writeback: avoid unnecessary calculation of bdi dirty thresholds
[firefly-linux-kernel-4.4.55.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41  * will look to see if it needs to force writeback or throttling.
42  */
43 static long ratelimit_pages = 32;
44
45 /*
46  * When balance_dirty_pages decides that the caller needs to perform some
47  * non-background writeback, this is how many pages it will attempt to write.
48  * It should be somewhat larger than dirtied pages to ensure that reasonably
49  * large amounts of I/O are submitted.
50  */
51 static inline long sync_writeback_pages(unsigned long dirtied)
52 {
53         if (dirtied < ratelimit_pages)
54                 dirtied = ratelimit_pages;
55
56         return dirtied + dirtied / 2;
57 }
58
59 /* The following parameters are exported via /proc/sys/vm */
60
61 /*
62  * Start background writeback (via writeback threads) at this percentage
63  */
64 int dirty_background_ratio = 10;
65
66 /*
67  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68  * dirty_background_ratio * the amount of dirtyable memory
69  */
70 unsigned long dirty_background_bytes;
71
72 /*
73  * free highmem will not be subtracted from the total free memory
74  * for calculating free ratios if vm_highmem_is_dirtyable is true
75  */
76 int vm_highmem_is_dirtyable;
77
78 /*
79  * The generator of dirty data starts writeback at this percentage
80  */
81 int vm_dirty_ratio = 20;
82
83 /*
84  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85  * vm_dirty_ratio * the amount of dirtyable memory
86  */
87 unsigned long vm_dirty_bytes;
88
89 /*
90  * The interval between `kupdate'-style writebacks
91  */
92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93
94 /*
95  * The longest time for which data is allowed to remain dirty
96  */
97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98
99 /*
100  * Flag that makes the machine dump writes/reads and block dirtyings.
101  */
102 int block_dump;
103
104 /*
105  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106  * a full sync is triggered after this time elapses without any disk activity.
107  */
108 int laptop_mode;
109
110 EXPORT_SYMBOL(laptop_mode);
111
112 /* End of sysctl-exported parameters */
113
114
115 /*
116  * Scale the writeback cache size proportional to the relative writeout speeds.
117  *
118  * We do this by keeping a floating proportion between BDIs, based on page
119  * writeback completions [end_page_writeback()]. Those devices that write out
120  * pages fastest will get the larger share, while the slower will get a smaller
121  * share.
122  *
123  * We use page writeout completions because we are interested in getting rid of
124  * dirty pages. Having them written out is the primary goal.
125  *
126  * We introduce a concept of time, a period over which we measure these events,
127  * because demand can/will vary over time. The length of this period itself is
128  * measured in page writeback completions.
129  *
130  */
131 static struct prop_descriptor vm_completions;
132 static struct prop_descriptor vm_dirties;
133
134 /*
135  * couple the period to the dirty_ratio:
136  *
137  *   period/2 ~ roundup_pow_of_two(dirty limit)
138  */
139 static int calc_period_shift(void)
140 {
141         unsigned long dirty_total;
142
143         if (vm_dirty_bytes)
144                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
145         else
146                 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147                                 100;
148         return 2 + ilog2(dirty_total - 1);
149 }
150
151 /*
152  * update the period when the dirty threshold changes.
153  */
154 static void update_completion_period(void)
155 {
156         int shift = calc_period_shift();
157         prop_change_shift(&vm_completions, shift);
158         prop_change_shift(&vm_dirties, shift);
159 }
160
161 int dirty_background_ratio_handler(struct ctl_table *table, int write,
162                 void __user *buffer, size_t *lenp,
163                 loff_t *ppos)
164 {
165         int ret;
166
167         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
168         if (ret == 0 && write)
169                 dirty_background_bytes = 0;
170         return ret;
171 }
172
173 int dirty_background_bytes_handler(struct ctl_table *table, int write,
174                 void __user *buffer, size_t *lenp,
175                 loff_t *ppos)
176 {
177         int ret;
178
179         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180         if (ret == 0 && write)
181                 dirty_background_ratio = 0;
182         return ret;
183 }
184
185 int dirty_ratio_handler(struct ctl_table *table, int write,
186                 void __user *buffer, size_t *lenp,
187                 loff_t *ppos)
188 {
189         int old_ratio = vm_dirty_ratio;
190         int ret;
191
192         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
193         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
194                 update_completion_period();
195                 vm_dirty_bytes = 0;
196         }
197         return ret;
198 }
199
200
201 int dirty_bytes_handler(struct ctl_table *table, int write,
202                 void __user *buffer, size_t *lenp,
203                 loff_t *ppos)
204 {
205         unsigned long old_bytes = vm_dirty_bytes;
206         int ret;
207
208         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
209         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210                 update_completion_period();
211                 vm_dirty_ratio = 0;
212         }
213         return ret;
214 }
215
216 /*
217  * Increment the BDI's writeout completion count and the global writeout
218  * completion count. Called from test_clear_page_writeback().
