Merge branch 'develop' of 10.10.10.29:/home/rockchip/kernel into develop
[firefly-linux-kernel-4.4.55.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38
39 static inline __attribute__((format(printf, 1, 2)))
40 void no_printk(const char *fmt, ...)
41 {
42 }
43
44 #if 0
45 #define kenter(FMT, ...) \
46         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
51 #else
52 #define kenter(FMT, ...) \
53         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 #endif
59
60 void *high_memory;
61 struct page *mem_map;
62 unsigned long max_mapnr;
63 unsigned long num_physpages;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
71
72 atomic_long_t mmap_pages_allocated;
73
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
76
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
81
82 const struct vm_operations_struct generic_file_vm_ops = {
83 };
84
85 /*
86  * Return the total memory allocated for this pointer, not
87  * just what the caller asked for.
88  *
89  * Doesn't have to be accurate, i.e. may have races.
90  */
91 unsigned int kobjsize(const void *objp)
92 {
93         struct page *page;
94
95         /*
96          * If the object we have should not have ksize performed on it,
97          * return size of 0
98          */
99         if (!objp || !virt_addr_valid(objp))
100                 return 0;
101
102         page = virt_to_head_page(objp);
103
104         /*
105          * If the allocator sets PageSlab, we know the pointer came from
106          * kmalloc().
107          */
108         if (PageSlab(page))
109                 return ksize(objp);
110
111         /*
112          * If it's not a compound page, see if we have a matching VMA
113          * region. This test is intentionally done in reverse order,
114          * so if there's no VMA, we still fall through and hand back
115          * PAGE_SIZE for 0-order pages.
116          */
117         if (!PageCompound(page)) {
118                 struct vm_area_struct *vma;
119
120                 vma = find_vma(current->mm, (unsigned long)objp);
121                 if (vma)
122                         return vma->vm_end - vma->vm_start;
123         }
124
125         /*
126          * The ksize() function is only guaranteed to work for pointers
127          * returned by kmalloc(). So handle arbitrary pointers here.
128          */
129         return PAGE_SIZE << compound_order(page);
130 }
131
132 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
133                      unsigned long start, int nr_pages, unsigned int foll_flags,
134                      struct page **pages, struct vm_area_struct **vmas)
135 {
136         struct vm_area_struct *vma;
137         unsigned long vm_flags;
138         int i;
139
140         /* calculate required read or write permissions.
141          * If FOLL_FORCE is set, we only require the "MAY" flags.
142          */
143         vm_flags  = (foll_flags & FOLL_WRITE) ?
144                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
145         vm_flags &= (foll_flags & FOLL_FORCE) ?
146                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
147
148         for (i = 0; i < nr_pages; i++) {
149                 vma = find_vma(mm, start);
150                 if (!vma)
151                         goto finish_or_fault;
152
153                 /* protect what we can, including chardevs */
154                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
155                     !(vm_flags & vma->vm_flags))
156                         goto finish_or_fault;
157
158                 if (pages) {
159                         pages[i] = virt_to_page(start);
160                         if (pages[i])
161                                 page_cache_get(pages[i]);
162                 }
163                 if (vmas)
164                         vmas[i] = vma;
165                 start += PAGE_SIZE;
166         }
167
168         return i;
169
170 finish_or_fault:
171         return i ? : -EFAULT;
172 }
173
174 /*
175  * get a list of pages in an address range belonging to the specified process
176  * and indicate the VMA that covers each page
177  * - this is potentially dodgy as we may end incrementing the page count of a
178  *   slab page or a secondary page from a compound page
179  * - don't permit access to VMAs that don't support it, such as I/O mappings
180  */
181 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
182         unsigned long start, int nr_pages, int write, int force,
183         struct page **pages, struct vm_area_struct **vmas)
184 {
185         int flags = 0;
186
187         if (write)
188                 flags |= FOLL_WRITE;
189         if (force)
190                 flags |= FOLL_FORCE;
191
192         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
193 }
194 EXPORT_SYMBOL(get_user_pages);
195
196 /**
197  * follow_pfn - look up PFN at a user virtual address
198  * @vma: memory mapping
199  * @address: user virtual address
200  * @pfn: location to store found PFN
201  *
202  * Only IO mappings and raw PFN mappings are allowed.
203  *
204  * Returns zero and the pfn at @pfn on success, -ve otherwise.
205  */
206 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
207         unsigned long *pfn)
208 {
209         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
210                 return -EINVAL;
211
212         *pfn = address >> PAGE_SHIFT;
213         return 0;
214 }
215 EXPORT_SYMBOL(follow_pfn);
216
217 DEFINE_RWLOCK(vmlist_lock);
218 struct vm_struct *vmlist;
219
220 void vfree(const void *addr)
221 {
222         kfree(addr);
223 }
224 EXPORT_SYMBOL(vfree);
225
226 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
227 {
228         /*
229          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
230          * returns only a logical address.
231          */
232         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
233 }
234 EXPORT_SYMBOL(__vmalloc);
235
236 void *vmalloc_user(unsigned long size)
237 {
238         void *ret;
239
240         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241                         PAGE_KERNEL);
242         if (ret) {
243                 struct vm_area_struct *vma;
244
245                 down_write(&current->mm->mmap_sem);
246                 vma = find_vma(current->mm, (unsigned long)ret);
247                 if (vma)
248                         vma->vm_flags |= VM_USERMAP;
249                 up_write(&current->mm->mmap_sem);
250         }
251
252         return ret;
253 }
254 EXPORT_SYMBOL(vmalloc_user);
255
256 struct page *vmalloc_to_page(const void *addr)
257 {
258         return virt_to_page(addr);
259 }
260 EXPORT_SYMBOL(vmalloc_to_page);
261
262 unsigned long vmalloc_to_pfn(const void *addr)
263 {
264         return page_to_pfn(virt_to_page(addr));
265 }
266 EXPORT_SYMBOL(vmalloc_to_pfn);
267
268 long vread(char *buf, char *addr, unsigned long count)
269 {
270         memcpy(buf, addr, count);
271         return count;
272 }
273
274 long vwrite(char *buf, char *addr, unsigned long count)
275 {
276         /* Don't allow overflow */
277         if ((unsigned long) addr + count < count)
278                 count = -(unsigned long) addr;
279
280         memcpy(addr, buf, count);
281         return(count);
282 }
283
284 /*
285  *      vmalloc  -  allocate virtually continguos memory
286  *
287  *      @size:          allocation size
288  *
289  *      Allocate enough pages to cover @size from the page level
290  *      allocator and map them into continguos kernel virtual space.
291  *
292  *      For tight control over page level allocator and protection flags
293  *      use __vmalloc() instead.
