writeback: add bg_threshold parameter to __bdi_update_bandwidth()
[firefly-linux-kernel-4.4.55.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE               max(HZ/5, 1)
43
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
48
49 #define RATELIMIT_CALC_SHIFT    10
50
51 /*
52  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53  * will look to see if it needs to force writeback or throttling.
54  */
55 static long ratelimit_pages = 32;
56
57 /*
58  * When balance_dirty_pages decides that the caller needs to perform some
59  * non-background writeback, this is how many pages it will attempt to write.
60  * It should be somewhat larger than dirtied pages to ensure that reasonably
61  * large amounts of I/O are submitted.
62  */
63 static inline long sync_writeback_pages(unsigned long dirtied)
64 {
65         if (dirtied < ratelimit_pages)
66                 dirtied = ratelimit_pages;
67
68         return dirtied + dirtied / 2;
69 }
70
71 /* The following parameters are exported via /proc/sys/vm */
72
73 /*
74  * Start background writeback (via writeback threads) at this percentage
75  */
76 int dirty_background_ratio = 10;
77
78 /*
79  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
80  * dirty_background_ratio * the amount of dirtyable memory
81  */
82 unsigned long dirty_background_bytes;
83
84 /*
85  * free highmem will not be subtracted from the total free memory
86  * for calculating free ratios if vm_highmem_is_dirtyable is true
87  */
88 int vm_highmem_is_dirtyable;
89
90 /*
91  * The generator of dirty data starts writeback at this percentage
92  */
93 int vm_dirty_ratio = 20;
94
95 /*
96  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
97  * vm_dirty_ratio * the amount of dirtyable memory
98  */
99 unsigned long vm_dirty_bytes;
100
101 /*
102  * The interval between `kupdate'-style writebacks
103  */
104 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
105
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112  * Flag that makes the machine dump writes/reads and block dirtyings.
113  */
114 int block_dump;
115
116 /*
117  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118  * a full sync is triggered after this time elapses without any disk activity.
119  */
120 int laptop_mode;
121
122 EXPORT_SYMBOL(laptop_mode);
123
124 /* End of sysctl-exported parameters */
125
126 unsigned long global_dirty_limit;
127
128 /*
129  * Scale the writeback cache size proportional to the relative writeout speeds.
130  *
131  * We do this by keeping a floating proportion between BDIs, based on page
132  * writeback completions [end_page_writeback()]. Those devices that write out
133  * pages fastest will get the larger share, while the slower will get a smaller
134  * share.
135  *
136  * We use page writeout completions because we are interested in getting rid of
137  * dirty pages. Having them written out is the primary goal.
138  *
139  * We introduce a concept of time, a period over which we measure these events,
140  * because demand can/will vary over time. The length of this period itself is
141  * measured in page writeback completions.
142  *
143  */
144 static struct prop_descriptor vm_completions;
145 static struct prop_descriptor vm_dirties;
146
147 /*
148  * couple the period to the dirty_ratio:
149  *
150  *   period/2 ~ roundup_pow_of_two(dirty limit)
151  */
152 static int calc_period_shift(void)
153 {
154         unsigned long dirty_total;
155
156         if (vm_dirty_bytes)
157                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
158         else
159                 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
160                                 100;
161         return 2 + ilog2(dirty_total - 1);
162 }
163
164 /*
165  * update the period when the dirty threshold changes.
166  */
167 static void update_completion_period(void)
168 {
169         int shift = calc_period_shift();
170         prop_change_shift(&vm_completions, shift);
171         prop_change_shift(&vm_dirties, shift);
172 }
173
174 int dirty_background_ratio_handler(struct ctl_table *table, int write,
175                 void __user *buffer, size_t *lenp,
176                 loff_t *ppos)
177 {
178         int ret;
179
180         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
181         if (ret == 0 && write)
182                 dirty_background_bytes = 0;
183         return ret;
184 }
185
186 int dirty_background_bytes_handler(struct ctl_table *table, int write,
187                 void __user *buffer, size_t *lenp,
188                 loff_t *ppos)
189 {
190         int ret;
191
192         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
193         if (ret == 0 && write)
194                 dirty_background_ratio = 0;
195         return ret;
196 }
197
198 int dirty_ratio_handler(struct ctl_table *table, int write,
199                 void __user *buffer, size_t *lenp,
200                 loff_t *ppos)
201 {
202         int old_ratio = vm_dirty_ratio;
203         int ret;
204
205         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
206         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
207                 update_completion_period();
208                 vm_dirty_bytes = 0;
209         }
210         return ret;
211 }
212
213
214 int dirty_bytes_handler(struct ctl_table *table, int write,
215                 void __user *buffer, size_t *lenp,
216                 loff_t *ppos)
217 {
218         unsigned long old_bytes = vm_dirty_bytes;
219         int ret;
220
221         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
222         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
223                 update_completion_period();
224                 vm_dirty_ratio = 0;
225         }
226         return ret;
227 }
228
229 /*
230  * Increment the BDI's writeout completion count and the global writeout
231  * completion count. Called from test_clear_page_writeback().
232  */
233 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
234 {
235         __inc_bdi_stat(bdi, BDI_WRITTEN);
236         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
237                               bdi->max_prop_frac);
238 }
239
240 void bdi_writeout_inc(struct backing_dev_info *bdi)
241 {
242         unsigned long flags;
243
244         local_irq_save(flags);
245         __bdi_writeout_inc(bdi);
246         local_irq_restore(flags);
247 }
248 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
249
250 void task_dirty_inc(struct task_struct *tsk)
251 {
252         prop_inc_single(&vm_dirties, &tsk->dirties);
253 }
254
255 /*
256  * Obtain an accurate fraction of the BDI's portion.
257  */
258 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
259                 long *numerator, long *denominator)
260 {
261         prop_fraction_percpu(&vm_completions, &bdi->completions,
262                                 numerator, denominator);
263 }
264
265 static inline void task_dirties_fraction(struct task_struct *tsk,
266                 long *numerator, long *denominator)
267 {
268         prop_fraction_single(&vm_dirties, &tsk->dirties,
269                                 numerator, denominator);
270 }
271
272 /*
273  * task_dirty_limit - scale down dirty throttling threshold for one task
274  *
275  * task specific dirty limit:
276  *
277  *   dirty -= (dirty/8) * p_{t}
278  *
279  * To protect light/slow dirtying tasks from heavier/fast ones, we start
280  * throttling individual tasks before reaching the bdi dirty limit.
281  * Relatively low thresholds will be allocated to heavy dirtiers. So when
282  * dirty pages grow large, heavy dirtiers will be throttled first, which will
283  * effectively curb the growth of dirty pages. Light dirtiers with high enough
284  * dirty threshold may never get throttled.
