need the
1803          * anon_vma lock to serialize against concurrent expand_stacks.
1804          */
1805
1806         /* Somebody else might have raced and expanded it already */
1807         if (address < vma->vm_start) {
1808                 unsigned long size, grow;
1809
1810                 size = vma->vm_end - address;
1811                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1812
1813                 error = -ENOMEM;
1814                 if (grow <= vma->vm_pgoff) {
1815                         error = acct_stack_growth(vma, size, grow);
1816                         if (!error) {
1817                                 vma->vm_start = address;
1818                                 vma->vm_pgoff -= grow;
1819                                 perf_event_mmap(vma);
1820                         }
1821                 }
1822         }
1823         vma_unlock_anon_vma(vma);
1824         khugepaged_enter_vma_merge(vma);
1825         return error;
1826 }
1827
1828 #ifdef CONFIG_STACK_GROWSUP
1829 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1830 {
1831         return expand_upwards(vma, address);
1832 }
1833
1834 struct vm_area_struct *
1835 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1836 {
1837         struct vm_area_struct *vma, *prev;
1838
1839         addr &= PAGE_MASK;
1840         vma = find_vma_prev(mm, addr, &prev);
1841         if (vma && (vma->vm_start <= addr))
1842                 return vma;
1843         if (!prev || expand_stack(prev, addr))
1844                 return NULL;
1845         if (prev->vm_flags & VM_LOCKED) {
1846                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1847         }
1848         return prev;
1849 }
1850 #else
1851 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1852 {
1853         return expand_downwards(vma, address);
1854 }
1855
1856 struct vm_area_struct *
1857 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1858 {
1859         struct vm_area_struct * vma;
1860         unsigned long start;
1861
1862         addr &= PAGE_MASK;
1863         vma = find_vma(mm,addr);
1864         if (!vma)
1865                 return NULL;
1866         if (vma->vm_start <= addr)
1867                 return vma;
1868         if (!(vma->vm_flags & VM_GROWSDOWN))
1869                 return NULL;
1870         start = vma->vm_start;
1871         if (expand_stack(vma, addr))
1872                 return NULL;
1873         if (vma->vm_flags & VM_LOCKED) {
1874                 mlock_vma_pages_range(vma, addr, start);
1875         }
1876         return vma;
1877 }
1878 #endif
1879
1880 /*
1881  * Ok - we have the memory areas we should free on the vma list,
1882  * so release them, and do the vma updates.
1883  *
1884  * Called with the mm semaphore held.
1885  */
1886 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1887 {
1888         /* Update high watermark before we lower total_vm */
1889         update_hiwater_vm(mm);
1890         do {
1891                 long nrpages = vma_pages(vma);
1892
1893                 mm->total_vm -= nrpages;
1894                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1895                 vma = remove_vma(vma);
1896         } while (vma);
1897         validate_mm(mm);
1898 }
1899
1900 /*
1901  * Get rid of page table information in the indicated region.
1902  *
1903  * Called with the mm semaphore held.
1904  */
1905 static void unmap_region(struct mm_struct *mm,
1906                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1907                 unsigned long start, unsigned long end)
1908 {
1909         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1910         struct mmu_gather tlb;
1911         unsigned long nr_accounted = 0;
1912
1913         lru_add_drain();
1914         tlb_gather_mmu(&tlb, mm, 0);
1915         update_hiwater_rss(mm);
1916         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1917         vm_unacct_memory(nr_accounted);
1918         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1919                                  next ? next->vm_start : 0);
1920         tlb_finish_mmu(&tlb, start, end);
1921 }
1922
1923 /*
1924  * Create a list of vma's touched by the unmap, removing them from the mm's
1925  * vma list as we go..