294  */
295 void *vmalloc(unsigned long size)
296 {
297        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
298 }
299 EXPORT_SYMBOL(vmalloc);
300
301 void *vmalloc_node(unsigned long size, int node)
302 {
303         return vmalloc(size);
304 }
305 EXPORT_SYMBOL(vmalloc_node);
306
307 #ifndef PAGE_KERNEL_EXEC
308 # define PAGE_KERNEL_EXEC PAGE_KERNEL
309 #endif
310
311 /**
312  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
313  *      @size:          allocation size
314  *
315  *      Kernel-internal function to allocate enough pages to cover @size
316  *      the page level allocator and map them into contiguous and
317  *      executable kernel virtual space.
318  *
319  *      For tight control over page level allocator and protection flags
320  *      use __vmalloc() instead.
321  */
322
323 void *vmalloc_exec(unsigned long size)
324 {
325         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
326 }
327
328 /**
329  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
330  *      @size:          allocation size
331  *
332  *      Allocate enough 32bit PA addressable pages to cover @size from the
333  *      page level allocator and map them into continguos kernel virtual space.
334  */
335 void *vmalloc_32(unsigned long size)
336 {
337         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
338 }
339 EXPORT_SYMBOL(vmalloc_32);
340
341 /**
342  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
343  *      @size:          allocation size
344  *
345  * The resulting memory area is 32bit addressable and zeroed so it can be
346  * mapped to userspace without leaking data.
347  *
348  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
349  * remap_vmalloc_range() are permissible.
350  */
351 void *vmalloc_32_user(unsigned long size)
352 {
353         /*
354          * We'll have to sort out the ZONE_DMA bits for 64-bit,
355          * but for now this can simply use vmalloc_user() directly.
356          */
357         return vmalloc_user(size);
358 }
359 EXPORT_SYMBOL(vmalloc_32_user);
360
361 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
362 {
363         BUG();
364         return NULL;
365 }
366 EXPORT_SYMBOL(vmap);
367
368 void vunmap(const void *addr)
369 {
370         BUG();
371 }
372 EXPORT_SYMBOL(vunmap);
373
374 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
375 {
376         BUG();
377         return NULL;
378 }
379 EXPORT_SYMBOL(vm_map_ram);
380
381 void vm_unmap_ram(const void *mem, unsigned int count)
382 {
383         BUG();
384 }
385 EXPORT_SYMBOL(vm_unmap_ram);
386
387 void vm_unmap_aliases(void)
388 {
389 }
390 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
391
392 /*
393  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
394  * have one.
395  */
396 void  __attribute__((weak)) vmalloc_sync_all(void)
397 {
398 }
399
400 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
401                    struct page *page)
402 {
403         return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_insert_page);
406
407 /*
408  *  sys_brk() for the most part doesn't need the global kernel
409  *  lock, except when an application is doing something nasty
410  *  like trying to un-brk an area that has already been mapped
411  *  to a regular file.  in this case, the unmapping will need
412  *  to invoke file system routines that need the global lock.
413  */
414 SYSCALL_DEFINE1(brk, unsigned long, brk)
415 {
416         struct mm_struct *mm = current->mm;
417
418         if (brk < mm->start_brk || brk > mm->context.end_brk)
419                 return mm->brk;
420
421         if (mm->brk == brk)
422                 return mm->brk;
423
424         /*
425          * Always allow shrinking brk
426          */
427         if (brk <= mm->brk) {
428                 mm->brk = brk;
429                 return brk;
430         }
431
432         /*
433          * Ok, looks good - let it rip.
434          */
435         return mm->brk = brk;
436 }
437
438 /*
439  * initialise the VMA and region record slabs
440  */
441 void __init mmap_init(void)
442 {
443         int ret;
444
445         ret = percpu_counter_init(&vm_committed_as, 0);
446         VM_BUG_ON(ret);
447         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
448 }
449
450 /*
451  * validate the region tree
452  * - the caller must hold the region lock
453  */
454 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
455 static noinline void validate_nommu_regions(void)
456 {
457         struct vm_region *region, *last;
458         struct rb_node *p, *lastp;
459
460         lastp = rb_first(&nommu_region_tree);
461         if (!lastp)
462                 return;
463
464         last = rb_entry(lastp, struct vm_region, vm_rb);
465         BUG_ON(unlikely(last->vm_end <= last->vm_start));
466         BUG_ON(unlikely(last->vm_top < last->vm_end));
467
468         while ((p = rb_next(lastp))) {
469                 region = rb_entry(p, struct vm_region, vm_rb);
470                 last = rb_entry(lastp, struct vm_region, vm_rb);
471
472                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
473                 BUG_ON(unlikely(region->vm_top < region->vm_end));
474                 BUG_ON(unlikely(region->vm_start < last->vm_top));
475
476                 lastp = p;
477         }
478 }
479 #else
480 static void validate_nommu_regions(void)
481 {
482 }
483 #endif
484
485 /*
486  * add a region into the global tree
487  */
488 static void add_nommu_region(struct vm_region *region)
489 {
490         struct vm_region *pregion;
491         struct rb_node **p, *parent;
492
493         validate_nommu_regions();
494
495         parent = NULL;
496         p = &nommu_region_tree.rb_node;
497         while (*p) {
498                 parent = *p;
499                 pregion = rb_entry(parent, struct vm_region, vm_rb);
500                 if (region->vm_start < pregion->vm_start)
501                         p = &(*p)->rb_left;
502                 else if (region->vm_start > pregion->vm_start)
503                         p = &(*p)->rb_right;
504                 else if (pregion == region)
505                         return;
506                 else
507                         BUG();
508         }
509
510         rb_link_node(&region->vm_rb, parent, p);
511         rb_insert_color(&region->vm_rb, &nommu_region_tree);
512
513         validate_nommu_regions();
514 }
515
516 /*
517  * delete a region from the global tree
518  */
519 static void delete_nommu_region(struct vm_region *region)
520 {
521         BUG_ON(!nommu_region_tree.rb_node);
522
523         validate_nommu_regions();
524         rb_erase(&region->vm_rb, &nommu_region_tree);
525         validate_nommu_regions();
526 }
527
528 /*
529  * free a contiguous series of pages
530  */
531 static void free_page_series(unsigned long from, unsigned long to)
532 {
533         for (; from < to; from += PAGE_SIZE) {
534                 struct page *page = virt_to_page(from);
535
536                 kdebug("- free %lx", from);
537                 atomic_long_dec(&mmap_pages_allocated);
538                 if (page_count(page) != 1)
539                         kdebug("free page %p: refcount not one: %d",
540                                page, page_count(page));
541                 put_page(page);
542         }
543 }
544
545 /*
546  * release a reference to a region
547  * - the caller must hold the region semaphore for writing, which this releases
548  * - the region may not have been added to the tree yet, in which case vm_top
549  *   will equal vm_start
550  */
551 static void __put_nommu_region(struct vm_region *region)
552         __releases(nommu_region_sem)
553 {
554         kenter("%p{%d}", region, atomic_read(&region->vm_usage));
555
556         BUG_ON(!nommu_region_tree.rb_node);
557
558         if (atomic_dec_and_test(&region->vm_usage)) {
559                 if (region->vm_top > region->vm_start)
560                         delete_nommu_region(region);
561                 up_write(&nommu_region_sem);
562
563                 if (region->vm_file)
564                         fput(region->vm_file);
565
566                 /* IO memory and memory shared directly out of the pagecache
567                  * from ramfs/tmpfs mustn't be released here */