285  */
286 #define TASK_LIMIT_FRACTION 8
287 static unsigned long task_dirty_limit(struct task_struct *tsk,
288                                        unsigned long bdi_dirty)
289 {
290         long numerator, denominator;
291         unsigned long dirty = bdi_dirty;
292         u64 inv = dirty / TASK_LIMIT_FRACTION;
293
294         task_dirties_fraction(tsk, &numerator, &denominator);
295         inv *= numerator;
296         do_div(inv, denominator);
297
298         dirty -= inv;
299
300         return max(dirty, bdi_dirty/2);
301 }
302
303 /* Minimum limit for any task */
304 static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
305 {
306         return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
307 }
308
309 /*
310  *
311  */
312 static unsigned int bdi_min_ratio;
313
314 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
315 {
316         int ret = 0;
317
318         spin_lock_bh(&bdi_lock);
319         if (min_ratio > bdi->max_ratio) {
320                 ret = -EINVAL;
321         } else {
322                 min_ratio -= bdi->min_ratio;
323                 if (bdi_min_ratio + min_ratio < 100) {
324                         bdi_min_ratio += min_ratio;
325                         bdi->min_ratio += min_ratio;
326                 } else {
327                         ret = -EINVAL;
328                 }
329         }
330         spin_unlock_bh(&bdi_lock);
331
332         return ret;
333 }
334
335 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
336 {
337         int ret = 0;
338
339         if (max_ratio > 100)
340                 return -EINVAL;
341
342         spin_lock_bh(&bdi_lock);
343         if (bdi->min_ratio > max_ratio) {
344                 ret = -EINVAL;
345         } else {
346                 bdi->max_ratio = max_ratio;
347                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
348         }
349         spin_unlock_bh(&bdi_lock);
350
351         return ret;
352 }
353 EXPORT_SYMBOL(bdi_set_max_ratio);
354
355 /*
356  * Work out the current dirty-memory clamping and background writeout
357  * thresholds.
358  *
359  * The main aim here is to lower them aggressively if there is a lot of mapped
360  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
361  * pages.  It is better to clamp down on writers than to start swapping, and
362  * performing lots of scanning.
363  *
364  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
365  *
366  * We don't permit the clamping level to fall below 5% - that is getting rather
367  * excessive.
368  *
369  * We make sure that the background writeout level is below the adjusted
370  * clamping level.
371  */
372
373 static unsigned long highmem_dirtyable_memory(unsigned long total)
374 {
375 #ifdef CONFIG_HIGHMEM
376         int node;
377         unsigned long x = 0;
378
379         for_each_node_state(node, N_HIGH_MEMORY) {
380                 struct zone *z =
381                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
382
383                 x += zone_page_state(z, NR_FREE_PAGES) +
384                      zone_reclaimable_pages(z);
385         }
386         /*
387          * Make sure that the number of highmem pages is never larger
388          * than the number of the total dirtyable memory. This can only
389          * occur in very strange VM situations but we want to make sure
390          * that this does not occur.
391          */
392         return min(x, total);
393 #else
394         return 0;
395 #endif
396 }
397
398 /**
399  * determine_dirtyable_memory - amount of memory that may be used
400  *
401  * Returns the numebr of pages that can currently be freed and used
402  * by the kernel for direct mappings.
403  */
404 unsigned long determine_dirtyable_memory(void)
405 {
406         unsigned long x;
407
408         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
409
410         if (!vm_highmem_is_dirtyable)
411                 x -= highmem_dirtyable_memory(x);
412
413         return x + 1;   /* Ensure that we never return 0 */
414 }
415
416 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
417                                            unsigned long bg_thresh)
418 {
419         return (thresh + bg_thresh) / 2;
420 }
421
422 static unsigned long hard_dirty_limit(unsigned long thresh)
423 {
424         return max(thresh, global_dirty_limit);
425 }
426
427 /*
428  * global_dirty_limits - background-writeback and dirty-throttling thresholds
429  *
430  * Calculate the dirty thresholds based on sysctl parameters
431  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
432  * - vm.dirty_ratio             or  vm.dirty_bytes
433  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
434  * real-time tasks.
435  */
436 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
437 {
438         unsigned long background;
439         unsigned long dirty;
440         unsigned long uninitialized_var(available_memory);
441         struct task_struct *tsk;
442
443         if (!vm_dirty_bytes || !dirty_background_bytes)
444                 available_memory = determine_dirtyable_memory();
445
446         if (vm_dirty_bytes)
447                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
448         else
449                 dirty = (vm_dirty_ratio * available_memory) / 100;
450
451         if (dirty_background_bytes)
452                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
453         else
454                 background = (dirty_background_ratio * available_memory) / 100;
455
456         if (background >= dirty)
457                 background = dirty / 2;
458         tsk = current;
459         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
460                 background += background / 4;
461                 dirty += dirty / 4;
462         }
463         *pbackground = background;
464         *pdirty = dirty;
465         trace_global_dirty_state(background, dirty);
466 }
467
468 /**
469  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
470  * @bdi: the backing_dev_info to query
471  * @dirty: global dirty limit in pages
472  *
473  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
474  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
475  * And the "limit" in the name is not seriously taken as hard limit in
476  * balance_dirty_pages().
477  *
478  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
479  * - starving fast devices
480  * - piling up dirty pages (that will take long time to sync) on slow devices
481  *
482  * The bdi's share of dirty limit will be adapting to its throughput and
483  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
484  */
485 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
486 {
487         u64 bdi_dirty;
488         long numerator, denominator;
489
490         /*
491          * Calculate this BDI's share of the dirty ratio.
492          */
493         bdi_writeout_fraction(bdi, &numerator, &denominator);
494
495         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
496         bdi_dirty *= numerator;
497         do_div(bdi_dirty, denominator);
498
499         bdi_dirty += (dirty * bdi->min_ratio) / 100;
500         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
501                 bdi_dirty = dirty * bdi->max_ratio / 100;
502
503         return bdi_dirty;
504 }
505
506 /*
507  * Dirty position control.
508  *
509  * (o) global/bdi setpoints
510  *
511  * We want the dirty pages be balanced around the global/bdi setpoints.
512  * When the number of dirty pages is higher/lower than the setpoint, the
513  * dirty position control ratio (and hence task dirty ratelimit) will be
514  * decreased/increased to bring the dirty pages back to the setpoint.
