Merge remote-tracking branches 'asoc/topic/qcom', 'asoc/topic/rcar', 'asoc/topic...
[firefly-linux-kernel-4.4.55.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 #if 0
46 #define kenter(FMT, ...) \
47         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
60
61 void *high_memory;
62 EXPORT_SYMBOL(high_memory);
63 struct page *mem_map;
64 unsigned long max_mapnr;
65 EXPORT_SYMBOL(max_mapnr);
66 unsigned long highest_memmap_pfn;
67 struct percpu_counter vm_committed_as;
68 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
69 int sysctl_overcommit_ratio = 50; /* default is 50% */
70 unsigned long sysctl_overcommit_kbytes __read_mostly;
71 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
72 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
73 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
74 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
75 int heap_stack_gap = 0;
76
77 atomic_long_t mmap_pages_allocated;
78
79 /*
80  * The global memory commitment made in the system can be a metric
81  * that can be used to drive ballooning decisions when Linux is hosted
82  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
83  * balancing memory across competing virtual machines that are hosted.
84  * Several metrics drive this policy engine including the guest reported
85  * memory commitment.
86  */
87 unsigned long vm_memory_committed(void)
88 {
89         return percpu_counter_read_positive(&vm_committed_as);
90 }
91
92 EXPORT_SYMBOL_GPL(vm_memory_committed);
93
94 EXPORT_SYMBOL(mem_map);
95
96 /* list of mapped, potentially shareable regions */
97 static struct kmem_cache *vm_region_jar;
98 struct rb_root nommu_region_tree = RB_ROOT;
99 DECLARE_RWSEM(nommu_region_sem);
100
101 const struct vm_operations_struct generic_file_vm_ops = {
102 };
103
104 /*
105  * Return the total memory allocated for this pointer, not
106  * just what the caller asked for.
107  *
108  * Doesn't have to be accurate, i.e. may have races.
109  */
110 unsigned int kobjsize(const void *objp)
111 {
112         struct page *page;
113
114         /*
115          * If the object we have should not have ksize performed on it,
116          * return size of 0
117          */
118         if (!objp || !virt_addr_valid(objp))
119                 return 0;
120
121         page = virt_to_head_page(objp);
122
123         /*
124          * If the allocator sets PageSlab, we know the pointer came from
125          * kmalloc().
126          */
127         if (PageSlab(page))
128                 return ksize(objp);
129
130         /*
131          * If it's not a compound page, see if we have a matching VMA
132          * region. This test is intentionally done in reverse order,
133          * so if there's no VMA, we still fall through and hand back
134          * PAGE_SIZE for 0-order pages.
135          */
136         if (!PageCompound(page)) {
137                 struct vm_area_struct *vma;
138
139                 vma = find_vma(current->mm, (unsigned long)objp);
140                 if (vma)
141                         return vma->vm_end - vma->vm_start;
142         }
143
144         /*
145          * The ksize() function is only guaranteed to work for pointers
146          * returned by kmalloc(). So handle arbitrary pointers here.
147          */
148         return PAGE_SIZE << compound_order(page);
149 }
150
151 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
152                       unsigned long start, unsigned long nr_pages,
153                       unsigned int foll_flags, struct page **pages,
154                       struct vm_area_struct **vmas, int *nonblocking)
155 {
156         struct vm_area_struct *vma;
157         unsigned long vm_flags;
158         int i;
159
160         /* calculate required read or write permissions.
161          * If FOLL_FORCE is set, we only require the "MAY" flags.
162          */
163         vm_flags  = (foll_flags & FOLL_WRITE) ?
164                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
165         vm_flags &= (foll_flags & FOLL_FORCE) ?
166                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
167
168         for (i = 0; i < nr_pages; i++) {
169                 vma = find_vma(mm, start);
170                 if (!vma)
171                         goto finish_or_fault;
172
173                 /* protect what we can, including chardevs */
174                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
175                     !(vm_flags & vma->vm_flags))
176                         goto finish_or_fault;
177
178                 if (pages) {
179                         pages[i] = virt_to_page(start);
180                         if (pages[i])
181                                 page_cache_get(pages[i]);
182                 }
183                 if (vmas)
184                         vmas[i] = vma;
185                 start = (start + PAGE_SIZE) & PAGE_MASK;
186         }
187
188         return i;
189
190 finish_or_fault:
191         return i ? : -EFAULT;
192 }
193
194 /*
195  * get a list of pages in an address range belonging to the specified process
196  * and indicate the VMA that covers each page
197  * - this is potentially dodgy as we may end incrementing the page count of a
198  *   slab page or a secondary page from a compound page
199  * - don't permit access to VMAs that don't support it, such as I/O mappings
200  */
201 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
202                     unsigned long start, unsigned long nr_pages,
203                     int write, int force, struct page **pages,
204                     struct vm_area_struct **vmas)
205 {
206         int flags = 0;
207
208         if (write)
209                 flags |= FOLL_WRITE;
210         if (force)
211                 flags |= FOLL_FORCE;
212
213         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
214                                 NULL);
215 }
216 EXPORT_SYMBOL(get_user_pages);
217
218 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
219                            unsigned long start, unsigned long nr_pages,
220                            int write, int force, struct page **pages,
221                            int *locked)
222 {
223         return get_user_pages(tsk, mm, start, nr_pages, write, force,
224                               pages, NULL);
225 }
226 EXPORT_SYMBOL(get_user_pages_locked);
227
228 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
229                                unsigned long start, unsigned long nr_pages,
230                                int write, int force, struct page **pages,
231                                unsigned int gup_flags)
232 {
233         long ret;
234         down_read(&mm->mmap_sem);
235         ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
236                              pages, NULL);
237         up_read(&mm->mmap_sem);
238         return ret;
239 }
240 EXPORT_SYMBOL(__get_user_pages_unlocked);
241
242 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
243                              unsigned long start, unsigned long nr_pages,
244                              int write, int force, struct page **pages)
245 {
246         return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
247                                          force, pages, 0);
248 }
249 EXPORT_SYMBOL(get_user_pages_unlocked);
250
251 /**
252  * follow_pfn - look up PFN at a user virtual address
253  * @vma: memory mapping
254  * @address: user virtual address
255  * @pfn: location to store found PFN
256  *
257  * Only IO mappings and raw PFN mappings are allowed.
258  *
259  * Returns zero and the pfn at @pfn on success, -ve otherwise.
260  */
261 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
262         unsigned long *pfn)
263 {
264         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
265                 return -EINVAL;
266
267         *pfn = address >> PAGE_SHIFT;
268         return 0;
269 }
270 EXPORT_SYMBOL(follow_pfn);
271
272 LIST_HEAD(vmap_area_list);
273
274 void vfree(const void *addr)
275 {
276         kfree(addr);
277 }
278 EXPORT_SYMBOL(vfree);
279
280 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
281 {
282         /*
283          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
284          * returns only a logical address.
285          */
286         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
287 }
288 EXPORT_SYMBOL(__vmalloc);
289
290 void *vmalloc_user(unsigned long size)
291 {
292         void *ret;
293
294         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
295                         PAGE_KERNEL);
296         if (ret) {
297                 struct vm_area_struct *vma;
298
299                 down_write(&current->mm->mmap_sem);
300                 vma = find_vma(current->mm, (unsigned long)ret);
301                 if (vma)
302                         vma->vm_flags |= VM_USERMAP;
303                 up_write(&current->mm->mmap_sem);
304         }
305
306         return ret;
307 }
308 EXPORT_SYMBOL(vmalloc_user);
309
310 struct page *vmalloc_to_page(const void *addr)
311 {
312         return virt_to_page(addr);
313 }
314 EXPORT_SYMBOL(vmalloc_to_page);
315
316 unsigned long vmalloc_to_pfn(const void *addr)
317 {
318         return page_to_pfn(virt_to_page(addr));
319 }
320 EXPORT_SYMBOL(vmalloc_to_pfn);
321
322 long vread(char *buf, char *addr, unsigned long count)
323 {
324         /* Don't allow overflow */
325         if ((unsigned long) buf + count < count)
326                 count = -(unsigned long) buf;
327
328         memcpy(buf, addr, count);
329         return count;
330 }
331
332 long vwrite(char *buf, char *addr, unsigned long count)
333 {
334         /* Don't allow overflow */
335         if ((unsigned long) addr + count < count)
336                 count = -(unsigned long) addr;
337
338         memcpy(addr, buf, count);
339         return count;
340 }
341
342 /*
343  *      vmalloc  -  allocate virtually continguos memory
344  *
345  *      @size:          allocation size
346  *
347  *      Allocate enough pages to cover @size from the page level
348  *      allocator and map them into continguos kernel virtual space.