1926  */
1927 static void
1928 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1929         struct vm_area_struct *prev, unsigned long end)
1930 {
1931         struct vm_area_struct **insertion_point;
1932         struct vm_area_struct *tail_vma = NULL;
1933         unsigned long addr;
1934
1935         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1936         vma->vm_prev = NULL;
1937         do {
1938                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1939                 mm->map_count--;
1940                 tail_vma = vma;
1941                 vma = vma->vm_next;
1942         } while (vma && vma->vm_start < end);
1943         *insertion_point = vma;
1944         if (vma)
1945                 vma->vm_prev = prev;
1946         tail_vma->vm_next = NULL;
1947         if (mm->unmap_area == arch_unmap_area)
1948                 addr = prev ? prev->vm_end : mm->mmap_base;
1949         else
1950                 addr = vma ?  vma->vm_start : mm->mmap_base;
1951         mm->unmap_area(mm, addr);
1952         mm->mmap_cache = NULL;          /* Kill the cache. */
1953 }
1954
1955 /*
1956  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1957  * munmap path where it doesn't make sense to fail.
1958  */
1959 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1960               unsigned long addr, int new_below)
1961 {
1962         struct mempolicy *pol;
1963         struct vm_area_struct *new;
1964         int err = -ENOMEM;
1965
1966         if (is_vm_hugetlb_page(vma) && (addr &
1967                                         ~(huge_page_mask(hstate_vma(vma)))))
1968                 return -EINVAL;
1969
1970         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1971         if (!new)
1972                 goto out_err;
1973
1974         /* most fields are the same, copy all, and then fixup */
1975         *new = *vma;
1976
1977         INIT_LIST_HEAD(&new->anon_vma_chain);
1978
1979         if (new_below)
1980                 new->vm_end = addr;
1981         else {
1982                 new->vm_start = addr;
1983                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1984         }
1985
1986         pol = mpol_dup(vma_policy(vma));
1987         if (IS_ERR(pol)) {
1988                 err = PTR_ERR(pol);
1989                 goto out_free_vma;
1990         }
1991         vma_set_policy(new, pol);
1992
1993         if (anon_vma_clone(new, vma))
1994                 goto out_free_mpol;
1995
1996         if (new->vm_file) {
1997                 get_file(new->vm_file);
1998                 if (vma->vm_flags & VM_EXECUTABLE)
1999                         added_exe_file_vma(mm);
2000         }
2001
2002         if (new->vm_ops && new->vm_ops->open)
2003                 new->vm_ops->open(new);
2004
2005         if (new_below)
2006                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2007                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2008         else
2009                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2010
2011         /* Success. */
2012         if (!err)
2013                 return 0;
2014
2015         /* Clean everything up if vma_adjust failed. */
2016         if (new->vm_ops && new->vm_ops->close)
2017                 new->vm_ops->close(new);
2018         if (new->vm_file) {
2019                 if (vma->vm_flags & VM_EXECUTABLE)
2020                         removed_exe_file_vma(mm);
2021                 fput(new->vm_file);
2022         }
2023         unlink_anon_vmas(new);
2024  out_free_mpol:
2025         mpol_put(pol);
2026  out_free_vma:
2027         kmem_cache_free(vm_area_cachep, new);
2028  out_err:
2029         return err;
2030 }
2031
2032 /*
2033  * Split a vma into two pieces at address 'addr', a new vma is allocated
2034  * either for the first part or the tail.
2035  */
2036 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2037               unsigned long addr, int new_below)
2038 {
2039         if (mm->map_count >= sysctl_max_map_count)
2040                 return -ENOMEM;
2041
2042         return __split_vma(mm, vma, addr, new_below);
2043 }
2044
2045 /* Munmap is split into 2 main parts -- this part which finds
2046  * what needs doing, and the areas themselves, which do the
2047  * work.  This now handles partial unmappings.
2048  * Jeremy Fitzhardinge <jeremy@goop.org>
2049  */
2050 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2051 {
2052         unsigned long end;
2053         struct vm_area_struct *vma, *prev, *last;
2054
2055         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2056                 return -EINVAL;
2057
2058         if ((len = PAGE_ALIGN(len)) == 0)
2059                 return -EINVAL;
2060
2061         /* Find the first overlapping VMA */
2062         vma = find_vma(mm, start);
2063         if (!vma)
2064                 return 0;
2065         prev = vma->vm_prev;
2066         /* we have  start < vma->vm_end  */
2067
2068         /* if it doesn't overlap, we have nothing.. */
2069         end = start + len;
2070         if (vma->vm_start >= end)
2071                 return 0;
2072
2073         /*
2074          * If we need to split any vma, do it now to save pain later.
