writeback: memcg dirty_throttle_control should be initialized with wb->memcg_completions
[firefly-linux-kernel-4.4.55.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130         struct wb_domain        *dom;
131         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
132 #endif
133         struct bdi_writeback    *wb;
134         struct fprop_local_percpu *wb_completions;
135
136         unsigned long           avail;          /* dirtyable */
137         unsigned long           dirty;          /* file_dirty + write + nfs */
138         unsigned long           thresh;         /* dirty threshold */
139         unsigned long           bg_thresh;      /* dirty background threshold */
140
141         unsigned long           wb_dirty;       /* per-wb counterparts */
142         unsigned long           wb_thresh;
143         unsigned long           wb_bg_thresh;
144
145         unsigned long           pos_ratio;
146 };
147
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 #ifdef CONFIG_CGROUP_WRITEBACK
156
157 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
158                                 .dom = &global_wb_domain,               \
159                                 .wb_completions = &(__wb)->completions
160
161 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
162
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
164                                 .dom = mem_cgroup_wb_domain(__wb),      \
165                                 .wb_completions = &(__wb)->memcg_completions, \
166                                 .gdtc = __gdtc
167
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175         return dtc->dom;
176 }
177
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180         return mdtc->gdtc;
181 }
182
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185         return &wb->memcg_completions;
186 }
187
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189                              unsigned long *minp, unsigned long *maxp)
190 {
191         unsigned long this_bw = wb->avg_write_bandwidth;
192         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193         unsigned long long min = wb->bdi->min_ratio;
194         unsigned long long max = wb->bdi->max_ratio;
195
196         /*
197          * @wb may already be clean by the time control reaches here and
198          * the total may not include its bw.
199          */
200         if (this_bw < tot_bw) {
201                 if (min) {
202                         min *= this_bw;
203                         do_div(min, tot_bw);
204                 }
205                 if (max < 100) {
206                         max *= this_bw;
207                         do_div(max, tot_bw);
208                 }
209         }
210
211         *minp = min;
212         *maxp = max;
213 }
214
215 #else   /* CONFIG_CGROUP_WRITEBACK */
216
217 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
218                                 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224         return false;
225 }
226
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229         return &global_wb_domain;
230 }
231
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234         return NULL;
235 }
236
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239         return NULL;
240 }
241
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243                              unsigned long *minp, unsigned long *maxp)
244 {
245         *minp = wb->bdi->min_ratio;
246         *maxp = wb->bdi->max_ratio;
247 }
248
249 #endif  /* CONFIG_CGROUP_WRITEBACK */
250
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effictive number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268
269 /**
270  * zone_dirtyable_memory - number of dirtyable pages in a zone
271  * @zone: the zone
272  *
273  * Returns the zone's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-zone dirty limits.
275  */
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
277 {
278         unsigned long nr_pages;
279
280         nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281         nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
282
283         nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
284         nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
285
286         return nr_pages;
287 }
288
289 static unsigned long highmem_dirtyable_memory(unsigned long total)
290 {
291 #ifdef CONFIG_HIGHMEM
292         int node;
293         unsigned long x = 0;
294
295         for_each_node_state(node, N_HIGH_MEMORY) {
296                 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
297
298                 x += zone_dirtyable_memory(z);
299         }
300         /*
301          * Unreclaimable memory (kernel memory or anonymous memory
302          * without swap) can bring down the dirtyable pages below
303          * the zone's dirty balance reserve and the above calculation
304          * will underflow.  However we still want to add in nodes
305          * which are below threshold (negative values) to get a more
306          * accurate calculation but make sure that the total never
307          * underflows.
308          */
309         if ((long)x < 0)
310                 x = 0;
311
312         /*
313          * Make sure that the number of highmem pages is never larger
314          * than the number of the total dirtyable memory. This can only
315          * occur in very strange VM situations but we want to make sure
316          * that this does not occur.
317          */
318         return min(x, total);
319 #else
320         return 0;
321 #endif
322 }
323
324 /**
325  * global_dirtyable_memory - number of globally dirtyable pages
326  *
327  * Returns the global number of pages potentially available for dirty
328  * page cache.  This is the base value for the global dirty limits.
329  */
330 static unsigned long global_dirtyable_memory(void)
331 {
332         unsigned long x;
333
334         x = global_page_state(NR_FREE_PAGES);
335         x -= min(x, dirty_balance_reserve);
336
337         x += global_page_state(NR_INACTIVE_FILE);
338         x += global_page_state(NR_ACTIVE_FILE);
339
340         if (!vm_highmem_is_dirtyable)
341                 x -= highmem_dirtyable_memory(x);
342
343         return x + 1;   /* Ensure that we never return 0 */
344 }
345
346 /**
347  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348  * @dtc: dirty_throttle_control of interest
349  *
350  * Calculate @dtc->thresh and ->bg_thresh considering
351  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
352  * must ensure that @dtc->avail is set before calling this function.  The
353  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
354  * real-time tasks.
355  */
356 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
357 {
358         const unsigned long available_memory = dtc->avail;
359         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
360         unsigned long bytes = vm_dirty_bytes;
361         unsigned long bg_bytes = dirty_background_bytes;
362         unsigned long ratio = vm_dirty_ratio;
363         unsigned long bg_ratio = dirty_background_ratio;
364         unsigned long thresh;
365         unsigned long bg_thresh;
366         struct task_struct *tsk;
367
368         /* gdtc is !NULL iff @dtc is for memcg domain */
369         if (gdtc) {
370                 unsigned long global_avail = gdtc->avail;
371
372                 /*
373                  * The byte settings can't be applied directly to memcg
374                  * domains.  Convert them to ratios by scaling against
375                  * globally available memory.
376                  */
377                 if (bytes)
378                         ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
379                                     global_avail, 100UL);
380                 if (bg_bytes)
381                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
382                                        global_avail, 100UL);
383                 bytes = bg_bytes = 0;
384         }
385
386         if (bytes)
387                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
388         else
389                 thresh = (ratio * available_memory) / 100;
390
391         if (bg_bytes)
392                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
393         else
394                 bg_thresh = (bg_ratio * available_memory) / 100;
395
396         if (bg_thresh >= thresh)
397                 bg_thresh = thresh / 2;
398         tsk = current;
399         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
400                 bg_thresh += bg_thresh / 4;
401                 thresh += thresh / 4;
402         }
403         dtc->thresh = thresh;
404         dtc->bg_thresh = bg_thresh;
405
406         /* we should eventually report the domain in the TP */
407         if (!gdtc)
408                 trace_global_dirty_state(bg_thresh, thresh);
409 }
410
411 /**
412  * global_dirty_limits - background-writeback and dirty-throttling thresholds
413  * @pbackground: out parameter for bg_thresh
414  * @pdirty: out parameter for thresh
415  *
416  * Calculate bg_thresh and thresh for global_wb_domain.  See
417  * domain_dirty_limits() for details.
418  */
419 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
420 {
421         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
422
423         gdtc.avail = global_dirtyable_memory();
424         domain_dirty_limits(&gdtc);
425
426         *pbackground = gdtc.bg_thresh;
427         *pdirty = gdtc.thresh;
428 }
429
430 /**
431  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
432  * @zone: the zone
433  *
434  * Returns the maximum number of dirty pages allowed in a zone, based
435  * on the zone's dirtyable memory.
436  */
437 static unsigned long zone_dirty_limit(struct zone *zone)
438 {
439         unsigned long zone_memory = zone_dirtyable_memory(zone);
440         struct task_struct *tsk = current;
441         unsigned long dirty;
442
443         if (vm_dirty_bytes)
444                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
445                         zone_memory / global_dirtyable_memory();
446         else
447                 dirty = vm_dirty_ratio * zone_memory / 100;
448
449         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
450                 dirty += dirty / 4;
451
452         return dirty;
453 }
454
455 /**
456  * zone_dirty_ok - tells whether a zone is within its dirty limits
457  * @zone: the zone to check
458  *
459  * Returns %true when the dirty pages in @zone are within the zone's
460  * dirty limit, %false if the limit is exceeded.
461  */
462 bool zone_dirty_ok(struct zone *zone)
463 {
464         unsigned long limit = zone_dirty_limit(zone);
465
466         return zone_page_state(zone, NR_FILE_DIRTY) +
467                zone_page_state(zone, NR_UNSTABLE_NFS) +
468                zone_page_state(zone, NR_WRITEBACK) <= limit;
469 }
470
471 int dirty_background_ratio_handler(struct ctl_table *table, int write,
472                 void __user *buffer, size_t *lenp,
473                 loff_t *ppos)
474 {
475         int ret;
476
477         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
478         if (ret == 0 && write)
479                 dirty_background_bytes = 0;
480         return ret;
481 }
482
483 int dirty_background_bytes_handler(struct ctl_table *table, int write,
484                 void __user *buffer, size_t *lenp,
485                 loff_t *ppos)
486 {
487         int ret;
488
489         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
490         if (ret == 0 && write)
491                 dirty_background_ratio = 0;
492         return ret;
493 }
494
495 int dirty_ratio_handler(struct ctl_table *table, int write,
496                 void __user *buffer, size_t *lenp,
497                 loff_t *ppos)
498 {
499         int old_ratio = vm_dirty_ratio;
500         int ret;
501
502         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
503         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
504                 writeback_set_ratelimit();
505                 vm_dirty_bytes = 0;
506         }
507         return ret;
508 }
509
510 int dirty_bytes_handler(struct ctl_table *table, int write,
511                 void __user *buffer, size_t *lenp,
512                 loff_t *ppos)
513 {
514         unsigned long old_bytes = vm_dirty_bytes;
515         int ret;
516
517         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
518         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
519                 writeback_set_ratelimit();
520                 vm_dirty_ratio = 0;
521         }
522         return ret;
523 }
524
525 static unsigned long wp_next_time(unsigned long cur_time)
526 {
527         cur_time += VM_COMPLETIONS_PERIOD_LEN;
528         /* 0 has a special meaning... */
529         if (!cur_time)
530                 return 1;
531         return cur_time;
532 }
533
534 static void wb_domain_writeout_inc(struct wb_domain *dom,
535                                    struct fprop_local_percpu *completions,
536                                    unsigned int max_prop_frac)
537 {
538         __fprop_inc_percpu_max(&dom->completions, completions,
539                                max_prop_frac);
540         /* First event after period switching was turned off? */
541         if (!unlikely(dom->period_time)) {
542                 /*
543                  * We can race with other __bdi_writeout_inc calls here but
544                  * it does not cause any harm since the resulting time when
545                  * timer will fire and what is in writeout_period_time will be
546                  * roughly the same.