219  */
220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221 {
222         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223                               bdi->max_prop_frac);
224 }
225
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
227 {
228         unsigned long flags;
229
230         local_irq_save(flags);
231         __bdi_writeout_inc(bdi);
232         local_irq_restore(flags);
233 }
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
236 void task_dirty_inc(struct task_struct *tsk)
237 {
238         prop_inc_single(&vm_dirties, &tsk->dirties);
239 }
240
241 /*
242  * Obtain an accurate fraction of the BDI's portion.
243  */
244 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245                 long *numerator, long *denominator)
246 {
247         if (bdi_cap_writeback_dirty(bdi)) {
248                 prop_fraction_percpu(&vm_completions, &bdi->completions,
249                                 numerator, denominator);
250         } else {
251                 *numerator = 0;
252                 *denominator = 1;
253         }
254 }
255
256 static inline void task_dirties_fraction(struct task_struct *tsk,
257                 long *numerator, long *denominator)
258 {
259         prop_fraction_single(&vm_dirties, &tsk->dirties,
260                                 numerator, denominator);
261 }
262
263 /*
264  * scale the dirty limit
265  *
266  * task specific dirty limit:
267  *
268  *   dirty -= (dirty/8) * p_{t}
269  */
270 static unsigned long task_dirty_limit(struct task_struct *tsk,
271                                        unsigned long bdi_dirty)
272 {
273         long numerator, denominator;
274         unsigned long dirty = bdi_dirty;
275         u64 inv = dirty >> 3;
276
277         task_dirties_fraction(tsk, &numerator, &denominator);
278         inv *= numerator;
279         do_div(inv, denominator);
280
281         dirty -= inv;
282
283         return max(dirty, bdi_dirty/2);
284 }
285
286 /*
287  *
288  */
289 static unsigned int bdi_min_ratio;
290
291 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
292 {
293         int ret = 0;
294
295         spin_lock_bh(&bdi_lock);
296         if (min_ratio > bdi->max_ratio) {
297                 ret = -EINVAL;
298         } else {
299                 min_ratio -= bdi->min_ratio;
300                 if (bdi_min_ratio + min_ratio < 100) {
301                         bdi_min_ratio += min_ratio;
302                         bdi->min_ratio += min_ratio;
303                 } else {
304                         ret = -EINVAL;
305                 }
306         }
307         spin_unlock_bh(&bdi_lock);
308
309         return ret;
310 }
311
312 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
313 {
314         int ret = 0;
315
316         if (max_ratio > 100)
317                 return -EINVAL;
318
319         spin_lock_bh(&bdi_lock);
320         if (bdi->min_ratio > max_ratio) {
321                 ret = -EINVAL;
322         } else {
323                 bdi->max_ratio = max_ratio;
324                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
325         }
326         spin_unlock_bh(&bdi_lock);
327
328         return ret;
329 }
330 EXPORT_SYMBOL(bdi_set_max_ratio);
331
332 /*
333  * Work out the current dirty-memory clamping and background writeout
334  * thresholds.
335  *
336  * The main aim here is to lower them aggressively if there is a lot of mapped
337  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
338  * pages.  It is better to clamp down on writers than to start swapping, and
339  * performing lots of scanning.
340  *
341  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
342  *
343  * We don't permit the clamping level to fall below 5% - that is getting rather
344  * excessive.
345  *
346  * We make sure that the background writeout level is below the adjusted
347  * clamping level.
348  */
349
350 static unsigned long highmem_dirtyable_memory(unsigned long total)
351 {
352 #ifdef CONFIG_HIGHMEM
353         int node;
354         unsigned long x = 0;
355
356         for_each_node_state(node, N_HIGH_MEMORY) {
357                 struct zone *z =
358                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
359
360                 x += zone_page_state(z, NR_FREE_PAGES) +
361                      zone_reclaimable_pages(z);
362         }
363         /*
364          * Make sure that the number of highmem pages is never larger
365          * than the number of the total dirtyable memory. This can only
366          * occur in very strange VM situations but we want to make sure
367          * that this does not occur.
368          */
369         return min(x, total);
370 #else
371         return 0;
372 #endif
373 }
374
375 /**
376  * determine_dirtyable_memory - amount of memory that may be used
377  *
378  * Returns the numebr of pages that can currently be freed and used
379  * by the kernel for direct mappings.
380  */
381 unsigned long determine_dirtyable_memory(void)
382 {
383         unsigned long x;
384
385         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
386
387         if (!vm_highmem_is_dirtyable)
388                 x -= highmem_dirtyable_memory(x);
389
390         return x + 1;   /* Ensure that we never return 0 */
391 }
392
393 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
394 {
395         unsigned long background;
396         unsigned long dirty;
397         unsigned long available_memory = determine_dirtyable_memory();
398         struct task_struct *tsk;
399
400         if (vm_dirty_bytes)
401                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
402         else {
403                 int dirty_ratio;
404
405                 dirty_ratio = vm_dirty_ratio;
406                 if (dirty_ratio < 5)
407                         dirty_ratio = 5;
408                 dirty = (dirty_ratio * available_memory) / 100;
409         }
410
411         if (dirty_background_bytes)
412                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
413         else
414                 background = (dirty_background_ratio * available_memory) / 100;
415
416         if (background >= dirty)
417                 background = dirty / 2;
418         tsk = current;
419         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
420                 background += background / 4;
421                 dirty += dirty / 4;
422         }
423         *pbackground = background;
424         *pdirty = dirty;
425 }
426
427 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi,
428                                unsigned long dirty)
429 {
430         u64 bdi_dirty;
431         long numerator, denominator;
432
433         /*
434          * Calculate this BDI's share of the dirty ratio.
