mm/page-writeback.c: fix dirty_balance_reserve subtraction from dirtyable memory
[firefly-linux-kernel-4.4.55.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <trace/events/writeback.h>
40
41 /*
42  * Sleep at most 200ms at a time in balance_dirty_pages().
43  */
44 #define MAX_PAUSE               max(HZ/5, 1)
45
46 /*
47  * Try to keep balance_dirty_pages() call intervals higher than this many pages
48  * by raising pause time to max_pause when falls below it.
49  */
50 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
51
52 /*
53  * Estimate write bandwidth at 200ms intervals.
54  */
55 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
56
57 #define RATELIMIT_CALC_SHIFT    10
58
59 /*
60  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
61  * will look to see if it needs to force writeback or throttling.
62  */
63 static long ratelimit_pages = 32;
64
65 /* The following parameters are exported via /proc/sys/vm */
66
67 /*
68  * Start background writeback (via writeback threads) at this percentage
69  */
70 int dirty_background_ratio = 10;
71
72 /*
73  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
74  * dirty_background_ratio * the amount of dirtyable memory
75  */
76 unsigned long dirty_background_bytes;
77
78 /*
79  * free highmem will not be subtracted from the total free memory
80  * for calculating free ratios if vm_highmem_is_dirtyable is true
81  */
82 int vm_highmem_is_dirtyable;
83
84 /*
85  * The generator of dirty data starts writeback at this percentage
86  */
87 int vm_dirty_ratio = 20;
88
89 /*
90  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
91  * vm_dirty_ratio * the amount of dirtyable memory
92  */
93 unsigned long vm_dirty_bytes;
94
95 /*
96  * The interval between `kupdate'-style writebacks
97  */
98 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
99
100 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
101
102 /*
103  * The longest time for which data is allowed to remain dirty
104  */
105 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
106
107 /*
108  * Flag that makes the machine dump writes/reads and block dirtyings.
109  */
110 int block_dump;
111
112 /*
113  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
114  * a full sync is triggered after this time elapses without any disk activity.
115  */
116 int laptop_mode;
117
118 EXPORT_SYMBOL(laptop_mode);
119
120 /* End of sysctl-exported parameters */
121
122 unsigned long global_dirty_limit;
123
124 /*
125  * Scale the writeback cache size proportional to the relative writeout speeds.
126  *
127  * We do this by keeping a floating proportion between BDIs, based on page
128  * writeback completions [end_page_writeback()]. Those devices that write out
129  * pages fastest will get the larger share, while the slower will get a smaller
130  * share.
131  *
132  * We use page writeout completions because we are interested in getting rid of
133  * dirty pages. Having them written out is the primary goal.
134  *
135  * We introduce a concept of time, a period over which we measure these events,
136  * because demand can/will vary over time. The length of this period itself is
137  * measured in page writeback completions.
138  *
139  */
140 static struct fprop_global writeout_completions;
141
142 static void writeout_period(unsigned long t);
143 /* Timer for aging of writeout_completions */
144 static struct timer_list writeout_period_timer =
145                 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
146 static unsigned long writeout_period_time = 0;
147
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 /*
156  * Work out the current dirty-memory clamping and background writeout
157  * thresholds.
158  *
159  * The main aim here is to lower them aggressively if there is a lot of mapped
160  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
161  * pages.  It is better to clamp down on writers than to start swapping, and
162  * performing lots of scanning.
163  *
164  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
165  *
166  * We don't permit the clamping level to fall below 5% - that is getting rather
167  * excessive.
168  *
169  * We make sure that the background writeout level is below the adjusted
170  * clamping level.
171  */
172
173 /*
174  * In a memory zone, there is a certain amount of pages we consider
175  * available for the page cache, which is essentially the number of
176  * free and reclaimable pages, minus some zone reserves to protect
177  * lowmem and the ability to uphold the zone's watermarks without
178  * requiring writeback.
179  *
180  * This number of dirtyable pages is the base value of which the
181  * user-configurable dirty ratio is the effictive number of pages that
182  * are allowed to be actually dirtied.  Per individual zone, or
183  * globally by using the sum of dirtyable pages over all zones.
184  *
185  * Because the user is allowed to specify the dirty limit globally as
186  * absolute number of bytes, calculating the per-zone dirty limit can
187  * require translating the configured limit into a percentage of
188  * global dirtyable memory first.
189  */
190
191 /**
192  * zone_dirtyable_memory - number of dirtyable pages in a zone
193  * @zone: the zone
194  *
195  * Returns the zone's number of pages potentially available for dirty
196  * page cache.  This is the base value for the per-zone dirty limits.
197  */
198 static unsigned long zone_dirtyable_memory(struct zone *zone)
199 {
200         unsigned long nr_pages;
201
202         nr_pages = zone_page_state(zone, NR_FREE_PAGES);
203         nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
204
205         nr_pages += zone_reclaimable_pages(zone);
206
207         return nr_pages;
208 }
209
210 static unsigned long highmem_dirtyable_memory(unsigned long total)
211 {
212 #ifdef CONFIG_HIGHMEM
213         int node;
214         unsigned long x = 0;
215
216         for_each_node_state(node, N_HIGH_MEMORY) {
217                 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
218
219                 x += zone_dirtyable_memory(z);
220         }
221         /*
222          * Unreclaimable memory (kernel memory or anonymous memory
223          * without swap) can bring down the dirtyable pages below
224          * the zone's dirty balance reserve and the above calculation
225          * will underflow.  However we still want to add in nodes
226          * which are below threshold (negative values) to get a more
227          * accurate calculation but make sure that the total never
228          * underflows.
229          */
230         if ((long)x < 0)
231                 x = 0;
232
233         /*
234          * Make sure that the number of highmem pages is never larger
235          * than the number of the total dirtyable memory. This can only
236          * occur in very strange VM situations but we want to make sure
237          * that this does not occur.
238          */
239         return min(x, total);
240 #else
241         return 0;
242 #endif
243 }
244
245 /**
246  * global_dirtyable_memory - number of globally dirtyable pages
247  *
248  * Returns the global number of pages potentially available for dirty
249  * page cache.  This is the base value for the global dirty limits.
250  */
251 static unsigned long global_dirtyable_memory(void)
252 {
253         unsigned long x;
254
255         x = global_page_state(NR_FREE_PAGES);
256         x -= min(x, dirty_balance_reserve);
257
258         x += global_reclaimable_pages();
259
260         if (!vm_highmem_is_dirtyable)
261                 x -= highmem_dirtyable_memory(x);
262
263         /* Subtract min_free_kbytes */
264         x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10));
265
266         return x + 1;   /* Ensure that we never return 0 */
267 }
268
269 /*
270  * global_dirty_limits - background-writeback and dirty-throttling thresholds
271  *
272  * Calculate the dirty thresholds based on sysctl parameters
273  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
274  * - vm.dirty_ratio             or  vm.dirty_bytes
275  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
276  * real-time tasks.
277  */
278 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
279 {
280         unsigned long background;
281         unsigned long dirty;
282         unsigned long uninitialized_var(available_memory);
283         struct task_struct *tsk;
284
285         if (!vm_dirty_bytes || !dirty_background_bytes)
286                 available_memory = global_dirtyable_memory();
287
288         if (vm_dirty_bytes)
289                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
290         else
291                 dirty = (vm_dirty_ratio * available_memory) / 100;
292
293         if (dirty_background_bytes)
294                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
295         else
296                 background = (dirty_background_ratio * available_memory) / 100;
297
298         if (background >= dirty)
299                 background = dirty / 2;
300         tsk = current;
301         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
302                 background += background / 4;
303                 dirty += dirty / 4;
304         }
305         *pbackground = background;
306         *pdirty = dirty;
307         trace_global_dirty_state(background, dirty);
308 }
309
310 /**
311  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
312  * @zone: the zone
313  *
314  * Returns the maximum number of dirty pages allowed in a zone, based
315  * on the zone's dirtyable memory.
316  */
317 static unsigned long zone_dirty_limit(struct zone *zone)
318 {
319         unsigned long zone_memory = zone_dirtyable_memory(zone);
320         struct task_struct *tsk = current;
321         unsigned long dirty;
322
323         if (vm_dirty_bytes)
324                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
325                         zone_memory / global_dirtyable_memory();
326         else
327                 dirty = vm_dirty_ratio * zone_memory / 100;
328
329         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
330                 dirty += dirty / 4;
331
332         return dirty;
333 }
334
335 /**
336  * zone_dirty_ok - tells whether a zone is within its dirty limits
337  * @zone: the zone to check
338  *
339  * Returns %true when the dirty pages in @zone are within the zone's
340  * dirty limit, %false if the limit is exceeded.