2075          *
2076          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2077          * unmapped vm_area_struct will remain in use: so lower split_vma
2078          * places tmp vma above, and higher split_vma places tmp vma below.
2079          */
2080         if (start > vma->vm_start) {
2081                 int error;
2082
2083                 /*
2084                  * Make sure that map_count on return from munmap() will
2085                  * not exceed its limit; but let map_count go just above
2086                  * its limit temporarily, to help free resources as expected.
2087                  */
2088                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2089                         return -ENOMEM;
2090
2091                 error = __split_vma(mm, vma, start, 0);
2092                 if (error)
2093                         return error;
2094                 prev = vma;
2095         }
2096
2097         /* Does it split the last one? */
2098         last = find_vma(mm, end);
2099         if (last && end > last->vm_start) {
2100                 int error = __split_vma(mm, last, end, 1);
2101                 if (error)
2102                         return error;
2103         }
2104         vma = prev? prev->vm_next: mm->mmap;
2105
2106         /*
2107          * unlock any mlock()ed ranges before detaching vmas
2108          */
2109         if (mm->locked_vm) {
2110                 struct vm_area_struct *tmp = vma;
2111                 while (tmp && tmp->vm_start < end) {
2112                         if (tmp->vm_flags & VM_LOCKED) {
2113                                 mm->locked_vm -= vma_pages(tmp);
2114                                 munlock_vma_pages_all(tmp);
2115                         }
2116                         tmp = tmp->vm_next;
2117                 }
2118         }
2119
2120         /*
2121          * Remove the vma's, and unmap the actual pages
2122          */
2123         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2124         unmap_region(mm, vma, prev, start, end);
2125
2126         /* Fix up all other VM information */
2127         remove_vma_list(mm, vma);
2128
2129         return 0;
2130 }
2131
2132 EXPORT_SYMBOL(do_munmap);
2133
2134 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2135 {
2136         int ret;
2137         struct mm_struct *mm = current->mm;
2138
2139         profile_munmap(addr);
2140
2141         down_write(&mm->mmap_sem);
2142         ret = do_munmap(mm, addr, len);
2143         up_write(&mm->mmap_sem);
2144         return ret;
2145 }
2146
2147 static inline void verify_mm_writelocked(struct mm_struct *mm)
2148 {
2149 #ifdef CONFIG_DEBUG_VM
2150         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2151                 WARN_ON(1);
2152                 up_read(&mm->mmap_sem);
2153         }
2154 #endif
2155 }
2156
2157 /*
2158  *  this is really a simplified "do_mmap".  it only handles
2159  *  anonymous maps.  eventually we may be able to do some
2160  *  brk-specific accounting here.
2161  */
2162 unsigned long do_brk(unsigned long addr, unsigned long len)
2163 {
2164         struct mm_struct * mm = current->mm;
2165         struct vm_area_struct * vma, * prev;
2166         unsigned long flags;
2167         struct rb_node ** rb_link, * rb_parent;
2168         pgoff_t pgoff = addr >> PAGE_SHIFT;
2169         int error;
2170
2171         len = PAGE_ALIGN(len);
2172         if (!len)
2173                 return addr;
2174
2175         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2176         if (error)
2177                 return error;
2178
2179         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2180
2181         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2182         if (error & ~PAGE_MASK)
2183                 return error;
2184
2185         /*
2186          * mlock MCL_FUTURE?
2187          */
2188         if (mm->def_flags & VM_LOCKED) {
2189                 unsigned long locked, lock_limit;
2190                 locked = len >> PAGE_SHIFT;
2191                 locked += mm->locked_vm;
2192                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2193                 lock_limit >>= PAGE_SHIFT;
2194                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2195                         return -EAGAIN;
2196         }
2197
2198         /*
2199          * mm->mmap_sem is required to protect against another thread
2200          * changing the mappings in case we sleep.