435          */
436         bdi_writeout_fraction(bdi, &numerator, &denominator);
437
438         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
439         bdi_dirty *= numerator;
440         do_div(bdi_dirty, denominator);
441
442         bdi_dirty += (dirty * bdi->min_ratio) / 100;
443         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
444                 bdi_dirty = dirty * bdi->max_ratio / 100;
445
446         return bdi_dirty;
447 }
448
449 /*
450  * balance_dirty_pages() must be called by processes which are generating dirty
451  * data.  It looks at the number of dirty pages in the machine and will force
452  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
453  * If we're over `background_thresh' then the writeback threads are woken to
454  * perform some writeout.
455  */
456 static void balance_dirty_pages(struct address_space *mapping,
457                                 unsigned long write_chunk)
458 {
459         long nr_reclaimable, bdi_nr_reclaimable;
460         long nr_writeback, bdi_nr_writeback;
461         unsigned long background_thresh;
462         unsigned long dirty_thresh;
463         unsigned long bdi_thresh;
464         unsigned long pages_written = 0;
465         unsigned long pause = 1;
466         bool dirty_exceeded = false;
467         struct backing_dev_info *bdi = mapping->backing_dev_info;
468
469         for (;;) {
470                 struct writeback_control wbc = {
471                         .sync_mode      = WB_SYNC_NONE,
472                         .older_than_this = NULL,
473                         .nr_to_write    = write_chunk,
474                         .range_cyclic   = 1,
475                 };
476
477                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
478                                         global_page_state(NR_UNSTABLE_NFS);
479                 nr_writeback = global_page_state(NR_WRITEBACK);
480
481                 global_dirty_limits(&background_thresh, &dirty_thresh);
482
483                 /*
484                  * Throttle it only when the background writeback cannot
485                  * catch-up. This avoids (excessively) small writeouts
486                  * when the bdi limits are ramping up.
487                  */
488                 if (nr_reclaimable + nr_writeback <
489                                 (background_thresh + dirty_thresh) / 2)
490                         break;
491
492                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
493                 bdi_thresh = task_dirty_limit(current, bdi_thresh);
494
495                 /*
496                  * In order to avoid the stacked BDI deadlock we need
497                  * to ensure we accurately count the 'dirty' pages when
498                  * the threshold is low.
499                  *
500                  * Otherwise it would be possible to get thresh+n pages
501                  * reported dirty, even though there are thresh-m pages
502                  * actually dirty; with m+n sitting in the percpu
503                  * deltas.
504                  */
505                 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
506                         bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
507                         bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
508                 } else {
509                         bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
510                         bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
511                 }
512
513                 /*
514                  * The bdi thresh is somehow "soft" limit derived from the
515                  * global "hard" limit. The former helps to prevent heavy IO
516                  * bdi or process from holding back light ones; The latter is
517                  * the last resort safeguard.
518                  */
519                 dirty_exceeded =
520                         (bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh)
521                         || (nr_reclaimable + nr_writeback >= dirty_thresh);
522
523                 if (!dirty_exceeded)
524                         break;
525
526                 if (!bdi->dirty_exceeded)
527                         bdi->dirty_exceeded = 1;
528
529                 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
530                  * Unstable writes are a feature of certain networked
531                  * filesystems (i.e. NFS) in which data may have been
532                  * written to the server's write cache, but has not yet
533                  * been flushed to permanent storage.
534                  * Only move pages to writeback if this bdi is over its
535                  * threshold otherwise wait until the disk writes catch
536                  * up.
537                  */
538                 trace_wbc_balance_dirty_start(&wbc, bdi);
539                 if (bdi_nr_reclaimable > bdi_thresh) {
540                         writeback_inodes_wb(&bdi->wb, &wbc);
541                         pages_written += write_chunk - wbc.nr_to_write;
542                         trace_wbc_balance_dirty_written(&wbc, bdi);
543                         if (pages_written >= write_chunk)
544                                 break;          /* We've done our duty */
545                 }
546                 trace_wbc_balance_dirty_wait(&wbc, bdi);
547                 __set_current_state(TASK_INTERRUPTIBLE);
548                 io_schedule_timeout(pause);
549
550                 /*
551                  * Increase the delay for each loop, up to our previous
552                  * default of taking a 100ms nap.
553                  */
554                 pause <<= 1;
555                 if (pause > HZ / 10)
556                         pause = HZ / 10;
557         }
558
559         if (!dirty_exceeded && bdi->dirty_exceeded)
560                 bdi->dirty_exceeded = 0;
561
562         if (writeback_in_progress(bdi))
563                 return;
564
565         /*
566          * In laptop mode, we wait until hitting the higher threshold before
567          * starting background writeout, and then write out all the way down
568          * to the lower threshold.  So slow writers cause minimal disk activity.
569          *
570          * In normal mode, we start background writeout at the lower
571          * background_thresh, to keep the amount of dirty memory low.