341  */
342 bool zone_dirty_ok(struct zone *zone)
343 {
344         unsigned long limit = zone_dirty_limit(zone);
345
346         return zone_page_state(zone, NR_FILE_DIRTY) +
347                zone_page_state(zone, NR_UNSTABLE_NFS) +
348                zone_page_state(zone, NR_WRITEBACK) <= limit;
349 }
350
351 int dirty_background_ratio_handler(struct ctl_table *table, int write,
352                 void __user *buffer, size_t *lenp,
353                 loff_t *ppos)
354 {
355         int ret;
356
357         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
358         if (ret == 0 && write)
359                 dirty_background_bytes = 0;
360         return ret;
361 }
362
363 int dirty_background_bytes_handler(struct ctl_table *table, int write,
364                 void __user *buffer, size_t *lenp,
365                 loff_t *ppos)
366 {
367         int ret;
368
369         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
370         if (ret == 0 && write)
371                 dirty_background_ratio = 0;
372         return ret;
373 }
374
375 int dirty_ratio_handler(struct ctl_table *table, int write,
376                 void __user *buffer, size_t *lenp,
377                 loff_t *ppos)
378 {
379         int old_ratio = vm_dirty_ratio;
380         int ret;
381
382         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
383         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
384                 writeback_set_ratelimit();
385                 vm_dirty_bytes = 0;
386         }
387         return ret;
388 }
389
390 int dirty_bytes_handler(struct ctl_table *table, int write,
391                 void __user *buffer, size_t *lenp,
392                 loff_t *ppos)
393 {
394         unsigned long old_bytes = vm_dirty_bytes;
395         int ret;
396
397         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
398         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
399                 writeback_set_ratelimit();
400                 vm_dirty_ratio = 0;
401         }
402         return ret;
403 }
404
405 static unsigned long wp_next_time(unsigned long cur_time)
406 {
407         cur_time += VM_COMPLETIONS_PERIOD_LEN;
408         /* 0 has a special meaning... */
409         if (!cur_time)
410                 return 1;
411         return cur_time;
412 }
413
414 /*
415  * Increment the BDI's writeout completion count and the global writeout
416  * completion count. Called from test_clear_page_writeback().
417  */
418 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
419 {
420         __inc_bdi_stat(bdi, BDI_WRITTEN);
421         __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
422                                bdi->max_prop_frac);
423         /* First event after period switching was turned off? */
424         if (!unlikely(writeout_period_time)) {
425                 /*
426                  * We can race with other __bdi_writeout_inc calls here but
427                  * it does not cause any harm since the resulting time when
428                  * timer will fire and what is in writeout_period_time will be
429                  * roughly the same.
430                  */
431                 writeout_period_time = wp_next_time(jiffies);
432                 mod_timer(&writeout_period_timer, writeout_period_time);
433         }
434 }
435
436 void bdi_writeout_inc(struct backing_dev_info *bdi)
437 {
438         unsigned long flags;
439
440         local_irq_save(flags);
441         __bdi_writeout_inc(bdi);
442         local_irq_restore(flags);
443 }
444 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
445
446 /*
447  * Obtain an accurate fraction of the BDI's portion.
448  */
449 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
450                 long *numerator, long *denominator)
451 {
452         fprop_fraction_percpu(&writeout_completions, &bdi->completions,
453                                 numerator, denominator);
454 }
455
456 /*
457  * On idle system, we can be called long after we scheduled because we use
458  * deferred timers so count with missed periods.
459  */
460 static void writeout_period(unsigned long t)
461 {
462         int miss_periods = (jiffies - writeout_period_time) /
463                                                  VM_COMPLETIONS_PERIOD_LEN;
464
465         if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
466                 writeout_period_time = wp_next_time(writeout_period_time +
467                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
468                 mod_timer(&writeout_period_timer, writeout_period_time);
469         } else {
470                 /*
471                  * Aging has zeroed all fractions. Stop wasting CPU on period
472                  * updates.
473                  */
474                 writeout_period_time = 0;
475         }
476 }
477
478 /*
479  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
480  * registered backing devices, which, for obvious reasons, can not
481  * exceed 100%.
482  */
483 static unsigned int bdi_min_ratio;
484
485 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
486 {
487         int ret = 0;
488
489         spin_lock_bh(&bdi_lock);
490         if (min_ratio > bdi->max_ratio) {
491                 ret = -EINVAL;
492         } else {
493                 min_ratio -= bdi->min_ratio;
494                 if (bdi_min_ratio + min_ratio < 100) {
495                         bdi_min_ratio += min_ratio;
496                         bdi->min_ratio += min_ratio;
497                 } else {
498                         ret = -EINVAL;
499                 }
500         }
501         spin_unlock_bh(&bdi_lock);
502
503         return ret;
504 }
505
506 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
507 {
508         int ret = 0;
509
510         if (max_ratio > 100)
511                 return -EINVAL;
512
513         spin_lock_bh(&bdi_lock);
514         if (bdi->min_ratio > max_ratio) {
515                 ret = -EINVAL;
516         } else {
517                 bdi->max_ratio = max_ratio;
518                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
519         }
520         spin_unlock_bh(&bdi_lock);
521
522         return ret;
523 }
524 EXPORT_SYMBOL(bdi_set_max_ratio);
525
526 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
527                                            unsigned long bg_thresh)
528 {
529         return (thresh + bg_thresh) / 2;
530 }
531
532 static unsigned long hard_dirty_limit(unsigned long thresh)
533 {
534         return max(thresh, global_dirty_limit);
535 }
536
537 /**
538  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
539  * @bdi: the backing_dev_info to query
540  * @dirty: global dirty limit in pages
541  *
542  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
543  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
544  *
545  * Note that balance_dirty_pages() will only seriously take it as a hard limit
546  * when sleeping max_pause per page is not enough to keep the dirty pages under
547  * control. For example, when the device is completely stalled due to some error
548  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
549  * In the other normal situations, it acts more gently by throttling the tasks
550  * more (rather than completely block them) when the bdi dirty pages go high.
551  *
552  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
553  * - starving fast devices
554  * - piling up dirty pages (that will take long time to sync) on slow devices
555  *
556  * The bdi's share of dirty limit will be adapting to its throughput and
557  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
558  */
559 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
560 {
561         u64 bdi_dirty;
562         long numerator, denominator;
563
564         /*
565          * Calculate this BDI's share of the dirty ratio.
566          */
567         bdi_writeout_fraction(bdi, &numerator, &denominator);
568
569         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
570         bdi_dirty *= numerator;
571         do_div(bdi_dirty, denominator);
572
573         bdi_dirty += (dirty * bdi->min_ratio) / 100;
574         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
575                 bdi_dirty = dirty * bdi->max_ratio / 100;
576
577         return bdi_dirty;
578 }
579
580 /*
581  * Dirty position control.
582  *
583  * (o) global/bdi setpoints
584  *
585  * We want the dirty pages be balanced around the global/bdi setpoints.
586  * When the number of dirty pages is higher/lower than the setpoint, the
587  * dirty position control ratio (and hence task dirty ratelimit) will be
588  * decreased/increased to bring the dirty pages back to the setpoint.
589  *
590  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
591  *
592  *     if (dirty < setpoint) scale up   pos_ratio
593  *     if (dirty > setpoint) scale down pos_ratio
594  *
595  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
596  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
597  *
598  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
599  *
600  * (o) global control line
601  *
602  *     ^ pos_ratio
603  *     |
604  *     |            |<===== global dirty control scope ======>|
605  * 2.0 .............*
606  *     |            .*
607  *     |            . *
608  *     |            .   *
609  *     |            .     *
610  *     |            .        *
611  *     |            .            *
612  * 1.0 ................................*
613  *     |            .                  .     *
614  *     |            .                  .          *
615  *     |            .                  .              *
616  *     |            .                  .                 *
617  *     |            .                  .                    *
618  *   0 +------------.------------------.----------------------*------------->
619  *           freerun^          setpoint^                 limit^   dirty pages
620  *
621  * (o) bdi control line
622  *
623  *     ^ pos_ratio
624  *     |
625  *     |            *
626  *     |              *
627  *     |                *
628  *     |                  *
629  *     |                    * |<=========== span ============>|
630  * 1.0 .......................*
631  *     |                      . *
632  *     |                      .   *
633  *     |                      .     *
634  *     |                      .       *
635  *     |                      .         *
636  *     |                      .           *
637  *     |                      .             *
638  *     |                      .               *
639  *     |                      .                 *
640  *     |                      .                   *
641  *     |                      .                     *
642  * 1/4 ...............................................* * * * * * * * * * * *
643  *     |                      .                         .
644  *     |                      .                           .
645  *     |                      .                             .
