shmem: fix faulting into a hole while it's punched
[firefly-linux-kernel-4.4.55.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/generic_acl.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         int     mode;           /* FALLOC_FL mode currently operating */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160         return (flags & VM_NORESERVE) ?
161                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166         if (flags & VM_NORESERVE)
167                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179         .ra_pages       = 0,    /* No readahead */
180         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189         if (sbinfo->max_inodes) {
190                 spin_lock(&sbinfo->stat_lock);
191                 if (!sbinfo->free_inodes) {
192                         spin_unlock(&sbinfo->stat_lock);
193                         return -ENOSPC;
194                 }
195                 sbinfo->free_inodes--;
196                 spin_unlock(&sbinfo->stat_lock);
197         }
198         return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204         if (sbinfo->max_inodes) {
205                 spin_lock(&sbinfo->stat_lock);
206                 sbinfo->free_inodes++;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209 }
210
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225         struct shmem_inode_info *info = SHMEM_I(inode);
226         long freed;
227
228         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229         if (freed > 0) {
230                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231                 if (sbinfo->max_blocks)
232                         percpu_counter_add(&sbinfo->used_blocks, -freed);
233                 info->alloced -= freed;
234                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235                 shmem_unacct_blocks(info->flags, freed);
236         }
237 }
238
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243                         pgoff_t index, void *expected, void *replacement)
244 {
245         void **pslot;
246         void *item = NULL;
247
248         VM_BUG_ON(!expected);
249         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250         if (pslot)
251                 item = radix_tree_deref_slot_protected(pslot,
252                                                         &mapping->tree_lock);
253         if (item != expected)
254                 return -ENOENT;
255         if (replacement)
256                 radix_tree_replace_slot(pslot, replacement);
257         else
258                 radix_tree_delete(&mapping->page_tree, index);
259         return 0;
260 }
261
262 /*
263  * Sometimes, before we decide whether to proceed or to fail, we must check
264  * that an entry was not already brought back from swap by a racing thread.
265  *
266  * Checking page is not enough: by the time a SwapCache page is locked, it
267  * might be reused, and again be SwapCache, using the same swap as before.
268  */
269 static bool shmem_confirm_swap(struct address_space *mapping,
270                                pgoff_t index, swp_entry_t swap)
271 {
272         void *item;
273
274         rcu_read_lock();
275         item = radix_tree_lookup(&mapping->page_tree, index);
276         rcu_read_unlock();
277         return item == swp_to_radix_entry(swap);
278 }
279
280 /*
281  * Like add_to_page_cache_locked, but error if expected item has gone.
282  */
283 static int shmem_add_to_page_cache(struct page *page,
284                                    struct address_space *mapping,
285                                    pgoff_t index, gfp_t gfp, void *expected)
286 {
287         int error;
288
289         VM_BUG_ON(!PageLocked(page));
290         VM_BUG_ON(!PageSwapBacked(page));
291
292         page_cache_get(page);
293         page->mapping = mapping;
294         page->index = index;
295
296         spin_lock_irq(&mapping->tree_lock);
297         if (!expected)
298                 error = radix_tree_insert(&mapping->page_tree, index, page);
299         else
300                 error = shmem_radix_tree_replace(mapping, index, expected,
301                                                                  page);
302         if (!error) {
303                 mapping->nrpages++;
304                 __inc_zone_page_state(page, NR_FILE_PAGES);
305                 __inc_zone_page_state(page, NR_SHMEM);
306                 spin_unlock_irq(&mapping->tree_lock);
307         } else {
308                 page->mapping = NULL;
309                 spin_unlock_irq(&mapping->tree_lock);
310                 page_cache_release(page);
311         }
312         return error;
313 }
314
315 /*
316  * Like delete_from_page_cache, but substitutes swap for page.
317  */
318 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
319 {
320         struct address_space *mapping = page->mapping;
321         int error;
322
323         spin_lock_irq(&mapping->tree_lock);
324         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
325         page->mapping = NULL;
326         mapping->nrpages--;
327         __dec_zone_page_state(page, NR_FILE_PAGES);
328         __dec_zone_page_state(page, NR_SHMEM);
329         spin_unlock_irq(&mapping->tree_lock);
330         page_cache_release(page);
331         BUG_ON(error);
332 }
333
334 /*
335  * Like find_get_pages, but collecting swap entries as well as pages.