349  *
350  *      For tight control over page level allocator and protection flags
351  *      use __vmalloc() instead.
352  */
353 void *vmalloc(unsigned long size)
354 {
355        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
356 }
357 EXPORT_SYMBOL(vmalloc);
358
359 /*
360  *      vzalloc - allocate virtually continguos memory with zero fill
361  *
362  *      @size:          allocation size
363  *
364  *      Allocate enough pages to cover @size from the page level
365  *      allocator and map them into continguos kernel virtual space.
366  *      The memory allocated is set to zero.
367  *
368  *      For tight control over page level allocator and protection flags
369  *      use __vmalloc() instead.
370  */
371 void *vzalloc(unsigned long size)
372 {
373         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
374                         PAGE_KERNEL);
375 }
376 EXPORT_SYMBOL(vzalloc);
377
378 /**
379  * vmalloc_node - allocate memory on a specific node
380  * @size:       allocation size
381  * @node:       numa node
382  *
383  * Allocate enough pages to cover @size from the page level
384  * allocator and map them into contiguous kernel virtual space.
385  *
386  * For tight control over page level allocator and protection flags
387  * use __vmalloc() instead.
388  */
389 void *vmalloc_node(unsigned long size, int node)
390 {
391         return vmalloc(size);
392 }
393 EXPORT_SYMBOL(vmalloc_node);
394
395 /**
396  * vzalloc_node - allocate memory on a specific node with zero fill
397  * @size:       allocation size
398  * @node:       numa node
399  *
400  * Allocate enough pages to cover @size from the page level
401  * allocator and map them into contiguous kernel virtual space.
402  * The memory allocated is set to zero.
403  *
404  * For tight control over page level allocator and protection flags
405  * use __vmalloc() instead.
406  */
407 void *vzalloc_node(unsigned long size, int node)
408 {
409         return vzalloc(size);
410 }
411 EXPORT_SYMBOL(vzalloc_node);
412
413 #ifndef PAGE_KERNEL_EXEC
414 # define PAGE_KERNEL_EXEC PAGE_KERNEL
415 #endif
416
417 /**
418  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
419  *      @size:          allocation size
420  *
421  *      Kernel-internal function to allocate enough pages to cover @size
422  *      the page level allocator and map them into contiguous and
423  *      executable kernel virtual space.
424  *
425  *      For tight control over page level allocator and protection flags
426  *      use __vmalloc() instead.
427  */
428
429 void *vmalloc_exec(unsigned long size)
430 {
431         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
432 }
433
434 /**
435  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
436  *      @size:          allocation size
437  *
438  *      Allocate enough 32bit PA addressable pages to cover @size from the
439  *      page level allocator and map them into continguos kernel virtual space.
440  */
441 void *vmalloc_32(unsigned long size)
442 {
443         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
444 }
445 EXPORT_SYMBOL(vmalloc_32);
446
447 /**
448  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
449  *      @size:          allocation size
450  *
451  * The resulting memory area is 32bit addressable and zeroed so it can be
452  * mapped to userspace without leaking data.
453  *
454  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
455  * remap_vmalloc_range() are permissible.
456  */
457 void *vmalloc_32_user(unsigned long size)
458 {
459         /*
460          * We'll have to sort out the ZONE_DMA bits for 64-bit,
461          * but for now this can simply use vmalloc_user() directly.
462          */
463         return vmalloc_user(size);
464 }
465 EXPORT_SYMBOL(vmalloc_32_user);
466
467 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
468 {
469         BUG();
470         return NULL;
471 }
472 EXPORT_SYMBOL(vmap);
473
474 void vunmap(const void *addr)
475 {
476         BUG();
477 }
478 EXPORT_SYMBOL(vunmap);
479
480 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
481 {
482         BUG();
483         return NULL;
484 }
485 EXPORT_SYMBOL(vm_map_ram);
486
487 void vm_unmap_ram(const void *mem, unsigned int count)
488 {
489         BUG();
490 }
491 EXPORT_SYMBOL(vm_unmap_ram);
492
493 void vm_unmap_aliases(void)
494 {
495 }
496 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
497
498 /*
499  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
500  * have one.
501  */
502 void __weak vmalloc_sync_all(void)
503 {
504 }
505
506 /**
507  *      alloc_vm_area - allocate a range of kernel address space
508  *      @size:          size of the area
509  *
510  *      Returns:        NULL on failure, vm_struct on success
511  *
512  *      This function reserves a range of kernel address space, and
513  *      allocates pagetables to map that range.  No actual mappings
514  *      are created.  If the kernel address space is not shared
515  *      between processes, it syncs the pagetable across all
516  *      processes.
517  */
518 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
519 {
520         BUG();
521         return NULL;
522 }
523 EXPORT_SYMBOL_GPL(alloc_vm_area);
524
525 void free_vm_area(struct vm_struct *area)
526 {
527         BUG();
528 }
529 EXPORT_SYMBOL_GPL(free_vm_area);
530
531 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
532                    struct page *page)
533 {
534         return -EINVAL;
535 }
536 EXPORT_SYMBOL(vm_insert_page);
537
538 /*
539  *  sys_brk() for the most part doesn't need the global kernel
540  *  lock, except when an application is doing something nasty
541  *  like trying to un-brk an area that has already been mapped
542  *  to a regular file.  in this case, the unmapping will need
543  *  to invoke file system routines that need the global lock.
544  */
545 SYSCALL_DEFINE1(brk, unsigned long, brk)
546 {
547         struct mm_struct *mm = current->mm;
548
549         if (brk < mm->start_brk || brk > mm->context.end_brk)
550                 return mm->brk;
551
552         if (mm->brk == brk)
553                 return mm->brk;
554
555         /*
556          * Always allow shrinking brk
557          */
558         if (brk <= mm->brk) {
559                 mm->brk = brk;
560                 return brk;
561         }
562
563         /*
564          * Ok, looks good - let it rip.