572          */
573         if ((laptop_mode && pages_written) ||
574             (!laptop_mode && (nr_reclaimable > background_thresh)))
575                 bdi_start_background_writeback(bdi);
576 }
577
578 void set_page_dirty_balance(struct page *page, int page_mkwrite)
579 {
580         if (set_page_dirty(page) || page_mkwrite) {
581                 struct address_space *mapping = page_mapping(page);
582
583                 if (mapping)
584                         balance_dirty_pages_ratelimited(mapping);
585         }
586 }
587
588 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
589
590 /**
591  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
592  * @mapping: address_space which was dirtied
593  * @nr_pages_dirtied: number of pages which the caller has just dirtied
594  *
595  * Processes which are dirtying memory should call in here once for each page
596  * which was newly dirtied.  The function will periodically check the system's
597  * dirty state and will initiate writeback if needed.
598  *
599  * On really big machines, get_writeback_state is expensive, so try to avoid
600  * calling it too often (ratelimiting).  But once we're over the dirty memory
601  * limit we decrease the ratelimiting by a lot, to prevent individual processes
602  * from overshooting the limit by (ratelimit_pages) each.
603  */
604 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
605                                         unsigned long nr_pages_dirtied)
606 {
607         unsigned long ratelimit;
608         unsigned long *p;
609
610         ratelimit = ratelimit_pages;
611         if (mapping->backing_dev_info->dirty_exceeded)
612                 ratelimit = 8;
613
614         /*
615          * Check the rate limiting. Also, we do not want to throttle real-time
616          * tasks in balance_dirty_pages(). Period.
617          */
618         preempt_disable();
619         p =  &__get_cpu_var(bdp_ratelimits);
620         *p += nr_pages_dirtied;
621         if (unlikely(*p >= ratelimit)) {
622                 ratelimit = sync_writeback_pages(*p);
623                 *p = 0;
624                 preempt_enable();
625                 balance_dirty_pages(mapping, ratelimit);
626                 return;
627         }
628         preempt_enable();
629 }
630 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
631
632 void throttle_vm_writeout(gfp_t gfp_mask)
633 {
634         unsigned long background_thresh;
635         unsigned long dirty_thresh;
636
637         for ( ; ; ) {
638                 global_dirty_limits(&background_thresh, &dirty_thresh);
639
640                 /*
641                  * Boost the allowable dirty threshold a bit for page
642                  * allocators so they don't get DoS'ed by heavy writers
643                  */
644                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
645
646                 if (global_page_state(NR_UNSTABLE_NFS) +
647                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
648                                 break;
649                 congestion_wait(BLK_RW_ASYNC, HZ/10);
650
651                 /*
652                  * The caller might hold locks which can prevent IO completion
653                  * or progress in the filesystem.  So we cannot just sit here
654                  * waiting for IO to complete.
655                  */
656                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
657                         break;
658         }
659 }
660
661 /*
662  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
663  */
664 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
665         void __user *buffer, size_t *length, loff_t *ppos)
666 {
667         proc_dointvec(table, write, buffer, length, ppos);
668         bdi_arm_supers_timer();
669         return 0;
670 }
671
672 #ifdef CONFIG_BLOCK
673 void laptop_mode_timer_fn(unsigned long data)
674 {
675         struct request_queue *q = (struct request_queue *)data;
676         int nr_pages = global_page_state(NR_FILE_DIRTY) +
677                 global_page_state(NR_UNSTABLE_NFS);
678
679         /*
680          * We want to write everything out, not just down to the dirty
681          * threshold
682          */
683         if (bdi_has_dirty_io(&q->backing_dev_info))
684                 bdi_start_writeback(&q->backing_dev_info, nr_pages);
685 }
686
687 /*
688  * We've spun up the disk and we're in laptop mode: schedule writeback
689  * of all dirty data a few seconds from now.  If the flush is already scheduled
690  * then push it back - the user is still using the disk.
691  */
692 void laptop_io_completion(struct backing_dev_info *info)
693 {
694         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
695 }
696
697 /*
698  * We're in laptop mode and we've just synced. The sync's writes will have
699  * caused another writeback to be scheduled by laptop_io_completion.
700  * Nothing needs to be written back anymore, so we unschedule the writeback.
701  */
702 void laptop_sync_completion(void)
703 {
704         struct backing_dev_info *bdi;
705
706         rcu_read_lock();
707
708         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
709                 del_timer(&bdi->laptop_mode_wb_timer);
710
711         rcu_read_unlock();
712 }
713 #endif
714
715 /*
716  * If ratelimit_pages is too high then we can get into dirty-data overload
717  * if a large number of processes all perform writes at the same time.
718  * If it is too low then SMP machines will call the (expensive)
719  * get_writeback_state too often.
720  *
721  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
722  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
723  * thresholds before writeback cuts in.
724  *
725  * But the limit should not be set too high.  Because it also controls the
726  * amount of memory which the balance_dirty_pages() caller has to write back.
727  * If this is too large then the caller will block on the IO queue all the
728  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
729  * will write six megabyte chunks, max.