515  *
516  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
517  *
518  *     if (dirty < setpoint) scale up   pos_ratio
519  *     if (dirty > setpoint) scale down pos_ratio
520  *
521  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
522  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
523  *
524  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
525  *
526  * (o) global control line
527  *
528  *     ^ pos_ratio
529  *     |
530  *     |            |<===== global dirty control scope ======>|
531  * 2.0 .............*
532  *     |            .*
533  *     |            . *
534  *     |            .   *
535  *     |            .     *
536  *     |            .        *
537  *     |            .            *
538  * 1.0 ................................*
539  *     |            .                  .     *
540  *     |            .                  .          *
541  *     |            .                  .              *
542  *     |            .                  .                 *
543  *     |            .                  .                    *
544  *   0 +------------.------------------.----------------------*------------->
545  *           freerun^          setpoint^                 limit^   dirty pages
546  *
547  * (o) bdi control line
548  *
549  *     ^ pos_ratio
550  *     |
551  *     |            *
552  *     |              *
553  *     |                *
554  *     |                  *
555  *     |                    * |<=========== span ============>|
556  * 1.0 .......................*
557  *     |                      . *
558  *     |                      .   *
559  *     |                      .     *
560  *     |                      .       *
561  *     |                      .         *
562  *     |                      .           *
563  *     |                      .             *
564  *     |                      .               *
565  *     |                      .                 *
566  *     |                      .                   *
567  *     |                      .                     *
568  * 1/4 ...............................................* * * * * * * * * * * *
569  *     |                      .                         .
570  *     |                      .                           .
571  *     |                      .                             .
572  *   0 +----------------------.-------------------------------.------------->
573  *                bdi_setpoint^                    x_intercept^
574  *
575  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
576  * be smoothly throttled down to normal if it starts high in situations like
577  * - start writing to a slow SD card and a fast disk at the same time. The SD
578  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
579  * - the bdi dirty thresh drops quickly due to change of JBOD workload
580  */
581 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
582                                         unsigned long thresh,
583                                         unsigned long bg_thresh,
584                                         unsigned long dirty,
585                                         unsigned long bdi_thresh,
586                                         unsigned long bdi_dirty)
587 {
588         unsigned long write_bw = bdi->avg_write_bandwidth;
589         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
590         unsigned long limit = hard_dirty_limit(thresh);
591         unsigned long x_intercept;
592         unsigned long setpoint;         /* dirty pages' target balance point */
593         unsigned long bdi_setpoint;
594         unsigned long span;
595         long long pos_ratio;            /* for scaling up/down the rate limit */
596         long x;
597
598         if (unlikely(dirty >= limit))
599                 return 0;
600
601         /*
602          * global setpoint
603          *
604          *                           setpoint - dirty 3
605          *        f(dirty) := 1.0 + (----------------)
606          *                           limit - setpoint
607          *
608          * it's a 3rd order polynomial that subjects to
609          *
610          * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
611          * (2) f(setpoint) = 1.0 => the balance point
612          * (3) f(limit)    = 0   => the hard limit
613          * (4) df/dx      <= 0   => negative feedback control
614          * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
615          *     => fast response on large errors; small oscillation near setpoint
616          */
617         setpoint = (freerun + limit) / 2;
618         x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
619                     limit - setpoint + 1);
620         pos_ratio = x;
621         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
622         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
623         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
624
625         /*
626          * We have computed basic pos_ratio above based on global situation. If
627          * the bdi is over/under its share of dirty pages, we want to scale
628          * pos_ratio further down/up. That is done by the following mechanism.
629          */
630
631         /*
632          * bdi setpoint
633          *
634          *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
635          *
636          *                        x_intercept - bdi_dirty
637          *                     := --------------------------
638          *                        x_intercept - bdi_setpoint
639          *
640          * The main bdi control line is a linear function that subjects to
641          *
642          * (1) f(bdi_setpoint) = 1.0
643          * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
644          *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
645          *
646          * For single bdi case, the dirty pages are observed to fluctuate
647          * regularly within range
648          *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
649          * for various filesystems, where (2) can yield in a reasonable 12.5%
650          * fluctuation range for pos_ratio.
651          *
652          * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
653          * own size, so move the slope over accordingly and choose a slope that
654          * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
655          */
656         if (unlikely(bdi_thresh > thresh))
657                 bdi_thresh = thresh;
658         /*
659          * scale global setpoint to bdi's:
660          *      bdi_setpoint = setpoint * bdi_thresh / thresh
661          */
662         x = div_u64((u64)bdi_thresh << 16, thresh + 1);
663         bdi_setpoint = setpoint * (u64)x >> 16;
664         /*
665          * Use span=(8*write_bw) in single bdi case as indicated by
666          * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
667          *
668          *        bdi_thresh                    thresh - bdi_thresh
669          * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
670          *          thresh                            thresh
671          */
672         span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
673         x_intercept = bdi_setpoint + span;
674
675         if (bdi_dirty < x_intercept - span / 4) {
676                 pos_ratio *= x_intercept - bdi_dirty;
677                 do_div(pos_ratio, x_intercept - bdi_setpoint + 1);
678         } else
679                 pos_ratio /= 4;
680
681         return pos_ratio;
682 }
683
684 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
685                                        unsigned long elapsed,
686                                        unsigned long written)
687 {
688         const unsigned long period = roundup_pow_of_two(3 * HZ);
689         unsigned long avg = bdi->avg_write_bandwidth;
690         unsigned long old = bdi->write_bandwidth;
691         u64 bw;
692
693         /*
694          * bw = written * HZ / elapsed
695          *
696          *                   bw * elapsed + write_bandwidth * (period - elapsed)
697          * write_bandwidth = ---------------------------------------------------
698          *                                          period
699          */
700         bw = written - bdi->written_stamp;
701         bw *= HZ;
702         if (unlikely(elapsed > period)) {
703                 do_div(bw, elapsed);
704                 avg = bw;
705                 goto out;
706         }
707         bw += (u64)bdi->write_bandwidth * (period - elapsed);
708         bw >>= ilog2(period);
709
710         /*
711          * one more level of smoothing, for filtering out sudden spikes
712          */
713         if (avg > old && old >= (unsigned long)bw)
714                 avg -= (avg - old) >> 3;
715
716         if (avg < old && old <= (unsigned long)bw)
717                 avg += (old - avg) >> 3;
718
719 out:
720         bdi->write_bandwidth = bw;
721         bdi->avg_write_bandwidth = avg;
722 }
723
724 /*
725  * The global dirtyable memory and dirty threshold could be suddenly knocked
726  * down by a large amount (eg. on the startup of KVM in a swapless system).
727  * This may throw the system into deep dirty exceeded state and throttle
728  * heavy/light dirtiers alike. To retain good responsiveness, maintain
729  * global_dirty_limit for tracking slowly down to the knocked down dirty
730  * threshold.
731  */
732 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
733 {
734         unsigned long limit = global_dirty_limit;
735
736         /*
737          * Follow up in one step.
738          */
739         if (limit < thresh) {
740                 limit = thresh;
741                 goto update;
742         }
743
744         /*
745          * Follow down slowly. Use the higher one as the target, because thresh
746          * may drop below dirty. This is exactly the reason to introduce
747          * global_dirty_limit which is guaranteed to lie above the dirty pages.