547                  */
548                 dom->period_time = wp_next_time(jiffies);
549                 mod_timer(&dom->period_timer, dom->period_time);
550         }
551 }
552
553 /*
554  * Increment @wb's writeout completion count and the global writeout
555  * completion count. Called from test_clear_page_writeback().
556  */
557 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
558 {
559         struct wb_domain *cgdom;
560
561         __inc_wb_stat(wb, WB_WRITTEN);
562         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
563                                wb->bdi->max_prop_frac);
564
565         cgdom = mem_cgroup_wb_domain(wb);
566         if (cgdom)
567                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
568                                        wb->bdi->max_prop_frac);
569 }
570
571 void wb_writeout_inc(struct bdi_writeback *wb)
572 {
573         unsigned long flags;
574
575         local_irq_save(flags);
576         __wb_writeout_inc(wb);
577         local_irq_restore(flags);
578 }
579 EXPORT_SYMBOL_GPL(wb_writeout_inc);
580
581 /*
582  * On idle system, we can be called long after we scheduled because we use
583  * deferred timers so count with missed periods.
584  */
585 static void writeout_period(unsigned long t)
586 {
587         struct wb_domain *dom = (void *)t;
588         int miss_periods = (jiffies - dom->period_time) /
589                                                  VM_COMPLETIONS_PERIOD_LEN;
590
591         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
592                 dom->period_time = wp_next_time(dom->period_time +
593                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
594                 mod_timer(&dom->period_timer, dom->period_time);
595         } else {
596                 /*
597                  * Aging has zeroed all fractions. Stop wasting CPU on period
598                  * updates.
599                  */
600                 dom->period_time = 0;
601         }
602 }
603
604 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
605 {
606         memset(dom, 0, sizeof(*dom));
607
608         spin_lock_init(&dom->lock);
609
610         init_timer_deferrable(&dom->period_timer);
611         dom->period_timer.function = writeout_period;
612         dom->period_timer.data = (unsigned long)dom;
613
614         dom->dirty_limit_tstamp = jiffies;
615
616         return fprop_global_init(&dom->completions, gfp);
617 }
618
619 #ifdef CONFIG_CGROUP_WRITEBACK
620 void wb_domain_exit(struct wb_domain *dom)
621 {
622         del_timer_sync(&dom->period_timer);
623         fprop_global_destroy(&dom->completions);
624 }
625 #endif
626
627 /*
628  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
629  * registered backing devices, which, for obvious reasons, can not
630  * exceed 100%.
631  */
632 static unsigned int bdi_min_ratio;
633
634 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
635 {
636         int ret = 0;
637
638         spin_lock_bh(&bdi_lock);
639         if (min_ratio > bdi->max_ratio) {
640                 ret = -EINVAL;
641         } else {
642                 min_ratio -= bdi->min_ratio;
643                 if (bdi_min_ratio + min_ratio < 100) {
644                         bdi_min_ratio += min_ratio;
645                         bdi->min_ratio += min_ratio;
646                 } else {
647                         ret = -EINVAL;
648                 }
649         }
650         spin_unlock_bh(&bdi_lock);
651
652         return ret;
653 }
654
655 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
656 {
657         int ret = 0;
658
659         if (max_ratio > 100)
660                 return -EINVAL;
661
662         spin_lock_bh(&bdi_lock);
663         if (bdi->min_ratio > max_ratio) {
664                 ret = -EINVAL;
665         } else {
666                 bdi->max_ratio = max_ratio;
667                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
668         }
669         spin_unlock_bh(&bdi_lock);
670
671         return ret;
672 }
673 EXPORT_SYMBOL(bdi_set_max_ratio);
674
675 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
676                                            unsigned long bg_thresh)
677 {
678         return (thresh + bg_thresh) / 2;
679 }
680
681 static unsigned long hard_dirty_limit(struct wb_domain *dom,
682                                       unsigned long thresh)
683 {
684         return max(thresh, dom->dirty_limit);
685 }
686
687 /* memory available to a memcg domain is capped by system-wide clean memory */
688 static void mdtc_cap_avail(struct dirty_throttle_control *mdtc)
689 {
690         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
691         unsigned long clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
692
693         mdtc->avail = min(mdtc->avail, clean);
694 }
695
696 /**
697  * __wb_calc_thresh - @wb's share of dirty throttling threshold
698  * @dtc: dirty_throttle_context of interest
699  *
700  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
701  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
702  *
703  * Note that balance_dirty_pages() will only seriously take it as a hard limit
704  * when sleeping max_pause per page is not enough to keep the dirty pages under
705  * control. For example, when the device is completely stalled due to some error
706  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
707  * In the other normal situations, it acts more gently by throttling the tasks
708  * more (rather than completely block them) when the wb dirty pages go high.
709  *
710  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
711  * - starving fast devices
712  * - piling up dirty pages (that will take long time to sync) on slow devices
713  *
714  * The wb's share of dirty limit will be adapting to its throughput and
715  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
716  */
717 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
718 {
719         struct wb_domain *dom = dtc_dom(dtc);
720         unsigned long thresh = dtc->thresh;
721         u64 wb_thresh;
722         long numerator, denominator;
723         unsigned long wb_min_ratio, wb_max_ratio;
724
725         /*
726          * Calculate this BDI's share of the thresh ratio.
727          */
728         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
729                               &numerator, &denominator);
730
731         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
732         wb_thresh *= numerator;
733         do_div(wb_thresh, denominator);
734
735         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
736
737         wb_thresh += (thresh * wb_min_ratio) / 100;
738         if (wb_thresh > (thresh * wb_max_ratio) / 100)
739                 wb_thresh = thresh * wb_max_ratio / 100;
740
741         return wb_thresh;
742 }
743
744 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
745 {
746         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
747                                                .thresh = thresh };
748         return __wb_calc_thresh(&gdtc);
749 }
750
751 /*
752  *                           setpoint - dirty 3
753  *        f(dirty) := 1.0 + (----------------)
754  *                           limit - setpoint
755  *
756  * it's a 3rd order polynomial that subjects to
757  *
758  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
759  * (2) f(setpoint) = 1.0 => the balance point
760  * (3) f(limit)    = 0   => the hard limit
761  * (4) df/dx      <= 0   => negative feedback control
762  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
763  *     => fast response on large errors; small oscillation near setpoint
764  */
765 static long long pos_ratio_polynom(unsigned long setpoint,
766                                           unsigned long dirty,
767                                           unsigned long limit)
768 {
769         long long pos_ratio;
770         long x;
771
772         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
773                       (limit - setpoint) | 1);
774         pos_ratio = x;
775         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
776         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
777         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
778
779         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
780 }
781
782 /*
783  * Dirty position control.
784  *
785  * (o) global/bdi setpoints
786  *
787  * We want the dirty pages be balanced around the global/wb setpoints.
788  * When the number of dirty pages is higher/lower than the setpoint, the
789  * dirty position control ratio (and hence task dirty ratelimit) will be
790  * decreased/increased to bring the dirty pages back to the setpoint.
791  *
792  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
793  *
794  *     if (dirty < setpoint) scale up   pos_ratio
795  *     if (dirty > setpoint) scale down pos_ratio
796  *
797  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
798  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
799  *
800  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
801  *
802  * (o) global control line
803  *
804  *     ^ pos_ratio
805  *     |
806  *     |            |<===== global dirty control scope ======>|
807  * 2.0 .............*
808  *     |            .*
809  *     |            . *
810  *     |            .   *
811  *     |            .     *
812  *     |            .        *
813  *     |            .            *
814  * 1.0 ................................*
815  *     |            .                  .     *
816  *     |            .                  .          *
817  *     |            .                  .              *
818  *     |            .                  .                 *
819  *     |            .                  .                    *
820  *   0 +------------.------------------.----------------------*------------->
821  *           freerun^          setpoint^                 limit^   dirty pages
822  *
823  * (o) wb control line
824  *
825  *     ^ pos_ratio
826  *     |
827  *     |            *
828  *     |              *
829  *     |                *
830  *     |                  *
831  *     |                    * |<=========== span ============>|
832  * 1.0 .......................*
833  *     |                      . *
834  *     |                      .   *
835  *     |                      .     *
836  *     |                      .       *
837  *     |                      .         *
838  *     |                      .           *
839  *     |                      .             *
840  *     |                      .               *
841  *     |                      .                 *
842  *     |                      .                   *
843  *     |                      .                     *
844  * 1/4 ...............................................* * * * * * * * * * * *
845  *     |                      .                         .
846  *     |                      .                           .
847  *     |                      .                             .
848  *   0 +----------------------.-------------------------------.------------->
849  *                wb_setpoint^                    x_intercept^
850  *
851  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
852  * be smoothly throttled down to normal if it starts high in situations like
853  * - start writing to a slow SD card and a fast disk at the same time. The SD
854  *   card's wb_dirty may rush to many times higher than wb_setpoint.
855  * - the wb dirty thresh drops quickly due to change of JBOD workload
856  */
857 static void wb_position_ratio(struct dirty_throttle_control *dtc)
858 {
859         struct bdi_writeback *wb = dtc->wb;
860         unsigned long write_bw = wb->avg_write_bandwidth;
861         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
862         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
863         unsigned long wb_thresh = dtc->wb_thresh;
864         unsigned long x_intercept;
865         unsigned long setpoint;         /* dirty pages' target balance point */
866         unsigned long wb_setpoint;
867         unsigned long span;
868         long long pos_ratio;            /* for scaling up/down the rate limit */
869         long x;
870
871         dtc->pos_ratio = 0;
872
873         if (unlikely(dtc->dirty >= limit))
874                 return;
875
876         /*
877          * global setpoint
878          *
879          * See comment for pos_ratio_polynom().
880          */
881         setpoint = (freerun + limit) / 2;
882         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
883
884         /*
885          * The strictlimit feature is a tool preventing mistrusted filesystems
886          * from growing a large number of dirty pages before throttling. For
887          * such filesystems balance_dirty_pages always checks wb counters
888          * against wb limits. Even if global "nr_dirty" is under "freerun".
889          * This is especially important for fuse which sets bdi->max_ratio to
890          * 1% by default. Without strictlimit feature, fuse writeback may
891          * consume arbitrary amount of RAM because it is accounted in
892          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
893          *
894          * Here, in wb_position_ratio(), we calculate pos_ratio based on
895          * two values: wb_dirty and wb_thresh. Let's consider an example:
896          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
897          * limits are set by default to 10% and 20% (background and throttle).