730  */
731
732 void writeback_set_ratelimit(void)
733 {
734         ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
735         if (ratelimit_pages < 16)
736                 ratelimit_pages = 16;
737         if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
738                 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
739 }
740
741 static int __cpuinit
742 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
743 {
744         writeback_set_ratelimit();
745         return NOTIFY_DONE;
746 }
747
748 static struct notifier_block __cpuinitdata ratelimit_nb = {
749         .notifier_call  = ratelimit_handler,
750         .next           = NULL,
751 };
752
753 /*
754  * Called early on to tune the page writeback dirty limits.
755  *
756  * We used to scale dirty pages according to how total memory
757  * related to pages that could be allocated for buffers (by
758  * comparing nr_free_buffer_pages() to vm_total_pages.
759  *
760  * However, that was when we used "dirty_ratio" to scale with
761  * all memory, and we don't do that any more. "dirty_ratio"
762  * is now applied to total non-HIGHPAGE memory (by subtracting
763  * totalhigh_pages from vm_total_pages), and as such we can't
764  * get into the old insane situation any more where we had
765  * large amounts of dirty pages compared to a small amount of
766  * non-HIGHMEM memory.
767  *
768  * But we might still want to scale the dirty_ratio by how
769  * much memory the box has..
770  */
771 void __init page_writeback_init(void)
772 {
773         int shift;
774
775         writeback_set_ratelimit();
776         register_cpu_notifier(&ratelimit_nb);
777
778         shift = calc_period_shift();
779         prop_descriptor_init(&vm_completions, shift);
780         prop_descriptor_init(&vm_dirties, shift);
781 }
782
783 /**
784  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
785  * @mapping: address space structure to write
786  * @start: starting page index
787  * @end: ending page index (inclusive)
788  *
789  * This function scans the page range from @start to @end (inclusive) and tags
790  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
791  * that write_cache_pages (or whoever calls this function) will then use
792  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
793  * used to avoid livelocking of writeback by a process steadily creating new
794  * dirty pages in the file (thus it is important for this function to be quick
795  * so that it can tag pages faster than a dirtying process can create them).
796  */
797 /*
798  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
799  */
800 void tag_pages_for_writeback(struct address_space *mapping,
801                              pgoff_t start, pgoff_t end)
802 {
803 #define WRITEBACK_TAG_BATCH 4096
804         unsigned long tagged;
805
806         do {
807                 spin_lock_irq(&mapping->tree_lock);
808                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
809                                 &start, end, WRITEBACK_TAG_BATCH,
810                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
811                 spin_unlock_irq(&mapping->tree_lock);
812                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
813                 cond_resched();
814         } while (tagged >= WRITEBACK_TAG_BATCH);
815 }
816 EXPORT_SYMBOL(tag_pages_for_writeback);
817
818 /**
819  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
820  * @mapping: address space structure to write
821  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
822  * @writepage: function called for each page
823  * @data: data passed to writepage function
824  *
825  * If a page is already under I/O, write_cache_pages() skips it, even
826  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
827  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
828  * and msync() need to guarantee that all the data which was dirty at the time
829  * the call was made get new I/O started against them.  If wbc->sync_mode is
830  * WB_SYNC_ALL then we were called for data integrity and we must wait for
831  * existing IO to complete.
832  *
833  * To avoid livelocks (when other process dirties new pages), we first tag
834  * pages which should be written back with TOWRITE tag and only then start
835  * writing them. For data-integrity sync we have to be careful so that we do
836  * not miss some pages (e.g., because some other process has cleared TOWRITE
837  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
838  * by the process clearing the DIRTY tag (and submitting the page for IO).
839  */
840 int write_cache_pages(struct address_space *mapping,
841                       struct writeback_control *wbc, writepage_t writepage,
842                       void *data)
843 {
844         int ret = 0;
845         int done = 0;
846         struct pagevec pvec;
847         int nr_pages;
848         pgoff_t uninitialized_var(writeback_index);
849         pgoff_t index;
850         pgoff_t end;            /* Inclusive */
851         pgoff_t done_index;
852         int cycled;
853         int range_whole = 0;
854         int tag;
855
856         pagevec_init(&pvec, 0);
857         if (wbc->range_cyclic) {
858                 writeback_index = mapping->writeback_index; /* prev offset */
859                 index = writeback_index;
860                 if (index == 0)
861                         cycled = 1;
862                 else
863                         cycled = 0;
864                 end = -1;
865         } else {
866                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
867                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
868                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
869                         range_whole = 1;
870                 cycled = 1; /* ignore range_cyclic tests */
871         }
872         if (wbc->sync_mode == WB_SYNC_ALL)
873                 tag = PAGECACHE_TAG_TOWRITE;
874         else
875                 tag = PAGECACHE_TAG_DIRTY;
876 retry:
877         if (wbc->sync_mode == WB_SYNC_ALL)
878                 tag_pages_for_writeback(mapping, index, end);
879         done_index = index;
880         while (!done && (index <= end)) {
881                 int i;
882
883                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
884                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
885                 if (nr_pages == 0)
886                         break;
887
888                 for (i = 0; i < nr_pages; i++) {
889                         struct page *page = pvec.pages[i];
890
891                         /*
892                          * At this point, the page may be truncated or
893                          * invalidated (changing page->mapping to NULL), or
894                          * even swizzled back from swapper_space to tmpfs file
895                          * mapping. However, page->index will not change
896                          * because we have a reference on the page.