565          */
566         flush_icache_range(mm->brk, brk);
567         return mm->brk = brk;
568 }
569
570 /*
571  * initialise the VMA and region record slabs
572  */
573 void __init mmap_init(void)
574 {
575         int ret;
576
577         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
578         VM_BUG_ON(ret);
579         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
580 }
581
582 /*
583  * validate the region tree
584  * - the caller must hold the region lock
585  */
586 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
587 static noinline void validate_nommu_regions(void)
588 {
589         struct vm_region *region, *last;
590         struct rb_node *p, *lastp;
591
592         lastp = rb_first(&nommu_region_tree);
593         if (!lastp)
594                 return;
595
596         last = rb_entry(lastp, struct vm_region, vm_rb);
597         BUG_ON(unlikely(last->vm_end <= last->vm_start));
598         BUG_ON(unlikely(last->vm_top < last->vm_end));
599
600         while ((p = rb_next(lastp))) {
601                 region = rb_entry(p, struct vm_region, vm_rb);
602                 last = rb_entry(lastp, struct vm_region, vm_rb);
603
604                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
605                 BUG_ON(unlikely(region->vm_top < region->vm_end));
606                 BUG_ON(unlikely(region->vm_start < last->vm_top));
607
608                 lastp = p;
609         }
610 }
611 #else
612 static void validate_nommu_regions(void)
613 {
614 }
615 #endif
616
617 /*
618  * add a region into the global tree
619  */
620 static void add_nommu_region(struct vm_region *region)
621 {
622         struct vm_region *pregion;
623         struct rb_node **p, *parent;
624
625         validate_nommu_regions();
626
627         parent = NULL;
628         p = &nommu_region_tree.rb_node;
629         while (*p) {
630                 parent = *p;
631                 pregion = rb_entry(parent, struct vm_region, vm_rb);
632                 if (region->vm_start < pregion->vm_start)
633                         p = &(*p)->rb_left;
634                 else if (region->vm_start > pregion->vm_start)
635                         p = &(*p)->rb_right;
636                 else if (pregion == region)
637                         return;
638                 else
639                         BUG();
640         }
641
642         rb_link_node(&region->vm_rb, parent, p);
643         rb_insert_color(&region->vm_rb, &nommu_region_tree);
644
645         validate_nommu_regions();
646 }
647
648 /*
649  * delete a region from the global tree
650  */
651 static void delete_nommu_region(struct vm_region *region)
652 {
653         BUG_ON(!nommu_region_tree.rb_node);
654
655         validate_nommu_regions();
656         rb_erase(&region->vm_rb, &nommu_region_tree);
657         validate_nommu_regions();
658 }
659
660 /*
661  * free a contiguous series of pages
662  */
663 static void free_page_series(unsigned long from, unsigned long to)
664 {
665         for (; from < to; from += PAGE_SIZE) {
666                 struct page *page = virt_to_page(from);
667
668                 kdebug("- free %lx", from);
669                 atomic_long_dec(&mmap_pages_allocated);
670                 if (page_count(page) != 1)
671                         kdebug("free page %p: refcount not one: %d",
672                                page, page_count(page));
673                 put_page(page);
674         }
675 }
676
677 /*
678  * release a reference to a region
679  * - the caller must hold the region semaphore for writing, which this releases
680  * - the region may not have been added to the tree yet, in which case vm_top
681  *   will equal vm_start
682  */
683 static void __put_nommu_region(struct vm_region *region)
684         __releases(nommu_region_sem)
685 {
686         kenter("%p{%d}", region, region->vm_usage);
687
688         BUG_ON(!nommu_region_tree.rb_node);
689
690         if (--region->vm_usage == 0) {
691                 if (region->vm_top > region->vm_start)
692                         delete_nommu_region(region);
693                 up_write(&nommu_region_sem);
694
695                 if (region->vm_file)
696                         fput(region->vm_file);
697
698                 /* IO memory and memory shared directly out of the pagecache
699                  * from ramfs/tmpfs mustn't be released here */
700                 if (region->vm_flags & VM_MAPPED_COPY) {
701                         kdebug("free series");
702                         free_page_series(region->vm_start, region->vm_top);
703                 }
704                 kmem_cache_free(vm_region_jar, region);
705         } else {
706                 up_write(&nommu_region_sem);
707         }
708 }
709
710 /*
711  * release a reference to a region
712  */
713 static void put_nommu_region(struct vm_region *region)
714 {
715         down_write(&nommu_region_sem);
716         __put_nommu_region(region);
717 }
718
719 /*
720  * update protection on a vma
721  */
722 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
723 {
724 #ifdef CONFIG_MPU
725         struct mm_struct *mm = vma->vm_mm;
726         long start = vma->vm_start & PAGE_MASK;
727         while (start < vma->vm_end) {
728                 protect_page(mm, start, flags);
729                 start += PAGE_SIZE;
730         }
731         update_protections(mm);
732 #endif
733 }
734
735 /*
736  * add a VMA into a process's mm_struct in the appropriate place in the list
737  * and tree and add to the address space's page tree also if not an anonymous
738  * page
739  * - should be called with mm->mmap_sem held writelocked
740  */
741 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
742 {
743         struct vm_area_struct *pvma, *prev;
744         struct address_space *mapping;
745         struct rb_node **p, *parent, *rb_prev;
746
747         kenter(",%p", vma);
748
749         BUG_ON(!vma->vm_region);
750
751         mm->map_count++;
752         vma->vm_mm = mm;
753
754         protect_vma(vma, vma->vm_flags);
755
756         /* add the VMA to the mapping */
757         if (vma->vm_file) {
758                 mapping = vma->vm_file->f_mapping;
759
760                 i_mmap_lock_write(mapping);
761                 flush_dcache_mmap_lock(mapping);
762                 vma_interval_tree_insert(vma, &mapping->i_mmap);
763                 flush_dcache_mmap_unlock(mapping);
764                 i_mmap_unlock_write(mapping);
765         }
766
767         /* add the VMA to the tree */
768         parent = rb_prev = NULL;
769         p = &mm->mm_rb.rb_node;
770         while (*p) {
771                 parent = *p;
772                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
773
774                 /* sort by: start addr, end addr, VMA struct addr in that order
775                  * (the latter is necessary as we may get identical VMAs) */
776                 if (vma->vm_start < pvma->vm_start)
777                         p = &(*p)->rb_left;
778                 else if (vma->vm_start > pvma->vm_start) {
779                         rb_prev = parent;
780                         p = &(*p)->rb_right;
781                 } else if (vma->vm_end < pvma->vm_end)
782                         p = &(*p)->rb_left;
783                 else if (vma->vm_end > pvma->vm_end) {
784                         rb_prev = parent;
785                         p = &(*p)->rb_right;
786                 } else if (vma < pvma)
787                         p = &(*p)->rb_left;
788                 else if (vma > pvma) {
789                         rb_prev = parent;
790                         p = &(*p)->rb_right;
791                 } else
792                         BUG();
793         }
794
795         rb_link_node(&vma->vm_rb, parent, p);
796         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
797
798         /* add VMA to the VMA list also */
799         prev = NULL;
800         if (rb_prev)
801                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
802
803         __vma_link_list(mm, vma, prev, parent);
804 }
805
806 /*
807  * delete a VMA from its owning mm_struct and address space
808  */
809 static void delete_vma_from_mm(struct vm_area_struct *vma)
810 {
811         int i;
812         struct address_space *mapping;
813         struct mm_struct *mm = vma->vm_mm;
814         struct task_struct *curr = current;
815
816         kenter("%p", vma);
817
818         protect_vma(vma, 0);
819
820         mm->map_count--;
821         for (i = 0; i < VMACACHE_SIZE; i++) {
822                 /* if the vma is cached, invalidate the entire cache */
823                 if (curr->vmacache[i] == vma) {
824                         vmacache_invalidate(mm);
825                         break;
826                 }
827         }
828
829         /* remove the VMA from the mapping */
830         if (vma->vm_file) {
831                 mapping = vma->vm_file->f_mapping;
832
833                 i_mmap_lock_write(mapping);
834                 flush_dcache_mmap_lock(mapping);
835                 vma_interval_tree_remove(vma, &mapping->i_mmap);
836                 flush_dcache_mmap_unlock(mapping);
837                 i_mmap_unlock_write(mapping);
838         }
839
840         /* remove from the MM's tree and list */
841         rb_erase(&vma->vm_rb, &mm->mm_rb);
842
843         if (vma->vm_prev)
844                 vma->vm_prev->vm_next = vma->vm_next;
845         else
846                 mm->mmap = vma->vm_next;
847
848         if (vma->vm_next)
849                 vma->vm_next->vm_prev = vma->vm_prev;
850 }
851
852 /*
853  * destroy a VMA record
854  */
855 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
856 {
857         kenter("%p", vma);
858         if (vma->vm_ops && vma->vm_ops->close)
859                 vma->vm_ops->close(vma);
860         if (vma->vm_file)
861                 fput(vma->vm_file);
862         put_nommu_region(vma->vm_region);
863         kmem_cache_free(vm_area_cachep, vma);
864 }
865
866 /*
867  * look up the first VMA in which addr resides, NULL if none