568                 if (region->vm_flags & VM_MAPPED_COPY) {
569                         kdebug("free series");
570                         free_page_series(region->vm_start, region->vm_top);
571                 }
572                 kmem_cache_free(vm_region_jar, region);
573         } else {
574                 up_write(&nommu_region_sem);
575         }
576 }
577
578 /*
579  * release a reference to a region
580  */
581 static void put_nommu_region(struct vm_region *region)
582 {
583         down_write(&nommu_region_sem);
584         __put_nommu_region(region);
585 }
586
587 /*
588  * update protection on a vma
589  */
590 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
591 {
592 #ifdef CONFIG_MPU
593         struct mm_struct *mm = vma->vm_mm;
594         long start = vma->vm_start & PAGE_MASK;
595         while (start < vma->vm_end) {
596                 protect_page(mm, start, flags);
597                 start += PAGE_SIZE;
598         }
599         update_protections(mm);
600 #endif
601 }
602
603 /*
604  * add a VMA into a process's mm_struct in the appropriate place in the list
605  * and tree and add to the address space's page tree also if not an anonymous
606  * page
607  * - should be called with mm->mmap_sem held writelocked
608  */
609 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
610 {
611         struct vm_area_struct *pvma, **pp, *next;
612         struct address_space *mapping;
613         struct rb_node **p, *parent;
614
615         kenter(",%p", vma);
616
617         BUG_ON(!vma->vm_region);
618
619         mm->map_count++;
620         vma->vm_mm = mm;
621
622         protect_vma(vma, vma->vm_flags);
623
624         /* add the VMA to the mapping */
625         if (vma->vm_file) {
626                 mapping = vma->vm_file->f_mapping;
627
628                 flush_dcache_mmap_lock(mapping);
629                 vma_prio_tree_insert(vma, &mapping->i_mmap);
630                 flush_dcache_mmap_unlock(mapping);
631         }
632
633         /* add the VMA to the tree */
634         parent = NULL;
635         p = &mm->mm_rb.rb_node;
636         while (*p) {
637                 parent = *p;
638                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
639
640                 /* sort by: start addr, end addr, VMA struct addr in that order
641                  * (the latter is necessary as we may get identical VMAs) */
642                 if (vma->vm_start < pvma->vm_start)
643                         p = &(*p)->rb_left;
644                 else if (vma->vm_start > pvma->vm_start)
645                         p = &(*p)->rb_right;
646                 else if (vma->vm_end < pvma->vm_end)
647                         p = &(*p)->rb_left;
648                 else if (vma->vm_end > pvma->vm_end)
649                         p = &(*p)->rb_right;
650                 else if (vma < pvma)
651                         p = &(*p)->rb_left;
652                 else if (vma > pvma)
653                         p = &(*p)->rb_right;
654                 else
655                         BUG();
656         }
657
658         rb_link_node(&vma->vm_rb, parent, p);
659         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
660
661         /* add VMA to the VMA list also */
662         for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
663                 if (pvma->vm_start > vma->vm_start)
664                         break;
665                 if (pvma->vm_start < vma->vm_start)
666                         continue;
667                 if (pvma->vm_end < vma->vm_end)
668                         break;
669         }
670
671         next = *pp;
672         *pp = vma;
673         vma->vm_next = next;
674         if (next)
675                 next->vm_prev = vma;
676 }
677
678 /*
679  * delete a VMA from its owning mm_struct and address space
680  */
681 static void delete_vma_from_mm(struct vm_area_struct *vma)
682 {
683         struct vm_area_struct **pp;
684         struct address_space *mapping;
685         struct mm_struct *mm = vma->vm_mm;
686
687         kenter("%p", vma);
688
689         protect_vma(vma, 0);
690
691         mm->map_count--;
692         if (mm->mmap_cache == vma)
693                 mm->mmap_cache = NULL;
694
695         /* remove the VMA from the mapping */
696         if (vma->vm_file) {
697                 mapping = vma->vm_file->f_mapping;
698
699                 flush_dcache_mmap_lock(mapping);
700                 vma_prio_tree_remove(vma, &mapping->i_mmap);
701                 flush_dcache_mmap_unlock(mapping);
702         }
703
704         /* remove from the MM's tree and list */
705         rb_erase(&vma->vm_rb, &mm->mm_rb);
706         for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
707                 if (*pp == vma) {
708                         *pp = vma->vm_next;
709                         break;
710                 }
711         }
712
713         vma->vm_mm = NULL;
714 }
715
716 /*
717  * destroy a VMA record
718  */
719 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
720 {
721         kenter("%p", vma);
722         if (vma->vm_ops && vma->vm_ops->close)
723                 vma->vm_ops->close(vma);
724         if (vma->vm_file) {
725                 fput(vma->vm_file);
726                 if (vma->vm_flags & VM_EXECUTABLE)
727                         removed_exe_file_vma(mm);
728         }
729         put_nommu_region(vma->vm_region);
730         kmem_cache_free(vm_area_cachep, vma);
731 }
732
733 /*
734  * look up the first VMA in which addr resides, NULL if none
735  * - should be called with mm->mmap_sem at least held readlocked
736  */
737 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
738 {
739         struct vm_area_struct *vma;
740         struct rb_node *n = mm->mm_rb.rb_node;
741
742         /* check the cache first */
743         vma = mm->mmap_cache;
744         if (vma && vma->vm_start <= addr && vma->vm_end > addr)
745                 return vma;
746
747         /* trawl the tree (there may be multiple mappings in which addr
748          * resides) */
749         for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
750                 vma = rb_entry(n, struct vm_area_struct, vm_rb);
751                 if (vma->vm_start > addr)
752                         return NULL;
753                 if (vma->vm_end > addr) {
754                         mm->mmap_cache = vma;
755                         return vma;
756                 }
757         }
758
759         return NULL;
760 }
761 EXPORT_SYMBOL(find_vma);
762
763 /*
764  * find a VMA
765  * - we don't extend stack VMAs under NOMMU conditions
766  */
767 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
768 {
769         return find_vma(mm, addr);
770 }
771
772 /*
773  * expand a stack to a given address
774  * - not supported under NOMMU conditions
775  */
776 int expand_stack(struct vm_area_struct *vma, unsigned long address)
777 {
778         return -ENOMEM;
779 }
780
781 /*
782  * look up the first VMA exactly that exactly matches addr
783  * - should be called with mm->mmap_sem at least held readlocked
784  */
785 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
786                                              unsigned long addr,
787                                              unsigned long len)
788 {
789         struct vm_area_struct *vma;
790         struct rb_node *n = mm->mm_rb.rb_node;
791         unsigned long end = addr + len;
792
793         /* check the cache first */
794         vma = mm->mmap_cache;
795         if (vma && vma->vm_start == addr && vma->vm_end == end)
796                 return vma;
797
798         /* trawl the tree (there may be multiple mappings in which addr
799          * resides) */
800         for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
801                 vma = rb_entry(n, struct vm_area_struct, vm_rb);
802                 if (vma->vm_start < addr)
803                         continue;
804                 if (vma->vm_start > addr)
805                         return NULL;
806                 if (vma->vm_end == end) {
807                         mm->mmap_cache = vma;
808                         return vma;
809                 }
810         }
811
812         return NULL;
813 }
814
815 /*
816  * determine whether a mapping should be permitted and, if so, what sort of
