block: add a bi_error field to struct bio
[firefly-linux-kernel-4.4.55.git] / mm / page_io.c
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, 
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
26
27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28                                 struct page *page, bio_end_io_t end_io)
29 {
30         struct bio *bio;
31
32         bio = bio_alloc(gfp_flags, 1);
33         if (bio) {
34                 bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35                 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36                 bio->bi_io_vec[0].bv_page = page;
37                 bio->bi_io_vec[0].bv_len = PAGE_SIZE;
38                 bio->bi_io_vec[0].bv_offset = 0;
39                 bio->bi_vcnt = 1;
40                 bio->bi_iter.bi_size = PAGE_SIZE;
41                 bio->bi_end_io = end_io;
42         }
43         return bio;
44 }
45
46 void end_swap_bio_write(struct bio *bio)
47 {
48         struct page *page = bio->bi_io_vec[0].bv_page;
49
50         if (bio->bi_error) {
51                 SetPageError(page);
52                 /*
53                  * We failed to write the page out to swap-space.
54                  * Re-dirty the page in order to avoid it being reclaimed.
55                  * Also print a dire warning that things will go BAD (tm)
56                  * very quickly.
57                  *
58                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
59                  */
60                 set_page_dirty(page);
61                 printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n",
62                                 imajor(bio->bi_bdev->bd_inode),
63                                 iminor(bio->bi_bdev->bd_inode),
64                                 (unsigned long long)bio->bi_iter.bi_sector);
65                 ClearPageReclaim(page);
66         }
67         end_page_writeback(page);
68         bio_put(bio);
69 }
70
71 static void end_swap_bio_read(struct bio *bio)
72 {
73         struct page *page = bio->bi_io_vec[0].bv_page;
74
75         if (bio->bi_error) {
76                 SetPageError(page);
77                 ClearPageUptodate(page);
78                 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
79                                 imajor(bio->bi_bdev->bd_inode),
80                                 iminor(bio->bi_bdev->bd_inode),
81                                 (unsigned long long)bio->bi_iter.bi_sector);
82                 goto out;
83         }
84
85         SetPageUptodate(page);
86
87         /*
88          * There is no guarantee that the page is in swap cache - the software
89          * suspend code (at least) uses end_swap_bio_read() against a non-
90          * swapcache page.  So we must check PG_swapcache before proceeding with
91          * this optimization.
92          */
93         if (likely(PageSwapCache(page))) {
94                 struct swap_info_struct *sis;
95
96                 sis = page_swap_info(page);
97                 if (sis->flags & SWP_BLKDEV) {
98                         /*
99                          * The swap subsystem performs lazy swap slot freeing,
100                          * expecting that the page will be swapped out again.
101                          * So we can avoid an unnecessary write if the page
102                          * isn't redirtied.
103                          * This is good for real swap storage because we can
104                          * reduce unnecessary I/O and enhance wear-leveling
105                          * if an SSD is used as the as swap device.
106                          * But if in-memory swap device (eg zram) is used,
107                          * this causes a duplicated copy between uncompressed
108                          * data in VM-owned memory and compressed data in
109                          * zram-owned memory.  So let's free zram-owned memory
110                          * and make the VM-owned decompressed page *dirty*,
111                          * so the page should be swapped out somewhere again if
112                          * we again wish to reclaim it.
113                          */
114                         struct gendisk *disk = sis->bdev->bd_disk;
115                         if (disk->fops->swap_slot_free_notify) {
116                                 swp_entry_t entry;
117                                 unsigned long offset;
118
119                                 entry.val = page_private(page);
120                                 offset = swp_offset(entry);
121
122                                 SetPageDirty(page);
123                                 disk->fops->swap_slot_free_notify(sis->bdev,
124                                                 offset);
125                         }
126                 }
127         }
128
129 out:
130         unlock_page(page);
131         bio_put(bio);
132 }
133
134 int generic_swapfile_activate(struct swap_info_struct *sis,
135                                 struct file *swap_file,
136                                 sector_t *span)
137 {
138         struct address_space *mapping = swap_file->f_mapping;
139         struct inode *inode = mapping->host;
140         unsigned blocks_per_page;
141         unsigned long page_no;
142         unsigned blkbits;
143         sector_t probe_block;
144         sector_t last_block;
145         sector_t lowest_block = -1;
146         sector_t highest_block = 0;
147         int nr_extents = 0;
148         int ret;
149
150         blkbits = inode->i_blkbits;
151         blocks_per_page = PAGE_SIZE >> blkbits;
152
153         /*
154          * Map all the blocks into the extent list.  This code doesn't try
155          * to be very smart.
156          */
157         probe_block = 0;
158         page_no = 0;
159         last_block = i_size_read(inode) >> blkbits;
160         while ((probe_block + blocks_per_page) <= last_block &&
161                         page_no < sis->max) {
162                 unsigned block_in_page;
163                 sector_t first_block;
164
165                 first_block = bmap(inode, probe_block);
166                 if (first_block == 0)
167                         goto bad_bmap;
168
169                 /*
170                  * It must be PAGE_SIZE aligned on-disk
171                  */
172                 if (first_block & (blocks_per_page - 1)) {
173                         probe_block++;
174                         goto reprobe;
175                 }
176
177                 for (block_in_page = 1; block_in_page < blocks_per_page;
178                                         block_in_page++) {
179                         sector_t block;
180
181                         block = bmap(inode, probe_block + block_in_page);
182                         if (block == 0)
183                                 goto bad_bmap;
184                         if (block != first_block + block_in_page) {
185                                 /* Discontiguity */
186                                 probe_block++;
187                                 goto reprobe;
188                         }
189                 }
190
191                 first_block >>= (PAGE_SHIFT - blkbits);
192                 if (page_no) {  /* exclude the header page */
193                         if (first_block < lowest_block)
194                                 lowest_block = first_block;
195                         if (first_block > highest_block)
196                                 highest_block = first_block;
197                 }
198
199                 /*
200                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
201                  */
202                 ret = add_swap_extent(sis, page_no, 1, first_block);
203                 if (ret < 0)
204                         goto out;
205                 nr_extents += ret;
206                 page_no++;
207                 probe_block += blocks_per_page;
208 reprobe:
209                 continue;
210         }
211         ret = nr_extents;
212         *span = 1 + highest_block - lowest_block;
213         if (page_no == 0)
214                 page_no = 1;    /* force Empty message */
215         sis->max = page_no;
216         sis->pages = page_no - 1;
217         sis->highest_bit = page_no - 1;
218 out:
219         return ret;
220 bad_bmap:
221         printk(KERN_ERR "swapon: swapfile has holes\n");
222         ret = -EINVAL;
223         goto out;
224 }
225
226 /*
227  * We may have stale swap cache pages in memory: notice
228  * them here and get rid of the unnecessary final write.