898          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
899          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
900          * about ~6K pages (as the average of background and throttle wb
901          * limits). The 3rd order polynomial will provide positive feedback if
902          * wb_dirty is under wb_setpoint and vice versa.
903          *
904          * Note, that we cannot use global counters in these calculations
905          * because we want to throttle process writing to a strictlimit wb
906          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
907          * in the example above).
908          */
909         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
910                 long long wb_pos_ratio;
911
912                 if (dtc->wb_dirty < 8) {
913                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
914                                            2 << RATELIMIT_CALC_SHIFT);
915                         return;
916                 }
917
918                 if (dtc->wb_dirty >= wb_thresh)
919                         return;
920
921                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
922                                                     dtc->wb_bg_thresh);
923
924                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
925                         return;
926
927                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
928                                                  wb_thresh);
929
930                 /*
931                  * Typically, for strictlimit case, wb_setpoint << setpoint
932                  * and pos_ratio >> wb_pos_ratio. In the other words global
933                  * state ("dirty") is not limiting factor and we have to
934                  * make decision based on wb counters. But there is an
935                  * important case when global pos_ratio should get precedence:
936                  * global limits are exceeded (e.g. due to activities on other
937                  * wb's) while given strictlimit wb is below limit.
938                  *
939                  * "pos_ratio * wb_pos_ratio" would work for the case above,
940                  * but it would look too non-natural for the case of all
941                  * activity in the system coming from a single strictlimit wb
942                  * with bdi->max_ratio == 100%.
943                  *
944                  * Note that min() below somewhat changes the dynamics of the
945                  * control system. Normally, pos_ratio value can be well over 3
946                  * (when globally we are at freerun and wb is well below wb
947                  * setpoint). Now the maximum pos_ratio in the same situation
948                  * is 2. We might want to tweak this if we observe the control
949                  * system is too slow to adapt.
950                  */
951                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
952                 return;
953         }
954
955         /*
956          * We have computed basic pos_ratio above based on global situation. If
957          * the wb is over/under its share of dirty pages, we want to scale
958          * pos_ratio further down/up. That is done by the following mechanism.
959          */
960
961         /*
962          * wb setpoint
963          *
964          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
965          *
966          *                        x_intercept - wb_dirty
967          *                     := --------------------------
968          *                        x_intercept - wb_setpoint
969          *
970          * The main wb control line is a linear function that subjects to
971          *
972          * (1) f(wb_setpoint) = 1.0
973          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
974          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
975          *
976          * For single wb case, the dirty pages are observed to fluctuate
977          * regularly within range
978          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
979          * for various filesystems, where (2) can yield in a reasonable 12.5%
980          * fluctuation range for pos_ratio.
981          *
982          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
983          * own size, so move the slope over accordingly and choose a slope that
984          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
985          */
986         if (unlikely(wb_thresh > dtc->thresh))
987                 wb_thresh = dtc->thresh;
988         /*
989          * It's very possible that wb_thresh is close to 0 not because the
990          * device is slow, but that it has remained inactive for long time.
991          * Honour such devices a reasonable good (hopefully IO efficient)
992          * threshold, so that the occasional writes won't be blocked and active
993          * writes can rampup the threshold quickly.
994          */
995         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
996         /*
997          * scale global setpoint to wb's:
998          *      wb_setpoint = setpoint * wb_thresh / thresh
999          */
1000         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1001         wb_setpoint = setpoint * (u64)x >> 16;
1002         /*
1003          * Use span=(8*write_bw) in single wb case as indicated by
1004          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1005          *
1006          *        wb_thresh                    thresh - wb_thresh
1007          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1008          *         thresh                           thresh
1009          */
1010         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1011         x_intercept = wb_setpoint + span;
1012
1013         if (dtc->wb_dirty < x_intercept - span / 4) {
1014                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1015                                       (x_intercept - wb_setpoint) | 1);
1016         } else
1017                 pos_ratio /= 4;
1018
1019         /*
1020          * wb reserve area, safeguard against dirty pool underrun and disk idle
1021          * It may push the desired control point of global dirty pages higher
1022          * than setpoint.
1023          */
1024         x_intercept = wb_thresh / 2;
1025         if (dtc->wb_dirty < x_intercept) {
1026                 if (dtc->wb_dirty > x_intercept / 8)
1027                         pos_ratio = div_u64(pos_ratio * x_intercept,
1028                                             dtc->wb_dirty);
1029                 else
1030                         pos_ratio *= 8;
1031         }
1032
1033         dtc->pos_ratio = pos_ratio;
1034 }
1035
1036 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1037                                       unsigned long elapsed,
1038                                       unsigned long written)
1039 {
1040         const unsigned long period = roundup_pow_of_two(3 * HZ);
1041         unsigned long avg = wb->avg_write_bandwidth;
1042         unsigned long old = wb->write_bandwidth;
1043         u64 bw;
1044
1045         /*
1046          * bw = written * HZ / elapsed
1047          *
1048          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1049          * write_bandwidth = ---------------------------------------------------
1050          *                                          period
1051          *
1052          * @written may have decreased due to account_page_redirty().
1053          * Avoid underflowing @bw calculation.
1054          */
1055         bw = written - min(written, wb->written_stamp);
1056         bw *= HZ;
1057         if (unlikely(elapsed > period)) {
1058                 do_div(bw, elapsed);
1059                 avg = bw;
1060                 goto out;
1061         }
1062         bw += (u64)wb->write_bandwidth * (period - elapsed);
1063         bw >>= ilog2(period);
1064
1065         /*
1066          * one more level of smoothing, for filtering out sudden spikes
1067          */
1068         if (avg > old && old >= (unsigned long)bw)
1069                 avg -= (avg - old) >> 3;
1070
1071         if (avg < old && old <= (unsigned long)bw)
1072                 avg += (old - avg) >> 3;
1073
1074 out:
1075         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1076         avg = max(avg, 1LU);
1077         if (wb_has_dirty_io(wb)) {
1078                 long delta = avg - wb->avg_write_bandwidth;
1079                 WARN_ON_ONCE(atomic_long_add_return(delta,
1080                                         &wb->bdi->tot_write_bandwidth) <= 0);
1081         }
1082         wb->write_bandwidth = bw;
1083         wb->avg_write_bandwidth = avg;
1084 }
1085
1086 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1087 {
1088         struct wb_domain *dom = dtc_dom(dtc);
1089         unsigned long thresh = dtc->thresh;
1090         unsigned long limit = dom->dirty_limit;
1091
1092         /*
1093          * Follow up in one step.
1094          */
1095         if (limit < thresh) {
1096                 limit = thresh;
1097                 goto update;
1098         }
1099
1100         /*
1101          * Follow down slowly. Use the higher one as the target, because thresh
1102          * may drop below dirty. This is exactly the reason to introduce
1103          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1104          */
1105         thresh = max(thresh, dtc->dirty);
1106         if (limit > thresh) {
1107                 limit -= (limit - thresh) >> 5;
1108                 goto update;
1109         }
1110         return;
1111 update:
1112         dom->dirty_limit = limit;
1113 }
1114
1115 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1116                                     unsigned long now)
1117 {
1118         struct wb_domain *dom = dtc_dom(dtc);
1119
1120         /*
1121          * check locklessly first to optimize away locking for the most time
1122          */
1123         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1124                 return;
1125
1126         spin_lock(&dom->lock);
1127         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1128                 update_dirty_limit(dtc);
1129                 dom->dirty_limit_tstamp = now;
1130         }
1131         spin_unlock(&dom->lock);
1132 }
1133
1134 /*
1135  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1136  *
1137  * Normal wb tasks will be curbed at or below it in long term.
1138  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1139  */
1140 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1141                                       unsigned long dirtied,
1142                                       unsigned long elapsed)
1143 {
1144         struct bdi_writeback *wb = dtc->wb;
1145         unsigned long dirty = dtc->dirty;
1146         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1147         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1148         unsigned long setpoint = (freerun + limit) / 2;
1149         unsigned long write_bw = wb->avg_write_bandwidth;
1150         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1151         unsigned long dirty_rate;
1152         unsigned long task_ratelimit;
1153         unsigned long balanced_dirty_ratelimit;
1154         unsigned long step;
1155         unsigned long x;
1156
1157         /*
1158          * The dirty rate will match the writeout rate in long term, except
1159          * when dirty pages are truncated by userspace or re-dirtied by FS.
1160          */
1161         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1162
1163         /*
1164          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1165          */
1166         task_ratelimit = (u64)dirty_ratelimit *
1167                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1168         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1169
1170         /*
1171          * A linear estimation of the "balanced" throttle rate. The theory is,
1172          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1173          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1174          * formula will yield the balanced rate limit (write_bw / N).
1175          *
1176          * Note that the expanded form is not a pure rate feedback:
1177          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1178          * but also takes pos_ratio into account:
1179          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1180          *
1181          * (1) is not realistic because pos_ratio also takes part in balancing
1182          * the dirty rate.  Consider the state
1183          *      pos_ratio = 0.5                                              (3)
1184          *      rate = 2 * (write_bw / N)                                    (4)
1185          * If (1) is used, it will stuck in that state! Because each dd will
1186          * be throttled at
1187          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1188          * yielding
1189          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1190          * put (6) into (1) we get
1191          *      rate_(i+1) = rate_(i)                                        (7)
1192          *
1193          * So we end up using (2) to always keep
1194          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1195          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1196          * pos_ratio is able to drive itself to 1.0, which is not only where
1197          * the dirty count meet the setpoint, but also where the slope of
1198          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1199          */
1200         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1201                                            dirty_rate | 1);
1202         /*
1203          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1204          */
1205         if (unlikely(balanced_dirty_ratelimit > write_bw))
1206                 balanced_dirty_ratelimit = write_bw;
1207
1208         /*
1209          * We could safely do this and return immediately:
1210          *
1211          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1212          *
1213          * However to get a more stable dirty_ratelimit, the below elaborated
1214          * code makes use of task_ratelimit to filter out singular points and
1215          * limit the step size.
1216          *
1217          * The below code essentially only uses the relative value of
1218          *
1219          *      task_ratelimit - dirty_ratelimit
1220          *      = (pos_ratio - 1) * dirty_ratelimit
1221          *
1222          * which reflects the direction and size of dirty position error.
1223          */
1224
1225         /*
1226          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1227          * task_ratelimit is on the same side of dirty_ratelimit, too.
1228          * For example, when
1229          * - dirty_ratelimit > balanced_dirty_ratelimit
1230          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1231          * lowering dirty_ratelimit will help meet both the position and rate
1232          * control targets. Otherwise, don't update dirty_ratelimit if it will
1233          * only help meet the rate target. After all, what the users ultimately
1234          * feel and care are stable dirty rate and small position error.