897                          */
898                         if (page->index > end) {
899                                 /*
900                                  * can't be range_cyclic (1st pass) because
901                                  * end == -1 in that case.
902                                  */
903                                 done = 1;
904                                 break;
905                         }
906
907                         done_index = page->index + 1;
908
909                         lock_page(page);
910
911                         /*
912                          * Page truncated or invalidated. We can freely skip it
913                          * then, even for data integrity operations: the page
914                          * has disappeared concurrently, so there could be no
915                          * real expectation of this data interity operation
916                          * even if there is now a new, dirty page at the same
917                          * pagecache address.
918                          */
919                         if (unlikely(page->mapping != mapping)) {
920 continue_unlock:
921                                 unlock_page(page);
922                                 continue;
923                         }
924
925                         if (!PageDirty(page)) {
926                                 /* someone wrote it for us */
927                                 goto continue_unlock;
928                         }
929
930                         if (PageWriteback(page)) {
931                                 if (wbc->sync_mode != WB_SYNC_NONE)
932                                         wait_on_page_writeback(page);
933                                 else
934                                         goto continue_unlock;
935                         }
936
937                         BUG_ON(PageWriteback(page));
938                         if (!clear_page_dirty_for_io(page))
939                                 goto continue_unlock;
940
941                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
942                         ret = (*writepage)(page, wbc, data);
943                         if (unlikely(ret)) {
944                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
945                                         unlock_page(page);
946                                         ret = 0;
947                                 } else {
948                                         /*
949                                          * done_index is set past this page,
950                                          * so media errors will not choke
951                                          * background writeout for the entire
952                                          * file. This has consequences for
953                                          * range_cyclic semantics (ie. it may
954                                          * not be suitable for data integrity
955                                          * writeout).
956                                          */
957                                         done = 1;
958                                         break;
959                                 }
960                         }
961
962                         if (wbc->nr_to_write > 0) {
963                                 if (--wbc->nr_to_write == 0 &&
964                                     wbc->sync_mode == WB_SYNC_NONE) {
965                                         /*
966                                          * We stop writing back only if we are
967                                          * not doing integrity sync. In case of
968                                          * integrity sync we have to keep going
969                                          * because someone may be concurrently
970                                          * dirtying pages, and we might have
971                                          * synced a lot of newly appeared dirty
972                                          * pages, but have not synced all of the
973                                          * old dirty pages.
974                                          */
975                                         done = 1;
976                                         break;
977                                 }
978                         }
979                 }
980                 pagevec_release(&pvec);
981                 cond_resched();
982         }
983         if (!cycled && !done) {
984                 /*
985                  * range_cyclic:
986                  * We hit the last page and there is more work to be done: wrap
987                  * back to the start of the file
988                  */
989                 cycled = 1;
990                 index = 0;
991                 end = writeback_index - 1;
992                 goto retry;
993         }
994         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
995                 mapping->writeback_index = done_index;
996
997         return ret;
998 }
999 EXPORT_SYMBOL(write_cache_pages);
1000
1001 /*
1002  * Function used by generic_writepages to call the real writepage
1003  * function and set the mapping flags on error
1004  */
1005 static int __writepage(struct page *page, struct writeback_control *wbc,
1006                        void *data)
1007 {
1008         struct address_space *mapping = data;
1009         int ret = mapping->a_ops->writepage(page, wbc);
1010         mapping_set_error(mapping, ret);
1011         return ret;
1012 }
1013
1014 /**
1015  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1016  * @mapping: address space structure to write
1017  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1018  *
1019  * This is a library function, which implements the writepages()
1020  * address_space_operation.
1021  */
1022 int generic_writepages(struct address_space *mapping,
1023                        struct writeback_control *wbc)
1024 {
1025         /* deal with chardevs and other special file */
1026         if (!mapping->a_ops->writepage)
1027                 return 0;
1028
1029         return write_cache_pages(mapping, wbc, __writepage, mapping);
1030 }
1031
1032 EXPORT_SYMBOL(generic_writepages);
1033
1034 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1035 {
1036         int ret;
1037
1038         if (wbc->nr_to_write <= 0)
1039                 return 0;
1040         if (mapping->a_ops->writepages)
1041                 ret = mapping->a_ops->writepages(mapping, wbc);
1042         else
1043                 ret = generic_writepages(mapping, wbc);
1044         return ret;
1045 }
1046
1047 /**
1048  * write_one_page - write out a single page and optionally wait on I/O
1049  * @page: the page to write
1050  * @wait: if true, wait on writeout
1051  *
1052  * The page must be locked by the caller and will be unlocked upon return.
1053  *
1054  * write_one_page() returns a negative error code if I/O failed.