868  * - should be called with mm->mmap_sem at least held readlocked
869  */
870 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
871 {
872         struct vm_area_struct *vma;
873
874         /* check the cache first */
875         vma = vmacache_find(mm, addr);
876         if (likely(vma))
877                 return vma;
878
879         /* trawl the list (there may be multiple mappings in which addr
880          * resides) */
881         for (vma = mm->mmap; vma; vma = vma->vm_next) {
882                 if (vma->vm_start > addr)
883                         return NULL;
884                 if (vma->vm_end > addr) {
885                         vmacache_update(addr, vma);
886                         return vma;
887                 }
888         }
889
890         return NULL;
891 }
892 EXPORT_SYMBOL(find_vma);
893
894 /*
895  * find a VMA
896  * - we don't extend stack VMAs under NOMMU conditions
897  */
898 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
899 {
900         return find_vma(mm, addr);
901 }
902
903 /*
904  * expand a stack to a given address
905  * - not supported under NOMMU conditions
906  */
907 int expand_stack(struct vm_area_struct *vma, unsigned long address)
908 {
909         return -ENOMEM;
910 }
911
912 /*
913  * look up the first VMA exactly that exactly matches addr
914  * - should be called with mm->mmap_sem at least held readlocked
915  */
916 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
917                                              unsigned long addr,
918                                              unsigned long len)
919 {
920         struct vm_area_struct *vma;
921         unsigned long end = addr + len;
922
923         /* check the cache first */
924         vma = vmacache_find_exact(mm, addr, end);
925         if (vma)
926                 return vma;
927
928         /* trawl the list (there may be multiple mappings in which addr
929          * resides) */
930         for (vma = mm->mmap; vma; vma = vma->vm_next) {
931                 if (vma->vm_start < addr)
932                         continue;
933                 if (vma->vm_start > addr)
934                         return NULL;
935                 if (vma->vm_end == end) {
936                         vmacache_update(addr, vma);
937                         return vma;
938                 }
939         }
940
941         return NULL;
942 }
943
944 /*
945  * determine whether a mapping should be permitted and, if so, what sort of
946  * mapping we're capable of supporting
947  */
948 static int validate_mmap_request(struct file *file,
949                                  unsigned long addr,
950                                  unsigned long len,
951                                  unsigned long prot,
952                                  unsigned long flags,
953                                  unsigned long pgoff,
954                                  unsigned long *_capabilities)
955 {
956         unsigned long capabilities, rlen;
957         int ret;
958
959         /* do the simple checks first */
960         if (flags & MAP_FIXED) {
961                 printk(KERN_DEBUG
962                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
963                        current->pid);
964                 return -EINVAL;
965         }
966
967         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
968             (flags & MAP_TYPE) != MAP_SHARED)
969                 return -EINVAL;
970
971         if (!len)
972                 return -EINVAL;
973
974         /* Careful about overflows.. */
975         rlen = PAGE_ALIGN(len);
976         if (!rlen || rlen > TASK_SIZE)
977                 return -ENOMEM;
978
979         /* offset overflow? */
980         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
981                 return -EOVERFLOW;
982
983         if (file) {
984                 /* files must support mmap */
985                 if (!file->f_op->mmap)
986                         return -ENODEV;
987
988                 /* work out if what we've got could possibly be shared
989                  * - we support chardevs that provide their own "memory"
990                  * - we support files/blockdevs that are memory backed
991                  */
992                 if (file->f_op->mmap_capabilities) {
993                         capabilities = file->f_op->mmap_capabilities(file);
994                 } else {
995                         /* no explicit capabilities set, so assume some
996                          * defaults */
997                         switch (file_inode(file)->i_mode & S_IFMT) {
998                         case S_IFREG:
999                         case S_IFBLK:
1000                                 capabilities = NOMMU_MAP_COPY;
1001                                 break;
1002
1003                         case S_IFCHR:
1004                                 capabilities =
1005                                         NOMMU_MAP_DIRECT |
1006                                         NOMMU_MAP_READ |
1007                                         NOMMU_MAP_WRITE;
1008                                 break;
1009
1010                         default:
1011                                 return -EINVAL;
1012                         }
1013                 }
1014
1015                 /* eliminate any capabilities that we can't support on this
1016                  * device */
1017                 if (!file->f_op->get_unmapped_area)
1018                         capabilities &= ~NOMMU_MAP_DIRECT;
1019                 if (!(file->f_mode & FMODE_CAN_READ))
1020                         capabilities &= ~NOMMU_MAP_COPY;
1021
1022                 /* The file shall have been opened with read permission. */
1023                 if (!(file->f_mode & FMODE_READ))
1024                         return -EACCES;
1025
1026                 if (flags & MAP_SHARED) {
1027                         /* do checks for writing, appending and locking */
1028                         if ((prot & PROT_WRITE) &&
1029                             !(file->f_mode & FMODE_WRITE))
1030                                 return -EACCES;
1031
1032                         if (IS_APPEND(file_inode(file)) &&
1033                             (file->f_mode & FMODE_WRITE))
1034                                 return -EACCES;
1035
1036                         if (locks_verify_locked(file))
1037                                 return -EAGAIN;
1038
1039                         if (!(capabilities & NOMMU_MAP_DIRECT))
1040                                 return -ENODEV;
1041
1042                         /* we mustn't privatise shared mappings */
1043                         capabilities &= ~NOMMU_MAP_COPY;
1044                 } else {
1045                         /* we're going to read the file into private memory we
1046                          * allocate */
1047                         if (!(capabilities & NOMMU_MAP_COPY))
1048                                 return -ENODEV;
1049
1050                         /* we don't permit a private writable mapping to be
1051                          * shared with the backing device */
1052                         if (prot & PROT_WRITE)
1053                                 capabilities &= ~NOMMU_MAP_DIRECT;
1054                 }
1055
1056                 if (capabilities & NOMMU_MAP_DIRECT) {
1057                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
1058                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1059                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1060                             ) {
1061                                 capabilities &= ~NOMMU_MAP_DIRECT;
1062                                 if (flags & MAP_SHARED) {
1063                                         printk(KERN_WARNING
1064                                                "MAP_SHARED not completely supported on !MMU\n");
1065                                         return -EINVAL;
1066                                 }
1067                         }
1068                 }
1069
1070                 /* handle executable mappings and implied executable
1071                  * mappings */
1072                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1073                         if (prot & PROT_EXEC)
1074                                 return -EPERM;
1075                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1076                         /* handle implication of PROT_EXEC by PROT_READ */
1077                         if (current->personality & READ_IMPLIES_EXEC) {
1078                                 if (capabilities & NOMMU_MAP_EXEC)
1079                                         prot |= PROT_EXEC;
1080                         }
1081                 } else if ((prot & PROT_READ) &&
1082                          (prot & PROT_EXEC) &&
1083                          !(capabilities & NOMMU_MAP_EXEC)
1084                          ) {
1085                         /* backing file is not executable, try to copy */
1086                         capabilities &= ~NOMMU_MAP_DIRECT;
1087                 }
1088         } else {
1089                 /* anonymous mappings are always memory backed and can be
1090                  * privately mapped
1091                  */
1092                 capabilities = NOMMU_MAP_COPY;
1093
1094                 /* handle PROT_EXEC implication by PROT_READ */
1095                 if ((prot & PROT_READ) &&
1096                     (current->personality & READ_IMPLIES_EXEC))
1097                         prot |= PROT_EXEC;
1098         }
1099
1100         /* allow the security API to have its say */
1101         ret = security_mmap_addr(addr);
1102         if (ret < 0)
1103                 return ret;
1104
1105         /* looks okay */
1106         *_capabilities = capabilities;
1107         return 0;
1108 }
1109
1110 /*
1111  * we've determined that we can make the mapping, now translate what we
1112  * now know into VMA flags
1113  */
1114 static unsigned long determine_vm_flags(struct file *file,