646  *   0 +----------------------.-------------------------------.------------->
647  *                bdi_setpoint^                    x_intercept^
648  *
649  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
650  * be smoothly throttled down to normal if it starts high in situations like
651  * - start writing to a slow SD card and a fast disk at the same time. The SD
652  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
653  * - the bdi dirty thresh drops quickly due to change of JBOD workload
654  */
655 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
656                                         unsigned long thresh,
657                                         unsigned long bg_thresh,
658                                         unsigned long dirty,
659                                         unsigned long bdi_thresh,
660                                         unsigned long bdi_dirty)
661 {
662         unsigned long write_bw = bdi->avg_write_bandwidth;
663         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
664         unsigned long limit = hard_dirty_limit(thresh);
665         unsigned long x_intercept;
666         unsigned long setpoint;         /* dirty pages' target balance point */
667         unsigned long bdi_setpoint;
668         unsigned long span;
669         long long pos_ratio;            /* for scaling up/down the rate limit */
670         long x;
671
672         if (unlikely(dirty >= limit))
673                 return 0;
674
675         /*
676          * global setpoint
677          *
678          *                           setpoint - dirty 3
679          *        f(dirty) := 1.0 + (----------------)
680          *                           limit - setpoint
681          *
682          * it's a 3rd order polynomial that subjects to
683          *
684          * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
685          * (2) f(setpoint) = 1.0 => the balance point
686          * (3) f(limit)    = 0   => the hard limit
687          * (4) df/dx      <= 0   => negative feedback control
688          * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
689          *     => fast response on large errors; small oscillation near setpoint
690          */
691         setpoint = (freerun + limit) / 2;
692         x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
693                     limit - setpoint + 1);
694         pos_ratio = x;
695         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
696         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
697         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
698
699         /*
700          * We have computed basic pos_ratio above based on global situation. If
701          * the bdi is over/under its share of dirty pages, we want to scale
702          * pos_ratio further down/up. That is done by the following mechanism.
703          */
704
705         /*
706          * bdi setpoint
707          *
708          *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
709          *
710          *                        x_intercept - bdi_dirty
711          *                     := --------------------------
712          *                        x_intercept - bdi_setpoint
713          *
714          * The main bdi control line is a linear function that subjects to
715          *
716          * (1) f(bdi_setpoint) = 1.0
717          * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
718          *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
719          *
720          * For single bdi case, the dirty pages are observed to fluctuate
721          * regularly within range
722          *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
723          * for various filesystems, where (2) can yield in a reasonable 12.5%
724          * fluctuation range for pos_ratio.
725          *
726          * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
727          * own size, so move the slope over accordingly and choose a slope that
728          * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
729          */
730         if (unlikely(bdi_thresh > thresh))
731                 bdi_thresh = thresh;
732         /*
733          * It's very possible that bdi_thresh is close to 0 not because the
734          * device is slow, but that it has remained inactive for long time.
735          * Honour such devices a reasonable good (hopefully IO efficient)
736          * threshold, so that the occasional writes won't be blocked and active
737          * writes can rampup the threshold quickly.
738          */
739         bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
740         /*
741          * scale global setpoint to bdi's:
742          *      bdi_setpoint = setpoint * bdi_thresh / thresh
743          */
744         x = div_u64((u64)bdi_thresh << 16, thresh + 1);
745         bdi_setpoint = setpoint * (u64)x >> 16;
746         /*
747          * Use span=(8*write_bw) in single bdi case as indicated by
748          * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
749          *
750          *        bdi_thresh                    thresh - bdi_thresh
751          * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
752          *          thresh                            thresh
753          */
754         span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
755         x_intercept = bdi_setpoint + span;
756
757         if (bdi_dirty < x_intercept - span / 4) {
758                 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
759                                     x_intercept - bdi_setpoint + 1);
760         } else
761                 pos_ratio /= 4;
762
763         /*
764          * bdi reserve area, safeguard against dirty pool underrun and disk idle
765          * It may push the desired control point of global dirty pages higher
766          * than setpoint.
767          */
768         x_intercept = bdi_thresh / 2;
769         if (bdi_dirty < x_intercept) {
770                 if (bdi_dirty > x_intercept / 8)
771                         pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
772                 else
773                         pos_ratio *= 8;
774         }
775
776         return pos_ratio;
777 }
778
779 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
780                                        unsigned long elapsed,
781                                        unsigned long written)
782 {
783         const unsigned long period = roundup_pow_of_two(3 * HZ);
784         unsigned long avg = bdi->avg_write_bandwidth;
785         unsigned long old = bdi->write_bandwidth;
786         u64 bw;
787
788         /*
789          * bw = written * HZ / elapsed
790          *
791          *                   bw * elapsed + write_bandwidth * (period - elapsed)
792          * write_bandwidth = ---------------------------------------------------
793          *                                          period
794          */
795         bw = written - bdi->written_stamp;
796         bw *= HZ;
797         if (unlikely(elapsed > period)) {
798                 do_div(bw, elapsed);
799                 avg = bw;
800                 goto out;
801         }
802         bw += (u64)bdi->write_bandwidth * (period - elapsed);
803         bw >>= ilog2(period);
804
805         /*
806          * one more level of smoothing, for filtering out sudden spikes
807          */
808         if (avg > old && old >= (unsigned long)bw)
809                 avg -= (avg - old) >> 3;
810
811         if (avg < old && old <= (unsigned long)bw)
812                 avg += (old - avg) >> 3;
813
814 out:
815         bdi->write_bandwidth = bw;
816         bdi->avg_write_bandwidth = avg;
817 }
818
819 /*
820  * The global dirtyable memory and dirty threshold could be suddenly knocked
821  * down by a large amount (eg. on the startup of KVM in a swapless system).
822  * This may throw the system into deep dirty exceeded state and throttle
823  * heavy/light dirtiers alike. To retain good responsiveness, maintain
824  * global_dirty_limit for tracking slowly down to the knocked down dirty
825  * threshold.
826  */
827 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
828 {
829         unsigned long limit = global_dirty_limit;
830
831         /*
832          * Follow up in one step.
833          */
834         if (limit < thresh) {
835                 limit = thresh;
836                 goto update;
837         }
838
839         /*
840          * Follow down slowly. Use the higher one as the target, because thresh
841          * may drop below dirty. This is exactly the reason to introduce
842          * global_dirty_limit which is guaranteed to lie above the dirty pages.
843          */
844         thresh = max(thresh, dirty);
845         if (limit > thresh) {
846                 limit -= (limit - thresh) >> 5;
847                 goto update;
848         }
849         return;
850 update:
851         global_dirty_limit = limit;
852 }
853
854 static void global_update_bandwidth(unsigned long thresh,
855                                     unsigned long dirty,
856                                     unsigned long now)
857 {
858         static DEFINE_SPINLOCK(dirty_lock);
859         static unsigned long update_time;
860
861         /*
862          * check locklessly first to optimize away locking for the most time
863          */
864         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
865                 return;
866
867         spin_lock(&dirty_lock);
868         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
869                 update_dirty_limit(thresh, dirty);
870                 update_time = now;
871         }
872         spin_unlock(&dirty_lock);
873 }
874
875 /*
876  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
877  *
878  * Normal bdi tasks will be curbed at or below it in long term.
879  * Obviously it should be around (write_bw / N) when there are N dd tasks.
880  */
881 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
882                                        unsigned long thresh,
883                                        unsigned long bg_thresh,
884                                        unsigned long dirty,
885                                        unsigned long bdi_thresh,
886                                        unsigned long bdi_dirty,
887                                        unsigned long dirtied,
888                                        unsigned long elapsed)
889 {
890         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
891         unsigned long limit = hard_dirty_limit(thresh);
892         unsigned long setpoint = (freerun + limit) / 2;
893         unsigned long write_bw = bdi->avg_write_bandwidth;
894         unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
895         unsigned long dirty_rate;
896         unsigned long task_ratelimit;
897         unsigned long balanced_dirty_ratelimit;
898         unsigned long pos_ratio;
899         unsigned long step;
900         unsigned long x;
901
902         /*
903          * The dirty rate will match the writeout rate in long term, except
904          * when dirty pages are truncated by userspace or re-dirtied by FS.
905          */
906         dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
907
908         pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
909                                        bdi_thresh, bdi_dirty);
910         /*
911          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
912          */
913         task_ratelimit = (u64)dirty_ratelimit *
914                                         pos_ratio >> RATELIMIT_CALC_SHIFT;
915         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
916
917         /*
918          * A linear estimation of the "balanced" throttle rate. The theory is,
919          * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
920          * dirty_rate will be measured to be (N * task_ratelimit). So the below
921          * formula will yield the balanced rate limit (write_bw / N).
922          *
923          * Note that the expanded form is not a pure rate feedback:
924          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
925          * but also takes pos_ratio into account:
926          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
927          *
928          * (1) is not realistic because pos_ratio also takes part in balancing
929          * the dirty rate.  Consider the state
930          *      pos_ratio = 0.5                                              (3)
931          *      rate = 2 * (write_bw / N)                                    (4)
932          * If (1) is used, it will stuck in that state! Because each dd will
933          * be throttled at
934          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
935          * yielding
936          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
937          * put (6) into (1) we get
938          *      rate_(i+1) = rate_(i)                                        (7)
939          *
940          * So we end up using (2) to always keep
941          *      rate_(i+1) ~= (write_bw / N)                                 (8)
942          * regardless of the value of pos_ratio. As long as (8) is satisfied,
943          * pos_ratio is able to drive itself to 1.0, which is not only where
944          * the dirty count meet the setpoint, but also where the slope of
945          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
946          */
947         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
948                                            dirty_rate | 1);
949         /*
950          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
951          */
952         if (unlikely(balanced_dirty_ratelimit > write_bw))
953                 balanced_dirty_ratelimit = write_bw;
954
955         /*
956          * We could safely do this and return immediately:
957          *
958          *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
959          *
960          * However to get a more stable dirty_ratelimit, the below elaborated
961          * code makes use of task_ratelimit to filter out singular points and
962          * limit the step size.