748          */
749         thresh = max(thresh, dirty);
750         if (limit > thresh) {
751                 limit -= (limit - thresh) >> 5;
752                 goto update;
753         }
754         return;
755 update:
756         global_dirty_limit = limit;
757 }
758
759 static void global_update_bandwidth(unsigned long thresh,
760                                     unsigned long dirty,
761                                     unsigned long now)
762 {
763         static DEFINE_SPINLOCK(dirty_lock);
764         static unsigned long update_time;
765
766         /*
767          * check locklessly first to optimize away locking for the most time
768          */
769         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
770                 return;
771
772         spin_lock(&dirty_lock);
773         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
774                 update_dirty_limit(thresh, dirty);
775                 update_time = now;
776         }
777         spin_unlock(&dirty_lock);
778 }
779
780 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
781                             unsigned long thresh,
782                             unsigned long bg_thresh,
783                             unsigned long dirty,
784                             unsigned long bdi_thresh,
785                             unsigned long bdi_dirty,
786                             unsigned long start_time)
787 {
788         unsigned long now = jiffies;
789         unsigned long elapsed = now - bdi->bw_time_stamp;
790         unsigned long written;
791
792         /*
793          * rate-limit, only update once every 200ms.
794          */
795         if (elapsed < BANDWIDTH_INTERVAL)
796                 return;
797
798         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
799
800         /*
801          * Skip quiet periods when disk bandwidth is under-utilized.
802          * (at least 1s idle time between two flusher runs)
803          */
804         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
805                 goto snapshot;
806
807         if (thresh)
808                 global_update_bandwidth(thresh, dirty, now);
809
810         bdi_update_write_bandwidth(bdi, elapsed, written);
811
812 snapshot:
813         bdi->written_stamp = written;
814         bdi->bw_time_stamp = now;
815 }
816
817 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
818                                  unsigned long thresh,
819                                  unsigned long bg_thresh,
820                                  unsigned long dirty,
821                                  unsigned long bdi_thresh,
822                                  unsigned long bdi_dirty,
823                                  unsigned long start_time)
824 {
825         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
826                 return;
827         spin_lock(&bdi->wb.list_lock);
828         __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
829                                bdi_thresh, bdi_dirty, start_time);
830         spin_unlock(&bdi->wb.list_lock);
831 }
832
833 /*
834  * balance_dirty_pages() must be called by processes which are generating dirty
835  * data.  It looks at the number of dirty pages in the machine and will force
836  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
837  * If we're over `background_thresh' then the writeback threads are woken to
838  * perform some writeout.
839  */
840 static void balance_dirty_pages(struct address_space *mapping,
841                                 unsigned long write_chunk)
842 {
843         unsigned long nr_reclaimable, bdi_nr_reclaimable;
844         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
845         unsigned long bdi_dirty;
846         unsigned long freerun;
847         unsigned long background_thresh;
848         unsigned long dirty_thresh;
849         unsigned long bdi_thresh;
850         unsigned long task_bdi_thresh;
851         unsigned long min_task_bdi_thresh;
852         unsigned long pages_written = 0;
853         unsigned long pause = 1;
854         bool dirty_exceeded = false;
855         bool clear_dirty_exceeded = true;
856         struct backing_dev_info *bdi = mapping->backing_dev_info;
857         unsigned long start_time = jiffies;
858
859         for (;;) {
860                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
861                                         global_page_state(NR_UNSTABLE_NFS);
862                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
863
864                 global_dirty_limits(&background_thresh, &dirty_thresh);
865
866                 /*
867                  * Throttle it only when the background writeback cannot
868                  * catch-up. This avoids (excessively) small writeouts
869                  * when the bdi limits are ramping up.
870                  */
871                 freerun = dirty_freerun_ceiling(dirty_thresh,
872                                                 background_thresh);
873                 if (nr_dirty <= freerun)
874                         break;
875
876                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
877                 min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
878                 task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
879
880                 /*
881                  * In order to avoid the stacked BDI deadlock we need
882                  * to ensure we accurately count the 'dirty' pages when
883                  * the threshold is low.
884                  *
885                  * Otherwise it would be possible to get thresh+n pages
886                  * reported dirty, even though there are thresh-m pages
887                  * actually dirty; with m+n sitting in the percpu
888                  * deltas.
889                  */
890                 if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
891                         bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
892                         bdi_dirty = bdi_nr_reclaimable +
893                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
894                 } else {
895                         bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
896                         bdi_dirty = bdi_nr_reclaimable +
897                                     bdi_stat(bdi, BDI_WRITEBACK);
898                 }
899
900                 /*
901                  * The bdi thresh is somehow "soft" limit derived from the
902                  * global "hard" limit. The former helps to prevent heavy IO
903                  * bdi or process from holding back light ones; The latter is
904                  * the last resort safeguard.
905                  */
906                 dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
907                                   (nr_dirty > dirty_thresh);
908                 clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
909                                         (nr_dirty <= dirty_thresh);
910
911                 if (!dirty_exceeded)
912                         break;
913
914                 if (!bdi->dirty_exceeded)
915                         bdi->dirty_exceeded = 1;
916
917                 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
918                                      nr_dirty, bdi_thresh, bdi_dirty,
919                                      start_time);
920
921                 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
922                  * Unstable writes are a feature of certain networked
923                  * filesystems (i.e. NFS) in which data may have been
924                  * written to the server's write cache, but has not yet
925                  * been flushed to permanent storage.
926                  * Only move pages to writeback if this bdi is over its
927                  * threshold otherwise wait until the disk writes catch
928                  * up.
929                  */
930                 trace_balance_dirty_start(bdi);
931                 if (bdi_nr_reclaimable > task_bdi_thresh) {
932                         pages_written += writeback_inodes_wb(&bdi->wb,
933                                                              write_chunk);
934                         trace_balance_dirty_written(bdi, pages_written);
935                         if (pages_written >= write_chunk)
936                                 break;          /* We've done our duty */
937                 }
938                 __set_current_state(TASK_UNINTERRUPTIBLE);
939                 io_schedule_timeout(pause);
940                 trace_balance_dirty_wait(bdi);
941
942                 dirty_thresh = hard_dirty_limit(dirty_thresh);
943                 /*
944                  * max-pause area. If dirty exceeded but still within this
945                  * area, no need to sleep for more than 200ms: (a) 8 pages per
946                  * 200ms is typically more than enough to curb heavy dirtiers;
947                  * (b) the pause time limit makes the dirtiers more responsive.
948                  */
949                 if (nr_dirty < dirty_thresh &&
950                     bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
951                     time_after(jiffies, start_time + MAX_PAUSE))
952                         break;
953
954                 /*
955                  * Increase the delay for each loop, up to our previous
956                  * default of taking a 100ms nap.
957                  */
958                 pause <<= 1;
959                 if (pause > HZ / 10)
960                         pause = HZ / 10;
961         }
962
963         /* Clear dirty_exceeded flag only when no task can exceed the limit */
964         if (clear_dirty_exceeded && bdi->dirty_exceeded)
965                 bdi->dirty_exceeded = 0;
966
967         if (writeback_in_progress(bdi))
968                 return;
969
970         /*
971          * In laptop mode, we wait until hitting the higher threshold before
972          * starting background writeout, and then write out all the way down
973          * to the lower threshold.  So slow writers cause minimal disk activity.