2201          */
2202         verify_mm_writelocked(mm);
2203
2204         /*
2205          * Clear old maps.  this also does some error checking for us
2206          */
2207  munmap_back:
2208         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2209         if (vma && vma->vm_start < addr + len) {
2210                 if (do_munmap(mm, addr, len))
2211                         return -ENOMEM;
2212                 goto munmap_back;
2213         }
2214
2215         /* Check against address space limits *after* clearing old maps... */
2216         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2217                 return -ENOMEM;
2218
2219         if (mm->map_count > sysctl_max_map_count)
2220                 return -ENOMEM;
2221
2222         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2223                 return -ENOMEM;
2224
2225         /* Can we just expand an old private anonymous mapping? */
2226         vma = vma_merge(mm, prev, addr, addr + len, flags,
2227                                         NULL, NULL, pgoff, NULL);
2228         if (vma)
2229                 goto out;
2230
2231         /*
2232          * create a vma struct for an anonymous mapping
2233          */
2234         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2235         if (!vma) {
2236                 vm_unacct_memory(len >> PAGE_SHIFT);
2237                 return -ENOMEM;
2238         }
2239
2240         INIT_LIST_HEAD(&vma->anon_vma_chain);
2241         vma->vm_mm = mm;
2242         vma->vm_start = addr;
2243         vma->vm_end = addr + len;
2244         vma->vm_pgoff = pgoff;
2245         vma->vm_flags = flags;
2246         vma->vm_page_prot = vm_get_page_prot(flags);
2247         vma_link(mm, vma, prev, rb_link, rb_parent);
2248 out:
2249         perf_event_mmap(vma);
2250         mm->total_vm += len >> PAGE_SHIFT;
2251         if (flags & VM_LOCKED) {
2252                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2253                         mm->locked_vm += (len >> PAGE_SHIFT);
2254         }
2255         return addr;
2256 }
2257
2258 EXPORT_SYMBOL(do_brk);
2259
2260 /* Release all mmaps. */
2261 void exit_mmap(struct mm_struct *mm)
2262 {
2263         struct mmu_gather tlb;
2264         struct vm_area_struct *vma;
2265         unsigned long nr_accounted = 0;
2266
2267         /* mm's last user has gone, and its about to be pulled down */
2268         mmu_notifier_release(mm);
2269
2270         if (mm->locked_vm) {
2271                 vma = mm->mmap;
2272                 while (vma) {
2273                         if (vma->vm_flags & VM_LOCKED)
2274                                 munlock_vma_pages_all(vma);
2275                         vma = vma->vm_next;
2276                 }
2277         }
2278
2279         arch_exit_mmap(mm);
2280
2281         vma = mm->mmap;
2282         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2283                 return;
2284
2285         lru_add_drain();
2286         flush_cache_mm(mm);
2287         tlb_gather_mmu(&tlb, mm, 1);
2288         /* update_hiwater_rss(mm) here? but nobody should be looking */
2289         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2290         unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2291         vm_unacct_memory(nr_accounted);
2292
2293         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2294         tlb_finish_mmu(&tlb, 0, -1);
2295
2296         /*
2297          * Walk the list again, actually closing and freeing it,
2298          * with preemption enabled, without holding any MM locks.
2299          */
2300         while (vma)
2301                 vma = remove_vma(vma);
2302
2303         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2304 }
2305
2306 /* Insert vm structure into process list sorted by address
2307  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2308  * then i_mmap_mutex is taken here.
2309  */
2310 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2311 {
2312         struct vm_area_struct * __vma, * prev;
2313         struct rb_node ** rb_link, * rb_parent;
2314
2315         /*
2316          * The vm_pgoff of a purely anonymous vma should be irrelevant
2317          * until its first write fault, when page's anon_vma and index
2318          * are set.  But now set the vm_pgoff it will almost certainly
2319          * end up with (unless mremap moves it elsewhere before that
2320          * first wfault), so /proc/pid/maps tells a consistent story.
2321          *
2322          * By setting it to reflect the virtual start address of the
2323          * vma, merges and splits can happen in a seamless way, just
2324          * using the existing file pgoff checks and manipulations.
2325          * Similarly in do_mmap_pgoff and in do_brk.