963          *
964          * The below code essentially only uses the relative value of
965          *
966          *      task_ratelimit - dirty_ratelimit
967          *      = (pos_ratio - 1) * dirty_ratelimit
968          *
969          * which reflects the direction and size of dirty position error.
970          */
971
972         /*
973          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
974          * task_ratelimit is on the same side of dirty_ratelimit, too.
975          * For example, when
976          * - dirty_ratelimit > balanced_dirty_ratelimit
977          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
978          * lowering dirty_ratelimit will help meet both the position and rate
979          * control targets. Otherwise, don't update dirty_ratelimit if it will
980          * only help meet the rate target. After all, what the users ultimately
981          * feel and care are stable dirty rate and small position error.
982          *
983          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
984          * and filter out the singular points of balanced_dirty_ratelimit. Which
985          * keeps jumping around randomly and can even leap far away at times
986          * due to the small 200ms estimation period of dirty_rate (we want to
987          * keep that period small to reduce time lags).
988          */
989         step = 0;
990         if (dirty < setpoint) {
991                 x = min(bdi->balanced_dirty_ratelimit,
992                          min(balanced_dirty_ratelimit, task_ratelimit));
993                 if (dirty_ratelimit < x)
994                         step = x - dirty_ratelimit;
995         } else {
996                 x = max(bdi->balanced_dirty_ratelimit,
997                          max(balanced_dirty_ratelimit, task_ratelimit));
998                 if (dirty_ratelimit > x)
999                         step = dirty_ratelimit - x;
1000         }
1001
1002         /*
1003          * Don't pursue 100% rate matching. It's impossible since the balanced
1004          * rate itself is constantly fluctuating. So decrease the track speed
1005          * when it gets close to the target. Helps eliminate pointless tremors.
1006          */
1007         step >>= dirty_ratelimit / (2 * step + 1);
1008         /*
1009          * Limit the tracking speed to avoid overshooting.
1010          */
1011         step = (step + 7) / 8;
1012
1013         if (dirty_ratelimit < balanced_dirty_ratelimit)
1014                 dirty_ratelimit += step;
1015         else
1016                 dirty_ratelimit -= step;
1017
1018         bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1019         bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1020
1021         trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1022 }
1023
1024 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1025                             unsigned long thresh,
1026                             unsigned long bg_thresh,
1027                             unsigned long dirty,
1028                             unsigned long bdi_thresh,
1029                             unsigned long bdi_dirty,
1030                             unsigned long start_time)
1031 {
1032         unsigned long now = jiffies;
1033         unsigned long elapsed = now - bdi->bw_time_stamp;
1034         unsigned long dirtied;
1035         unsigned long written;
1036
1037         /*
1038          * rate-limit, only update once every 200ms.
1039          */
1040         if (elapsed < BANDWIDTH_INTERVAL)
1041                 return;
1042
1043         dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1044         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1045
1046         /*
1047          * Skip quiet periods when disk bandwidth is under-utilized.
1048          * (at least 1s idle time between two flusher runs)
1049          */
1050         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1051                 goto snapshot;
1052
1053         if (thresh) {
1054                 global_update_bandwidth(thresh, dirty, now);
1055                 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1056                                            bdi_thresh, bdi_dirty,
1057                                            dirtied, elapsed);
1058         }
1059         bdi_update_write_bandwidth(bdi, elapsed, written);
1060
1061 snapshot:
1062         bdi->dirtied_stamp = dirtied;
1063         bdi->written_stamp = written;
1064         bdi->bw_time_stamp = now;
1065 }
1066
1067 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1068                                  unsigned long thresh,
1069                                  unsigned long bg_thresh,
1070                                  unsigned long dirty,
1071                                  unsigned long bdi_thresh,
1072                                  unsigned long bdi_dirty,
1073                                  unsigned long start_time)
1074 {
1075         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1076                 return;
1077         spin_lock(&bdi->wb.list_lock);
1078         __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1079                                bdi_thresh, bdi_dirty, start_time);
1080         spin_unlock(&bdi->wb.list_lock);
1081 }
1082
1083 /*
1084  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1085  * will look to see if it needs to start dirty throttling.
1086  *
1087  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1088  * global_page_state() too often. So scale it near-sqrt to the safety margin
1089  * (the number of pages we may dirty without exceeding the dirty limits).
1090  */
1091 static unsigned long dirty_poll_interval(unsigned long dirty,
1092                                          unsigned long thresh)
1093 {
1094         if (thresh > dirty)
1095                 return 1UL << (ilog2(thresh - dirty) >> 1);
1096
1097         return 1;
1098 }
1099
1100 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1101                                    unsigned long bdi_dirty)
1102 {
1103         unsigned long bw = bdi->avg_write_bandwidth;
1104         unsigned long t;
1105
1106         /*
1107          * Limit pause time for small memory systems. If sleeping for too long
1108          * time, a small pool of dirty/writeback pages may go empty and disk go
1109          * idle.
1110          *
1111          * 8 serves as the safety ratio.
1112          */
1113         t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1114         t++;
1115
1116         return min_t(unsigned long, t, MAX_PAUSE);
1117 }
1118
1119 static long bdi_min_pause(struct backing_dev_info *bdi,
1120                           long max_pause,
1121                           unsigned long task_ratelimit,
1122                           unsigned long dirty_ratelimit,
1123                           int *nr_dirtied_pause)
1124 {
1125         long hi = ilog2(bdi->avg_write_bandwidth);
1126         long lo = ilog2(bdi->dirty_ratelimit);
1127         long t;         /* target pause */
1128         long pause;     /* estimated next pause */
1129         int pages;      /* target nr_dirtied_pause */
1130
1131         /* target for 10ms pause on 1-dd case */
1132         t = max(1, HZ / 100);
1133
1134         /*
1135          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1136          * overheads.
1137          *
1138          * (N * 10ms) on 2^N concurrent tasks.
1139          */
1140         if (hi > lo)
1141                 t += (hi - lo) * (10 * HZ) / 1024;
1142
1143         /*
1144          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1145          * on the much more stable dirty_ratelimit. However the next pause time
1146          * will be computed based on task_ratelimit and the two rate limits may
1147          * depart considerably at some time. Especially if task_ratelimit goes
1148          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1149          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1150          * result task_ratelimit won't be executed faithfully, which could
1151          * eventually bring down dirty_ratelimit.
1152          *
1153          * We apply two rules to fix it up:
1154          * 1) try to estimate the next pause time and if necessary, use a lower
1155          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1156          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1157          * 2) limit the target pause time to max_pause/2, so that the normal
1158          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1159          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1160          */
1161         t = min(t, 1 + max_pause / 2);
1162         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1163
1164         /*
1165          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1166          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1167          * When the 16 consecutive reads are often interrupted by some dirty
1168          * throttling pause during the async writes, cfq will go into idles
1169          * (deadline is fine). So push nr_dirtied_pause as high as possible
1170          * until reaches DIRTY_POLL_THRESH=32 pages.
1171          */
1172         if (pages < DIRTY_POLL_THRESH) {
1173                 t = max_pause;
1174                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1175                 if (pages > DIRTY_POLL_THRESH) {
1176                         pages = DIRTY_POLL_THRESH;
1177                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1178                 }
1179         }
1180
1181         pause = HZ * pages / (task_ratelimit + 1);
1182         if (pause > max_pause) {
1183                 t = max_pause;
1184                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1185         }
1186
1187         *nr_dirtied_pause = pages;
1188         /*
1189          * The minimal pause time will normally be half the target pause time.
1190          */
1191         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1192 }
1193
1194 /*
1195  * balance_dirty_pages() must be called by processes which are generating dirty
1196  * data.  It looks at the number of dirty pages in the machine and will force
1197  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1198  * If we're over `background_thresh' then the writeback threads are woken to
1199  * perform some writeout.
1200  */
1201 static void balance_dirty_pages(struct address_space *mapping,
1202                                 unsigned long pages_dirtied)
1203 {
1204         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1205         unsigned long bdi_reclaimable;
1206         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1207         unsigned long bdi_dirty;
1208         unsigned long freerun;
1209         unsigned long background_thresh;
1210         unsigned long dirty_thresh;
1211         unsigned long bdi_thresh;
1212         long period;
1213         long pause;
1214         long max_pause;
1215         long min_pause;
1216         int nr_dirtied_pause;
1217         bool dirty_exceeded = false;
1218         unsigned long task_ratelimit;
1219         unsigned long dirty_ratelimit;
1220         unsigned long pos_ratio;
1221         struct backing_dev_info *bdi = mapping->backing_dev_info;
1222         unsigned long start_time = jiffies;
1223
1224         for (;;) {
1225                 unsigned long now = jiffies;
1226
1227                 /*
1228                  * Unstable writes are a feature of certain networked
1229                  * filesystems (i.e. NFS) in which data may have been
1230                  * written to the server's write cache, but has not yet
1231                  * been flushed to permanent storage.
1232                  */
1233                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1234                                         global_page_state(NR_UNSTABLE_NFS);
1235                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1236
1237                 global_dirty_limits(&background_thresh, &dirty_thresh);
1238
1239                 /*
1240                  * Throttle it only when the background writeback cannot
1241                  * catch-up. This avoids (excessively) small writeouts
1242                  * when the bdi limits are ramping up.