229  */
230 int swap_writepage(struct page *page, struct writeback_control *wbc)
231 {
232         int ret = 0;
233
234         if (try_to_free_swap(page)) {
235                 unlock_page(page);
236                 goto out;
237         }
238         if (frontswap_store(page) == 0) {
239                 set_page_writeback(page);
240                 unlock_page(page);
241                 end_page_writeback(page);
242                 goto out;
243         }
244         ret = __swap_writepage(page, wbc, end_swap_bio_write);
245 out:
246         return ret;
247 }
248
249 static sector_t swap_page_sector(struct page *page)
250 {
251         return (sector_t)__page_file_index(page) << (PAGE_CACHE_SHIFT - 9);
252 }
253
254 int __swap_writepage(struct page *page, struct writeback_control *wbc,
255                 bio_end_io_t end_write_func)
256 {
257         struct bio *bio;
258         int ret, rw = WRITE;
259         struct swap_info_struct *sis = page_swap_info(page);
260
261         if (sis->flags & SWP_FILE) {
262                 struct kiocb kiocb;
263                 struct file *swap_file = sis->swap_file;
264                 struct address_space *mapping = swap_file->f_mapping;
265                 struct bio_vec bv = {
266                         .bv_page = page,
267                         .bv_len  = PAGE_SIZE,
268                         .bv_offset = 0
269                 };
270                 struct iov_iter from;
271
272                 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
273                 init_sync_kiocb(&kiocb, swap_file);
274                 kiocb.ki_pos = page_file_offset(page);
275
276                 set_page_writeback(page);
277                 unlock_page(page);
278                 ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
279                 if (ret == PAGE_SIZE) {
280                         count_vm_event(PSWPOUT);
281                         ret = 0;
282                 } else {
283                         /*
284                          * In the case of swap-over-nfs, this can be a
285                          * temporary failure if the system has limited
286                          * memory for allocating transmit buffers.
287                          * Mark the page dirty and avoid
288                          * rotate_reclaimable_page but rate-limit the
289                          * messages but do not flag PageError like
290                          * the normal direct-to-bio case as it could
291                          * be temporary.
292                          */
293                         set_page_dirty(page);
294                         ClearPageReclaim(page);
295                         pr_err_ratelimited("Write error on dio swapfile (%Lu)\n",
296                                 page_file_offset(page));
297                 }
298                 end_page_writeback(page);
299                 return ret;
300         }
301
302         ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
303         if (!ret) {
304                 count_vm_event(PSWPOUT);
305                 return 0;
306         }
307
308         ret = 0;
309         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
310         if (bio == NULL) {
311                 set_page_dirty(page);
312                 unlock_page(page);
313                 ret = -ENOMEM;
314                 goto out;
315         }
316         if (wbc->sync_mode == WB_SYNC_ALL)
317                 rw |= REQ_SYNC;
318         count_vm_event(PSWPOUT);
319         set_page_writeback(page);
320         unlock_page(page);
321         submit_bio(rw, bio);
322 out:
323         return ret;
324 }
325
326 int swap_readpage(struct page *page)
327 {
328         struct bio *bio;
329         int ret = 0;
330         struct swap_info_struct *sis = page_swap_info(page);
331
332         VM_BUG_ON_PAGE(!PageLocked(page), page);
333         VM_BUG_ON_PAGE(PageUptodate(page), page);
334         if (frontswap_load(page) == 0) {
335                 SetPageUptodate(page);
336                 unlock_page(page);
337                 goto out;
338         }
339
340         if (sis->flags & SWP_FILE) {
341                 struct file *swap_file = sis->swap_file;
342                 struct address_space *mapping = swap_file->f_mapping;
343
344                 ret = mapping->a_ops->readpage(swap_file, page);
345                 if (!ret)
346                         count_vm_event(PSWPIN);
347                 return ret;
348         }
349
350         ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
351         if (!ret) {
352                 count_vm_event(PSWPIN);
353                 return 0;
354         }
355
356         ret = 0;
357         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
358         if (bio == NULL) {
359                 unlock_page(page);
360                 ret = -ENOMEM;
361                 goto out;
362         }
363         count_vm_event(PSWPIN);
364         submit_bio(READ, bio);
365 out:
366         return ret;
367 }
368
369 int swap_set_page_dirty(struct page *page)
370 {
371         struct swap_info_struct *sis = page_swap_info(page);
372
373         if (sis->flags & SWP_FILE) {
374                 struct address_space *mapping = sis->swap_file->f_mapping;
375                 return mapping->a_ops->set_page_dirty(page);
376         } else {
377                 return __set_page_dirty_no_writeback(page);
378         }
379 }