1115                                         unsigned long prot,
1116                                         unsigned long flags,
1117                                         unsigned long capabilities)
1118 {
1119         unsigned long vm_flags;
1120
1121         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1122         /* vm_flags |= mm->def_flags; */
1123
1124         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1125                 /* attempt to share read-only copies of mapped file chunks */
1126                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1127                 if (file && !(prot & PROT_WRITE))
1128                         vm_flags |= VM_MAYSHARE;
1129         } else {
1130                 /* overlay a shareable mapping on the backing device or inode
1131                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1132                  * romfs/cramfs */
1133                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1134                 if (flags & MAP_SHARED)
1135                         vm_flags |= VM_SHARED;
1136         }
1137
1138         /* refuse to let anyone share private mappings with this process if
1139          * it's being traced - otherwise breakpoints set in it may interfere
1140          * with another untraced process
1141          */
1142         if ((flags & MAP_PRIVATE) && current->ptrace)
1143                 vm_flags &= ~VM_MAYSHARE;
1144
1145         return vm_flags;
1146 }
1147
1148 /*
1149  * set up a shared mapping on a file (the driver or filesystem provides and
1150  * pins the storage)
1151  */
1152 static int do_mmap_shared_file(struct vm_area_struct *vma)
1153 {
1154         int ret;
1155
1156         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1157         if (ret == 0) {
1158                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1159                 return 0;
1160         }
1161         if (ret != -ENOSYS)
1162                 return ret;
1163
1164         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1165          * opposed to tried but failed) so we can only give a suitable error as
1166          * it's not possible to make a private copy if MAP_SHARED was given */
1167         return -ENODEV;
1168 }
1169
1170 /*
1171  * set up a private mapping or an anonymous shared mapping
1172  */
1173 static int do_mmap_private(struct vm_area_struct *vma,
1174                            struct vm_region *region,
1175                            unsigned long len,
1176                            unsigned long capabilities)
1177 {
1178         unsigned long total, point;
1179         void *base;
1180         int ret, order;
1181
1182         /* invoke the file's mapping function so that it can keep track of
1183          * shared mappings on devices or memory
1184          * - VM_MAYSHARE will be set if it may attempt to share
1185          */
1186         if (capabilities & NOMMU_MAP_DIRECT) {
1187                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1188                 if (ret == 0) {
1189                         /* shouldn't return success if we're not sharing */
1190                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1191                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1192                         return 0;
1193                 }
1194                 if (ret != -ENOSYS)
1195                         return ret;
1196
1197                 /* getting an ENOSYS error indicates that direct mmap isn't
1198                  * possible (as opposed to tried but failed) so we'll try to
1199                  * make a private copy of the data and map that instead */
1200         }
1201
1202
1203         /* allocate some memory to hold the mapping
1204          * - note that this may not return a page-aligned address if the object
1205          *   we're allocating is smaller than a page
1206          */
1207         order = get_order(len);
1208         kdebug("alloc order %d for %lx", order, len);
1209
1210         total = 1 << order;
1211         point = len >> PAGE_SHIFT;
1212
1213         /* we don't want to allocate a power-of-2 sized page set */
1214         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1215                 total = point;
1216                 kdebug("try to alloc exact %lu pages", total);
1217         }
1218
1219         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1220         if (!base)
1221                 goto enomem;
1222
1223         atomic_long_add(total, &mmap_pages_allocated);
1224
1225         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1226         region->vm_start = (unsigned long) base;
1227         region->vm_end   = region->vm_start + len;
1228         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1229
1230         vma->vm_start = region->vm_start;
1231         vma->vm_end   = region->vm_start + len;
1232
1233         if (vma->vm_file) {
1234                 /* read the contents of a file into the copy */
1235                 mm_segment_t old_fs;
1236                 loff_t fpos;
1237
1238                 fpos = vma->vm_pgoff;
1239                 fpos <<= PAGE_SHIFT;
1240
1241                 old_fs = get_fs();
1242                 set_fs(KERNEL_DS);
1243                 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1244                 set_fs(old_fs);
1245
1246                 if (ret < 0)
1247                         goto error_free;
1248
1249                 /* clear the last little bit */
1250                 if (ret < len)
1251                         memset(base + ret, 0, len - ret);
1252
1253         }
1254
1255         return 0;
1256
1257 error_free:
1258         free_page_series(region->vm_start, region->vm_top);
1259         region->vm_start = vma->vm_start = 0;
1260         region->vm_end   = vma->vm_end = 0;
1261         region->vm_top   = 0;
1262         return ret;
1263
1264 enomem:
1265         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1266                len, current->pid, current->comm);
1267         show_free_areas(0);
1268         return -ENOMEM;
1269 }
1270
1271 /*
1272  * handle mapping creation for uClinux
1273  */
1274 unsigned long do_mmap_pgoff(struct file *file,
1275                             unsigned long addr,
1276                             unsigned long len,
1277                             unsigned long prot,
1278                             unsigned long flags,
1279                             unsigned long pgoff,
1280                             unsigned long *populate)
1281 {
1282         struct vm_area_struct *vma;
1283         struct vm_region *region;
1284         struct rb_node *rb;
1285         unsigned long capabilities, vm_flags, result;
1286         int ret;
1287
1288         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1289
1290         *populate = 0;
1291
1292         /* decide whether we should attempt the mapping, and if so what sort of
1293          * mapping */
1294         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1295                                     &capabilities);
1296         if (ret < 0) {
1297                 kleave(" = %d [val]", ret);
1298                 return ret;
1299         }
1300
1301         /* we ignore the address hint */
1302         addr = 0;
1303         len = PAGE_ALIGN(len);
1304
1305         /* we've determined that we can make the mapping, now translate what we
1306          * now know into VMA flags */
1307         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1308
1309         /* we're going to need to record the mapping */
1310         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1311         if (!region)
1312                 goto error_getting_region;
1313
1314         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1315         if (!vma)
1316                 goto error_getting_vma;
1317
1318         region->vm_usage = 1;
1319         region->vm_flags = vm_flags;
1320         region->vm_pgoff = pgoff;
1321
1322         INIT_LIST_HEAD(&vma->anon_vma_chain);
1323         vma->vm_flags = vm_flags;
1324         vma->vm_pgoff = pgoff;
1325
1326         if (file) {
1327                 region->vm_file = get_file(file);
1328                 vma->vm_file = get_file(file);
1329         }
1330
1331         down_write(&nommu_region_sem);
1332
1333         /* if we want to share, we need to check for regions created by other
1334          * mmap() calls that overlap with our proposed mapping
1335          * - we can only share with a superset match on most regular files
1336          * - shared mappings on character devices and memory backed files are
1337          *   permitted to overlap inexactly as far as we are concerned for in
1338          *   these cases, sharing is handled in the driver or filesystem rather
1339          *   than here
1340          */
1341         if (vm_flags & VM_MAYSHARE) {
1342                 struct vm_region *pregion;
1343                 unsigned long pglen, rpglen, pgend, rpgend, start;
1344
1345                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1346                 pgend = pgoff + pglen;
1347
1348                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1349                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1350
1351                         if (!(pregion->vm_flags & VM_MAYSHARE))
1352                                 continue;
1353
1354                         /* search for overlapping mappings on the same file */
1355                         if (file_inode(pregion->vm_file) !=
1356                             file_inode(file))
1357                                 continue;
1358
1359                         if (pregion->vm_pgoff >= pgend)
1360                                 continue;
1361
1362                         rpglen = pregion->vm_end - pregion->vm_start;
1363                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1364                         rpgend = pregion->vm_pgoff + rpglen;