974          *
975          * In normal mode, we start background writeout at the lower
976          * background_thresh, to keep the amount of dirty memory low.
977          */
978         if ((laptop_mode && pages_written) ||
979             (!laptop_mode && (nr_reclaimable > background_thresh)))
980                 bdi_start_background_writeback(bdi);
981 }
982
983 void set_page_dirty_balance(struct page *page, int page_mkwrite)
984 {
985         if (set_page_dirty(page) || page_mkwrite) {
986                 struct address_space *mapping = page_mapping(page);
987
988                 if (mapping)
989                         balance_dirty_pages_ratelimited(mapping);
990         }
991 }
992
993 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
994
995 /**
996  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
997  * @mapping: address_space which was dirtied
998  * @nr_pages_dirtied: number of pages which the caller has just dirtied
999  *
1000  * Processes which are dirtying memory should call in here once for each page
1001  * which was newly dirtied.  The function will periodically check the system's
1002  * dirty state and will initiate writeback if needed.
1003  *
1004  * On really big machines, get_writeback_state is expensive, so try to avoid
1005  * calling it too often (ratelimiting).  But once we're over the dirty memory
1006  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1007  * from overshooting the limit by (ratelimit_pages) each.
1008  */
1009 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1010                                         unsigned long nr_pages_dirtied)
1011 {
1012         struct backing_dev_info *bdi = mapping->backing_dev_info;
1013         unsigned long ratelimit;
1014         unsigned long *p;
1015
1016         if (!bdi_cap_account_dirty(bdi))
1017                 return;
1018
1019         ratelimit = ratelimit_pages;
1020         if (mapping->backing_dev_info->dirty_exceeded)
1021                 ratelimit = 8;
1022
1023         /*
1024          * Check the rate limiting. Also, we do not want to throttle real-time
1025          * tasks in balance_dirty_pages(). Period.
1026          */
1027         preempt_disable();
1028         p =  &__get_cpu_var(bdp_ratelimits);
1029         *p += nr_pages_dirtied;
1030         if (unlikely(*p >= ratelimit)) {
1031                 ratelimit = sync_writeback_pages(*p);
1032                 *p = 0;
1033                 preempt_enable();
1034                 balance_dirty_pages(mapping, ratelimit);
1035                 return;
1036         }
1037         preempt_enable();
1038 }
1039 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1040
1041 void throttle_vm_writeout(gfp_t gfp_mask)
1042 {
1043         unsigned long background_thresh;
1044         unsigned long dirty_thresh;
1045
1046         for ( ; ; ) {
1047                 global_dirty_limits(&background_thresh, &dirty_thresh);
1048
1049                 /*
1050                  * Boost the allowable dirty threshold a bit for page
1051                  * allocators so they don't get DoS'ed by heavy writers
1052                  */
1053                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1054
1055                 if (global_page_state(NR_UNSTABLE_NFS) +
1056                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1057                                 break;
1058                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1059
1060                 /*
1061                  * The caller might hold locks which can prevent IO completion
1062                  * or progress in the filesystem.  So we cannot just sit here
1063                  * waiting for IO to complete.
1064                  */
1065                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1066                         break;
1067         }
1068 }
1069
1070 /*
1071  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1072  */
1073 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1074         void __user *buffer, size_t *length, loff_t *ppos)
1075 {
1076         proc_dointvec(table, write, buffer, length, ppos);
1077         bdi_arm_supers_timer();
1078         return 0;
1079 }
1080
1081 #ifdef CONFIG_BLOCK
1082 void laptop_mode_timer_fn(unsigned long data)
1083 {
1084         struct request_queue *q = (struct request_queue *)data;
1085         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1086                 global_page_state(NR_UNSTABLE_NFS);
1087
1088         /*
1089          * We want to write everything out, not just down to the dirty
1090          * threshold
1091          */
1092         if (bdi_has_dirty_io(&q->backing_dev_info))
1093                 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1094 }
1095
1096 /*
1097  * We've spun up the disk and we're in laptop mode: schedule writeback
1098  * of all dirty data a few seconds from now.  If the flush is already scheduled
1099  * then push it back - the user is still using the disk.
1100  */
1101 void laptop_io_completion(struct backing_dev_info *info)
1102 {
1103         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1104 }
1105
1106 /*
1107  * We're in laptop mode and we've just synced. The sync's writes will have
1108  * caused another writeback to be scheduled by laptop_io_completion.
1109  * Nothing needs to be written back anymore, so we unschedule the writeback.
1110  */
1111 void laptop_sync_completion(void)
1112 {
1113         struct backing_dev_info *bdi;
1114
1115         rcu_read_lock();
1116
1117         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1118                 del_timer(&bdi->laptop_mode_wb_timer);
1119
1120         rcu_read_unlock();
1121 }
1122 #endif
1123
1124 /*
1125  * If ratelimit_pages is too high then we can get into dirty-data overload
1126  * if a large number of processes all perform writes at the same time.
1127  * If it is too low then SMP machines will call the (expensive)
1128  * get_writeback_state too often.
1129  *
1130  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1131  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1132  * thresholds before writeback cuts in.
1133  *
1134  * But the limit should not be set too high.  Because it also controls the
1135  * amount of memory which the balance_dirty_pages() caller has to write back.
1136  * If this is too large then the caller will block on the IO queue all the
1137  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
1138  * will write six megabyte chunks, max.
1139  */
1140
1141 void writeback_set_ratelimit(void)
1142 {
1143         ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1144         if (ratelimit_pages < 16)
1145                 ratelimit_pages = 16;
1146         if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
1147                 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
1148 }
1149
1150 static int __cpuinit
1151 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1152 {
1153         writeback_set_ratelimit();
1154         return NOTIFY_DONE;
1155 }
1156
1157 static struct notifier_block __cpuinitdata ratelimit_nb = {
1158         .notifier_call  = ratelimit_handler,
1159         .next           = NULL,
1160 };
1161
1162 /*
1163  * Called early on to tune the page writeback dirty limits.
1164  *
1165  * We used to scale dirty pages according to how total memory
1166  * related to pages that could be allocated for buffers (by
1167  * comparing nr_free_buffer_pages() to vm_total_pages.
1168  *
1169  * However, that was when we used "dirty_ratio" to scale with
1170  * all memory, and we don't do that any more. "dirty_ratio"
1171  * is now applied to total non-HIGHPAGE memory (by subtracting
1172  * totalhigh_pages from vm_total_pages), and as such we can't
1173  * get into the old insane situation any more where we had
1174  * large amounts of dirty pages compared to a small amount of
1175  * non-HIGHMEM memory.
1176  *
1177  * But we might still want to scale the dirty_ratio by how
1178  * much memory the box has..