817  * mapping we're capable of supporting
818  */
819 static int validate_mmap_request(struct file *file,
820                                  unsigned long addr,
821                                  unsigned long len,
822                                  unsigned long prot,
823                                  unsigned long flags,
824                                  unsigned long pgoff,
825                                  unsigned long *_capabilities)
826 {
827         unsigned long capabilities, rlen;
828         unsigned long reqprot = prot;
829         int ret;
830
831         /* do the simple checks first */
832         if (flags & MAP_FIXED) {
833                 printk(KERN_DEBUG
834                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
835                        current->pid);
836                 return -EINVAL;
837         }
838
839         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
840             (flags & MAP_TYPE) != MAP_SHARED)
841                 return -EINVAL;
842
843         if (!len)
844                 return -EINVAL;
845
846         /* Careful about overflows.. */
847         rlen = PAGE_ALIGN(len);
848         if (!rlen || rlen > TASK_SIZE)
849                 return -ENOMEM;
850
851         /* offset overflow? */
852         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
853                 return -EOVERFLOW;
854
855         if (file) {
856                 /* validate file mapping requests */
857                 struct address_space *mapping;
858
859                 /* files must support mmap */
860                 if (!file->f_op || !file->f_op->mmap)
861                         return -ENODEV;
862
863                 /* work out if what we've got could possibly be shared
864                  * - we support chardevs that provide their own "memory"
865                  * - we support files/blockdevs that are memory backed
866                  */
867                 mapping = file->f_mapping;
868                 if (!mapping)
869                         mapping = file->f_path.dentry->d_inode->i_mapping;
870
871                 capabilities = 0;
872                 if (mapping && mapping->backing_dev_info)
873                         capabilities = mapping->backing_dev_info->capabilities;
874
875                 if (!capabilities) {
876                         /* no explicit capabilities set, so assume some
877                          * defaults */
878                         switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
879                         case S_IFREG:
880                         case S_IFBLK:
881                                 capabilities = BDI_CAP_MAP_COPY;
882                                 break;
883
884                         case S_IFCHR:
885                                 capabilities =
886                                         BDI_CAP_MAP_DIRECT |
887                                         BDI_CAP_READ_MAP |
888                                         BDI_CAP_WRITE_MAP;
889                                 break;
890
891                         default:
892                                 return -EINVAL;
893                         }
894                 }
895
896                 /* eliminate any capabilities that we can't support on this
897                  * device */
898                 if (!file->f_op->get_unmapped_area)
899                         capabilities &= ~BDI_CAP_MAP_DIRECT;
900                 if (!file->f_op->read)
901                         capabilities &= ~BDI_CAP_MAP_COPY;
902
903                 /* The file shall have been opened with read permission. */
904                 if (!(file->f_mode & FMODE_READ))
905                         return -EACCES;
906
907                 if (flags & MAP_SHARED) {
908                         /* do checks for writing, appending and locking */
909                         if ((prot & PROT_WRITE) &&
910                             !(file->f_mode & FMODE_WRITE))
911                                 return -EACCES;
912
913                         if (IS_APPEND(file->f_path.dentry->d_inode) &&
914                             (file->f_mode & FMODE_WRITE))
915                                 return -EACCES;
916
917                         if (locks_verify_locked(file->f_path.dentry->d_inode))
918                                 return -EAGAIN;
919
920                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
921                                 return -ENODEV;
922
923                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
924                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
925                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
926                             ) {
927                                 printk("MAP_SHARED not completely supported on !MMU\n");
928                                 return -EINVAL;
929                         }
930
931                         /* we mustn't privatise shared mappings */
932                         capabilities &= ~BDI_CAP_MAP_COPY;
933                 }
934                 else {
935                         /* we're going to read the file into private memory we
936                          * allocate */
937                         if (!(capabilities & BDI_CAP_MAP_COPY))
938                                 return -ENODEV;
939
940                         /* we don't permit a private writable mapping to be
941                          * shared with the backing device */
942                         if (prot & PROT_WRITE)
943                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
944                 }
945
946                 /* handle executable mappings and implied executable
947                  * mappings */
948                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
949                         if (prot & PROT_EXEC)
950                                 return -EPERM;
951                 }
952                 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
953                         /* handle implication of PROT_EXEC by PROT_READ */
954                         if (current->personality & READ_IMPLIES_EXEC) {
955                                 if (capabilities & BDI_CAP_EXEC_MAP)
956                                         prot |= PROT_EXEC;
957                         }
958                 }
959                 else if ((prot & PROT_READ) &&
960                          (prot & PROT_EXEC) &&
961                          !(capabilities & BDI_CAP_EXEC_MAP)
962                          ) {
963                         /* backing file is not executable, try to copy */
964                         capabilities &= ~BDI_CAP_MAP_DIRECT;
965                 }
966         }
967         else {
968                 /* anonymous mappings are always memory backed and can be
969                  * privately mapped
970                  */
971                 capabilities = BDI_CAP_MAP_COPY;
972
973                 /* handle PROT_EXEC implication by PROT_READ */
974                 if ((prot & PROT_READ) &&
975                     (current->personality & READ_IMPLIES_EXEC))
976                         prot |= PROT_EXEC;
977         }
978
979         /* allow the security API to have its say */
980         ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
981         if (ret < 0)
982                 return ret;
983
984         /* looks okay */
985         *_capabilities = capabilities;
986         return 0;
987 }
988
989 /*
990  * we've determined that we can make the mapping, now translate what we
991  * now know into VMA flags
992  */
993 static unsigned long determine_vm_flags(struct file *file,
994                                         unsigned long prot,
995                                         unsigned long flags,
996                                         unsigned long capabilities)
997 {
998         unsigned long vm_flags;
999
1000         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1001         vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1002         /* vm_flags |= mm->def_flags; */
1003
1004         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1005                 /* attempt to share read-only copies of mapped file chunks */
1006                 if (file && !(prot & PROT_WRITE))