1055  */
1056 int write_one_page(struct page *page, int wait)
1057 {
1058         struct address_space *mapping = page->mapping;
1059         int ret = 0;
1060         struct writeback_control wbc = {
1061                 .sync_mode = WB_SYNC_ALL,
1062                 .nr_to_write = 1,
1063         };
1064
1065         BUG_ON(!PageLocked(page));
1066
1067         if (wait)
1068                 wait_on_page_writeback(page);
1069
1070         if (clear_page_dirty_for_io(page)) {
1071                 page_cache_get(page);
1072                 ret = mapping->a_ops->writepage(page, &wbc);
1073                 if (ret == 0 && wait) {
1074                         wait_on_page_writeback(page);
1075                         if (PageError(page))
1076                                 ret = -EIO;
1077                 }
1078                 page_cache_release(page);
1079         } else {
1080                 unlock_page(page);
1081         }
1082         return ret;
1083 }
1084 EXPORT_SYMBOL(write_one_page);
1085
1086 /*
1087  * For address_spaces which do not use buffers nor write back.
1088  */
1089 int __set_page_dirty_no_writeback(struct page *page)
1090 {
1091         if (!PageDirty(page))
1092                 SetPageDirty(page);
1093         return 0;
1094 }
1095
1096 /*
1097  * Helper function for set_page_dirty family.
1098  * NOTE: This relies on being atomic wrt interrupts.
1099  */
1100 void account_page_dirtied(struct page *page, struct address_space *mapping)
1101 {
1102         if (mapping_cap_account_dirty(mapping)) {
1103                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1104                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1105                 task_dirty_inc(current);
1106                 task_io_account_write(PAGE_CACHE_SIZE);
1107         }
1108 }
1109
1110 /*
1111  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1112  * its radix tree.
1113  *
1114  * This is also used when a single buffer is being dirtied: we want to set the
1115  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1116  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1117  *
1118  * Most callers have locked the page, which pins the address_space in memory.
1119  * But zap_pte_range() does not lock the page, however in that case the
1120  * mapping is pinned by the vma's ->vm_file reference.
1121  *
1122  * We take care to handle the case where the page was truncated from the
1123  * mapping by re-checking page_mapping() inside tree_lock.
1124  */
1125 int __set_page_dirty_nobuffers(struct page *page)
1126 {
1127         if (!TestSetPageDirty(page)) {
1128                 struct address_space *mapping = page_mapping(page);
1129                 struct address_space *mapping2;
1130
1131                 if (!mapping)
1132                         return 1;
1133
1134                 spin_lock_irq(&mapping->tree_lock);
1135                 mapping2 = page_mapping(page);
1136                 if (mapping2) { /* Race with truncate? */
1137                         BUG_ON(mapping2 != mapping);
1138                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1139                         account_page_dirtied(page, mapping);
1140                         radix_tree_tag_set(&mapping->page_tree,
1141                                 page_index(page), PAGECACHE_TAG_DIRTY);
1142                 }
1143                 spin_unlock_irq(&mapping->tree_lock);
1144                 if (mapping->host) {
1145                         /* !PageAnon && !swapper_space */
1146                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1147                 }
1148                 return 1;
1149         }
1150         return 0;
1151 }
1152 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1153
1154 /*
1155  * When a writepage implementation decides that it doesn't want to write this
1156  * page for some reason, it should redirty the locked page via
1157  * redirty_page_for_writepage() and it should then unlock the page and return 0
1158  */
1159 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1160 {
1161         wbc->pages_skipped++;
1162         return __set_page_dirty_nobuffers(page);
1163 }
1164 EXPORT_SYMBOL(redirty_page_for_writepage);
1165
1166 /*
1167  * Dirty a page.
1168  *
1169  * For pages with a mapping this should be done under the page lock
1170  * for the benefit of asynchronous memory errors who prefer a consistent
1171  * dirty state. This rule can be broken in some special cases,
1172  * but should be better not to.
1173  *
1174  * If the mapping doesn't provide a set_page_dirty a_op, then
1175  * just fall through and assume that it wants buffer_heads.
1176  */
1177 int set_page_dirty(struct page *page)
1178 {
1179         struct address_space *mapping = page_mapping(page);
1180
1181         if (likely(mapping)) {
1182                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1183 #ifdef CONFIG_BLOCK
1184                 if (!spd)
1185                         spd = __set_page_dirty_buffers;
1186 #endif
1187                 return (*spd)(page);
1188         }
1189         if (!PageDirty(page)) {
1190                 if (!TestSetPageDirty(page))
1191                         return 1;
1192         }
1193         return 0;
1194 }
1195 EXPORT_SYMBOL(set_page_dirty);
1196
1197 /*
1198  * set_page_dirty() is racy if the caller has no reference against
1199  * page->mapping->host, and if the page is unlocked.  This is because another
1200  * CPU could truncate the page off the mapping and then free the mapping.
1201  *
1202  * Usually, the page _is_ locked, or the caller is a user-space process which
1203  * holds a reference on the inode by having an open file.
1204  *
1205  * In other cases, the page should be locked before running set_page_dirty().
1206  */
1207 int set_page_dirty_lock(struct page *page)
1208 {
1209         int ret;
1210
1211         lock_page_nosync(page);
1212         ret = set_page_dirty(page);
1213         unlock_page(page);
1214         return ret;
1215 }
1216 EXPORT_SYMBOL(set_page_dirty_lock);
1217
1218 /*
1219  * Clear a page's dirty flag, while caring for dirty memory accounting.
1220  * Returns true if the page was previously dirty.