2326          */
2327         if (!vma->vm_file) {
2328                 BUG_ON(vma->anon_vma);
2329                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2330         }
2331         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2332         if (__vma && __vma->vm_start < vma->vm_end)
2333                 return -ENOMEM;
2334         if ((vma->vm_flags & VM_ACCOUNT) &&
2335              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2336                 return -ENOMEM;
2337
2338         if (vma->vm_file && uprobe_mmap(vma))
2339                 return -EINVAL;
2340
2341         vma_link(mm, vma, prev, rb_link, rb_parent);
2342         return 0;
2343 }
2344
2345 /*
2346  * Copy the vma structure to a new location in the same mm,
2347  * prior to moving page table entries, to effect an mremap move.
2348  */
2349 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2350         unsigned long addr, unsigned long len, pgoff_t pgoff)
2351 {
2352         struct vm_area_struct *vma = *vmap;
2353         unsigned long vma_start = vma->vm_start;
2354         struct mm_struct *mm = vma->vm_mm;
2355         struct vm_area_struct *new_vma, *prev;
2356         struct rb_node **rb_link, *rb_parent;
2357         struct mempolicy *pol;
2358         bool faulted_in_anon_vma = true;
2359
2360         /*
2361          * If anonymous vma has not yet been faulted, update new pgoff
2362          * to match new location, to increase its chance of merging.
2363          */
2364         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2365                 pgoff = addr >> PAGE_SHIFT;
2366                 faulted_in_anon_vma = false;
2367         }
2368
2369         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2370         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2371                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2372         if (new_vma) {
2373                 /*
2374                  * Source vma may have been merged into new_vma
2375                  */
2376                 if (unlikely(vma_start >= new_vma->vm_start &&
2377                              vma_start < new_vma->vm_end)) {
2378                         /*
2379                          * The only way we can get a vma_merge with
2380                          * self during an mremap is if the vma hasn't
2381                          * been faulted in yet and we were allowed to
2382                          * reset the dst vma->vm_pgoff to the
2383                          * destination address of the mremap to allow
2384                          * the merge to happen. mremap must change the
2385                          * vm_pgoff linearity between src and dst vmas
2386                          * (in turn preventing a vma_merge) to be
2387                          * safe. It is only safe to keep the vm_pgoff
2388                          * linear if there are no pages mapped yet.
2389                          */
2390                         VM_BUG_ON(faulted_in_anon_vma);
2391                         *vmap = new_vma;
2392                 } else
2393                         anon_vma_moveto_tail(new_vma);
2394         } else {
2395                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2396                 if (new_vma) {
2397                         *new_vma = *vma;
2398                         pol = mpol_dup(vma_policy(vma));
2399                         if (IS_ERR(pol))
2400                                 goto out_free_vma;
2401                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2402                         if (anon_vma_clone(new_vma, vma))
2403                                 goto out_free_mempol;
2404                         vma_set_policy(new_vma, pol);
2405                         new_vma->vm_start = addr;
2406                         new_vma->vm_end = addr + len;
2407                         new_vma->vm_pgoff = pgoff;
2408                         if (new_vma->vm_file) {
2409                                 get_file(new_vma->vm_file);
2410
2411                                 if (uprobe_mmap(new_vma))
2412                                         goto out_free_mempol;
2413
2414                                 if (vma->vm_flags & VM_EXECUTABLE)
2415                                         added_exe_file_vma(mm);
2416                         }
2417                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2418                                 new_vma->vm_ops->open(new_vma);
2419                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2420                 }
2421         }
2422         return new_vma;
2423
2424  out_free_mempol:
2425         mpol_put(pol);
2426  out_free_vma:
2427         kmem_cache_free(vm_area_cachep, new_vma);
2428         return NULL;
2429 }
2430
2431 /*
2432  * Return true if the calling process may expand its vm space by the passed
2433  * number of pages
2434  */
2435 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2436 {
2437         unsigned long cur = mm->total_vm;       /* pages */
2438         unsigned long lim;
2439
2440         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2441
2442         if (cur + npages > lim)
2443                 return 0;
2444         return 1;
2445 }
2446
2447
2448 static int special_mapping_fault(struct vm_area_struct *vma,
2449                                 struct vm_fault *vmf)
2450 {
2451         pgoff_t pgoff;
2452         struct page **pages;
2453
2454         /*
2455          * special mappings have no vm_file, and in that case, the mm
2456          * uses vm_pgoff internally. So we have to subtract it from here.