336  */
337 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
338                                         pgoff_t start, unsigned int nr_pages,
339                                         struct page **pages, pgoff_t *indices)
340 {
341         void **slot;
342         unsigned int ret = 0;
343         struct radix_tree_iter iter;
344
345         if (!nr_pages)
346                 return 0;
347
348         rcu_read_lock();
349 restart:
350         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
351                 struct page *page;
352 repeat:
353                 page = radix_tree_deref_slot(slot);
354                 if (unlikely(!page))
355                         continue;
356                 if (radix_tree_exception(page)) {
357                         if (radix_tree_deref_retry(page))
358                                 goto restart;
359                         /*
360                          * Otherwise, we must be storing a swap entry
361                          * here as an exceptional entry: so return it
362                          * without attempting to raise page count.
363                          */
364                         goto export;
365                 }
366                 if (!page_cache_get_speculative(page))
367                         goto repeat;
368
369                 /* Has the page moved? */
370                 if (unlikely(page != *slot)) {
371                         page_cache_release(page);
372                         goto repeat;
373                 }
374 export:
375                 indices[ret] = iter.index;
376                 pages[ret] = page;
377                 if (++ret == nr_pages)
378                         break;
379         }
380         rcu_read_unlock();
381         return ret;
382 }
383
384 /*
385  * Remove swap entry from radix tree, free the swap and its page cache.
386  */
387 static int shmem_free_swap(struct address_space *mapping,
388                            pgoff_t index, void *radswap)
389 {
390         int error;
391
392         spin_lock_irq(&mapping->tree_lock);
393         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
394         spin_unlock_irq(&mapping->tree_lock);
395         if (!error)
396                 free_swap_and_cache(radix_to_swp_entry(radswap));
397         return error;
398 }
399
400 /*
401  * Pagevec may contain swap entries, so shuffle up pages before releasing.
402  */
403 static void shmem_deswap_pagevec(struct pagevec *pvec)
404 {
405         int i, j;
406
407         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
408                 struct page *page = pvec->pages[i];
409                 if (!radix_tree_exceptional_entry(page))
410                         pvec->pages[j++] = page;
411         }
412         pvec->nr = j;
413 }
414
415 /*
416  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
417  */
418 void shmem_unlock_mapping(struct address_space *mapping)
419 {
420         struct pagevec pvec;
421         pgoff_t indices[PAGEVEC_SIZE];
422         pgoff_t index = 0;
423
424         pagevec_init(&pvec, 0);
425         /*
426          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
427          */
428         while (!mapping_unevictable(mapping)) {
429                 /*
430                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
431                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
432                  */
433                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
434                                         PAGEVEC_SIZE, pvec.pages, indices);
435                 if (!pvec.nr)
436                         break;
437                 index = indices[pvec.nr - 1] + 1;
438                 shmem_deswap_pagevec(&pvec);
439                 check_move_unevictable_pages(pvec.pages, pvec.nr);
440                 pagevec_release(&pvec);
441                 cond_resched();
442         }
443 }
444
445 /*
446  * Remove range of pages and swap entries from radix tree, and free them.
447  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
448  */
449 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
450                                                                  bool unfalloc)
451 {
452         struct address_space *mapping = inode->i_mapping;
453         struct shmem_inode_info *info = SHMEM_I(inode);
454         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
455         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
456         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
457         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
458         struct pagevec pvec;
459         pgoff_t indices[PAGEVEC_SIZE];
460         long nr_swaps_freed = 0;
461         pgoff_t index;
462         int i;
463
464         if (lend == -1)
465                 end = -1;       /* unsigned, so actually very big */
466
467         pagevec_init(&pvec, 0);
468         index = start;
469         while (index < end) {
470                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
471                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
472                                                         pvec.pages, indices);
473                 if (!pvec.nr)
474                         break;
475                 mem_cgroup_uncharge_start();
476                 for (i = 0; i < pagevec_count(&pvec); i++) {
477                         struct page *page = pvec.pages[i];
478
479                         index = indices[i];
480                         if (index >= end)
481                                 break;
482
483                         if (radix_tree_exceptional_entry(page)) {
484                                 if (unfalloc)
485                                         continue;
486                                 nr_swaps_freed += !shmem_free_swap(mapping,
487                                                                 index, page);
488                                 continue;
489                         }
490
491                         if (!trylock_page(page))
492                                 continue;
493                         if (!unfalloc || !PageUptodate(page)) {
494                                 if (page->mapping == mapping) {
495                                         VM_BUG_ON(PageWriteback(page));
496                                         truncate_inode_page(mapping, page);