1007                         vm_flags |= VM_MAYSHARE;
1008         }
1009         else {
1010                 /* overlay a shareable mapping on the backing device or inode
1011                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1012                  * romfs/cramfs */
1013                 if (flags & MAP_SHARED)
1014                         vm_flags |= VM_MAYSHARE | VM_SHARED;
1015                 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1016                         vm_flags |= VM_MAYSHARE;
1017         }
1018
1019         /* refuse to let anyone share private mappings with this process if
1020          * it's being traced - otherwise breakpoints set in it may interfere
1021          * with another untraced process
1022          */
1023         if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1024                 vm_flags &= ~VM_MAYSHARE;
1025
1026         return vm_flags;
1027 }
1028
1029 /*
1030  * set up a shared mapping on a file (the driver or filesystem provides and
1031  * pins the storage)
1032  */
1033 static int do_mmap_shared_file(struct vm_area_struct *vma)
1034 {
1035         int ret;
1036
1037         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1038         if (ret == 0) {
1039                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1040                 return 0;
1041         }
1042         if (ret != -ENOSYS)
1043                 return ret;
1044
1045         /* getting an ENOSYS error indicates that direct mmap isn't
1046          * possible (as opposed to tried but failed) so we'll fall
1047          * through to making a private copy of the data and mapping
1048          * that if we can */
1049         return -ENODEV;
1050 }
1051
1052 /*
1053  * set up a private mapping or an anonymous shared mapping
1054  */
1055 static int do_mmap_private(struct vm_area_struct *vma,
1056                            struct vm_region *region,
1057                            unsigned long len,
1058                            unsigned long capabilities)
1059 {
1060         struct page *pages;
1061         unsigned long total, point, n, rlen;
1062         void *base;
1063         int ret, order;
1064
1065         /* invoke the file's mapping function so that it can keep track of
1066          * shared mappings on devices or memory
1067          * - VM_MAYSHARE will be set if it may attempt to share
1068          */
1069         if (capabilities & BDI_CAP_MAP_DIRECT) {
1070                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1071                 if (ret == 0) {
1072                         /* shouldn't return success if we're not sharing */
1073                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1074                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1075                         return 0;
1076                 }
1077                 if (ret != -ENOSYS)
1078                         return ret;
1079
1080                 /* getting an ENOSYS error indicates that direct mmap isn't
1081                  * possible (as opposed to tried but failed) so we'll try to
1082                  * make a private copy of the data and map that instead */
1083         }
1084
1085         rlen = PAGE_ALIGN(len);
1086
1087         /* allocate some memory to hold the mapping
1088          * - note that this may not return a page-aligned address if the object
1089          *   we're allocating is smaller than a page
1090          */
1091         order = get_order(rlen);
1092         kdebug("alloc order %d for %lx", order, len);
1093
1094         pages = alloc_pages(GFP_KERNEL, order);
1095         if (!pages)
1096                 goto enomem;
1097
1098         total = 1 << order;
1099         atomic_long_add(total, &mmap_pages_allocated);
1100
1101         point = rlen >> PAGE_SHIFT;
1102
1103         /* we allocated a power-of-2 sized page set, so we may want to trim off
1104          * the excess */
1105         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1106                 while (total > point) {
1107                         order = ilog2(total - point);
1108                         n = 1 << order;
1109                         kdebug("shave %lu/%lu @%lu", n, total - point, total);
1110                         atomic_long_sub(n, &mmap_pages_allocated);
1111                         total -= n;
1112                         set_page_refcounted(pages + total);
1113                         __free_pages(pages + total, order);
1114                 }
1115         }
1116
1117         for (point = 1; point < total; point++)
1118                 set_page_refcounted(&pages[point]);
1119
1120         base = page_address(pages);
1121         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1122         region->vm_start = (unsigned long) base;
1123         region->vm_end   = region->vm_start + rlen;
1124         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1125
1126         vma->vm_start = region->vm_start;
1127         vma->vm_end   = region->vm_start + len;
1128
1129         if (vma->vm_file) {
1130                 /* read the contents of a file into the copy */
1131                 mm_segment_t old_fs;
1132                 loff_t fpos;
1133
1134                 fpos = vma->vm_pgoff;
1135                 fpos <<= PAGE_SHIFT;
1136
1137                 old_fs = get_fs();
1138                 set_fs(KERNEL_DS);
1139                 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1140                 set_fs(old_fs);
1141
1142                 if (ret < 0)
1143                         goto error_free;
1144
1145                 /* clear the last little bit */
1146                 if (ret < rlen)
1147                         memset(base + ret, 0, rlen - ret);
1148
1149         } else {
1150                 /* if it's an anonymous mapping, then just clear it */
1151                 memset(base, 0, rlen);
1152         }
1153
1154         return 0;
1155
1156 error_free:
1157         free_page_series(region->vm_start, region->vm_end);
1158         region->vm_start = vma->vm_start = 0;
1159         region->vm_end   = vma->vm_end = 0;
1160         region->vm_top   = 0;
1161         return ret;
1162
1163 enomem:
1164         printk("Allocation of length %lu from process %d (%s) failed\n",
1165                len, current->pid, current->comm);
1166         show_free_areas();
1167         return -ENOMEM;
1168 }
1169
1170 /*
1171  * handle mapping creation for uClinux
1172  */
1173 unsigned long do_mmap_pgoff(struct file *file,
1174                             unsigned long addr,
1175                             unsigned long len,
1176                             unsigned long prot,
1177                             unsigned long flags,
1178                             unsigned long pgoff)
1179 {
1180         struct vm_area_struct *vma;
1181         struct vm_region *region;
1182         struct rb_node *rb;
1183         unsigned long capabilities, vm_flags, result;
1184         int ret;
1185
1186         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1187
1188         /* decide whether we should attempt the mapping, and if so what sort of
1189          * mapping */
1190         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1191                                     &capabilities);
1192         if (ret < 0) {
1193                 kleave(" = %d [val]", ret);
1194                 return ret;
1195         }
1196
1197         /* we ignore the address hint */
1198         addr = 0;
1199
1200         /* we've determined that we can make the mapping, now translate what we
1201          * now know into VMA flags */
1202         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1203
1204         /* we're going to need to record the mapping */
1205         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1206         if (!region)
1207                 goto error_getting_region;
1208
1209         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1210         if (!vma)
1211                 goto error_getting_vma;
1212
1213         atomic_set(&region->vm_usage, 1);
1214         region->vm_flags = vm_flags;
1215         region->vm_pgoff = pgoff;
1216
1217         INIT_LIST_HEAD(&vma->anon_vma_node);
1218         vma->vm_flags = vm_flags;