1221  *
1222  * This is for preparing to put the page under writeout.  We leave the page
1223  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1224  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1225  * implementation will run either set_page_writeback() or set_page_dirty(),
1226  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1227  * back into sync.
1228  *
1229  * This incoherency between the page's dirty flag and radix-tree tag is
1230  * unfortunate, but it only exists while the page is locked.
1231  */
1232 int clear_page_dirty_for_io(struct page *page)
1233 {
1234         struct address_space *mapping = page_mapping(page);
1235
1236         BUG_ON(!PageLocked(page));
1237
1238         ClearPageReclaim(page);
1239         if (mapping && mapping_cap_account_dirty(mapping)) {
1240                 /*
1241                  * Yes, Virginia, this is indeed insane.
1242                  *
1243                  * We use this sequence to make sure that
1244                  *  (a) we account for dirty stats properly
1245                  *  (b) we tell the low-level filesystem to
1246                  *      mark the whole page dirty if it was
1247                  *      dirty in a pagetable. Only to then
1248                  *  (c) clean the page again and return 1 to
1249                  *      cause the writeback.
1250                  *
1251                  * This way we avoid all nasty races with the
1252                  * dirty bit in multiple places and clearing
1253                  * them concurrently from different threads.
1254                  *
1255                  * Note! Normally the "set_page_dirty(page)"
1256                  * has no effect on the actual dirty bit - since
1257                  * that will already usually be set. But we
1258                  * need the side effects, and it can help us
1259                  * avoid races.
1260                  *
1261                  * We basically use the page "master dirty bit"
1262                  * as a serialization point for all the different
1263                  * threads doing their things.
1264                  */
1265                 if (page_mkclean(page))
1266                         set_page_dirty(page);
1267                 /*
1268                  * We carefully synchronise fault handlers against
1269                  * installing a dirty pte and marking the page dirty
1270                  * at this point. We do this by having them hold the
1271                  * page lock at some point after installing their
1272                  * pte, but before marking the page dirty.
1273                  * Pages are always locked coming in here, so we get
1274                  * the desired exclusion. See mm/memory.c:do_wp_page()
1275                  * for more comments.
1276                  */
1277                 if (TestClearPageDirty(page)) {
1278                         dec_zone_page_state(page, NR_FILE_DIRTY);
1279                         dec_bdi_stat(mapping->backing_dev_info,
1280                                         BDI_RECLAIMABLE);
1281                         return 1;
1282                 }
1283                 return 0;
1284         }
1285         return TestClearPageDirty(page);
1286 }
1287 EXPORT_SYMBOL(clear_page_dirty_for_io);
1288
1289 int test_clear_page_writeback(struct page *page)
1290 {
1291         struct address_space *mapping = page_mapping(page);
1292         int ret;
1293
1294         if (mapping) {
1295                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1296                 unsigned long flags;
1297
1298                 spin_lock_irqsave(&mapping->tree_lock, flags);
1299                 ret = TestClearPageWriteback(page);
1300                 if (ret) {
1301                         radix_tree_tag_clear(&mapping->page_tree,
1302                                                 page_index(page),
1303                                                 PAGECACHE_TAG_WRITEBACK);
1304                         if (bdi_cap_account_writeback(bdi)) {
1305                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1306                                 __bdi_writeout_inc(bdi);
1307                         }
1308                 }
1309                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1310         } else {
1311                 ret = TestClearPageWriteback(page);
1312         }
1313         if (ret)
1314                 dec_zone_page_state(page, NR_WRITEBACK);
1315         return ret;
1316 }
1317
1318 int test_set_page_writeback(struct page *page)
1319 {
1320         struct address_space *mapping = page_mapping(page);
1321         int ret;
1322
1323         if (mapping) {
1324                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1325                 unsigned long flags;
1326
1327                 spin_lock_irqsave(&mapping->tree_lock, flags);
1328                 ret = TestSetPageWriteback(page);
1329                 if (!ret) {
1330                         radix_tree_tag_set(&mapping->page_tree,
1331                                                 page_index(page),
1332                                                 PAGECACHE_TAG_WRITEBACK);
1333                         if (bdi_cap_account_writeback(bdi))
1334                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1335                 }
1336                 if (!PageDirty(page))
1337                         radix_tree_tag_clear(&mapping->page_tree,
1338                                                 page_index(page),
1339                                                 PAGECACHE_TAG_DIRTY);
1340                 radix_tree_tag_clear(&mapping->page_tree,
1341                                      page_index(page),
1342                                      PAGECACHE_TAG_TOWRITE);
1343                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1344         } else {
1345                 ret = TestSetPageWriteback(page);
1346         }
1347         if (!ret)
1348                 inc_zone_page_state(page, NR_WRITEBACK);
1349         return ret;
1350
1351 }
1352 EXPORT_SYMBOL(test_set_page_writeback);
1353
1354 /*
1355  * Return true if any of the pages in the mapping are marked with the
1356  * passed tag.
1357  */
1358 int mapping_tagged(struct address_space *mapping, int tag)
1359 {
1360         int ret;
1361         rcu_read_lock();
1362         ret = radix_tree_tagged(&mapping->page_tree, tag);
1363         rcu_read_unlock();
1364         return ret;
1365 }
1366 EXPORT_SYMBOL(mapping_tagged);