1365                         if (pgoff >= rpgend)
1366                                 continue;
1367
1368                         /* handle inexactly overlapping matches between
1369                          * mappings */
1370                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1371                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1372                                 /* new mapping is not a subset of the region */
1373                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1374                                         goto sharing_violation;
1375                                 continue;
1376                         }
1377
1378                         /* we've found a region we can share */
1379                         pregion->vm_usage++;
1380                         vma->vm_region = pregion;
1381                         start = pregion->vm_start;
1382                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1383                         vma->vm_start = start;
1384                         vma->vm_end = start + len;
1385
1386                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1387                                 kdebug("share copy");
1388                                 vma->vm_flags |= VM_MAPPED_COPY;
1389                         } else {
1390                                 kdebug("share mmap");
1391                                 ret = do_mmap_shared_file(vma);
1392                                 if (ret < 0) {
1393                                         vma->vm_region = NULL;
1394                                         vma->vm_start = 0;
1395                                         vma->vm_end = 0;
1396                                         pregion->vm_usage--;
1397                                         pregion = NULL;
1398                                         goto error_just_free;
1399                                 }
1400                         }
1401                         fput(region->vm_file);
1402                         kmem_cache_free(vm_region_jar, region);
1403                         region = pregion;
1404                         result = start;
1405                         goto share;
1406                 }
1407
1408                 /* obtain the address at which to make a shared mapping
1409                  * - this is the hook for quasi-memory character devices to
1410                  *   tell us the location of a shared mapping
1411                  */
1412                 if (capabilities & NOMMU_MAP_DIRECT) {
1413                         addr = file->f_op->get_unmapped_area(file, addr, len,
1414                                                              pgoff, flags);
1415                         if (IS_ERR_VALUE(addr)) {
1416                                 ret = addr;
1417                                 if (ret != -ENOSYS)
1418                                         goto error_just_free;
1419
1420                                 /* the driver refused to tell us where to site
1421                                  * the mapping so we'll have to attempt to copy
1422                                  * it */
1423                                 ret = -ENODEV;
1424                                 if (!(capabilities & NOMMU_MAP_COPY))
1425                                         goto error_just_free;
1426
1427                                 capabilities &= ~NOMMU_MAP_DIRECT;
1428                         } else {
1429                                 vma->vm_start = region->vm_start = addr;
1430                                 vma->vm_end = region->vm_end = addr + len;
1431                         }
1432                 }
1433         }
1434
1435         vma->vm_region = region;
1436
1437         /* set up the mapping
1438          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1439          */
1440         if (file && vma->vm_flags & VM_SHARED)
1441                 ret = do_mmap_shared_file(vma);
1442         else
1443                 ret = do_mmap_private(vma, region, len, capabilities);
1444         if (ret < 0)
1445                 goto error_just_free;
1446         add_nommu_region(region);
1447
1448         /* clear anonymous mappings that don't ask for uninitialized data */
1449         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1450                 memset((void *)region->vm_start, 0,
1451                        region->vm_end - region->vm_start);
1452
1453         /* okay... we have a mapping; now we have to register it */
1454         result = vma->vm_start;
1455
1456         current->mm->total_vm += len >> PAGE_SHIFT;
1457
1458 share:
1459         add_vma_to_mm(current->mm, vma);
1460
1461         /* we flush the region from the icache only when the first executable
1462          * mapping of it is made  */
1463         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1464                 flush_icache_range(region->vm_start, region->vm_end);
1465                 region->vm_icache_flushed = true;
1466         }
1467
1468         up_write(&nommu_region_sem);
1469
1470         kleave(" = %lx", result);
1471         return result;
1472
1473 error_just_free:
1474         up_write(&nommu_region_sem);
1475 error:
1476         if (region->vm_file)
1477                 fput(region->vm_file);
1478         kmem_cache_free(vm_region_jar, region);
1479         if (vma->vm_file)
1480                 fput(vma->vm_file);
1481         kmem_cache_free(vm_area_cachep, vma);
1482         kleave(" = %d", ret);
1483         return ret;
1484
1485 sharing_violation:
1486         up_write(&nommu_region_sem);
1487         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1488         ret = -EINVAL;
1489         goto error;
1490
1491 error_getting_vma:
1492         kmem_cache_free(vm_region_jar, region);
1493         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1494                " from process %d failed\n",
1495                len, current->pid);
1496         show_free_areas(0);
1497         return -ENOMEM;
1498
1499 error_getting_region:
1500         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1501                " from process %d failed\n",
1502                len, current->pid);
1503         show_free_areas(0);
1504         return -ENOMEM;
1505 }
1506
1507 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1508                 unsigned long, prot, unsigned long, flags,
1509                 unsigned long, fd, unsigned long, pgoff)
1510 {
1511         struct file *file = NULL;
1512         unsigned long retval = -EBADF;
1513
1514         audit_mmap_fd(fd, flags);
1515         if (!(flags & MAP_ANONYMOUS)) {
1516                 file = fget(fd);
1517                 if (!file)
1518                         goto out;
1519         }
1520
1521         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1522
1523         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1524
1525         if (file)
1526                 fput(file);
1527 out:
1528         return retval;
1529 }
1530
1531 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1532 struct mmap_arg_struct {
1533         unsigned long addr;
1534         unsigned long len;
1535         unsigned long prot;
1536         unsigned long flags;
1537         unsigned long fd;
1538         unsigned long offset;
1539 };
1540
1541 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1542 {
1543         struct mmap_arg_struct a;
1544
1545         if (copy_from_user(&a, arg, sizeof(a)))
1546                 return -EFAULT;
1547         if (a.offset & ~PAGE_MASK)
1548                 return -EINVAL;
1549
1550         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1551                               a.offset >> PAGE_SHIFT);
1552 }
1553 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1554
1555 /*
1556  * split a vma into two pieces at address 'addr', a new vma is allocated either
1557  * for the first part or the tail.
1558  */
1559 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1560               unsigned long addr, int new_below)
1561 {
1562         struct vm_area_struct *new;
1563         struct vm_region *region;
1564         unsigned long npages;
1565
1566         kenter("");
1567
1568         /* we're only permitted to split anonymous regions (these should have
1569          * only a single usage on the region) */
1570         if (vma->vm_file)
1571                 return -ENOMEM;
1572
1573         if (mm->map_count >= sysctl_max_map_count)
1574                 return -ENOMEM;
1575
1576         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1577         if (!region)
1578                 return -ENOMEM;
1579
1580         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1581         if (!new) {
1582                 kmem_cache_free(vm_region_jar, region);
1583                 return -ENOMEM;
1584         }
1585
1586         /* most fields are the same, copy all, and then fixup */
1587         *new = *vma;
1588         *region = *vma->vm_region;
1589         new->vm_region = region;
1590
1591         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1592
1593         if (new_below) {
1594                 region->vm_top = region->vm_end = new->vm_end = addr;
1595         } else {
1596                 region->vm_start = new->vm_start = addr;
1597                 region->vm_pgoff = new->vm_pgoff += npages;
1598         }
1599
1600         if (new->vm_ops && new->vm_ops->open)
1601                 new->vm_ops->open(new);
1602
1603         delete_vma_from_mm(vma);
1604         down_write(&nommu_region_sem);
1605         delete_nommu_region(vma->vm_region);
1606         if (new_below) {
1607                 vma->vm_region->vm_start = vma->vm_start = addr;
1608                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1609         } else {
1610                 vma->vm_region->vm_end = vma->vm_end = addr;
1611                 vma->vm_region->vm_top = addr;
1612         }
1613         add_nommu_region(vma->vm_region);
1614         add_nommu_region(new->vm_region);