1179  */
1180 void __init page_writeback_init(void)
1181 {
1182         int shift;
1183
1184         writeback_set_ratelimit();
1185         register_cpu_notifier(&ratelimit_nb);
1186
1187         shift = calc_period_shift();
1188         prop_descriptor_init(&vm_completions, shift);
1189         prop_descriptor_init(&vm_dirties, shift);
1190 }
1191
1192 /**
1193  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1194  * @mapping: address space structure to write
1195  * @start: starting page index
1196  * @end: ending page index (inclusive)
1197  *
1198  * This function scans the page range from @start to @end (inclusive) and tags
1199  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1200  * that write_cache_pages (or whoever calls this function) will then use
1201  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1202  * used to avoid livelocking of writeback by a process steadily creating new
1203  * dirty pages in the file (thus it is important for this function to be quick
1204  * so that it can tag pages faster than a dirtying process can create them).
1205  */
1206 /*
1207  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1208  */
1209 void tag_pages_for_writeback(struct address_space *mapping,
1210                              pgoff_t start, pgoff_t end)
1211 {
1212 #define WRITEBACK_TAG_BATCH 4096
1213         unsigned long tagged;
1214
1215         do {
1216                 spin_lock_irq(&mapping->tree_lock);
1217                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1218                                 &start, end, WRITEBACK_TAG_BATCH,
1219                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1220                 spin_unlock_irq(&mapping->tree_lock);
1221                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1222                 cond_resched();
1223                 /* We check 'start' to handle wrapping when end == ~0UL */
1224         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1225 }
1226 EXPORT_SYMBOL(tag_pages_for_writeback);
1227
1228 /**
1229  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1230  * @mapping: address space structure to write
1231  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1232  * @writepage: function called for each page
1233  * @data: data passed to writepage function
1234  *
1235  * If a page is already under I/O, write_cache_pages() skips it, even
1236  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1237  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1238  * and msync() need to guarantee that all the data which was dirty at the time
1239  * the call was made get new I/O started against them.  If wbc->sync_mode is
1240  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1241  * existing IO to complete.
1242  *
1243  * To avoid livelocks (when other process dirties new pages), we first tag
1244  * pages which should be written back with TOWRITE tag and only then start
1245  * writing them. For data-integrity sync we have to be careful so that we do
1246  * not miss some pages (e.g., because some other process has cleared TOWRITE
1247  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1248  * by the process clearing the DIRTY tag (and submitting the page for IO).
1249  */
1250 int write_cache_pages(struct address_space *mapping,
1251                       struct writeback_control *wbc, writepage_t writepage,
1252                       void *data)
1253 {
1254         int ret = 0;
1255         int done = 0;
1256         struct pagevec pvec;
1257         int nr_pages;
1258         pgoff_t uninitialized_var(writeback_index);
1259         pgoff_t index;
1260         pgoff_t end;            /* Inclusive */
1261         pgoff_t done_index;
1262         int cycled;
1263         int range_whole = 0;
1264         int tag;
1265
1266         pagevec_init(&pvec, 0);
1267         if (wbc->range_cyclic) {
1268                 writeback_index = mapping->writeback_index; /* prev offset */
1269                 index = writeback_index;
1270                 if (index == 0)
1271                         cycled = 1;
1272                 else
1273                         cycled = 0;
1274                 end = -1;
1275         } else {
1276                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1277                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1278                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1279                         range_whole = 1;
1280                 cycled = 1; /* ignore range_cyclic tests */
1281         }
1282         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1283                 tag = PAGECACHE_TAG_TOWRITE;
1284         else
1285                 tag = PAGECACHE_TAG_DIRTY;
1286 retry:
1287         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1288                 tag_pages_for_writeback(mapping, index, end);
1289         done_index = index;
1290         while (!done && (index <= end)) {
1291                 int i;
1292
1293                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1294                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1295                 if (nr_pages == 0)
1296                         break;
1297
1298                 for (i = 0; i < nr_pages; i++) {
1299                         struct page *page = pvec.pages[i];
1300
1301                         /*
1302                          * At this point, the page may be truncated or
1303                          * invalidated (changing page->mapping to NULL), or
1304                          * even swizzled back from swapper_space to tmpfs file
1305                          * mapping. However, page->index will not change
1306                          * because we have a reference on the page.
1307                          */
1308                         if (page->index > end) {
1309                                 /*
1310                                  * can't be range_cyclic (1st pass) because
1311                                  * end == -1 in that case.
1312                                  */
1313                                 done = 1;
1314                                 break;
1315                         }
1316
1317                         done_index = page->index;
1318
1319                         lock_page(page);
1320
1321                         /*
1322                          * Page truncated or invalidated. We can freely skip it
1323                          * then, even for data integrity operations: the page
1324                          * has disappeared concurrently, so there could be no
1325                          * real expectation of this data interity operation
1326                          * even if there is now a new, dirty page at the same
1327                          * pagecache address.
1328                          */
1329                         if (unlikely(page->mapping != mapping)) {
1330 continue_unlock:
1331                                 unlock_page(page);
1332                                 continue;
1333                         }
1334
1335                         if (!PageDirty(page)) {
1336                                 /* someone wrote it for us */
1337                                 goto continue_unlock;
1338                         }
1339
1340                         if (PageWriteback(page)) {
1341                                 if (wbc->sync_mode != WB_SYNC_NONE)
1342                                         wait_on_page_writeback(page);
1343                                 else
1344                                         goto continue_unlock;
1345                         }
1346
1347                         BUG_ON(PageWriteback(page));
1348                         if (!clear_page_dirty_for_io(page))
1349                                 goto continue_unlock;
1350
1351                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1352                         ret = (*writepage)(page, wbc, data);
1353                         if (unlikely(ret)) {
1354                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1355                                         unlock_page(page);
1356                                         ret = 0;
1357                                 } else {
1358                                         /*
1359                                          * done_index is set past this page,
1360                                          * so media errors will not choke
1361                                          * background writeout for the entire
1362                                          * file. This has consequences for
1363                                          * range_cyclic semantics (ie. it may
1364                                          * not be suitable for data integrity
1365                                          * writeout).
1366                                          */
1367                                         done_index = page->index + 1;
1368                                         done = 1;
1369                                         break;
1370                                 }
1371                         }
1372
1373                         /*
1374                          * We stop writing back only if we are not doing
1375                          * integrity sync. In case of integrity sync we have to
1376                          * keep going until we have written all the pages
1377                          * we tagged for writeback prior to entering this loop.