1235          *
1236          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1237          * and filter out the singular points of balanced_dirty_ratelimit. Which
1238          * keeps jumping around randomly and can even leap far away at times
1239          * due to the small 200ms estimation period of dirty_rate (we want to
1240          * keep that period small to reduce time lags).
1241          */
1242         step = 0;
1243
1244         /*
1245          * For strictlimit case, calculations above were based on wb counters
1246          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1247          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1248          * Hence, to calculate "step" properly, we have to use wb_dirty as
1249          * "dirty" and wb_setpoint as "setpoint".
1250          *
1251          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1252          * it's possible that wb_thresh is close to zero due to inactivity
1253          * of backing device.
1254          */
1255         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1256                 dirty = dtc->wb_dirty;
1257                 if (dtc->wb_dirty < 8)
1258                         setpoint = dtc->wb_dirty + 1;
1259                 else
1260                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1261         }
1262
1263         if (dirty < setpoint) {
1264                 x = min3(wb->balanced_dirty_ratelimit,
1265                          balanced_dirty_ratelimit, task_ratelimit);
1266                 if (dirty_ratelimit < x)
1267                         step = x - dirty_ratelimit;
1268         } else {
1269                 x = max3(wb->balanced_dirty_ratelimit,
1270                          balanced_dirty_ratelimit, task_ratelimit);
1271                 if (dirty_ratelimit > x)
1272                         step = dirty_ratelimit - x;
1273         }
1274
1275         /*
1276          * Don't pursue 100% rate matching. It's impossible since the balanced
1277          * rate itself is constantly fluctuating. So decrease the track speed
1278          * when it gets close to the target. Helps eliminate pointless tremors.
1279          */
1280         step >>= dirty_ratelimit / (2 * step + 1);
1281         /*
1282          * Limit the tracking speed to avoid overshooting.
1283          */
1284         step = (step + 7) / 8;
1285
1286         if (dirty_ratelimit < balanced_dirty_ratelimit)
1287                 dirty_ratelimit += step;
1288         else
1289                 dirty_ratelimit -= step;
1290
1291         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1292         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1293
1294         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1295 }
1296
1297 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1298                                   struct dirty_throttle_control *mdtc,
1299                                   unsigned long start_time,
1300                                   bool update_ratelimit)
1301 {
1302         struct bdi_writeback *wb = gdtc->wb;
1303         unsigned long now = jiffies;
1304         unsigned long elapsed = now - wb->bw_time_stamp;
1305         unsigned long dirtied;
1306         unsigned long written;
1307
1308         lockdep_assert_held(&wb->list_lock);
1309
1310         /*
1311          * rate-limit, only update once every 200ms.
1312          */
1313         if (elapsed < BANDWIDTH_INTERVAL)
1314                 return;
1315
1316         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1317         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1318
1319         /*
1320          * Skip quiet periods when disk bandwidth is under-utilized.
1321          * (at least 1s idle time between two flusher runs)
1322          */
1323         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1324                 goto snapshot;
1325
1326         if (update_ratelimit) {
1327                 domain_update_bandwidth(gdtc, now);
1328                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1329
1330                 /*
1331                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1332                  * compiler has no way to figure that out.  Help it.
1333                  */
1334                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1335                         domain_update_bandwidth(mdtc, now);
1336                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1337                 }
1338         }
1339         wb_update_write_bandwidth(wb, elapsed, written);
1340
1341 snapshot:
1342         wb->dirtied_stamp = dirtied;
1343         wb->written_stamp = written;
1344         wb->bw_time_stamp = now;
1345 }
1346
1347 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1348 {
1349         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1350
1351         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1352 }
1353
1354 /*
1355  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1356  * will look to see if it needs to start dirty throttling.
1357  *
1358  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1359  * global_page_state() too often. So scale it near-sqrt to the safety margin
1360  * (the number of pages we may dirty without exceeding the dirty limits).
1361  */
1362 static unsigned long dirty_poll_interval(unsigned long dirty,
1363                                          unsigned long thresh)
1364 {
1365         if (thresh > dirty)
1366                 return 1UL << (ilog2(thresh - dirty) >> 1);
1367
1368         return 1;
1369 }
1370
1371 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1372                                   unsigned long wb_dirty)
1373 {
1374         unsigned long bw = wb->avg_write_bandwidth;
1375         unsigned long t;
1376
1377         /*
1378          * Limit pause time for small memory systems. If sleeping for too long
1379          * time, a small pool of dirty/writeback pages may go empty and disk go
1380          * idle.
1381          *
1382          * 8 serves as the safety ratio.
1383          */
1384         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1385         t++;
1386
1387         return min_t(unsigned long, t, MAX_PAUSE);
1388 }
1389
1390 static long wb_min_pause(struct bdi_writeback *wb,
1391                          long max_pause,
1392                          unsigned long task_ratelimit,
1393                          unsigned long dirty_ratelimit,
1394                          int *nr_dirtied_pause)
1395 {
1396         long hi = ilog2(wb->avg_write_bandwidth);
1397         long lo = ilog2(wb->dirty_ratelimit);
1398         long t;         /* target pause */
1399         long pause;     /* estimated next pause */
1400         int pages;      /* target nr_dirtied_pause */
1401
1402         /* target for 10ms pause on 1-dd case */
1403         t = max(1, HZ / 100);
1404
1405         /*
1406          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1407          * overheads.
1408          *
1409          * (N * 10ms) on 2^N concurrent tasks.
1410          */
1411         if (hi > lo)
1412                 t += (hi - lo) * (10 * HZ) / 1024;
1413
1414         /*
1415          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1416          * on the much more stable dirty_ratelimit. However the next pause time
1417          * will be computed based on task_ratelimit and the two rate limits may
1418          * depart considerably at some time. Especially if task_ratelimit goes
1419          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1420          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1421          * result task_ratelimit won't be executed faithfully, which could
1422          * eventually bring down dirty_ratelimit.
1423          *
1424          * We apply two rules to fix it up:
1425          * 1) try to estimate the next pause time and if necessary, use a lower
1426          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1427          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1428          * 2) limit the target pause time to max_pause/2, so that the normal
1429          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1430          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1431          */
1432         t = min(t, 1 + max_pause / 2);
1433         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1434
1435         /*
1436          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1437          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1438          * When the 16 consecutive reads are often interrupted by some dirty
1439          * throttling pause during the async writes, cfq will go into idles
1440          * (deadline is fine). So push nr_dirtied_pause as high as possible
1441          * until reaches DIRTY_POLL_THRESH=32 pages.
1442          */
1443         if (pages < DIRTY_POLL_THRESH) {
1444                 t = max_pause;
1445                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1446                 if (pages > DIRTY_POLL_THRESH) {
1447                         pages = DIRTY_POLL_THRESH;
1448                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1449                 }
1450         }
1451
1452         pause = HZ * pages / (task_ratelimit + 1);
1453         if (pause > max_pause) {
1454                 t = max_pause;
1455                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1456         }
1457
1458         *nr_dirtied_pause = pages;
1459         /*
1460          * The minimal pause time will normally be half the target pause time.
1461          */
1462         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1463 }
1464
1465 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1466 {
1467         struct bdi_writeback *wb = dtc->wb;
1468         unsigned long wb_reclaimable;
1469
1470         /*
1471          * wb_thresh is not treated as some limiting factor as
1472          * dirty_thresh, due to reasons
1473          * - in JBOD setup, wb_thresh can fluctuate a lot
1474          * - in a system with HDD and USB key, the USB key may somehow
1475          *   go into state (wb_dirty >> wb_thresh) either because
1476          *   wb_dirty starts high, or because wb_thresh drops low.
1477          *   In this case we don't want to hard throttle the USB key
1478          *   dirtiers for 100 seconds until wb_dirty drops under
1479          *   wb_thresh. Instead the auxiliary wb control line in
1480          *   wb_position_ratio() will let the dirtier task progress
1481          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1482          */
1483         dtc->wb_thresh = __wb_calc_thresh(dtc);
1484         dtc->wb_bg_thresh = dtc->thresh ?
1485                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1486
1487         /*
1488          * In order to avoid the stacked BDI deadlock we need
1489          * to ensure we accurately count the 'dirty' pages when
1490          * the threshold is low.
1491          *
1492          * Otherwise it would be possible to get thresh+n pages
1493          * reported dirty, even though there are thresh-m pages
1494          * actually dirty; with m+n sitting in the percpu
1495          * deltas.
1496          */
1497         if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1498                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1499                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1500         } else {
1501                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1502                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1503         }
1504 }
1505
1506 /*
1507  * balance_dirty_pages() must be called by processes which are generating dirty
1508  * data.  It looks at the number of dirty pages in the machine and will force
1509  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1510  * If we're over `background_thresh' then the writeback threads are woken to
1511  * perform some writeout.
1512  */
1513 static void balance_dirty_pages(struct address_space *mapping,
1514                                 struct bdi_writeback *wb,
1515                                 unsigned long pages_dirtied)
1516 {
1517         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1518         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1519         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1520         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1521                                                      &mdtc_stor : NULL;
1522         struct dirty_throttle_control *sdtc;
1523         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1524         long period;
1525         long pause;
1526         long max_pause;
1527         long min_pause;
1528         int nr_dirtied_pause;
1529         bool dirty_exceeded = false;
1530         unsigned long task_ratelimit;
1531         unsigned long dirty_ratelimit;
1532         struct backing_dev_info *bdi = wb->bdi;
1533         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1534         unsigned long start_time = jiffies;
1535
1536         for (;;) {
1537                 unsigned long now = jiffies;
1538                 unsigned long dirty, thresh, bg_thresh;
1539                 unsigned long m_dirty, m_thresh, m_bg_thresh;
1540
1541                 /*
1542                  * Unstable writes are a feature of certain networked
1543                  * filesystems (i.e. NFS) in which data may have been
1544                  * written to the server's write cache, but has not yet
1545                  * been flushed to permanent storage.
1546                  */
1547                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1548                                         global_page_state(NR_UNSTABLE_NFS);
1549                 gdtc->avail = global_dirtyable_memory();
1550                 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1551
1552                 domain_dirty_limits(gdtc);
1553
1554                 if (unlikely(strictlimit)) {
1555                         wb_dirty_limits(gdtc);
1556
1557                         dirty = gdtc->wb_dirty;
1558                         thresh = gdtc->wb_thresh;
1559                         bg_thresh = gdtc->wb_bg_thresh;
1560                 } else {
1561                         dirty = gdtc->dirty;
1562                         thresh = gdtc->thresh;
1563                         bg_thresh = gdtc->bg_thresh;
1564                 }
1565
1566                 if (mdtc) {
1567                         unsigned long writeback;
1568
1569                         /*
1570                          * If @wb belongs to !root memcg, repeat the same
1571                          * basic calculations for the memcg domain.