1219         vma->vm_pgoff = pgoff;
1220
1221         if (file) {
1222                 region->vm_file = file;
1223                 get_file(file);
1224                 vma->vm_file = file;
1225                 get_file(file);
1226                 if (vm_flags & VM_EXECUTABLE) {
1227                         added_exe_file_vma(current->mm);
1228                         vma->vm_mm = current->mm;
1229                 }
1230         }
1231
1232         down_write(&nommu_region_sem);
1233
1234         /* if we want to share, we need to check for regions created by other
1235          * mmap() calls that overlap with our proposed mapping
1236          * - we can only share with a superset match on most regular files
1237          * - shared mappings on character devices and memory backed files are
1238          *   permitted to overlap inexactly as far as we are concerned for in
1239          *   these cases, sharing is handled in the driver or filesystem rather
1240          *   than here
1241          */
1242         if (vm_flags & VM_MAYSHARE) {
1243                 struct vm_region *pregion;
1244                 unsigned long pglen, rpglen, pgend, rpgend, start;
1245
1246                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1247                 pgend = pgoff + pglen;
1248
1249                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1250                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1251
1252                         if (!(pregion->vm_flags & VM_MAYSHARE))
1253                                 continue;
1254
1255                         /* search for overlapping mappings on the same file */
1256                         if (pregion->vm_file->f_path.dentry->d_inode !=
1257                             file->f_path.dentry->d_inode)
1258                                 continue;
1259
1260                         if (pregion->vm_pgoff >= pgend)
1261                                 continue;
1262
1263                         rpglen = pregion->vm_end - pregion->vm_start;
1264                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1265                         rpgend = pregion->vm_pgoff + rpglen;
1266                         if (pgoff >= rpgend)
1267                                 continue;
1268
1269                         /* handle inexactly overlapping matches between
1270                          * mappings */
1271                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1272                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1273                                 /* new mapping is not a subset of the region */
1274                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1275                                         goto sharing_violation;
1276                                 continue;
1277                         }
1278
1279                         /* we've found a region we can share */
1280                         atomic_inc(&pregion->vm_usage);
1281                         vma->vm_region = pregion;
1282                         start = pregion->vm_start;
1283                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1284                         vma->vm_start = start;
1285                         vma->vm_end = start + len;
1286
1287                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1288                                 kdebug("share copy");
1289                                 vma->vm_flags |= VM_MAPPED_COPY;
1290                         } else {
1291                                 kdebug("share mmap");
1292                                 ret = do_mmap_shared_file(vma);
1293                                 if (ret < 0) {
1294                                         vma->vm_region = NULL;
1295                                         vma->vm_start = 0;
1296                                         vma->vm_end = 0;
1297                                         atomic_dec(&pregion->vm_usage);
1298                                         pregion = NULL;
1299                                         goto error_just_free;
1300                                 }
1301                         }
1302                         fput(region->vm_file);
1303                         kmem_cache_free(vm_region_jar, region);
1304                         region = pregion;
1305                         result = start;
1306                         goto share;
1307                 }
1308
1309                 /* obtain the address at which to make a shared mapping
1310                  * - this is the hook for quasi-memory character devices to
1311                  *   tell us the location of a shared mapping
1312                  */
1313                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1314                         addr = file->f_op->get_unmapped_area(file, addr, len,
1315                                                              pgoff, flags);
1316                         if (IS_ERR((void *) addr)) {
1317                                 ret = addr;
1318                                 if (ret != (unsigned long) -ENOSYS)
1319                                         goto error_just_free;
1320
1321                                 /* the driver refused to tell us where to site
1322                                  * the mapping so we'll have to attempt to copy
1323                                  * it */
1324                                 ret = (unsigned long) -ENODEV;
1325                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1326                                         goto error_just_free;
1327
1328                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1329                         } else {
1330                                 vma->vm_start = region->vm_start = addr;
1331                                 vma->vm_end = region->vm_end = addr + len;
1332                         }
1333                 }
1334         }
1335
1336         vma->vm_region = region;
1337
1338         /* set up the mapping
1339          * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1340          */
1341         if (file && vma->vm_flags & VM_SHARED)
1342                 ret = do_mmap_shared_file(vma);
1343         else
1344                 ret = do_mmap_private(vma, region, len, capabilities);
1345         if (ret < 0)
1346                 goto error_just_free;
1347         add_nommu_region(region);
1348
1349         /* okay... we have a mapping; now we have to register it */
1350         result = vma->vm_start;
1351
1352         current->mm->total_vm += len >> PAGE_SHIFT;
1353
1354 share:
1355         add_vma_to_mm(current->mm, vma);
1356
1357         up_write(&nommu_region_sem);
1358
1359         if (prot & PROT_EXEC)
1360                 flush_icache_range(result, result + len);
1361
1362         kleave(" = %lx", result);
1363         return result;
1364
1365 error_just_free:
1366         up_write(&nommu_region_sem);
1367 error:
1368         if (region->vm_file)
1369                 fput(region->vm_file);
1370         kmem_cache_free(vm_region_jar, region);
1371         if (vma->vm_file)
1372                 fput(vma->vm_file);
1373         if (vma->vm_flags & VM_EXECUTABLE)
1374                 removed_exe_file_vma(vma->vm_mm);
1375         kmem_cache_free(vm_area_cachep, vma);
1376         kleave(" = %d", ret);
1377         return ret;
1378
1379 sharing_violation:
1380         up_write(&nommu_region_sem);
1381         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1382         ret = -EINVAL;
1383         goto error;
1384
1385 error_getting_vma:
1386         kmem_cache_free(vm_region_jar, region);
1387         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1388                " from process %d failed\n",
1389                len, current->pid);
1390         show_free_areas();
1391         return -ENOMEM;
1392
1393 error_getting_region:
1394         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1395                " from process %d failed\n",
1396                len, current->pid);
1397         show_free_areas();
1398         return -ENOMEM;
1399 }
1400 EXPORT_SYMBOL(do_mmap_pgoff);
1401
1402 /*
1403  * split a vma into two pieces at address 'addr', a new vma is allocated either
1404  * for the first part or the tail.