1243                  */
1244                 freerun = dirty_freerun_ceiling(dirty_thresh,
1245                                                 background_thresh);
1246                 if (nr_dirty <= freerun) {
1247                         current->dirty_paused_when = now;
1248                         current->nr_dirtied = 0;
1249                         current->nr_dirtied_pause =
1250                                 dirty_poll_interval(nr_dirty, dirty_thresh);
1251                         break;
1252                 }
1253
1254                 if (unlikely(!writeback_in_progress(bdi)))
1255                         bdi_start_background_writeback(bdi);
1256
1257                 /*
1258                  * bdi_thresh is not treated as some limiting factor as
1259                  * dirty_thresh, due to reasons
1260                  * - in JBOD setup, bdi_thresh can fluctuate a lot
1261                  * - in a system with HDD and USB key, the USB key may somehow
1262                  *   go into state (bdi_dirty >> bdi_thresh) either because
1263                  *   bdi_dirty starts high, or because bdi_thresh drops low.
1264                  *   In this case we don't want to hard throttle the USB key
1265                  *   dirtiers for 100 seconds until bdi_dirty drops under
1266                  *   bdi_thresh. Instead the auxiliary bdi control line in
1267                  *   bdi_position_ratio() will let the dirtier task progress
1268                  *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1269                  */
1270                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1271
1272                 /*
1273                  * In order to avoid the stacked BDI deadlock we need
1274                  * to ensure we accurately count the 'dirty' pages when
1275                  * the threshold is low.
1276                  *
1277                  * Otherwise it would be possible to get thresh+n pages
1278                  * reported dirty, even though there are thresh-m pages
1279                  * actually dirty; with m+n sitting in the percpu
1280                  * deltas.
1281                  */
1282                 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1283                         bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1284                         bdi_dirty = bdi_reclaimable +
1285                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
1286                 } else {
1287                         bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1288                         bdi_dirty = bdi_reclaimable +
1289                                     bdi_stat(bdi, BDI_WRITEBACK);
1290                 }
1291
1292                 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1293                                   (nr_dirty > dirty_thresh);
1294                 if (dirty_exceeded && !bdi->dirty_exceeded)
1295                         bdi->dirty_exceeded = 1;
1296
1297                 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1298                                      nr_dirty, bdi_thresh, bdi_dirty,
1299                                      start_time);
1300
1301                 dirty_ratelimit = bdi->dirty_ratelimit;
1302                 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1303                                                background_thresh, nr_dirty,
1304                                                bdi_thresh, bdi_dirty);
1305                 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1306                                                         RATELIMIT_CALC_SHIFT;
1307                 max_pause = bdi_max_pause(bdi, bdi_dirty);
1308                 min_pause = bdi_min_pause(bdi, max_pause,
1309                                           task_ratelimit, dirty_ratelimit,
1310                                           &nr_dirtied_pause);
1311
1312                 if (unlikely(task_ratelimit == 0)) {
1313                         period = max_pause;
1314                         pause = max_pause;
1315                         goto pause;
1316                 }
1317                 period = HZ * pages_dirtied / task_ratelimit;
1318                 pause = period;
1319                 if (current->dirty_paused_when)
1320                         pause -= now - current->dirty_paused_when;
1321                 /*
1322                  * For less than 1s think time (ext3/4 may block the dirtier
1323                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1324                  * however at much less frequency), try to compensate it in
1325                  * future periods by updating the virtual time; otherwise just
1326                  * do a reset, as it may be a light dirtier.
1327                  */
1328                 if (pause < min_pause) {
1329                         trace_balance_dirty_pages(bdi,
1330                                                   dirty_thresh,
1331                                                   background_thresh,
1332                                                   nr_dirty,
1333                                                   bdi_thresh,
1334                                                   bdi_dirty,
1335                                                   dirty_ratelimit,
1336                                                   task_ratelimit,
1337                                                   pages_dirtied,
1338                                                   period,
1339                                                   min(pause, 0L),
1340                                                   start_time);
1341                         if (pause < -HZ) {
1342                                 current->dirty_paused_when = now;
1343                                 current->nr_dirtied = 0;
1344                         } else if (period) {
1345                                 current->dirty_paused_when += period;
1346                                 current->nr_dirtied = 0;
1347                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1348                                 current->nr_dirtied_pause += pages_dirtied;
1349                         break;
1350                 }
1351                 if (unlikely(pause > max_pause)) {
1352                         /* for occasional dropped task_ratelimit */
1353                         now += min(pause - max_pause, max_pause);
1354                         pause = max_pause;
1355                 }
1356
1357 pause:
1358                 trace_balance_dirty_pages(bdi,
1359                                           dirty_thresh,
1360                                           background_thresh,
1361                                           nr_dirty,
1362                                           bdi_thresh,
1363                                           bdi_dirty,
1364                                           dirty_ratelimit,
1365                                           task_ratelimit,
1366                                           pages_dirtied,
1367                                           period,
1368                                           pause,
1369                                           start_time);
1370                 __set_current_state(TASK_KILLABLE);
1371                 io_schedule_timeout(pause);
1372
1373                 current->dirty_paused_when = now + pause;
1374                 current->nr_dirtied = 0;
1375                 current->nr_dirtied_pause = nr_dirtied_pause;
1376
1377                 /*
1378                  * This is typically equal to (nr_dirty < dirty_thresh) and can
1379                  * also keep "1000+ dd on a slow USB stick" under control.
1380                  */
1381                 if (task_ratelimit)
1382                         break;
1383
1384                 /*
1385                  * In the case of an unresponding NFS server and the NFS dirty
1386                  * pages exceeds dirty_thresh, give the other good bdi's a pipe
1387                  * to go through, so that tasks on them still remain responsive.
1388                  *
1389                  * In theory 1 page is enough to keep the comsumer-producer
1390                  * pipe going: the flusher cleans 1 page => the task dirties 1
1391                  * more page. However bdi_dirty has accounting errors.  So use
1392                  * the larger and more IO friendly bdi_stat_error.
1393                  */
1394                 if (bdi_dirty <= bdi_stat_error(bdi))
1395                         break;
1396
1397                 if (fatal_signal_pending(current))
1398                         break;
1399         }
1400
1401         if (!dirty_exceeded && bdi->dirty_exceeded)
1402                 bdi->dirty_exceeded = 0;
1403
1404         if (writeback_in_progress(bdi))
1405                 return;
1406
1407         /*
1408          * In laptop mode, we wait until hitting the higher threshold before
1409          * starting background writeout, and then write out all the way down
1410          * to the lower threshold.  So slow writers cause minimal disk activity.
1411          *
1412          * In normal mode, we start background writeout at the lower
1413          * background_thresh, to keep the amount of dirty memory low.
1414          */
1415         if (laptop_mode)
1416                 return;
1417
1418         if (nr_reclaimable > background_thresh)
1419                 bdi_start_background_writeback(bdi);
1420 }
1421
1422 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1423 {
1424         if (set_page_dirty(page) || page_mkwrite) {
1425                 struct address_space *mapping = page_mapping(page);
1426
1427                 if (mapping)
1428                         balance_dirty_pages_ratelimited(mapping);
1429         }
1430 }
1431
1432 static DEFINE_PER_CPU(int, bdp_ratelimits);
1433
1434 /*
1435  * Normal tasks are throttled by
1436  *      loop {
1437  *              dirty tsk->nr_dirtied_pause pages;
1438  *              take a snap in balance_dirty_pages();
1439  *      }
1440  * However there is a worst case. If every task exit immediately when dirtied
1441  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1442  * called to throttle the page dirties. The solution is to save the not yet
1443  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1444  * randomly into the running tasks. This works well for the above worst case,
1445  * as the new task will pick up and accumulate the old task's leaked dirty
1446  * count and eventually get throttled.
1447  */
1448 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1449
1450 /**
1451  * balance_dirty_pages_ratelimited - balance dirty memory state
1452  * @mapping: address_space which was dirtied
1453  *
1454  * Processes which are dirtying memory should call in here once for each page
1455  * which was newly dirtied.  The function will periodically check the system's
1456  * dirty state and will initiate writeback if needed.
1457  *
1458  * On really big machines, get_writeback_state is expensive, so try to avoid
1459  * calling it too often (ratelimiting).  But once we're over the dirty memory
1460  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1461  * from overshooting the limit by (ratelimit_pages) each.
1462  */
1463 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1464 {
1465         struct backing_dev_info *bdi = mapping->backing_dev_info;
1466         int ratelimit;
1467         int *p;
1468
1469         if (!bdi_cap_account_dirty(bdi))
1470                 return;
1471
1472         ratelimit = current->nr_dirtied_pause;
1473         if (bdi->dirty_exceeded)
1474                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1475
1476         preempt_disable();
1477         /*
1478          * This prevents one CPU to accumulate too many dirtied pages without
1479          * calling into balance_dirty_pages(), which can happen when there are
1480          * 1000+ tasks, all of them start dirtying pages at exactly the same
1481          * time, hence all honoured too large initial task->nr_dirtied_pause.