1615         up_write(&nommu_region_sem);
1616         add_vma_to_mm(mm, vma);
1617         add_vma_to_mm(mm, new);
1618         return 0;
1619 }
1620
1621 /*
1622  * shrink a VMA by removing the specified chunk from either the beginning or
1623  * the end
1624  */
1625 static int shrink_vma(struct mm_struct *mm,
1626                       struct vm_area_struct *vma,
1627                       unsigned long from, unsigned long to)
1628 {
1629         struct vm_region *region;
1630
1631         kenter("");
1632
1633         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1634          * and list */
1635         delete_vma_from_mm(vma);
1636         if (from > vma->vm_start)
1637                 vma->vm_end = from;
1638         else
1639                 vma->vm_start = to;
1640         add_vma_to_mm(mm, vma);
1641
1642         /* cut the backing region down to size */
1643         region = vma->vm_region;
1644         BUG_ON(region->vm_usage != 1);
1645
1646         down_write(&nommu_region_sem);
1647         delete_nommu_region(region);
1648         if (from > region->vm_start) {
1649                 to = region->vm_top;
1650                 region->vm_top = region->vm_end = from;
1651         } else {
1652                 region->vm_start = to;
1653         }
1654         add_nommu_region(region);
1655         up_write(&nommu_region_sem);
1656
1657         free_page_series(from, to);
1658         return 0;
1659 }
1660
1661 /*
1662  * release a mapping
1663  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1664  *   VMA, though it need not cover the whole VMA
1665  */
1666 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1667 {
1668         struct vm_area_struct *vma;
1669         unsigned long end;
1670         int ret;
1671
1672         kenter(",%lx,%zx", start, len);
1673
1674         len = PAGE_ALIGN(len);
1675         if (len == 0)
1676                 return -EINVAL;
1677
1678         end = start + len;
1679
1680         /* find the first potentially overlapping VMA */
1681         vma = find_vma(mm, start);
1682         if (!vma) {
1683                 static int limit;
1684                 if (limit < 5) {
1685                         printk(KERN_WARNING
1686                                "munmap of memory not mmapped by process %d"
1687                                " (%s): 0x%lx-0x%lx\n",
1688                                current->pid, current->comm,
1689                                start, start + len - 1);
1690                         limit++;
1691                 }
1692                 return -EINVAL;
1693         }
1694
1695         /* we're allowed to split an anonymous VMA but not a file-backed one */
1696         if (vma->vm_file) {
1697                 do {
1698                         if (start > vma->vm_start) {
1699                                 kleave(" = -EINVAL [miss]");
1700                                 return -EINVAL;
1701                         }
1702                         if (end == vma->vm_end)
1703                                 goto erase_whole_vma;
1704                         vma = vma->vm_next;
1705                 } while (vma);
1706                 kleave(" = -EINVAL [split file]");
1707                 return -EINVAL;
1708         } else {
1709                 /* the chunk must be a subset of the VMA found */
1710                 if (start == vma->vm_start && end == vma->vm_end)
1711                         goto erase_whole_vma;
1712                 if (start < vma->vm_start || end > vma->vm_end) {
1713                         kleave(" = -EINVAL [superset]");
1714                         return -EINVAL;
1715                 }
1716                 if (start & ~PAGE_MASK) {
1717                         kleave(" = -EINVAL [unaligned start]");
1718                         return -EINVAL;
1719                 }
1720                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1721                         kleave(" = -EINVAL [unaligned split]");
1722                         return -EINVAL;
1723                 }
1724                 if (start != vma->vm_start && end != vma->vm_end) {
1725                         ret = split_vma(mm, vma, start, 1);
1726                         if (ret < 0) {
1727                                 kleave(" = %d [split]", ret);
1728                                 return ret;
1729                         }
1730                 }
1731                 return shrink_vma(mm, vma, start, end);
1732         }
1733
1734 erase_whole_vma:
1735         delete_vma_from_mm(vma);
1736         delete_vma(mm, vma);
1737         kleave(" = 0");
1738         return 0;
1739 }
1740 EXPORT_SYMBOL(do_munmap);
1741
1742 int vm_munmap(unsigned long addr, size_t len)
1743 {
1744         struct mm_struct *mm = current->mm;
1745         int ret;
1746
1747         down_write(&mm->mmap_sem);
1748         ret = do_munmap(mm, addr, len);
1749         up_write(&mm->mmap_sem);
1750         return ret;
1751 }
1752 EXPORT_SYMBOL(vm_munmap);
1753
1754 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1755 {
1756         return vm_munmap(addr, len);
1757 }
1758
1759 /*
1760  * release all the mappings made in a process's VM space
1761  */
1762 void exit_mmap(struct mm_struct *mm)
1763 {
1764         struct vm_area_struct *vma;
1765
1766         if (!mm)
1767                 return;
1768
1769         kenter("");
1770
1771         mm->total_vm = 0;
1772
1773         while ((vma = mm->mmap)) {
1774                 mm->mmap = vma->vm_next;
1775                 delete_vma_from_mm(vma);
1776                 delete_vma(mm, vma);
1777                 cond_resched();
1778         }
1779
1780         kleave("");
1781 }
1782
1783 unsigned long vm_brk(unsigned long addr, unsigned long len)
1784 {
1785         return -ENOMEM;
1786 }
1787
1788 /*
1789  * expand (or shrink) an existing mapping, potentially moving it at the same
1790  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1791  *
1792  * under NOMMU conditions, we only permit changing a mapping's size, and only
1793  * as long as it stays within the region allocated by do_mmap_private() and the
1794  * block is not shareable
1795  *
1796  * MREMAP_FIXED is not supported under NOMMU conditions
1797  */
1798 static unsigned long do_mremap(unsigned long addr,
1799                         unsigned long old_len, unsigned long new_len,
1800                         unsigned long flags, unsigned long new_addr)
1801 {
1802         struct vm_area_struct *vma;
1803
1804         /* insanity checks first */
1805         old_len = PAGE_ALIGN(old_len);
1806         new_len = PAGE_ALIGN(new_len);
1807         if (old_len == 0 || new_len == 0)
1808                 return (unsigned long) -EINVAL;
1809
1810         if (addr & ~PAGE_MASK)
1811                 return -EINVAL;
1812
1813         if (flags & MREMAP_FIXED && new_addr != addr)
1814                 return (unsigned long) -EINVAL;
1815
1816         vma = find_vma_exact(current->mm, addr, old_len);
1817         if (!vma)
1818                 return (unsigned long) -EINVAL;
1819
1820         if (vma->vm_end != vma->vm_start + old_len)
1821                 return (unsigned long) -EFAULT;
1822
1823         if (vma->vm_flags & VM_MAYSHARE)
1824                 return (unsigned long) -EPERM;
1825
1826         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1827                 return (unsigned long) -ENOMEM;
1828
1829         /* all checks complete - do it */
1830         vma->vm_end = vma->vm_start + new_len;
1831         return vma->vm_start;
1832 }
1833
1834 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1835                 unsigned long, new_len, unsigned long, flags,
1836                 unsigned long, new_addr)
1837 {
1838         unsigned long ret;
1839
1840         down_write(&current->mm->mmap_sem);
1841         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1842         up_write(&current->mm->mmap_sem);
1843         return ret;
1844 }
1845
1846 struct page *follow_page_mask(struct vm_area_struct *vma,
1847                               unsigned long address, unsigned int flags,
1848                               unsigned int *page_mask)
1849 {
1850         *page_mask = 0;
1851         return NULL;
1852 }
1853
1854 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1855                 unsigned long pfn, unsigned long size, pgprot_t prot)
1856 {
1857         if (addr != (pfn << PAGE_SHIFT))
1858                 return -EINVAL;
1859
1860         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1861         return 0;
1862 }
1863 EXPORT_SYMBOL(remap_pfn_range);
1864
1865 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1866 {
1867         unsigned long pfn = start >> PAGE_SHIFT;
1868         unsigned long vm_len = vma->vm_end - vma->vm_start;
1869
1870         pfn += vma->vm_pgoff;
1871         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1872 }
1873 EXPORT_SYMBOL(vm_iomap_memory);
1874
1875 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1876                         unsigned long pgoff)
1877 {
1878         unsigned int size = vma->vm_end - vma->vm_start;
1879
1880         if (!(vma->vm_flags & VM_USERMAP))
1881                 return -EINVAL;
1882
1883         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1884         vma->vm_end = vma->vm_start + size;
1885
1886         return 0;
1887 }
1888 EXPORT_SYMBOL(remap_vmalloc_range);
1889
1890 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1891         unsigned long len, unsigned long pgoff, unsigned long flags)
1892 {
1893         return -ENOMEM;
1894 }
1895
1896 void unmap_mapping_range(struct address_space *mapping,
1897                          loff_t const holebegin, loff_t const holelen,
1898                          int even_cows)
1899 {
1900 }
1901 EXPORT_SYMBOL(unmap_mapping_range);
1902
1903 /*
1904  * Check that a process has enough memory to allocate a new virtual
1905  * mapping. 0 means there is enough memory for the allocation to
1906  * succeed and -ENOMEM implies there is not.