1405  */
1406 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1407               unsigned long addr, int new_below)
1408 {
1409         struct vm_area_struct *new;
1410         struct vm_region *region;
1411         unsigned long npages;
1412
1413         kenter("");
1414
1415         /* we're only permitted to split anonymous regions that have a single
1416          * owner */
1417         if (vma->vm_file ||
1418             atomic_read(&vma->vm_region->vm_usage) != 1)
1419                 return -ENOMEM;
1420
1421         if (mm->map_count >= sysctl_max_map_count)
1422                 return -ENOMEM;
1423
1424         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1425         if (!region)
1426                 return -ENOMEM;
1427
1428         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1429         if (!new) {
1430                 kmem_cache_free(vm_region_jar, region);
1431                 return -ENOMEM;
1432         }
1433
1434         /* most fields are the same, copy all, and then fixup */
1435         *new = *vma;
1436         *region = *vma->vm_region;
1437         new->vm_region = region;
1438
1439         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1440
1441         if (new_below) {
1442                 region->vm_top = region->vm_end = new->vm_end = addr;
1443         } else {
1444                 region->vm_start = new->vm_start = addr;
1445                 region->vm_pgoff = new->vm_pgoff += npages;
1446         }
1447
1448         if (new->vm_ops && new->vm_ops->open)
1449                 new->vm_ops->open(new);
1450
1451         delete_vma_from_mm(vma);
1452         down_write(&nommu_region_sem);
1453         delete_nommu_region(vma->vm_region);
1454         if (new_below) {
1455                 vma->vm_region->vm_start = vma->vm_start = addr;
1456                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1457         } else {
1458                 vma->vm_region->vm_end = vma->vm_end = addr;
1459                 vma->vm_region->vm_top = addr;
1460         }
1461         add_nommu_region(vma->vm_region);
1462         add_nommu_region(new->vm_region);
1463         up_write(&nommu_region_sem);
1464         add_vma_to_mm(mm, vma);
1465         add_vma_to_mm(mm, new);
1466         return 0;
1467 }
1468
1469 /*
1470  * shrink a VMA by removing the specified chunk from either the beginning or
1471  * the end
1472  */
1473 static int shrink_vma(struct mm_struct *mm,
1474                       struct vm_area_struct *vma,
1475                       unsigned long from, unsigned long to)
1476 {
1477         struct vm_region *region;
1478
1479         kenter("");
1480
1481         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1482          * and list */
1483         delete_vma_from_mm(vma);
1484         if (from > vma->vm_start)
1485                 vma->vm_end = from;
1486         else
1487                 vma->vm_start = to;
1488         add_vma_to_mm(mm, vma);
1489
1490         /* cut the backing region down to size */
1491         region = vma->vm_region;
1492         BUG_ON(atomic_read(&region->vm_usage) != 1);
1493
1494         down_write(&nommu_region_sem);
1495         delete_nommu_region(region);
1496         if (from > region->vm_start) {
1497                 to = region->vm_top;
1498                 region->vm_top = region->vm_end = from;
1499         } else {
1500                 region->vm_start = to;
1501         }
1502         add_nommu_region(region);
1503         up_write(&nommu_region_sem);
1504
1505         free_page_series(from, to);
1506         return 0;
1507 }
1508
1509 /*
1510  * release a mapping
1511  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1512  *   VMA, though it need not cover the whole VMA
1513  */
1514 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1515 {
1516         struct vm_area_struct *vma;
1517         struct rb_node *rb;
1518         unsigned long end = start + len;
1519         int ret;
1520
1521         kenter(",%lx,%zx", start, len);
1522
1523         if (len == 0)
1524                 return -EINVAL;
1525
1526         /* find the first potentially overlapping VMA */
1527         vma = find_vma(mm, start);
1528         if (!vma) {
1529                 static int limit = 0;
1530                 if (limit < 5) {
1531                         printk(KERN_WARNING
1532                                "munmap of memory not mmapped by process %d"
1533                                " (%s): 0x%lx-0x%lx\n",
1534                                current->pid, current->comm,
1535                                start, start + len - 1);
1536                         limit++;
1537                 }
1538                 return -EINVAL;
1539         }
1540
1541         /* we're allowed to split an anonymous VMA but not a file-backed one */
1542         if (vma->vm_file) {
1543                 do {
1544                         if (start > vma->vm_start) {
1545                                 kleave(" = -EINVAL [miss]");
1546                                 return -EINVAL;
1547                         }
1548                         if (end == vma->vm_end)
1549                                 goto erase_whole_vma;
1550                         rb = rb_next(&vma->vm_rb);
1551                         vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1552                 } while (rb);
1553                 kleave(" = -EINVAL [split file]");
1554                 return -EINVAL;
1555         } else {
1556                 /* the chunk must be a subset of the VMA found */
1557                 if (start == vma->vm_start && end == vma->vm_end)
1558                         goto erase_whole_vma;
1559                 if (start < vma->vm_start || end > vma->vm_end) {
1560                         kleave(" = -EINVAL [superset]");
1561                         return -EINVAL;
1562                 }
1563                 if (start & ~PAGE_MASK) {
1564                         kleave(" = -EINVAL [unaligned start]");
1565                         return -EINVAL;
1566                 }
1567                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1568                         kleave(" = -EINVAL [unaligned split]");
1569                         return -EINVAL;
1570                 }
1571                 if (start != vma->vm_start && end != vma->vm_end) {
1572                         ret = split_vma(mm, vma, start, 1);
1573                         if (ret < 0) {
1574                                 kleave(" = %d [split]", ret);
1575                                 return ret;
1576                         }
1577                 }
1578                 return shrink_vma(mm, vma, start, end);
1579         }
1580
1581 erase_whole_vma:
1582         delete_vma_from_mm(vma);
1583         delete_vma(mm, vma);
1584         kleave(" = 0");
1585         return 0;
1586 }
1587 EXPORT_SYMBOL(do_munmap);
1588
1589 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1590 {
1591         int ret;
1592         struct mm_struct *mm = current->mm;
1593
1594         down_write(&mm->mmap_sem);
1595         ret = do_munmap(mm, addr, len);
1596         up_write(&mm->mmap_sem);
1597         return ret;
1598 }
1599
1600 /*
1601  * release all the mappings made in a process's VM space
1602  */
1603 void exit_mmap(struct mm_struct *mm)
1604 {
1605         struct vm_area_struct *vma;
1606
1607         if (!mm)
1608                 return;
1609
1610         kenter("");
1611
1612         mm->total_vm = 0;
1613
1614         while ((vma = mm->mmap)) {
1615                 mm->mmap = vma->vm_next;
1616                 delete_vma_from_mm(vma);
1617                 delete_vma(mm, vma);
1618                 cond_resched();
1619         }
1620
1621         kleave("");
1622 }
1623
1624 unsigned long do_brk(unsigned long addr, unsigned long len)
1625 {
1626         return -ENOMEM;
1627 }
1628
1629 /*
1630  * expand (or shrink) an existing mapping, potentially moving it at the same
1631  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1632  *
1633  * under NOMMU conditions, we only permit changing a mapping's size, and only
1634  * as long as it stays within the region allocated by do_mmap_private() and the
1635  * block is not shareable
1636  *
1637  * MREMAP_FIXED is not supported under NOMMU conditions
1638  */
1639 unsigned long do_mremap(unsigned long addr,
1640                         unsigned long old_len, unsigned long new_len,
1641                         unsigned long flags, unsigned long new_addr)
1642 {
1643         struct vm_area_struct *vma;
1644
1645         /* insanity checks first */
1646         if (old_len == 0 || new_len == 0)
1647                 return (unsigned long) -EINVAL;