1482          */
1483         p =  &__get_cpu_var(bdp_ratelimits);
1484         if (unlikely(current->nr_dirtied >= ratelimit))
1485                 *p = 0;
1486         else if (unlikely(*p >= ratelimit_pages)) {
1487                 *p = 0;
1488                 ratelimit = 0;
1489         }
1490         /*
1491          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1492          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1493          * the dirty throttling and livelock other long-run dirtiers.
1494          */
1495         p = &__get_cpu_var(dirty_throttle_leaks);
1496         if (*p > 0 && current->nr_dirtied < ratelimit) {
1497                 unsigned long nr_pages_dirtied;
1498                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1499                 *p -= nr_pages_dirtied;
1500                 current->nr_dirtied += nr_pages_dirtied;
1501         }
1502         preempt_enable();
1503
1504         if (unlikely(current->nr_dirtied >= ratelimit))
1505                 balance_dirty_pages(mapping, current->nr_dirtied);
1506 }
1507 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1508
1509 void throttle_vm_writeout(gfp_t gfp_mask)
1510 {
1511         unsigned long background_thresh;
1512         unsigned long dirty_thresh;
1513
1514         for ( ; ; ) {
1515                 global_dirty_limits(&background_thresh, &dirty_thresh);
1516                 dirty_thresh = hard_dirty_limit(dirty_thresh);
1517
1518                 /*
1519                  * Boost the allowable dirty threshold a bit for page
1520                  * allocators so they don't get DoS'ed by heavy writers
1521                  */
1522                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1523
1524                 if (global_page_state(NR_UNSTABLE_NFS) +
1525                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1526                                 break;
1527                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1528
1529                 /*
1530                  * The caller might hold locks which can prevent IO completion
1531                  * or progress in the filesystem.  So we cannot just sit here
1532                  * waiting for IO to complete.
1533                  */
1534                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1535                         break;
1536         }
1537 }
1538
1539 /*
1540  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1541  */
1542 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1543         void __user *buffer, size_t *length, loff_t *ppos)
1544 {
1545         proc_dointvec(table, write, buffer, length, ppos);
1546         return 0;
1547 }
1548
1549 #ifdef CONFIG_BLOCK
1550 void laptop_mode_timer_fn(unsigned long data)
1551 {
1552         struct request_queue *q = (struct request_queue *)data;
1553         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1554                 global_page_state(NR_UNSTABLE_NFS);
1555
1556         /*
1557          * We want to write everything out, not just down to the dirty
1558          * threshold
1559          */
1560         if (bdi_has_dirty_io(&q->backing_dev_info))
1561                 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1562                                         WB_REASON_LAPTOP_TIMER);
1563 }
1564
1565 /*
1566  * We've spun up the disk and we're in laptop mode: schedule writeback
1567  * of all dirty data a few seconds from now.  If the flush is already scheduled
1568  * then push it back - the user is still using the disk.
1569  */
1570 void laptop_io_completion(struct backing_dev_info *info)
1571 {
1572         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1573 }
1574
1575 /*
1576  * We're in laptop mode and we've just synced. The sync's writes will have
1577  * caused another writeback to be scheduled by laptop_io_completion.
1578  * Nothing needs to be written back anymore, so we unschedule the writeback.
1579  */
1580 void laptop_sync_completion(void)
1581 {
1582         struct backing_dev_info *bdi;
1583
1584         rcu_read_lock();
1585
1586         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1587                 del_timer(&bdi->laptop_mode_wb_timer);
1588
1589         rcu_read_unlock();
1590 }
1591 #endif
1592
1593 /*
1594  * If ratelimit_pages is too high then we can get into dirty-data overload
1595  * if a large number of processes all perform writes at the same time.
1596  * If it is too low then SMP machines will call the (expensive)
1597  * get_writeback_state too often.
1598  *
1599  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1600  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1601  * thresholds.
1602  */
1603
1604 void writeback_set_ratelimit(void)
1605 {
1606         unsigned long background_thresh;
1607         unsigned long dirty_thresh;
1608         global_dirty_limits(&background_thresh, &dirty_thresh);
1609         global_dirty_limit = dirty_thresh;
1610         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1611         if (ratelimit_pages < 16)
1612                 ratelimit_pages = 16;
1613 }
1614
1615 static int __cpuinit
1616 ratelimit_handler(struct notifier_block *self, unsigned long action,
1617                   void *hcpu)
1618 {
1619
1620         switch (action & ~CPU_TASKS_FROZEN) {
1621         case CPU_ONLINE:
1622         case CPU_DEAD:
1623                 writeback_set_ratelimit();
1624                 return NOTIFY_OK;
1625         default:
1626                 return NOTIFY_DONE;
1627         }
1628 }
1629
1630 static struct notifier_block __cpuinitdata ratelimit_nb = {
1631         .notifier_call  = ratelimit_handler,
1632         .next           = NULL,
1633 };
1634
1635 /*
1636  * Called early on to tune the page writeback dirty limits.
1637  *
1638  * We used to scale dirty pages according to how total memory
1639  * related to pages that could be allocated for buffers (by
1640  * comparing nr_free_buffer_pages() to vm_total_pages.
1641  *
1642  * However, that was when we used "dirty_ratio" to scale with
1643  * all memory, and we don't do that any more. "dirty_ratio"
1644  * is now applied to total non-HIGHPAGE memory (by subtracting
1645  * totalhigh_pages from vm_total_pages), and as such we can't
1646  * get into the old insane situation any more where we had
1647  * large amounts of dirty pages compared to a small amount of
1648  * non-HIGHMEM memory.
1649  *
1650  * But we might still want to scale the dirty_ratio by how
1651  * much memory the box has..
1652  */
1653 void __init page_writeback_init(void)
1654 {
1655         writeback_set_ratelimit();
1656         register_cpu_notifier(&ratelimit_nb);
1657
1658         fprop_global_init(&writeout_completions);
1659 }
1660
1661 /**
1662  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1663  * @mapping: address space structure to write
1664  * @start: starting page index
1665  * @end: ending page index (inclusive)
1666  *
1667  * This function scans the page range from @start to @end (inclusive) and tags
1668  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1669  * that write_cache_pages (or whoever calls this function) will then use
1670  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1671  * used to avoid livelocking of writeback by a process steadily creating new
1672  * dirty pages in the file (thus it is important for this function to be quick
1673  * so that it can tag pages faster than a dirtying process can create them).
1674  */
1675 /*
1676  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1677  */
1678 void tag_pages_for_writeback(struct address_space *mapping,
1679                              pgoff_t start, pgoff_t end)
1680 {
1681 #define WRITEBACK_TAG_BATCH 4096
1682         unsigned long tagged;
1683
1684         do {
1685                 spin_lock_irq(&mapping->tree_lock);
1686                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1687                                 &start, end, WRITEBACK_TAG_BATCH,
1688                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1689                 spin_unlock_irq(&mapping->tree_lock);
1690                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1691                 cond_resched();
1692                 /* We check 'start' to handle wrapping when end == ~0UL */
1693         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1694 }
1695 EXPORT_SYMBOL(tag_pages_for_writeback);
1696
1697 /**
1698  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1699  * @mapping: address space structure to write
1700  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1701  * @writepage: function called for each page
1702  * @data: data passed to writepage function
1703  *
1704  * If a page is already under I/O, write_cache_pages() skips it, even
1705  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1706  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1707  * and msync() need to guarantee that all the data which was dirty at the time
1708  * the call was made get new I/O started against them.  If wbc->sync_mode is
1709  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1710  * existing IO to complete.
1711  *
1712  * To avoid livelocks (when other process dirties new pages), we first tag
1713  * pages which should be written back with TOWRITE tag and only then start
1714  * writing them. For data-integrity sync we have to be careful so that we do
1715  * not miss some pages (e.g., because some other process has cleared TOWRITE
1716  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1717  * by the process clearing the DIRTY tag (and submitting the page for IO).
1718  */
1719 int write_cache_pages(struct address_space *mapping,
1720                       struct writeback_control *wbc, writepage_t writepage,
1721                       void *data)
1722 {
1723         int ret = 0;
1724         int done = 0;
1725         struct pagevec pvec;
1726         int nr_pages;
1727         pgoff_t uninitialized_var(writeback_index);
1728         pgoff_t index;
1729         pgoff_t end;            /* Inclusive */
1730         pgoff_t done_index;
1731         int cycled;
1732         int range_whole = 0;
1733         int tag;
1734
1735         pagevec_init(&pvec, 0);
1736         if (wbc->range_cyclic) {
1737                 writeback_index = mapping->writeback_index; /* prev offset */
1738                 index = writeback_index;
1739                 if (index == 0)
1740                         cycled = 1;
1741                 else
1742                         cycled = 0;
1743                 end = -1;
1744         } else {
1745                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1746                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1747                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1748                         range_whole = 1;
1749                 cycled = 1; /* ignore range_cyclic tests */
1750         }
1751         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1752                 tag = PAGECACHE_TAG_TOWRITE;
1753         else
1754                 tag = PAGECACHE_TAG_DIRTY;
1755 retry:
1756         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1757                 tag_pages_for_writeback(mapping, index, end);
1758         done_index = index;
1759         while (!done && (index <= end)) {
1760                 int i;
1761
1762                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1763                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1764                 if (nr_pages == 0)
1765                         break;
1766
1767                 for (i = 0; i < nr_pages; i++) {
1768                         struct page *page = pvec.pages[i];
1769
1770                         /*
1771                          * At this point, the page may be truncated or
1772                          * invalidated (changing page->mapping to NULL), or
1773                          * even swizzled back from swapper_space to tmpfs file
1774                          * mapping. However, page->index will not change
1775                          * because we have a reference on the page.