2457          * We are allowed to do this because we are the mm; do not copy
2458          * this code into drivers!
2459          */
2460         pgoff = vmf->pgoff - vma->vm_pgoff;
2461
2462         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2463                 pgoff--;
2464
2465         if (*pages) {
2466                 struct page *page = *pages;
2467                 get_page(page);
2468                 vmf->page = page;
2469                 return 0;
2470         }
2471
2472         return VM_FAULT_SIGBUS;
2473 }
2474
2475 /*
2476  * Having a close hook prevents vma merging regardless of flags.
2477  */
2478 static void special_mapping_close(struct vm_area_struct *vma)
2479 {
2480 }
2481
2482 static const struct vm_operations_struct special_mapping_vmops = {
2483         .close = special_mapping_close,
2484         .fault = special_mapping_fault,
2485 };
2486
2487 /*
2488  * Called with mm->mmap_sem held for writing.
2489  * Insert a new vma covering the given region, with the given flags.
2490  * Its pages are supplied by the given array of struct page *.
2491  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2492  * The region past the last page supplied will always produce SIGBUS.
2493  * The array pointer and the pages it points to are assumed to stay alive
2494  * for as long as this mapping might exist.
2495  */
2496 int install_special_mapping(struct mm_struct *mm,
2497                             unsigned long addr, unsigned long len,
2498                             unsigned long vm_flags, struct page **pages)
2499 {
2500         int ret;
2501         struct vm_area_struct *vma;
2502
2503         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2504         if (unlikely(vma == NULL))
2505                 return -ENOMEM;
2506
2507         INIT_LIST_HEAD(&vma->anon_vma_chain);
2508         vma->vm_mm = mm;
2509         vma->vm_start = addr;
2510         vma->vm_end = addr + len;
2511
2512         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2513         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2514
2515         vma->vm_ops = &special_mapping_vmops;
2516         vma->vm_private_data = pages;
2517
2518         ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2519         if (ret)
2520                 goto out;
2521
2522         ret = insert_vm_struct(mm, vma);
2523         if (ret)
2524                 goto out;
2525
2526         mm->total_vm += len >> PAGE_SHIFT;
2527
2528         perf_event_mmap(vma);
2529
2530         return 0;
2531
2532 out:
2533         kmem_cache_free(vm_area_cachep, vma);
2534         return ret;
2535 }
2536
2537 static DEFINE_MUTEX(mm_all_locks_mutex);
2538
2539 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2540 {
2541         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2542                 /*
2543                  * The LSB of head.next can't change from under us
2544                  * because we hold the mm_all_locks_mutex.
2545                  */
2546                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2547                 /*
2548                  * We can safely modify head.next after taking the
2549                  * anon_vma->root->mutex. If some other vma in this mm shares
2550                  * the same anon_vma we won't take it again.
2551                  *
2552                  * No need of atomic instructions here, head.next
2553                  * can't change from under us thanks to the
2554                  * anon_vma->root->mutex.
2555                  */
2556                 if (__test_and_set_bit(0, (unsigned long *)
2557                                        &anon_vma->root->head.next))
2558                         BUG();
2559         }
2560 }
2561
2562 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2563 {
2564         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2565                 /*
2566                  * AS_MM_ALL_LOCKS can't change from under us because
2567                  * we hold the mm_all_locks_mutex.
2568                  *
2569                  * Operations on ->flags have to be atomic because
2570                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2571                  * mm_all_locks_mutex, there may be other cpus
2572                  * changing other bitflags in parallel to us.
2573                  */
2574                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2575                         BUG();
2576                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2577         }
2578 }
2579
2580 /*
2581  * This operation locks against the VM for all pte/vma/mm related
2582  * operations that could ever happen on a certain mm. This includes
2583  * vmtruncate, try_to_unmap, and all page faults.