1572                          */
1573                         mem_cgroup_wb_stats(wb, &mdtc->avail, &mdtc->dirty,
1574                                             &writeback);
1575                         mdtc_cap_avail(mdtc);
1576                         mdtc->dirty += writeback;
1577
1578                         domain_dirty_limits(mdtc);
1579
1580                         if (unlikely(strictlimit)) {
1581                                 wb_dirty_limits(mdtc);
1582                                 m_dirty = mdtc->wb_dirty;
1583                                 m_thresh = mdtc->wb_thresh;
1584                                 m_bg_thresh = mdtc->wb_bg_thresh;
1585                         } else {
1586                                 m_dirty = mdtc->dirty;
1587                                 m_thresh = mdtc->thresh;
1588                                 m_bg_thresh = mdtc->bg_thresh;
1589                         }
1590                 }
1591
1592                 /*
1593                  * Throttle it only when the background writeback cannot
1594                  * catch-up. This avoids (excessively) small writeouts
1595                  * when the wb limits are ramping up in case of !strictlimit.
1596                  *
1597                  * In strictlimit case make decision based on the wb counters
1598                  * and limits. Small writeouts when the wb limits are ramping
1599                  * up are the price we consciously pay for strictlimit-ing.
1600                  *
1601                  * If memcg domain is in effect, @dirty should be under
1602                  * both global and memcg freerun ceilings.
1603                  */
1604                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1605                     (!mdtc ||
1606                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1607                         unsigned long intv = dirty_poll_interval(dirty, thresh);
1608                         unsigned long m_intv = ULONG_MAX;
1609
1610                         current->dirty_paused_when = now;
1611                         current->nr_dirtied = 0;
1612                         if (mdtc)
1613                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1614                         current->nr_dirtied_pause = min(intv, m_intv);
1615                         break;
1616                 }
1617
1618                 if (unlikely(!writeback_in_progress(wb)))
1619                         wb_start_background_writeback(wb);
1620
1621                 /*
1622                  * Calculate global domain's pos_ratio and select the
1623                  * global dtc by default.
1624                  */
1625                 if (!strictlimit)
1626                         wb_dirty_limits(gdtc);
1627
1628                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1629                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1630
1631                 wb_position_ratio(gdtc);
1632                 sdtc = gdtc;
1633
1634                 if (mdtc) {
1635                         /*
1636                          * If memcg domain is in effect, calculate its
1637                          * pos_ratio.  @wb should satisfy constraints from
1638                          * both global and memcg domains.  Choose the one
1639                          * w/ lower pos_ratio.
1640                          */
1641                         if (!strictlimit)
1642                                 wb_dirty_limits(mdtc);
1643
1644                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1645                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1646
1647                         wb_position_ratio(mdtc);
1648                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1649                                 sdtc = mdtc;
1650                 }
1651
1652                 if (dirty_exceeded && !wb->dirty_exceeded)
1653                         wb->dirty_exceeded = 1;
1654
1655                 if (time_is_before_jiffies(wb->bw_time_stamp +
1656                                            BANDWIDTH_INTERVAL)) {
1657                         spin_lock(&wb->list_lock);
1658                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1659                         spin_unlock(&wb->list_lock);
1660                 }
1661
1662                 /* throttle according to the chosen dtc */
1663                 dirty_ratelimit = wb->dirty_ratelimit;
1664                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1665                                                         RATELIMIT_CALC_SHIFT;
1666                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1667                 min_pause = wb_min_pause(wb, max_pause,
1668                                          task_ratelimit, dirty_ratelimit,
1669                                          &nr_dirtied_pause);
1670
1671                 if (unlikely(task_ratelimit == 0)) {
1672                         period = max_pause;
1673                         pause = max_pause;
1674                         goto pause;
1675                 }
1676                 period = HZ * pages_dirtied / task_ratelimit;
1677                 pause = period;
1678                 if (current->dirty_paused_when)
1679                         pause -= now - current->dirty_paused_when;
1680                 /*
1681                  * For less than 1s think time (ext3/4 may block the dirtier
1682                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1683                  * however at much less frequency), try to compensate it in
1684                  * future periods by updating the virtual time; otherwise just
1685                  * do a reset, as it may be a light dirtier.
1686                  */
1687                 if (pause < min_pause) {
1688                         trace_balance_dirty_pages(wb,
1689                                                   sdtc->thresh,
1690                                                   sdtc->bg_thresh,
1691                                                   sdtc->dirty,
1692                                                   sdtc->wb_thresh,
1693                                                   sdtc->wb_dirty,
1694                                                   dirty_ratelimit,
1695                                                   task_ratelimit,
1696                                                   pages_dirtied,
1697                                                   period,
1698                                                   min(pause, 0L),
1699                                                   start_time);
1700                         if (pause < -HZ) {
1701                                 current->dirty_paused_when = now;
1702                                 current->nr_dirtied = 0;
1703                         } else if (period) {
1704                                 current->dirty_paused_when += period;
1705                                 current->nr_dirtied = 0;
1706                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1707                                 current->nr_dirtied_pause += pages_dirtied;
1708                         break;
1709                 }
1710                 if (unlikely(pause > max_pause)) {
1711                         /* for occasional dropped task_ratelimit */
1712                         now += min(pause - max_pause, max_pause);
1713                         pause = max_pause;
1714                 }
1715
1716 pause:
1717                 trace_balance_dirty_pages(wb,
1718                                           sdtc->thresh,
1719                                           sdtc->bg_thresh,
1720                                           sdtc->dirty,
1721                                           sdtc->wb_thresh,
1722                                           sdtc->wb_dirty,
1723                                           dirty_ratelimit,
1724                                           task_ratelimit,
1725                                           pages_dirtied,
1726                                           period,
1727                                           pause,
1728                                           start_time);
1729                 __set_current_state(TASK_KILLABLE);
1730                 io_schedule_timeout(pause);
1731
1732                 current->dirty_paused_when = now + pause;
1733                 current->nr_dirtied = 0;
1734                 current->nr_dirtied_pause = nr_dirtied_pause;
1735
1736                 /*
1737                  * This is typically equal to (dirty < thresh) and can also
1738                  * keep "1000+ dd on a slow USB stick" under control.
1739                  */
1740                 if (task_ratelimit)
1741                         break;
1742
1743                 /*
1744                  * In the case of an unresponding NFS server and the NFS dirty
1745                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1746                  * to go through, so that tasks on them still remain responsive.
1747                  *
1748                  * In theory 1 page is enough to keep the comsumer-producer
1749                  * pipe going: the flusher cleans 1 page => the task dirties 1
1750                  * more page. However wb_dirty has accounting errors.  So use
1751                  * the larger and more IO friendly wb_stat_error.
1752                  */
1753                 if (sdtc->wb_dirty <= wb_stat_error(wb))
1754                         break;
1755
1756                 if (fatal_signal_pending(current))
1757                         break;
1758         }
1759
1760         if (!dirty_exceeded && wb->dirty_exceeded)
1761                 wb->dirty_exceeded = 0;
1762
1763         if (writeback_in_progress(wb))
1764                 return;
1765
1766         /*
1767          * In laptop mode, we wait until hitting the higher threshold before
1768          * starting background writeout, and then write out all the way down
1769          * to the lower threshold.  So slow writers cause minimal disk activity.
1770          *
1771          * In normal mode, we start background writeout at the lower
1772          * background_thresh, to keep the amount of dirty memory low.
1773          */
1774         if (laptop_mode)
1775                 return;
1776
1777         if (nr_reclaimable > gdtc->bg_thresh)
1778                 wb_start_background_writeback(wb);
1779 }
1780
1781 static DEFINE_PER_CPU(int, bdp_ratelimits);
1782
1783 /*
1784  * Normal tasks are throttled by
1785  *      loop {
1786  *              dirty tsk->nr_dirtied_pause pages;
1787  *              take a snap in balance_dirty_pages();
1788  *      }
1789  * However there is a worst case. If every task exit immediately when dirtied
1790  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1791  * called to throttle the page dirties. The solution is to save the not yet
1792  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1793  * randomly into the running tasks. This works well for the above worst case,
1794  * as the new task will pick up and accumulate the old task's leaked dirty
1795  * count and eventually get throttled.
1796  */
1797 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1798
1799 /**
1800  * balance_dirty_pages_ratelimited - balance dirty memory state
1801  * @mapping: address_space which was dirtied
1802  *
1803  * Processes which are dirtying memory should call in here once for each page
1804  * which was newly dirtied.  The function will periodically check the system's
1805  * dirty state and will initiate writeback if needed.
1806  *
1807  * On really big machines, get_writeback_state is expensive, so try to avoid
1808  * calling it too often (ratelimiting).  But once we're over the dirty memory
1809  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1810  * from overshooting the limit by (ratelimit_pages) each.
1811  */
1812 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1813 {
1814         struct inode *inode = mapping->host;
1815         struct backing_dev_info *bdi = inode_to_bdi(inode);
1816         struct bdi_writeback *wb = NULL;
1817         int ratelimit;
1818         int *p;
1819
1820         if (!bdi_cap_account_dirty(bdi))
1821                 return;
1822
1823         if (inode_cgwb_enabled(inode))
1824                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1825         if (!wb)
1826                 wb = &bdi->wb;
1827
1828         ratelimit = current->nr_dirtied_pause;
1829         if (wb->dirty_exceeded)
1830                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1831
1832         preempt_disable();
1833         /*
1834          * This prevents one CPU to accumulate too many dirtied pages without
1835          * calling into balance_dirty_pages(), which can happen when there are
1836          * 1000+ tasks, all of them start dirtying pages at exactly the same
1837          * time, hence all honoured too large initial task->nr_dirtied_pause.
1838          */
1839         p =  this_cpu_ptr(&bdp_ratelimits);
1840         if (unlikely(current->nr_dirtied >= ratelimit))
1841                 *p = 0;
1842         else if (unlikely(*p >= ratelimit_pages)) {
1843                 *p = 0;
1844                 ratelimit = 0;
1845         }
1846         /*
1847          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1848          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1849          * the dirty throttling and livelock other long-run dirtiers.