1776                          */
1777                         if (page->index > end) {
1778                                 /*
1779                                  * can't be range_cyclic (1st pass) because
1780                                  * end == -1 in that case.
1781                                  */
1782                                 done = 1;
1783                                 break;
1784                         }
1785
1786                         done_index = page->index;
1787
1788                         lock_page(page);
1789
1790                         /*
1791                          * Page truncated or invalidated. We can freely skip it
1792                          * then, even for data integrity operations: the page
1793                          * has disappeared concurrently, so there could be no
1794                          * real expectation of this data interity operation
1795                          * even if there is now a new, dirty page at the same
1796                          * pagecache address.
1797                          */
1798                         if (unlikely(page->mapping != mapping)) {
1799 continue_unlock:
1800                                 unlock_page(page);
1801                                 continue;
1802                         }
1803
1804                         if (!PageDirty(page)) {
1805                                 /* someone wrote it for us */
1806                                 goto continue_unlock;
1807                         }
1808
1809                         if (PageWriteback(page)) {
1810                                 if (wbc->sync_mode != WB_SYNC_NONE)
1811                                         wait_on_page_writeback(page);
1812                                 else
1813                                         goto continue_unlock;
1814                         }
1815
1816                         BUG_ON(PageWriteback(page));
1817                         if (!clear_page_dirty_for_io(page))
1818                                 goto continue_unlock;
1819
1820                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1821                         ret = (*writepage)(page, wbc, data);
1822                         if (unlikely(ret)) {
1823                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1824                                         unlock_page(page);
1825                                         ret = 0;
1826                                 } else {
1827                                         /*
1828                                          * done_index is set past this page,
1829                                          * so media errors will not choke
1830                                          * background writeout for the entire
1831                                          * file. This has consequences for
1832                                          * range_cyclic semantics (ie. it may
1833                                          * not be suitable for data integrity
1834                                          * writeout).
1835                                          */
1836                                         done_index = page->index + 1;
1837                                         done = 1;
1838                                         break;
1839                                 }
1840                         }
1841
1842                         /*
1843                          * We stop writing back only if we are not doing
1844                          * integrity sync. In case of integrity sync we have to
1845                          * keep going until we have written all the pages
1846                          * we tagged for writeback prior to entering this loop.
1847                          */
1848                         if (--wbc->nr_to_write <= 0 &&
1849                             wbc->sync_mode == WB_SYNC_NONE) {
1850                                 done = 1;
1851                                 break;
1852                         }
1853                 }
1854                 pagevec_release(&pvec);
1855                 cond_resched();
1856         }
1857         if (!cycled && !done) {
1858                 /*
1859                  * range_cyclic:
1860                  * We hit the last page and there is more work to be done: wrap
1861                  * back to the start of the file
1862                  */
1863                 cycled = 1;
1864                 index = 0;
1865                 end = writeback_index - 1;
1866                 goto retry;
1867         }
1868         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1869                 mapping->writeback_index = done_index;
1870
1871         return ret;
1872 }
1873 EXPORT_SYMBOL(write_cache_pages);
1874
1875 /*
1876  * Function used by generic_writepages to call the real writepage
1877  * function and set the mapping flags on error
1878  */
1879 static int __writepage(struct page *page, struct writeback_control *wbc,
1880                        void *data)
1881 {
1882         struct address_space *mapping = data;
1883         int ret = mapping->a_ops->writepage(page, wbc);
1884         mapping_set_error(mapping, ret);
1885         return ret;
1886 }
1887
1888 /**
1889  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1890  * @mapping: address space structure to write
1891  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1892  *
1893  * This is a library function, which implements the writepages()
1894  * address_space_operation.
1895  */
1896 int generic_writepages(struct address_space *mapping,
1897                        struct writeback_control *wbc)
1898 {
1899         struct blk_plug plug;
1900         int ret;
1901
1902         /* deal with chardevs and other special file */
1903         if (!mapping->a_ops->writepage)
1904                 return 0;
1905
1906         blk_start_plug(&plug);
1907         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1908         blk_finish_plug(&plug);
1909         return ret;
1910 }
1911
1912 EXPORT_SYMBOL(generic_writepages);
1913
1914 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1915 {
1916         int ret;
1917
1918         if (wbc->nr_to_write <= 0)
1919                 return 0;
1920         if (mapping->a_ops->writepages)
1921                 ret = mapping->a_ops->writepages(mapping, wbc);
1922         else
1923                 ret = generic_writepages(mapping, wbc);
1924         return ret;
1925 }
1926
1927 /**
1928  * write_one_page - write out a single page and optionally wait on I/O
1929  * @page: the page to write
1930  * @wait: if true, wait on writeout
1931  *
1932  * The page must be locked by the caller and will be unlocked upon return.
1933  *
1934  * write_one_page() returns a negative error code if I/O failed.
1935  */
1936 int write_one_page(struct page *page, int wait)
1937 {
1938         struct address_space *mapping = page->mapping;
1939         int ret = 0;
1940         struct writeback_control wbc = {
1941                 .sync_mode = WB_SYNC_ALL,
1942                 .nr_to_write = 1,
1943         };
1944
1945         BUG_ON(!PageLocked(page));
1946
1947         if (wait)
1948                 wait_on_page_writeback(page);
1949
1950         if (clear_page_dirty_for_io(page)) {
1951                 page_cache_get(page);
1952                 ret = mapping->a_ops->writepage(page, &wbc);
1953                 if (ret == 0 && wait) {
1954                         wait_on_page_writeback(page);
1955                         if (PageError(page))
1956                                 ret = -EIO;
1957                 }
1958                 page_cache_release(page);
1959         } else {
1960                 unlock_page(page);
1961         }
1962         return ret;
1963 }
1964 EXPORT_SYMBOL(write_one_page);
1965
1966 /*
1967  * For address_spaces which do not use buffers nor write back.
1968  */
1969 int __set_page_dirty_no_writeback(struct page *page)
1970 {
1971         if (!PageDirty(page))
1972                 return !TestSetPageDirty(page);
1973         return 0;
1974 }
1975
1976 /*
1977  * Helper function for set_page_dirty family.
1978  * NOTE: This relies on being atomic wrt interrupts.
1979  */
1980 void account_page_dirtied(struct page *page, struct address_space *mapping)
1981 {
1982         trace_writeback_dirty_page(page, mapping);
1983
1984         if (mapping_cap_account_dirty(mapping)) {
1985                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1986                 __inc_zone_page_state(page, NR_DIRTIED);
1987                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1988                 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1989                 task_io_account_write(PAGE_CACHE_SIZE);
1990                 current->nr_dirtied++;
1991                 this_cpu_inc(bdp_ratelimits);
1992         }
1993 }
1994 EXPORT_SYMBOL(account_page_dirtied);
1995
1996 /*
1997  * Helper function for set_page_writeback family.
1998  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1999  * wrt interrupts.
2000  */
2001 void account_page_writeback(struct page *page)
2002 {
2003         inc_zone_page_state(page, NR_WRITEBACK);
2004 }
2005 EXPORT_SYMBOL(account_page_writeback);
2006
2007 /*
2008  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2009  * its radix tree.
2010  *
2011  * This is also used when a single buffer is being dirtied: we want to set the
2012  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2013  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2014  *
2015  * Most callers have locked the page, which pins the address_space in memory.
2016  * But zap_pte_range() does not lock the page, however in that case the
2017  * mapping is pinned by the vma's ->vm_file reference.
2018  *
2019  * We take care to handle the case where the page was truncated from the
2020  * mapping by re-checking page_mapping() inside tree_lock.
2021  */
2022 int __set_page_dirty_nobuffers(struct page *page)
2023 {
2024         if (!TestSetPageDirty(page)) {
2025                 struct address_space *mapping = page_mapping(page);
2026                 struct address_space *mapping2;
2027
2028                 if (!mapping)
2029                         return 1;
2030
2031                 spin_lock_irq(&mapping->tree_lock);
2032                 mapping2 = page_mapping(page);
2033                 if (mapping2) { /* Race with truncate? */
2034                         BUG_ON(mapping2 != mapping);
2035                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2036                         account_page_dirtied(page, mapping);
2037                         radix_tree_tag_set(&mapping->page_tree,
2038                                 page_index(page), PAGECACHE_TAG_DIRTY);
2039                 }
2040                 spin_unlock_irq(&mapping->tree_lock);
2041                 if (mapping->host) {
2042                         /* !PageAnon && !swapper_space */
2043                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2044                 }
2045                 return 1;
2046         }
2047         return 0;
2048 }
2049 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2050
2051 /*
2052  * Call this whenever redirtying a page, to de-account the dirty counters
2053  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2054  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2055  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2056  * control.