1378                          */
1379                         if (--wbc->nr_to_write <= 0 &&
1380                             wbc->sync_mode == WB_SYNC_NONE) {
1381                                 done = 1;
1382                                 break;
1383                         }
1384                 }
1385                 pagevec_release(&pvec);
1386                 cond_resched();
1387         }
1388         if (!cycled && !done) {
1389                 /*
1390                  * range_cyclic:
1391                  * We hit the last page and there is more work to be done: wrap
1392                  * back to the start of the file
1393                  */
1394                 cycled = 1;
1395                 index = 0;
1396                 end = writeback_index - 1;
1397                 goto retry;
1398         }
1399         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1400                 mapping->writeback_index = done_index;
1401
1402         return ret;
1403 }
1404 EXPORT_SYMBOL(write_cache_pages);
1405
1406 /*
1407  * Function used by generic_writepages to call the real writepage
1408  * function and set the mapping flags on error
1409  */
1410 static int __writepage(struct page *page, struct writeback_control *wbc,
1411                        void *data)
1412 {
1413         struct address_space *mapping = data;
1414         int ret = mapping->a_ops->writepage(page, wbc);
1415         mapping_set_error(mapping, ret);
1416         return ret;
1417 }
1418
1419 /**
1420  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1421  * @mapping: address space structure to write
1422  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1423  *
1424  * This is a library function, which implements the writepages()
1425  * address_space_operation.
1426  */
1427 int generic_writepages(struct address_space *mapping,
1428                        struct writeback_control *wbc)
1429 {
1430         struct blk_plug plug;
1431         int ret;
1432
1433         /* deal with chardevs and other special file */
1434         if (!mapping->a_ops->writepage)
1435                 return 0;
1436
1437         blk_start_plug(&plug);
1438         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1439         blk_finish_plug(&plug);
1440         return ret;
1441 }
1442
1443 EXPORT_SYMBOL(generic_writepages);
1444
1445 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1446 {
1447         int ret;
1448
1449         if (wbc->nr_to_write <= 0)
1450                 return 0;
1451         if (mapping->a_ops->writepages)
1452                 ret = mapping->a_ops->writepages(mapping, wbc);
1453         else
1454                 ret = generic_writepages(mapping, wbc);
1455         return ret;
1456 }
1457
1458 /**
1459  * write_one_page - write out a single page and optionally wait on I/O
1460  * @page: the page to write
1461  * @wait: if true, wait on writeout
1462  *
1463  * The page must be locked by the caller and will be unlocked upon return.
1464  *
1465  * write_one_page() returns a negative error code if I/O failed.
1466  */
1467 int write_one_page(struct page *page, int wait)
1468 {
1469         struct address_space *mapping = page->mapping;
1470         int ret = 0;
1471         struct writeback_control wbc = {
1472                 .sync_mode = WB_SYNC_ALL,
1473                 .nr_to_write = 1,
1474         };
1475
1476         BUG_ON(!PageLocked(page));
1477
1478         if (wait)
1479                 wait_on_page_writeback(page);
1480
1481         if (clear_page_dirty_for_io(page)) {
1482                 page_cache_get(page);
1483                 ret = mapping->a_ops->writepage(page, &wbc);
1484                 if (ret == 0 && wait) {
1485                         wait_on_page_writeback(page);
1486                         if (PageError(page))
1487                                 ret = -EIO;
1488                 }
1489                 page_cache_release(page);
1490         } else {
1491                 unlock_page(page);
1492         }
1493         return ret;
1494 }
1495 EXPORT_SYMBOL(write_one_page);
1496
1497 /*
1498  * For address_spaces which do not use buffers nor write back.
1499  */
1500 int __set_page_dirty_no_writeback(struct page *page)
1501 {
1502         if (!PageDirty(page))
1503                 return !TestSetPageDirty(page);
1504         return 0;
1505 }
1506
1507 /*
1508  * Helper function for set_page_dirty family.
1509  * NOTE: This relies on being atomic wrt interrupts.
1510  */
1511 void account_page_dirtied(struct page *page, struct address_space *mapping)
1512 {
1513         if (mapping_cap_account_dirty(mapping)) {
1514                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1515                 __inc_zone_page_state(page, NR_DIRTIED);
1516                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1517                 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1518                 task_dirty_inc(current);
1519                 task_io_account_write(PAGE_CACHE_SIZE);
1520         }
1521 }
1522 EXPORT_SYMBOL(account_page_dirtied);
1523
1524 /*
1525  * Helper function for set_page_writeback family.
1526  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1527  * wrt interrupts.
1528  */
1529 void account_page_writeback(struct page *page)
1530 {
1531         inc_zone_page_state(page, NR_WRITEBACK);
1532 }
1533 EXPORT_SYMBOL(account_page_writeback);
1534
1535 /*
1536  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1537  * its radix tree.
1538  *
1539  * This is also used when a single buffer is being dirtied: we want to set the
1540  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1541  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1542  *
1543  * Most callers have locked the page, which pins the address_space in memory.
1544  * But zap_pte_range() does not lock the page, however in that case the
1545  * mapping is pinned by the vma's ->vm_file reference.
1546  *
1547  * We take care to handle the case where the page was truncated from the
1548  * mapping by re-checking page_mapping() inside tree_lock.
1549  */
1550 int __set_page_dirty_nobuffers(struct page *page)
1551 {
1552         if (!TestSetPageDirty(page)) {
1553                 struct address_space *mapping = page_mapping(page);
1554                 struct address_space *mapping2;
1555
1556                 if (!mapping)
1557                         return 1;
1558
1559                 spin_lock_irq(&mapping->tree_lock);
1560                 mapping2 = page_mapping(page);
1561                 if (mapping2) { /* Race with truncate? */
1562                         BUG_ON(mapping2 != mapping);
1563                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1564                         account_page_dirtied(page, mapping);
1565                         radix_tree_tag_set(&mapping->page_tree,
1566                                 page_index(page), PAGECACHE_TAG_DIRTY);
1567                 }
1568                 spin_unlock_irq(&mapping->tree_lock);
1569                 if (mapping->host) {
1570                         /* !PageAnon && !swapper_space */
1571                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1572                 }
1573                 return 1;
1574         }
1575         return 0;
1576 }
1577 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1578
1579 /*
1580  * When a writepage implementation decides that it doesn't want to write this
1581  * page for some reason, it should redirty the locked page via
1582  * redirty_page_for_writepage() and it should then unlock the page and return 0
1583  */
1584 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1585 {
1586         wbc->pages_skipped++;
1587         return __set_page_dirty_nobuffers(page);
1588 }
1589 EXPORT_SYMBOL(redirty_page_for_writepage);
1590
1591 /*
1592  * Dirty a page.
1593  *
1594  * For pages with a mapping this should be done under the page lock
1595  * for the benefit of asynchronous memory errors who prefer a consistent
1596  * dirty state. This rule can be broken in some special cases,
1597  * but should be better not to.
1598  *
1599  * If the mapping doesn't provide a set_page_dirty a_op, then
1600  * just fall through and assume that it wants buffer_heads.
1601  */
1602 int set_page_dirty(struct page *page)
1603 {
1604         struct address_space *mapping = page_mapping(page);
1605
1606         if (likely(mapping)) {
1607                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1608                 /*
1609                  * readahead/lru_deactivate_page could remain
1610                  * PG_readahead/PG_reclaim due to race with end_page_writeback
1611                  * About readahead, if the page is written, the flags would be
1612                  * reset. So no problem.