1850          */
1851         p = this_cpu_ptr(&dirty_throttle_leaks);
1852         if (*p > 0 && current->nr_dirtied < ratelimit) {
1853                 unsigned long nr_pages_dirtied;
1854                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1855                 *p -= nr_pages_dirtied;
1856                 current->nr_dirtied += nr_pages_dirtied;
1857         }
1858         preempt_enable();
1859
1860         if (unlikely(current->nr_dirtied >= ratelimit))
1861                 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1862
1863         wb_put(wb);
1864 }
1865 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1866
1867 /**
1868  * wb_over_bg_thresh - does @wb need to be written back?
1869  * @wb: bdi_writeback of interest
1870  *
1871  * Determines whether background writeback should keep writing @wb or it's
1872  * clean enough.  Returns %true if writeback should continue.
1873  */
1874 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1875 {
1876         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1877         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1878         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1879         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1880                                                      &mdtc_stor : NULL;
1881
1882         /*
1883          * Similar to balance_dirty_pages() but ignores pages being written
1884          * as we're trying to decide whether to put more under writeback.
1885          */
1886         gdtc->avail = global_dirtyable_memory();
1887         gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1888                       global_page_state(NR_UNSTABLE_NFS);
1889         domain_dirty_limits(gdtc);
1890
1891         if (gdtc->dirty > gdtc->bg_thresh)
1892                 return true;
1893
1894         if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1895                 return true;
1896
1897         if (mdtc) {
1898                 unsigned long writeback;
1899
1900                 mem_cgroup_wb_stats(wb, &mdtc->avail, &mdtc->dirty, &writeback);
1901                 mdtc_cap_avail(mdtc);
1902                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1903
1904                 if (mdtc->dirty > mdtc->bg_thresh)
1905                         return true;
1906
1907                 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc))
1908                         return true;
1909         }
1910
1911         return false;
1912 }
1913
1914 void throttle_vm_writeout(gfp_t gfp_mask)
1915 {
1916         unsigned long background_thresh;
1917         unsigned long dirty_thresh;
1918
1919         for ( ; ; ) {
1920                 global_dirty_limits(&background_thresh, &dirty_thresh);
1921                 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1922
1923                 /*
1924                  * Boost the allowable dirty threshold a bit for page
1925                  * allocators so they don't get DoS'ed by heavy writers
1926                  */
1927                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1928
1929                 if (global_page_state(NR_UNSTABLE_NFS) +
1930                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1931                                 break;
1932                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1933
1934                 /*
1935                  * The caller might hold locks which can prevent IO completion
1936                  * or progress in the filesystem.  So we cannot just sit here
1937                  * waiting for IO to complete.
1938                  */
1939                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1940                         break;
1941         }
1942 }
1943
1944 /*
1945  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1946  */
1947 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1948         void __user *buffer, size_t *length, loff_t *ppos)
1949 {
1950         proc_dointvec(table, write, buffer, length, ppos);
1951         return 0;
1952 }
1953
1954 #ifdef CONFIG_BLOCK
1955 void laptop_mode_timer_fn(unsigned long data)
1956 {
1957         struct request_queue *q = (struct request_queue *)data;
1958         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1959                 global_page_state(NR_UNSTABLE_NFS);
1960         struct bdi_writeback *wb;
1961
1962         /*
1963          * We want to write everything out, not just down to the dirty
1964          * threshold
1965          */
1966         if (!bdi_has_dirty_io(&q->backing_dev_info))
1967                 return;
1968
1969         rcu_read_lock();
1970         list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1971                 if (wb_has_dirty_io(wb))
1972                         wb_start_writeback(wb, nr_pages, true,
1973                                            WB_REASON_LAPTOP_TIMER);
1974         rcu_read_unlock();
1975 }
1976
1977 /*
1978  * We've spun up the disk and we're in laptop mode: schedule writeback
1979  * of all dirty data a few seconds from now.  If the flush is already scheduled
1980  * then push it back - the user is still using the disk.
1981  */
1982 void laptop_io_completion(struct backing_dev_info *info)
1983 {
1984         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1985 }
1986
1987 /*
1988  * We're in laptop mode and we've just synced. The sync's writes will have
1989  * caused another writeback to be scheduled by laptop_io_completion.
1990  * Nothing needs to be written back anymore, so we unschedule the writeback.
1991  */
1992 void laptop_sync_completion(void)
1993 {
1994         struct backing_dev_info *bdi;
1995
1996         rcu_read_lock();
1997
1998         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1999                 del_timer(&bdi->laptop_mode_wb_timer);
2000
2001         rcu_read_unlock();
2002 }
2003 #endif
2004
2005 /*
2006  * If ratelimit_pages is too high then we can get into dirty-data overload
2007  * if a large number of processes all perform writes at the same time.
2008  * If it is too low then SMP machines will call the (expensive)
2009  * get_writeback_state too often.
2010  *
2011  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2012  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2013  * thresholds.
2014  */
2015
2016 void writeback_set_ratelimit(void)
2017 {
2018         struct wb_domain *dom = &global_wb_domain;
2019         unsigned long background_thresh;
2020         unsigned long dirty_thresh;
2021
2022         global_dirty_limits(&background_thresh, &dirty_thresh);
2023         dom->dirty_limit = dirty_thresh;
2024         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2025         if (ratelimit_pages < 16)
2026                 ratelimit_pages = 16;
2027 }
2028
2029 static int
2030 ratelimit_handler(struct notifier_block *self, unsigned long action,
2031                   void *hcpu)
2032 {
2033
2034         switch (action & ~CPU_TASKS_FROZEN) {
2035         case CPU_ONLINE:
2036         case CPU_DEAD:
2037                 writeback_set_ratelimit();
2038                 return NOTIFY_OK;
2039         default:
2040                 return NOTIFY_DONE;
2041         }
2042 }
2043
2044 static struct notifier_block ratelimit_nb = {
2045         .notifier_call  = ratelimit_handler,
2046         .next           = NULL,
2047 };
2048
2049 /*
2050  * Called early on to tune the page writeback dirty limits.
2051  *
2052  * We used to scale dirty pages according to how total memory
2053  * related to pages that could be allocated for buffers (by
2054  * comparing nr_free_buffer_pages() to vm_total_pages.
2055  *
2056  * However, that was when we used "dirty_ratio" to scale with
2057  * all memory, and we don't do that any more. "dirty_ratio"
2058  * is now applied to total non-HIGHPAGE memory (by subtracting
2059  * totalhigh_pages from vm_total_pages), and as such we can't
2060  * get into the old insane situation any more where we had
2061  * large amounts of dirty pages compared to a small amount of
2062  * non-HIGHMEM memory.
2063  *
2064  * But we might still want to scale the dirty_ratio by how
2065  * much memory the box has..
2066  */
2067 void __init page_writeback_init(void)
2068 {
2069         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2070
2071         writeback_set_ratelimit();
2072         register_cpu_notifier(&ratelimit_nb);
2073 }
2074
2075 /**
2076  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2077  * @mapping: address space structure to write
2078  * @start: starting page index
2079  * @end: ending page index (inclusive)
2080  *
2081  * This function scans the page range from @start to @end (inclusive) and tags
2082  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2083  * that write_cache_pages (or whoever calls this function) will then use
2084  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2085  * used to avoid livelocking of writeback by a process steadily creating new
2086  * dirty pages in the file (thus it is important for this function to be quick
2087  * so that it can tag pages faster than a dirtying process can create them).
2088  */
2089 /*
2090  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2091  */
2092 void tag_pages_for_writeback(struct address_space *mapping,
2093                              pgoff_t start, pgoff_t end)
2094 {
2095 #define WRITEBACK_TAG_BATCH 4096
2096         unsigned long tagged;
2097
2098         do {
2099                 spin_lock_irq(&mapping->tree_lock);
2100                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2101                                 &start, end, WRITEBACK_TAG_BATCH,
2102                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2103                 spin_unlock_irq(&mapping->tree_lock);
2104                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2105                 cond_resched();
2106                 /* We check 'start' to handle wrapping when end == ~0UL */
2107         } while (tagged >= WRITEBACK_TAG_BATCH && start);
2108 }
2109 EXPORT_SYMBOL(tag_pages_for_writeback);
2110
2111 /**
2112  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2113  * @mapping: address space structure to write
2114  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2115  * @writepage: function called for each page
2116  * @data: data passed to writepage function
2117  *
2118  * If a page is already under I/O, write_cache_pages() skips it, even
2119  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2120  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2121  * and msync() need to guarantee that all the data which was dirty at the time
2122  * the call was made get new I/O started against them.  If wbc->sync_mode is
2123  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2124  * existing IO to complete.
2125  *
2126  * To avoid livelocks (when other process dirties new pages), we first tag
2127  * pages which should be written back with TOWRITE tag and only then start
2128  * writing them. For data-integrity sync we have to be careful so that we do
2129  * not miss some pages (e.g., because some other process has cleared TOWRITE
2130  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2131  * by the process clearing the DIRTY tag (and submitting the page for IO).
2132  */
2133 int write_cache_pages(struct address_space *mapping,
2134                       struct writeback_control *wbc, writepage_t writepage,
2135                       void *data)
2136 {
2137         int ret = 0;
2138         int done = 0;
2139         struct pagevec pvec;
2140         int nr_pages;
2141         pgoff_t uninitialized_var(writeback_index);
2142         pgoff_t index;
2143         pgoff_t end;            /* Inclusive */
2144         pgoff_t done_index;
2145         int cycled;
2146         int range_whole = 0;
2147         int tag;
2148
2149         pagevec_init(&pvec, 0);
2150         if (wbc->range_cyclic) {
2151                 writeback_index = mapping->writeback_index; /* prev offset */
2152                 index = writeback_index;
2153                 if (index == 0)
2154                         cycled = 1;
2155                 else
2156                         cycled = 0;
2157                 end = -1;
2158         } else {
2159                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2160                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2161                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2162                         range_whole = 1;
2163                 cycled = 1; /* ignore range_cyclic tests */
2164         }
2165         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2166                 tag = PAGECACHE_TAG_TOWRITE;
2167         else
2168                 tag = PAGECACHE_TAG_DIRTY;
2169 retry:
2170         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2171                 tag_pages_for_writeback(mapping, index, end);
2172         done_index = index;
2173         while (!done && (index <= end)) {
2174                 int i;
2175
2176                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2177                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2178                 if (nr_pages == 0)
2179                         break;
2180
2181                 for (i = 0; i < nr_pages; i++) {
2182                         struct page *page = pvec.pages[i];
2183
2184                         /*
2185                          * At this point, the page may be truncated or
2186                          * invalidated (changing page->mapping to NULL), or
2187                          * even swizzled back from swapper_space to tmpfs file
2188                          * mapping. However, page->index will not change
2189                          * because we have a reference on the page.