2057  */
2058 void account_page_redirty(struct page *page)
2059 {
2060         struct address_space *mapping = page->mapping;
2061         if (mapping && mapping_cap_account_dirty(mapping)) {
2062                 current->nr_dirtied--;
2063                 dec_zone_page_state(page, NR_DIRTIED);
2064                 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2065         }
2066 }
2067 EXPORT_SYMBOL(account_page_redirty);
2068
2069 /*
2070  * When a writepage implementation decides that it doesn't want to write this
2071  * page for some reason, it should redirty the locked page via
2072  * redirty_page_for_writepage() and it should then unlock the page and return 0
2073  */
2074 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2075 {
2076         wbc->pages_skipped++;
2077         account_page_redirty(page);
2078         return __set_page_dirty_nobuffers(page);
2079 }
2080 EXPORT_SYMBOL(redirty_page_for_writepage);
2081
2082 /*
2083  * Dirty a page.
2084  *
2085  * For pages with a mapping this should be done under the page lock
2086  * for the benefit of asynchronous memory errors who prefer a consistent
2087  * dirty state. This rule can be broken in some special cases,
2088  * but should be better not to.
2089  *
2090  * If the mapping doesn't provide a set_page_dirty a_op, then
2091  * just fall through and assume that it wants buffer_heads.
2092  */
2093 int set_page_dirty(struct page *page)
2094 {
2095         struct address_space *mapping = page_mapping(page);
2096
2097         if (likely(mapping)) {
2098                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2099                 /*
2100                  * readahead/lru_deactivate_page could remain
2101                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2102                  * About readahead, if the page is written, the flags would be
2103                  * reset. So no problem.
2104                  * About lru_deactivate_page, if the page is redirty, the flag
2105                  * will be reset. So no problem. but if the page is used by readahead
2106                  * it will confuse readahead and make it restart the size rampup
2107                  * process. But it's a trivial problem.
2108                  */
2109                 ClearPageReclaim(page);
2110 #ifdef CONFIG_BLOCK
2111                 if (!spd)
2112                         spd = __set_page_dirty_buffers;
2113 #endif
2114                 return (*spd)(page);
2115         }
2116         if (!PageDirty(page)) {
2117                 if (!TestSetPageDirty(page))
2118                         return 1;
2119         }
2120         return 0;
2121 }
2122 EXPORT_SYMBOL(set_page_dirty);
2123
2124 /*
2125  * set_page_dirty() is racy if the caller has no reference against
2126  * page->mapping->host, and if the page is unlocked.  This is because another
2127  * CPU could truncate the page off the mapping and then free the mapping.
2128  *
2129  * Usually, the page _is_ locked, or the caller is a user-space process which
2130  * holds a reference on the inode by having an open file.
2131  *
2132  * In other cases, the page should be locked before running set_page_dirty().
2133  */
2134 int set_page_dirty_lock(struct page *page)
2135 {
2136         int ret;
2137
2138         lock_page(page);
2139         ret = set_page_dirty(page);
2140         unlock_page(page);
2141         return ret;
2142 }
2143 EXPORT_SYMBOL(set_page_dirty_lock);
2144
2145 /*
2146  * Clear a page's dirty flag, while caring for dirty memory accounting.
2147  * Returns true if the page was previously dirty.
2148  *
2149  * This is for preparing to put the page under writeout.  We leave the page
2150  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2151  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2152  * implementation will run either set_page_writeback() or set_page_dirty(),
2153  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2154  * back into sync.
2155  *
2156  * This incoherency between the page's dirty flag and radix-tree tag is
2157  * unfortunate, but it only exists while the page is locked.
2158  */
2159 int clear_page_dirty_for_io(struct page *page)
2160 {
2161         struct address_space *mapping = page_mapping(page);
2162
2163         BUG_ON(!PageLocked(page));
2164
2165         if (mapping && mapping_cap_account_dirty(mapping)) {
2166                 /*
2167                  * Yes, Virginia, this is indeed insane.
2168                  *
2169                  * We use this sequence to make sure that
2170                  *  (a) we account for dirty stats properly
2171                  *  (b) we tell the low-level filesystem to
2172                  *      mark the whole page dirty if it was
2173                  *      dirty in a pagetable. Only to then
2174                  *  (c) clean the page again and return 1 to
2175                  *      cause the writeback.
2176                  *
2177                  * This way we avoid all nasty races with the
2178                  * dirty bit in multiple places and clearing
2179                  * them concurrently from different threads.
2180                  *
2181                  * Note! Normally the "set_page_dirty(page)"
2182                  * has no effect on the actual dirty bit - since
2183                  * that will already usually be set. But we
2184                  * need the side effects, and it can help us
2185                  * avoid races.
2186                  *
2187                  * We basically use the page "master dirty bit"
2188                  * as a serialization point for all the different
2189                  * threads doing their things.
2190                  */
2191                 if (page_mkclean(page))
2192                         set_page_dirty(page);
2193                 /*
2194                  * We carefully synchronise fault handlers against
2195                  * installing a dirty pte and marking the page dirty
2196                  * at this point. We do this by having them hold the
2197                  * page lock at some point after installing their
2198                  * pte, but before marking the page dirty.
2199                  * Pages are always locked coming in here, so we get
2200                  * the desired exclusion. See mm/memory.c:do_wp_page()
2201                  * for more comments.
2202                  */
2203                 if (TestClearPageDirty(page)) {
2204                         dec_zone_page_state(page, NR_FILE_DIRTY);
2205                         dec_bdi_stat(mapping->backing_dev_info,
2206                                         BDI_RECLAIMABLE);
2207                         return 1;
2208                 }
2209                 return 0;
2210         }
2211         return TestClearPageDirty(page);
2212 }
2213 EXPORT_SYMBOL(clear_page_dirty_for_io);
2214
2215 int test_clear_page_writeback(struct page *page)
2216 {
2217         struct address_space *mapping = page_mapping(page);
2218         int ret;
2219
2220         if (mapping) {
2221                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2222                 unsigned long flags;
2223
2224                 spin_lock_irqsave(&mapping->tree_lock, flags);
2225                 ret = TestClearPageWriteback(page);
2226                 if (ret) {
2227                         radix_tree_tag_clear(&mapping->page_tree,
2228                                                 page_index(page),
2229                                                 PAGECACHE_TAG_WRITEBACK);
2230                         if (bdi_cap_account_writeback(bdi)) {
2231                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2232                                 __bdi_writeout_inc(bdi);
2233                         }
2234                 }
2235                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2236         } else {
2237                 ret = TestClearPageWriteback(page);
2238         }
2239         if (ret) {
2240                 dec_zone_page_state(page, NR_WRITEBACK);
2241                 inc_zone_page_state(page, NR_WRITTEN);
2242         }
2243         return ret;
2244 }
2245
2246 int test_set_page_writeback(struct page *page)
2247 {
2248         struct address_space *mapping = page_mapping(page);
2249         int ret;
2250
2251         if (mapping) {
2252                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2253                 unsigned long flags;
2254
2255                 spin_lock_irqsave(&mapping->tree_lock, flags);
2256                 ret = TestSetPageWriteback(page);
2257                 if (!ret) {
2258                         radix_tree_tag_set(&mapping->page_tree,
2259                                                 page_index(page),
2260                                                 PAGECACHE_TAG_WRITEBACK);
2261                         if (bdi_cap_account_writeback(bdi))
2262                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2263                 }
2264                 if (!PageDirty(page))
2265                         radix_tree_tag_clear(&mapping->page_tree,
2266                                                 page_index(page),
2267                                                 PAGECACHE_TAG_DIRTY);
2268                 radix_tree_tag_clear(&mapping->page_tree,
2269                                      page_index(page),
2270                                      PAGECACHE_TAG_TOWRITE);
2271                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2272         } else {
2273                 ret = TestSetPageWriteback(page);
2274         }
2275         if (!ret)
2276                 account_page_writeback(page);
2277         return ret;
2278
2279 }
2280 EXPORT_SYMBOL(test_set_page_writeback);
2281
2282 /*
2283  * Return true if any of the pages in the mapping are marked with the
2284  * passed tag.
2285  */
2286 int mapping_tagged(struct address_space *mapping, int tag)
2287 {
2288         return radix_tree_tagged(&mapping->page_tree, tag);
2289 }
2290 EXPORT_SYMBOL(mapping_tagged);
2291
2292 /**
2293  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2294  * @page:       The page to wait on.
2295  *
2296  * This function determines if the given page is related to a backing device
2297  * that requires page contents to be held stable during writeback.  If so, then
2298  * it will wait for any pending writeback to complete.
2299  */
2300 void wait_for_stable_page(struct page *page)
2301 {
2302         struct address_space *mapping = page_mapping(page);
2303         struct backing_dev_info *bdi = mapping->backing_dev_info;
2304
2305         if (!bdi_cap_stable_pages_required(bdi))
2306                 return;
2307
2308         wait_on_page_writeback(page);
2309 }
2310 EXPORT_SYMBOL_GPL(wait_for_stable_page);