2584  *
2585  * The caller must take the mmap_sem in write mode before calling
2586  * mm_take_all_locks(). The caller isn't allowed to release the
2587  * mmap_sem until mm_drop_all_locks() returns.
2588  *
2589  * mmap_sem in write mode is required in order to block all operations
2590  * that could modify pagetables and free pages without need of
2591  * altering the vma layout (for example populate_range() with
2592  * nonlinear vmas). It's also needed in write mode to avoid new
2593  * anon_vmas to be associated with existing vmas.
2594  *
2595  * A single task can't take more than one mm_take_all_locks() in a row
2596  * or it would deadlock.
2597  *
2598  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2599  * mapping->flags avoid to take the same lock twice, if more than one
2600  * vma in this mm is backed by the same anon_vma or address_space.
2601  *
2602  * We can take all the locks in random order because the VM code
2603  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2604  * takes more than one of them in a row. Secondly we're protected
2605  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2606  *
2607  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2608  * that may have to take thousand of locks.
2609  *
2610  * mm_take_all_locks() can fail if it's interrupted by signals.
2611  */
2612 int mm_take_all_locks(struct mm_struct *mm)
2613 {
2614         struct vm_area_struct *vma;
2615         struct anon_vma_chain *avc;
2616
2617         BUG_ON(down_read_trylock(&mm->mmap_sem));
2618
2619         mutex_lock(&mm_all_locks_mutex);
2620
2621         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2622                 if (signal_pending(current))
2623                         goto out_unlock;
2624                 if (vma->vm_file && vma->vm_file->f_mapping)
2625                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2626         }
2627
2628         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2629                 if (signal_pending(current))
2630                         goto out_unlock;
2631                 if (vma->anon_vma)
2632                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2633                                 vm_lock_anon_vma(mm, avc->anon_vma);
2634         }
2635
2636         return 0;
2637
2638 out_unlock:
2639         mm_drop_all_locks(mm);
2640         return -EINTR;
2641 }
2642
2643 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2644 {
2645         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2646                 /*
2647                  * The LSB of head.next can't change to 0 from under
2648                  * us because we hold the mm_all_locks_mutex.
2649                  *
2650                  * We must however clear the bitflag before unlocking
2651                  * the vma so the users using the anon_vma->head will
2652                  * never see our bitflag.
2653                  *
2654                  * No need of atomic instructions here, head.next
2655                  * can't change from under us until we release the
2656                  * anon_vma->root->mutex.
2657                  */
2658                 if (!__test_and_clear_bit(0, (unsigned long *)
2659                                           &anon_vma->root->head.next))
2660                         BUG();
2661                 anon_vma_unlock(anon_vma);
2662         }
2663 }
2664
2665 static void vm_unlock_mapping(struct address_space *mapping)
2666 {
2667         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2668                 /*
2669                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2670                  * because we hold the mm_all_locks_mutex.
2671                  */
2672                 mutex_unlock(&mapping->i_mmap_mutex);
2673                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2674                                         &mapping->flags))
2675                         BUG();
2676         }
2677 }
2678
2679 /*
2680  * The mmap_sem cannot be released by the caller until
2681  * mm_drop_all_locks() returns.
2682  */
2683 void mm_drop_all_locks(struct mm_struct *mm)
2684 {
2685         struct vm_area_struct *vma;
2686         struct anon_vma_chain *avc;
2687
2688         BUG_ON(down_read_trylock(&mm->mmap_sem));
2689         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2690
2691         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2692                 if (vma->anon_vma)
2693                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2694                                 vm_unlock_anon_vma(avc->anon_vma);
2695                 if (vma->vm_file && vma->vm_file->f_mapping)
2696                         vm_unlock_mapping(vma->vm_file->f_mapping);
2697         }
2698
2699         mutex_unlock(&mm_all_locks_mutex);
2700 }
2701
2702 /*
2703  * initialise the VMA slab
2704  */
2705 void __init mmap_init(void)
2706 {
2707         int ret;
2708
2709         ret = percpu_counter_init(&vm_committed_as, 0);
2710         VM_BUG_ON(ret);
2711 }