1648
1649         if (addr & ~PAGE_MASK)
1650                 return -EINVAL;
1651
1652         if (flags & MREMAP_FIXED && new_addr != addr)
1653                 return (unsigned long) -EINVAL;
1654
1655         vma = find_vma_exact(current->mm, addr, old_len);
1656         if (!vma)
1657                 return (unsigned long) -EINVAL;
1658
1659         if (vma->vm_end != vma->vm_start + old_len)
1660                 return (unsigned long) -EFAULT;
1661
1662         if (vma->vm_flags & VM_MAYSHARE)
1663                 return (unsigned long) -EPERM;
1664
1665         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1666                 return (unsigned long) -ENOMEM;
1667
1668         /* all checks complete - do it */
1669         vma->vm_end = vma->vm_start + new_len;
1670         return vma->vm_start;
1671 }
1672 EXPORT_SYMBOL(do_mremap);
1673
1674 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1675                 unsigned long, new_len, unsigned long, flags,
1676                 unsigned long, new_addr)
1677 {
1678         unsigned long ret;
1679
1680         down_write(&current->mm->mmap_sem);
1681         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1682         up_write(&current->mm->mmap_sem);
1683         return ret;
1684 }
1685
1686 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1687                         unsigned int foll_flags)
1688 {
1689         return NULL;
1690 }
1691
1692 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1693                 unsigned long to, unsigned long size, pgprot_t prot)
1694 {
1695         vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1696         return 0;
1697 }
1698 EXPORT_SYMBOL(remap_pfn_range);
1699
1700 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1701                         unsigned long pgoff)
1702 {
1703         unsigned int size = vma->vm_end - vma->vm_start;
1704
1705         if (!(vma->vm_flags & VM_USERMAP))
1706                 return -EINVAL;
1707
1708         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1709         vma->vm_end = vma->vm_start + size;
1710
1711         return 0;
1712 }
1713 EXPORT_SYMBOL(remap_vmalloc_range);
1714
1715 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1716 {
1717 }
1718
1719 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1720         unsigned long len, unsigned long pgoff, unsigned long flags)
1721 {
1722         return -ENOMEM;
1723 }
1724
1725 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1726 {
1727 }
1728
1729 void unmap_mapping_range(struct address_space *mapping,
1730                          loff_t const holebegin, loff_t const holelen,
1731                          int even_cows)
1732 {
1733 }
1734 EXPORT_SYMBOL(unmap_mapping_range);
1735
1736 /*
1737  * ask for an unmapped area at which to create a mapping on a file
1738  */
1739 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1740                                 unsigned long len, unsigned long pgoff,
1741                                 unsigned long flags)
1742 {
1743         unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1744                                   unsigned long, unsigned long);
1745
1746         get_area = current->mm->get_unmapped_area;
1747         if (file && file->f_op && file->f_op->get_unmapped_area)
1748                 get_area = file->f_op->get_unmapped_area;
1749
1750         if (!get_area)
1751                 return -ENOSYS;
1752
1753         return get_area(file, addr, len, pgoff, flags);
1754 }
1755 EXPORT_SYMBOL(get_unmapped_area);
1756
1757 /*
1758  * Check that a process has enough memory to allocate a new virtual
1759  * mapping. 0 means there is enough memory for the allocation to
1760  * succeed and -ENOMEM implies there is not.
1761  *
1762  * We currently support three overcommit policies, which are set via the
1763  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1764  *
1765  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1766  * Additional code 2002 Jul 20 by Robert Love.
1767  *
1768  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1769  *
1770  * Note this is a helper function intended to be used by LSMs which
1771  * wish to use this logic.
1772  */
1773 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1774 {
1775         unsigned long free, allowed;
1776
1777         vm_acct_memory(pages);
1778
1779         /*
1780          * Sometimes we want to use more memory than we have
1781          */
1782         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1783                 return 0;
1784
1785         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1786                 unsigned long n;
1787
1788                 free = global_page_state(NR_FILE_PAGES);
1789                 free += nr_swap_pages;
1790
1791                 /*
1792                  * Any slabs which are created with the
1793                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1794                  * which are reclaimable, under pressure.  The dentry
1795                  * cache and most inode caches should fall into this
1796                  */
1797                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1798
1799                 /*
1800                  * Leave the last 3% for root
1801                  */
1802                 if (!cap_sys_admin)
1803                         free -= free / 32;
1804
1805                 if (free > pages)
1806                         return 0;
1807
1808                 /*
1809                  * nr_free_pages() is very expensive on large systems,
1810                  * only call if we're about to fail.
1811                  */
1812                 n = nr_free_pages();
1813
1814                 /*
1815                  * Leave reserved pages. The pages are not for anonymous pages.
1816                  */
1817                 if (n <= totalreserve_pages)
1818                         goto error;
1819                 else
1820                         n -= totalreserve_pages;
1821
1822                 /*
1823                  * Leave the last 3% for root
1824                  */
1825                 if (!cap_sys_admin)
1826                         n -= n / 32;
1827                 free += n;
1828
1829                 if (free > pages)
1830                         return 0;
1831
1832                 goto error;
1833         }
1834
1835         allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1836         /*
1837          * Leave the last 3% for root
1838          */
1839         if (!cap_sys_admin)
1840                 allowed -= allowed / 32;
1841         allowed += total_swap_pages;
1842
1843         /* Don't let a single process grow too big:
1844            leave 3% of the size of this process for other processes */
1845         if (mm)
1846                 allowed -= mm->total_vm / 32;
1847
1848         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1849                 return 0;
1850
1851 error:
1852         vm_unacct_memory(pages);
1853
1854         return -ENOMEM;
1855 }
1856
1857 int in_gate_area_no_task(unsigned long addr)
1858 {
1859         return 0;
1860 }
1861
1862 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1863 {
1864         BUG();
1865         return 0;
1866 }
1867 EXPORT_SYMBOL(filemap_fault);
1868
1869 /*
1870  * Access another process' address space.
1871  * - source/target buffer must be kernel space
1872  */
1873 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1874 {
1875         struct vm_area_struct *vma;
1876         struct mm_struct *mm;
1877
1878         if (addr + len < addr)
1879                 return 0;
1880
1881         mm = get_task_mm(tsk);
1882         if (!mm)
1883                 return 0;
1884
1885         down_read(&mm->mmap_sem);
1886
1887         /* the access must start within one of the target process's mappings */
1888         vma = find_vma(mm, addr);
1889         if (vma) {
1890                 /* don't overrun this mapping */
1891                 if (addr + len >= vma->vm_end)
1892                         len = vma->vm_end - addr;
1893
1894                 /* only read or write mappings where it is permitted */
1895                 if (write && vma->vm_flags & VM_MAYWRITE)
1896                         len -= copy_to_user((void *) addr, buf, len);
1897                 else if (!write && vma->vm_flags & VM_MAYREAD)
1898                         len -= copy_from_user(buf, (void *) addr, len);
1899                 else
1900                         len = 0;
1901         } else {
1902                 len = 0;
1903         }
1904
1905         up_read(&mm->mmap_sem);
1906         mmput(mm);
1907         return len;
1908 }