1907  *
1908  * We currently support three overcommit policies, which are set via the
1909  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1910  *
1911  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1912  * Additional code 2002 Jul 20 by Robert Love.
1913  *
1914  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1915  *
1916  * Note this is a helper function intended to be used by LSMs which
1917  * wish to use this logic.
1918  */
1919 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1920 {
1921         long free, allowed, reserve;
1922
1923         vm_acct_memory(pages);
1924
1925         /*
1926          * Sometimes we want to use more memory than we have
1927          */
1928         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1929                 return 0;
1930
1931         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1932                 free = global_page_state(NR_FREE_PAGES);
1933                 free += global_page_state(NR_FILE_PAGES);
1934
1935                 /*
1936                  * shmem pages shouldn't be counted as free in this
1937                  * case, they can't be purged, only swapped out, and
1938                  * that won't affect the overall amount of available
1939                  * memory in the system.
1940                  */
1941                 free -= global_page_state(NR_SHMEM);
1942
1943                 free += get_nr_swap_pages();
1944
1945                 /*
1946                  * Any slabs which are created with the
1947                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1948                  * which are reclaimable, under pressure.  The dentry
1949                  * cache and most inode caches should fall into this
1950                  */
1951                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1952
1953                 /*
1954                  * Leave reserved pages. The pages are not for anonymous pages.
1955                  */
1956                 if (free <= totalreserve_pages)
1957                         goto error;
1958                 else
1959                         free -= totalreserve_pages;
1960
1961                 /*
1962                  * Reserve some for root
1963                  */
1964                 if (!cap_sys_admin)
1965                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1966
1967                 if (free > pages)
1968                         return 0;
1969
1970                 goto error;
1971         }
1972
1973         allowed = vm_commit_limit();
1974         /*
1975          * Reserve some 3% for root
1976          */
1977         if (!cap_sys_admin)
1978                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1979
1980         /*
1981          * Don't let a single process grow so big a user can't recover
1982          */
1983         if (mm) {
1984                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1985                 allowed -= min_t(long, mm->total_vm / 32, reserve);
1986         }
1987
1988         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1989                 return 0;
1990
1991 error:
1992         vm_unacct_memory(pages);
1993
1994         return -ENOMEM;
1995 }
1996
1997 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1998 {
1999         BUG();
2000         return 0;
2001 }
2002 EXPORT_SYMBOL(filemap_fault);
2003
2004 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2005 {
2006         BUG();
2007 }
2008 EXPORT_SYMBOL(filemap_map_pages);
2009
2010 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2011                 unsigned long addr, void *buf, int len, int write)
2012 {
2013         struct vm_area_struct *vma;
2014
2015         down_read(&mm->mmap_sem);
2016
2017         /* the access must start within one of the target process's mappings */
2018         vma = find_vma(mm, addr);
2019         if (vma) {
2020                 /* don't overrun this mapping */
2021                 if (addr + len >= vma->vm_end)
2022                         len = vma->vm_end - addr;
2023
2024                 /* only read or write mappings where it is permitted */
2025                 if (write && vma->vm_flags & VM_MAYWRITE)
2026                         copy_to_user_page(vma, NULL, addr,
2027                                          (void *) addr, buf, len);
2028                 else if (!write && vma->vm_flags & VM_MAYREAD)
2029                         copy_from_user_page(vma, NULL, addr,
2030                                             buf, (void *) addr, len);
2031                 else
2032                         len = 0;
2033         } else {
2034                 len = 0;
2035         }
2036
2037         up_read(&mm->mmap_sem);
2038
2039         return len;
2040 }
2041
2042 /**
2043  * @access_remote_vm - access another process' address space
2044  * @mm:         the mm_struct of the target address space
2045  * @addr:       start address to access
2046  * @buf:        source or destination buffer
2047  * @len:        number of bytes to transfer
2048  * @write:      whether the access is a write
2049  *
2050  * The caller must hold a reference on @mm.
2051  */
2052 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2053                 void *buf, int len, int write)
2054 {
2055         return __access_remote_vm(NULL, mm, addr, buf, len, write);
2056 }
2057
2058 /*
2059  * Access another process' address space.
2060  * - source/target buffer must be kernel space
2061  */
2062 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2063 {
2064         struct mm_struct *mm;
2065
2066         if (addr + len < addr)
2067                 return 0;
2068
2069         mm = get_task_mm(tsk);
2070         if (!mm)
2071                 return 0;
2072
2073         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2074
2075         mmput(mm);
2076         return len;
2077 }
2078
2079 /**
2080  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2081  * @inode: The inode to check
2082  * @size: The current filesize of the inode
2083  * @newsize: The proposed filesize of the inode
2084  *
2085  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2086  * make sure that that any outstanding VMAs aren't broken and then shrink the
2087  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2088  * automatically grant mappings that are too large.
2089  */
2090 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2091                                 size_t newsize)
2092 {
2093         struct vm_area_struct *vma;
2094         struct vm_region *region;
2095         pgoff_t low, high;
2096         size_t r_size, r_top;
2097
2098         low = newsize >> PAGE_SHIFT;
2099         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2100
2101         down_write(&nommu_region_sem);
2102         i_mmap_lock_read(inode->i_mapping);
2103
2104         /* search for VMAs that fall within the dead zone */
2105         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2106                 /* found one - only interested if it's shared out of the page
2107                  * cache */
2108                 if (vma->vm_flags & VM_SHARED) {
2109                         i_mmap_unlock_read(inode->i_mapping);
2110                         up_write(&nommu_region_sem);
2111                         return -ETXTBSY; /* not quite true, but near enough */
2112                 }
2113         }
2114
2115         /* reduce any regions that overlap the dead zone - if in existence,
2116          * these will be pointed to by VMAs that don't overlap the dead zone
2117          *
2118          * we don't check for any regions that start beyond the EOF as there
2119          * shouldn't be any
2120          */
2121         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2122                 if (!(vma->vm_flags & VM_SHARED))
2123                         continue;
2124
2125                 region = vma->vm_region;
2126                 r_size = region->vm_top - region->vm_start;
2127                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2128
2129                 if (r_top > newsize) {
2130                         region->vm_top -= r_top - newsize;
2131                         if (region->vm_end > region->vm_top)
2132                                 region->vm_end = region->vm_top;
2133                 }
2134         }
2135
2136         i_mmap_unlock_read(inode->i_mapping);
2137         up_write(&nommu_region_sem);
2138         return 0;
2139 }
2140
2141 /*
2142  * Initialise sysctl_user_reserve_kbytes.
2143  *
2144  * This is intended to prevent a user from starting a single memory hogging
2145  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2146  * mode.
2147  *
2148  * The default value is min(3% of free memory, 128MB)
2149  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2150  */
2151 static int __meminit init_user_reserve(void)
2152 {
2153         unsigned long free_kbytes;
2154
2155         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2156
2157         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2158         return 0;
2159 }
2160 module_init(init_user_reserve)
2161
2162 /*
2163  * Initialise sysctl_admin_reserve_kbytes.
2164  *
2165  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2166  * to log in and kill a memory hogging process.
2167  *
2168  * Systems with more than 256MB will reserve 8MB, enough to recover
2169  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2170  * only reserve 3% of free pages by default.
2171  */
2172 static int __meminit init_admin_reserve(void)
2173 {
2174         unsigned long free_kbytes;
2175
2176         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2177
2178         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2179         return 0;
2180 }
2181 module_init(init_admin_reserve)