1613                  * About lru_deactivate_page, if the page is redirty, the flag
1614                  * will be reset. So no problem. but if the page is used by readahead
1615                  * it will confuse readahead and make it restart the size rampup
1616                  * process. But it's a trivial problem.
1617                  */
1618                 ClearPageReclaim(page);
1619 #ifdef CONFIG_BLOCK
1620                 if (!spd)
1621                         spd = __set_page_dirty_buffers;
1622 #endif
1623                 return (*spd)(page);
1624         }
1625         if (!PageDirty(page)) {
1626                 if (!TestSetPageDirty(page))
1627                         return 1;
1628         }
1629         return 0;
1630 }
1631 EXPORT_SYMBOL(set_page_dirty);
1632
1633 /*
1634  * set_page_dirty() is racy if the caller has no reference against
1635  * page->mapping->host, and if the page is unlocked.  This is because another
1636  * CPU could truncate the page off the mapping and then free the mapping.
1637  *
1638  * Usually, the page _is_ locked, or the caller is a user-space process which
1639  * holds a reference on the inode by having an open file.
1640  *
1641  * In other cases, the page should be locked before running set_page_dirty().
1642  */
1643 int set_page_dirty_lock(struct page *page)
1644 {
1645         int ret;
1646
1647         lock_page(page);
1648         ret = set_page_dirty(page);
1649         unlock_page(page);
1650         return ret;
1651 }
1652 EXPORT_SYMBOL(set_page_dirty_lock);
1653
1654 /*
1655  * Clear a page's dirty flag, while caring for dirty memory accounting.
1656  * Returns true if the page was previously dirty.
1657  *
1658  * This is for preparing to put the page under writeout.  We leave the page
1659  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1660  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1661  * implementation will run either set_page_writeback() or set_page_dirty(),
1662  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1663  * back into sync.
1664  *
1665  * This incoherency between the page's dirty flag and radix-tree tag is
1666  * unfortunate, but it only exists while the page is locked.
1667  */
1668 int clear_page_dirty_for_io(struct page *page)
1669 {
1670         struct address_space *mapping = page_mapping(page);
1671
1672         BUG_ON(!PageLocked(page));
1673
1674         if (mapping && mapping_cap_account_dirty(mapping)) {
1675                 /*
1676                  * Yes, Virginia, this is indeed insane.
1677                  *
1678                  * We use this sequence to make sure that
1679                  *  (a) we account for dirty stats properly
1680                  *  (b) we tell the low-level filesystem to
1681                  *      mark the whole page dirty if it was
1682                  *      dirty in a pagetable. Only to then
1683                  *  (c) clean the page again and return 1 to
1684                  *      cause the writeback.
1685                  *
1686                  * This way we avoid all nasty races with the
1687                  * dirty bit in multiple places and clearing
1688                  * them concurrently from different threads.
1689                  *
1690                  * Note! Normally the "set_page_dirty(page)"
1691                  * has no effect on the actual dirty bit - since
1692                  * that will already usually be set. But we
1693                  * need the side effects, and it can help us
1694                  * avoid races.
1695                  *
1696                  * We basically use the page "master dirty bit"
1697                  * as a serialization point for all the different
1698                  * threads doing their things.
1699                  */
1700                 if (page_mkclean(page))
1701                         set_page_dirty(page);
1702                 /*
1703                  * We carefully synchronise fault handlers against
1704                  * installing a dirty pte and marking the page dirty
1705                  * at this point. We do this by having them hold the
1706                  * page lock at some point after installing their
1707                  * pte, but before marking the page dirty.
1708                  * Pages are always locked coming in here, so we get
1709                  * the desired exclusion. See mm/memory.c:do_wp_page()
1710                  * for more comments.
1711                  */
1712                 if (TestClearPageDirty(page)) {
1713                         dec_zone_page_state(page, NR_FILE_DIRTY);
1714                         dec_bdi_stat(mapping->backing_dev_info,
1715                                         BDI_RECLAIMABLE);
1716                         return 1;
1717                 }
1718                 return 0;
1719         }
1720         return TestClearPageDirty(page);
1721 }
1722 EXPORT_SYMBOL(clear_page_dirty_for_io);
1723
1724 int test_clear_page_writeback(struct page *page)
1725 {
1726         struct address_space *mapping = page_mapping(page);
1727         int ret;
1728
1729         if (mapping) {
1730                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1731                 unsigned long flags;
1732
1733                 spin_lock_irqsave(&mapping->tree_lock, flags);
1734                 ret = TestClearPageWriteback(page);
1735                 if (ret) {
1736                         radix_tree_tag_clear(&mapping->page_tree,
1737                                                 page_index(page),
1738                                                 PAGECACHE_TAG_WRITEBACK);
1739                         if (bdi_cap_account_writeback(bdi)) {
1740                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1741                                 __bdi_writeout_inc(bdi);
1742                         }
1743                 }
1744                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1745         } else {
1746                 ret = TestClearPageWriteback(page);
1747         }
1748         if (ret) {
1749                 dec_zone_page_state(page, NR_WRITEBACK);
1750                 inc_zone_page_state(page, NR_WRITTEN);
1751         }
1752         return ret;
1753 }
1754
1755 int test_set_page_writeback(struct page *page)
1756 {
1757         struct address_space *mapping = page_mapping(page);
1758         int ret;
1759
1760         if (mapping) {
1761                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1762                 unsigned long flags;
1763
1764                 spin_lock_irqsave(&mapping->tree_lock, flags);
1765                 ret = TestSetPageWriteback(page);
1766                 if (!ret) {
1767                         radix_tree_tag_set(&mapping->page_tree,
1768                                                 page_index(page),
1769                                                 PAGECACHE_TAG_WRITEBACK);
1770                         if (bdi_cap_account_writeback(bdi))
1771                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1772                 }
1773                 if (!PageDirty(page))
1774                         radix_tree_tag_clear(&mapping->page_tree,
1775                                                 page_index(page),
1776                                                 PAGECACHE_TAG_DIRTY);
1777                 radix_tree_tag_clear(&mapping->page_tree,
1778                                      page_index(page),
1779                                      PAGECACHE_TAG_TOWRITE);
1780                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1781         } else {
1782                 ret = TestSetPageWriteback(page);
1783         }
1784         if (!ret)
1785                 account_page_writeback(page);
1786         return ret;
1787
1788 }
1789 EXPORT_SYMBOL(test_set_page_writeback);
1790
1791 /*
1792  * Return true if any of the pages in the mapping are marked with the
1793  * passed tag.
1794  */
1795 int mapping_tagged(struct address_space *mapping, int tag)
1796 {
1797         return radix_tree_tagged(&mapping->page_tree, tag);
1798 }
1799 EXPORT_SYMBOL(mapping_tagged);