2190                          */
2191                         if (page->index > end) {
2192                                 /*
2193                                  * can't be range_cyclic (1st pass) because
2194                                  * end == -1 in that case.
2195                                  */
2196                                 done = 1;
2197                                 break;
2198                         }
2199
2200                         done_index = page->index;
2201
2202                         lock_page(page);
2203
2204                         /*
2205                          * Page truncated or invalidated. We can freely skip it
2206                          * then, even for data integrity operations: the page
2207                          * has disappeared concurrently, so there could be no
2208                          * real expectation of this data interity operation
2209                          * even if there is now a new, dirty page at the same
2210                          * pagecache address.
2211                          */
2212                         if (unlikely(page->mapping != mapping)) {
2213 continue_unlock:
2214                                 unlock_page(page);
2215                                 continue;
2216                         }
2217
2218                         if (!PageDirty(page)) {
2219                                 /* someone wrote it for us */
2220                                 goto continue_unlock;
2221                         }
2222
2223                         if (PageWriteback(page)) {
2224                                 if (wbc->sync_mode != WB_SYNC_NONE)
2225                                         wait_on_page_writeback(page);
2226                                 else
2227                                         goto continue_unlock;
2228                         }
2229
2230                         BUG_ON(PageWriteback(page));
2231                         if (!clear_page_dirty_for_io(page))
2232                                 goto continue_unlock;
2233
2234                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2235                         ret = (*writepage)(page, wbc, data);
2236                         if (unlikely(ret)) {
2237                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2238                                         unlock_page(page);
2239                                         ret = 0;
2240                                 } else {
2241                                         /*
2242                                          * done_index is set past this page,
2243                                          * so media errors will not choke
2244                                          * background writeout for the entire
2245                                          * file. This has consequences for
2246                                          * range_cyclic semantics (ie. it may
2247                                          * not be suitable for data integrity
2248                                          * writeout).
2249                                          */
2250                                         done_index = page->index + 1;
2251                                         done = 1;
2252                                         break;
2253                                 }
2254                         }
2255
2256                         /*
2257                          * We stop writing back only if we are not doing
2258                          * integrity sync. In case of integrity sync we have to
2259                          * keep going until we have written all the pages
2260                          * we tagged for writeback prior to entering this loop.
2261                          */
2262                         if (--wbc->nr_to_write <= 0 &&
2263                             wbc->sync_mode == WB_SYNC_NONE) {
2264                                 done = 1;
2265                                 break;
2266                         }
2267                 }
2268                 pagevec_release(&pvec);
2269                 cond_resched();
2270         }
2271         if (!cycled && !done) {
2272                 /*
2273                  * range_cyclic:
2274                  * We hit the last page and there is more work to be done: wrap
2275                  * back to the start of the file
2276                  */
2277                 cycled = 1;
2278                 index = 0;
2279                 end = writeback_index - 1;
2280                 goto retry;
2281         }
2282         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2283                 mapping->writeback_index = done_index;
2284
2285         return ret;
2286 }
2287 EXPORT_SYMBOL(write_cache_pages);
2288
2289 /*
2290  * Function used by generic_writepages to call the real writepage
2291  * function and set the mapping flags on error
2292  */
2293 static int __writepage(struct page *page, struct writeback_control *wbc,
2294                        void *data)
2295 {
2296         struct address_space *mapping = data;
2297         int ret = mapping->a_ops->writepage(page, wbc);
2298         mapping_set_error(mapping, ret);
2299         return ret;
2300 }
2301
2302 /**
2303  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2304  * @mapping: address space structure to write
2305  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2306  *
2307  * This is a library function, which implements the writepages()
2308  * address_space_operation.
2309  */
2310 int generic_writepages(struct address_space *mapping,
2311                        struct writeback_control *wbc)
2312 {
2313         struct blk_plug plug;
2314         int ret;
2315
2316         /* deal with chardevs and other special file */
2317         if (!mapping->a_ops->writepage)
2318                 return 0;
2319
2320         blk_start_plug(&plug);
2321         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2322         blk_finish_plug(&plug);
2323         return ret;
2324 }
2325
2326 EXPORT_SYMBOL(generic_writepages);
2327
2328 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2329 {
2330         int ret;
2331
2332         if (wbc->nr_to_write <= 0)
2333                 return 0;
2334         if (mapping->a_ops->writepages)
2335                 ret = mapping->a_ops->writepages(mapping, wbc);
2336         else
2337                 ret = generic_writepages(mapping, wbc);
2338         return ret;
2339 }
2340
2341 /**
2342  * write_one_page - write out a single page and optionally wait on I/O
2343  * @page: the page to write
2344  * @wait: if true, wait on writeout
2345  *
2346  * The page must be locked by the caller and will be unlocked upon return.
2347  *
2348  * write_one_page() returns a negative error code if I/O failed.
2349  */
2350 int write_one_page(struct page *page, int wait)
2351 {
2352         struct address_space *mapping = page->mapping;
2353         int ret = 0;
2354         struct writeback_control wbc = {
2355                 .sync_mode = WB_SYNC_ALL,
2356                 .nr_to_write = 1,
2357         };
2358
2359         BUG_ON(!PageLocked(page));
2360
2361         if (wait)
2362                 wait_on_page_writeback(page);
2363
2364         if (clear_page_dirty_for_io(page)) {
2365                 page_cache_get(page);
2366                 ret = mapping->a_ops->writepage(page, &wbc);
2367                 if (ret == 0 && wait) {
2368                         wait_on_page_writeback(page);
2369                         if (PageError(page))
2370                                 ret = -EIO;
2371                 }
2372                 page_cache_release(page);
2373         } else {
2374                 unlock_page(page);
2375         }
2376         return ret;
2377 }
2378 EXPORT_SYMBOL(write_one_page);
2379
2380 /*
2381  * For address_spaces which do not use buffers nor write back.
2382  */
2383 int __set_page_dirty_no_writeback(struct page *page)
2384 {
2385         if (!PageDirty(page))
2386                 return !TestSetPageDirty(page);
2387         return 0;
2388 }
2389
2390 /*
2391  * Helper function for set_page_dirty family.
2392  *
2393  * Caller must hold mem_cgroup_begin_page_stat().
2394  *
2395  * NOTE: This relies on being atomic wrt interrupts.
2396  */
2397 void account_page_dirtied(struct page *page, struct address_space *mapping,
2398                           struct mem_cgroup *memcg)
2399 {
2400         struct inode *inode = mapping->host;
2401
2402         trace_writeback_dirty_page(page, mapping);
2403
2404         if (mapping_cap_account_dirty(mapping)) {
2405                 struct bdi_writeback *wb;
2406
2407                 inode_attach_wb(inode, page);
2408                 wb = inode_to_wb(inode);
2409
2410                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2411                 __inc_zone_page_state(page, NR_FILE_DIRTY);
2412                 __inc_zone_page_state(page, NR_DIRTIED);
2413                 __inc_wb_stat(wb, WB_RECLAIMABLE);
2414                 __inc_wb_stat(wb, WB_DIRTIED);
2415                 task_io_account_write(PAGE_CACHE_SIZE);
2416                 current->nr_dirtied++;
2417                 this_cpu_inc(bdp_ratelimits);
2418         }
2419 }
2420 EXPORT_SYMBOL(account_page_dirtied);
2421
2422 /*
2423  * Helper function for deaccounting dirty page without writeback.
2424  *
2425  * Caller must hold mem_cgroup_begin_page_stat().
2426  */
2427 void account_page_cleaned(struct page *page, struct address_space *mapping,
2428                           struct mem_cgroup *memcg, struct bdi_writeback *wb)
2429 {
2430         if (mapping_cap_account_dirty(mapping)) {
2431                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2432                 dec_zone_page_state(page, NR_FILE_DIRTY);
2433                 dec_wb_stat(wb, WB_RECLAIMABLE);
2434                 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2435         }
2436 }
2437
2438 /*
2439  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2440  * its radix tree.
2441  *
2442  * This is also used when a single buffer is being dirtied: we want to set the
2443  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2444  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2445  *
2446  * The caller must ensure this doesn't race with truncation.  Most will simply
2447  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2448  * the pte lock held, which also locks out truncation.
2449  */
2450 int __set_page_dirty_nobuffers(struct page *page)
2451 {
2452         struct mem_cgroup *memcg;
2453
2454         memcg = mem_cgroup_begin_page_stat(page);
2455         if (!TestSetPageDirty(page)) {
2456                 struct address_space *mapping = page_mapping(page);
2457                 unsigned long flags;
2458
2459                 if (!mapping) {
2460                         mem_cgroup_end_page_stat(memcg);
2461                         return 1;
2462                 }
2463
2464                 spin_lock_irqsave(&mapping->tree_lock, flags);
2465                 BUG_ON(page_mapping(page) != mapping);
2466                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2467                 account_page_dirtied(page, mapping, memcg);
2468                 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2469                                    PAGECACHE_TAG_DIRTY);
2470                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2471                 mem_cgroup_end_page_stat(memcg);
2472
2473                 if (mapping->host) {
2474                         /* !PageAnon && !swapper_space */
2475                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2476                 }
2477                 return 1;
2478         }
2479         mem_cgroup_end_page_stat(memcg);
2480         return 0;
2481 }
2482 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2483
2484 /*
2485  * Call this whenever redirtying a page, to de-account the dirty counters
2486  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2487  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2488  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2489  * control.
2490  */
2491 void account_page_redirty(struct page *page)
2492 {
2493         struct address_space *mapping = page->mapping;
2494
2495         if (mapping && mapping_cap_account_dirty(mapping)) {
2496                 struct inode *inode = mapping->host;
2497                 struct bdi_writeback *wb;
2498                 bool locked;
2499
2500                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2501                 current->nr_dirtied--;
2502                 dec_zone_page_state(page, NR_DIRTIED);
2503                 dec_wb_stat(wb, WB_DIRTIED);
2504                 unlocked_inode_to_wb_end(inode, locked);
2505         }
2506 }
2507 EXPORT_SYMBOL(account_page_redirty);
2508
2509 /*
2510  * When a writepage implementation decides that it doesn't want to write this
2511  * page for some reason, it should redirty the locked page via
2512  * redirty_page_for_writepage() and it should then unlock the page and return 0
2513  */
2514 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2515 {
2516         int ret;
2517
2518         wbc->pages_skipped++;
2519         ret = __set_page_dirty_nobuffers(page);
2520         account_page_redirty(page);
2521         return ret;
2522 }
2523 EXPORT_SYMBOL(redirty_page_for_writepage);
2524
2525 /*
2526  * Dirty a page.
2527  *
2528  * For pages with a mapping this should be done under the page lock
2529  * for the benefit of asynchronous memory errors who prefer a consistent
2530  * dirty state. This rule can be broken in some special cases,
2531  * but should be better not to.
2532  *
2533  * If the mapping doesn't provide a set_page_dirty a_op, then
2534  * just fall through and assume that it wants buffer_heads.
2535  */
2536 int set_page_dirty(struct page *page)
2537 {
2538         struct address_space *mapping = page_mapping(page);
2539
2540         if (likely(mapping)) {
2541                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2542                 /*
2543                  * readahead/lru_deactivate_page could remain
2544                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2545                  * About readahead, if the page is written, the flags would be
2546                  * reset. So no problem.
2547                  * About lru_deactivate_page, if the page is redirty, the flag
2548                  * will be reset. So no problem. but if the page is used by readahead
2549                  * it will confuse readahead and make it restart the size rampup
2550                  * process. But it's a trivial problem.
2551                  */
2552                 if (PageReclaim(page))
2553                         ClearPageReclaim(page);
2554 #ifdef CONFIG_BLOCK
2555                 if (!spd)
2556                         spd = __set_page_dirty_buffers;
2557 #endif
2558                 return (*spd)(page);
2559         }
2560         if (!PageDirty(page)) {
2561                 if (!TestSetPageDirty(page))
2562                         return 1;
2563         }
2564         return 0;
2565 }
2566 EXPORT_SYMBOL(set_page_dirty);
2567
2568 /*
2569  * set_page_dirty() is racy if the caller has no reference against
2570  * page->mapping->host, and if the page is unlocked.  This is because another
2571  * CPU could truncate the page off the mapping and then free the mapping.
2572  *
2573  * Usually, the page _is_ locked, or the caller is a user-space process which
2574  * holds a reference on the inode by having an open file.
2575  *
2576  * In other cases, the page should be locked before running set_page_dirty().
2577  */
2578 int set_page_dirty_lock(struct page *page)
2579 {
2580         int ret;
2581
2582         lock_page(page);
2583         ret = set_page_dirty(page);
2584         unlock_page(page);
2585         return ret;
2586 }
2587 EXPORT_SYMBOL(set_page_dirty_lock);
2588
2589 /*
2590  * This cancels just the dirty bit on the kernel page itself, it does NOT
2591  * actually remove dirty bits on any mmap's that may be around. It also
2592  * leaves the page tagged dirty, so any sync activity will still find it on
2593  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2594  * look at the dirty bits in the VM.
2595  *
2596  * Doing this should *normally* only ever be done when a page is truncated,
2597  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2598  * this when it notices that somebody has cleaned out all the buffers on a
2599  * page without actually doing it through the VM. Can you say "ext3 is
2600  * horribly ugly"? Thought you could.
2601  */
2602 void cancel_dirty_page(struct page *page)
2603 {
2604         struct address_space *mapping = page_mapping(page);
2605
2606         if (mapping_cap_account_dirty(mapping)) {
2607                 struct inode *inode = mapping->host;
2608                 struct bdi_writeback *wb;
2609                 struct mem_cgroup *memcg;
2610                 bool locked;
2611
2612                 memcg = mem_cgroup_begin_page_stat(page);
2613                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2614
2615                 if (TestClearPageDirty(page))
2616                         account_page_cleaned(page, mapping, memcg, wb);
2617
2618                 unlocked_inode_to_wb_end(inode, locked);
2619                 mem_cgroup_end_page_stat(memcg);
2620         } else {
2621                 ClearPageDirty(page);
2622         }
2623 }
2624 EXPORT_SYMBOL(cancel_dirty_page);
2625
2626 /*
2627  * Clear a page's dirty flag, while caring for dirty memory accounting.
2628  * Returns true if the page was previously dirty.
2629  *
2630  * This is for preparing to put the page under writeout.  We leave the page
2631  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2632  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2633  * implementation will run either set_page_writeback() or set_page_dirty(),
2634  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2635  * back into sync.
2636  *
2637  * This incoherency between the page's dirty flag and radix-tree tag is
2638  * unfortunate, but it only exists while the page is locked.
2639  */
2640 int clear_page_dirty_for_io(struct page *page)
2641 {
2642         struct address_space *mapping = page_mapping(page);
2643         int ret = 0;
2644
2645         BUG_ON(!PageLocked(page));
2646
2647         if (mapping && mapping_cap_account_dirty(mapping)) {
2648                 struct inode *inode = mapping->host;
2649                 struct bdi_writeback *wb;
2650                 struct mem_cgroup *memcg;
2651                 bool locked;
2652
2653                 /*
2654                  * Yes, Virginia, this is indeed insane.
2655                  *
2656                  * We use this sequence to make sure that
2657                  *  (a) we account for dirty stats properly
2658                  *  (b) we tell the low-level filesystem to
2659                  *      mark the whole page dirty if it was
2660                  *      dirty in a pagetable. Only to then
2661                  *  (c) clean the page again and return 1 to
2662                  *      cause the writeback.
2663                  *
2664                  * This way we avoid all nasty races with the
2665                  * dirty bit in multiple places and clearing
2666                  * them concurrently from different threads.
2667                  *
2668                  * Note! Normally the "set_page_dirty(page)"
2669                  * has no effect on the actual dirty bit - since
2670                  * that will already usually be set. But we
2671                  * need the side effects, and it can help us
2672                  * avoid races.
2673                  *
2674                  * We basically use the page "master dirty bit"
2675                  * as a serialization point for all the different
2676                  * threads doing their things.
2677                  */
2678                 if (page_mkclean(page))
2679                         set_page_dirty(page);
2680                 /*
2681                  * We carefully synchronise fault handlers against
2682                  * installing a dirty pte and marking the page dirty
2683                  * at this point.  We do this by having them hold the
2684                  * page lock while dirtying the page, and pages are
2685                  * always locked coming in here, so we get the desired
2686                  * exclusion.
2687                  */
2688                 memcg = mem_cgroup_begin_page_stat(page);
2689                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2690                 if (TestClearPageDirty(page)) {
2691                         mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2692                         dec_zone_page_state(page, NR_FILE_DIRTY);
2693                         dec_wb_stat(wb, WB_RECLAIMABLE);
2694                         ret = 1;
2695                 }
2696                 unlocked_inode_to_wb_end(inode, locked);
2697                 mem_cgroup_end_page_stat(memcg);
2698                 return ret;
2699         }
2700         return TestClearPageDirty(page);
2701 }
2702 EXPORT_SYMBOL(clear_page_dirty_for_io);
2703
2704 int test_clear_page_writeback(struct page *page)
2705 {
2706         struct address_space *mapping = page_mapping(page);
2707         struct mem_cgroup *memcg;
2708         int ret;
2709
2710         memcg = mem_cgroup_begin_page_stat(page);
2711         if (mapping) {
2712                 struct inode *inode = mapping->host;
2713                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2714                 unsigned long flags;
2715
2716                 spin_lock_irqsave(&mapping->tree_lock, flags);
2717                 ret = TestClearPageWriteback(page);
2718                 if (ret) {
2719                         radix_tree_tag_clear(&mapping->page_tree,
2720                                                 page_index(page),
2721                                                 PAGECACHE_TAG_WRITEBACK);
2722                         if (bdi_cap_account_writeback(bdi)) {
2723                                 struct bdi_writeback *wb = inode_to_wb(inode);
2724
2725                                 __dec_wb_stat(wb, WB_WRITEBACK);
2726                                 __wb_writeout_inc(wb);
2727                         }
2728                 }
2729                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2730         } else {
2731                 ret = TestClearPageWriteback(page);
2732         }
2733         if (ret) {
2734                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2735                 dec_zone_page_state(page, NR_WRITEBACK);
2736                 inc_zone_page_state(page, NR_WRITTEN);
2737         }
2738         mem_cgroup_end_page_stat(memcg);
2739         return ret;
2740 }
2741
2742 int __test_set_page_writeback(struct page *page, bool keep_write)
2743 {
2744         struct address_space *mapping = page_mapping(page);
2745         struct mem_cgroup *memcg;
2746         int ret;
2747
2748         memcg = mem_cgroup_begin_page_stat(page);
2749         if (mapping) {
2750                 struct inode *inode = mapping->host;
2751                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2752                 unsigned long flags;
2753
2754                 spin_lock_irqsave(&mapping->tree_lock, flags);
2755                 ret = TestSetPageWriteback(page);
2756                 if (!ret) {
2757                         radix_tree_tag_set(&mapping->page_tree,
2758                                                 page_index(page),
2759                                                 PAGECACHE_TAG_WRITEBACK);
2760                         if (bdi_cap_account_writeback(bdi))
2761                                 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2762                 }
2763                 if (!PageDirty(page))
2764                         radix_tree_tag_clear(&mapping->page_tree,
2765                                                 page_index(page),
2766                                                 PAGECACHE_TAG_DIRTY);
2767                 if (!keep_write)
2768                         radix_tree_tag_clear(&mapping->page_tree,
2769                                                 page_index(page),
2770                                                 PAGECACHE_TAG_TOWRITE);
2771                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2772         } else {
2773                 ret = TestSetPageWriteback(page);
2774         }
2775         if (!ret) {
2776                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2777                 inc_zone_page_state(page, NR_WRITEBACK);
2778         }
2779         mem_cgroup_end_page_stat(memcg);
2780         return ret;
2781
2782 }
2783 EXPORT_SYMBOL(__test_set_page_writeback);
2784
2785 /*
2786  * Return true if any of the pages in the mapping are marked with the
2787  * passed tag.
2788  */
2789 int mapping_tagged(struct address_space *mapping, int tag)
2790 {
2791         return radix_tree_tagged(&mapping->page_tree, tag);
2792 }
2793 EXPORT_SYMBOL(mapping_tagged);
2794
2795 /**
2796  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2797  * @page:       The page to wait on.
2798  *
2799  * This function determines if the given page is related to a backing device
2800  * that requires page contents to be held stable during writeback.  If so, then
2801  * it will wait for any pending writeback to complete.
2802  */
2803 void wait_for_stable_page(struct page *page)
2804 {
2805         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2806                 wait_on_page_writeback(page);
2807 }
2808 EXPORT_SYMBOL_GPL(wait_for_stable_page);