497                                 }
498                         }
499                         unlock_page(page);
500                 }
501                 shmem_deswap_pagevec(&pvec);
502                 pagevec_release(&pvec);
503                 mem_cgroup_uncharge_end();
504                 cond_resched();
505                 index++;
506         }
507
508         if (partial_start) {
509                 struct page *page = NULL;
510                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
511                 if (page) {
512                         unsigned int top = PAGE_CACHE_SIZE;
513                         if (start > end) {
514                                 top = partial_end;
515                                 partial_end = 0;
516                         }
517                         zero_user_segment(page, partial_start, top);
518                         set_page_dirty(page);
519                         unlock_page(page);
520                         page_cache_release(page);
521                 }
522         }
523         if (partial_end) {
524                 struct page *page = NULL;
525                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
526                 if (page) {
527                         zero_user_segment(page, 0, partial_end);
528                         set_page_dirty(page);
529                         unlock_page(page);
530                         page_cache_release(page);
531                 }
532         }
533         if (start >= end)
534                 return;
535
536         index = start;
537         for ( ; ; ) {
538                 cond_resched();
539                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
540                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
541                                                         pvec.pages, indices);
542                 if (!pvec.nr) {
543                         if (index == start || unfalloc)
544                                 break;
545                         index = start;
546                         continue;
547                 }
548                 if ((index == start || unfalloc) && indices[0] >= end) {
549                         shmem_deswap_pagevec(&pvec);
550                         pagevec_release(&pvec);
551                         break;
552                 }
553                 mem_cgroup_uncharge_start();
554                 for (i = 0; i < pagevec_count(&pvec); i++) {
555                         struct page *page = pvec.pages[i];
556
557                         index = indices[i];
558                         if (index >= end)
559                                 break;
560
561                         if (radix_tree_exceptional_entry(page)) {
562                                 if (unfalloc)
563                                         continue;
564                                 nr_swaps_freed += !shmem_free_swap(mapping,
565                                                                 index, page);
566                                 continue;
567                         }
568
569                         lock_page(page);
570                         if (!unfalloc || !PageUptodate(page)) {
571                                 if (page->mapping == mapping) {
572                                         VM_BUG_ON(PageWriteback(page));
573                                         truncate_inode_page(mapping, page);
574                                 }
575                         }
576                         unlock_page(page);
577                 }
578                 shmem_deswap_pagevec(&pvec);
579                 pagevec_release(&pvec);
580                 mem_cgroup_uncharge_end();
581                 index++;
582         }
583
584         spin_lock(&info->lock);
585         info->swapped -= nr_swaps_freed;
586         shmem_recalc_inode(inode);
587         spin_unlock(&info->lock);
588 }
589
590 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
591 {
592         shmem_undo_range(inode, lstart, lend, false);
593         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
594 }
595 EXPORT_SYMBOL_GPL(shmem_truncate_range);
596
597 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
598 {
599         struct inode *inode = dentry->d_inode;
600         int error;
601
602         error = inode_change_ok(inode, attr);
603         if (error)
604                 return error;
605
606         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
607                 loff_t oldsize = inode->i_size;
608                 loff_t newsize = attr->ia_size;
609
610                 if (newsize != oldsize) {
611                         i_size_write(inode, newsize);
612                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
613                 }
614                 if (newsize < oldsize) {
615                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
616                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
617                         shmem_truncate_range(inode, newsize, (loff_t)-1);
618                         /* unmap again to remove racily COWed private pages */
619                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
620                 }
621         }
622
623         setattr_copy(inode, attr);
624 #ifdef CONFIG_TMPFS_POSIX_ACL
625         if (attr->ia_valid & ATTR_MODE)
626                 error = generic_acl_chmod(inode);
627 #endif
628         return error;
629 }
630
631 static void shmem_evict_inode(struct inode *inode)
632 {
633         struct shmem_inode_info *info = SHMEM_I(inode);
634
635         if (inode->i_mapping->a_ops == &shmem_aops) {
636                 shmem_unacct_size(info->flags, inode->i_size);
637                 inode->i_size = 0;
638                 shmem_truncate_range(inode, 0, (loff_t)-1);
639                 if (!list_empty(&info->swaplist)) {
640                         mutex_lock(&shmem_swaplist_mutex);
641                         list_del_init(&info->swaplist);
642                         mutex_unlock(&shmem_swaplist_mutex);
643                 }
644         } else
645                 kfree(info->symlink);
646
647         simple_xattrs_free(&info->xattrs);
648         WARN_ON(inode->i_blocks);
649         shmem_free_inode(inode->i_sb);
650         clear_inode(inode);
651 }
652
653 /*
654  * If swap found in inode, free it and move page from swapcache to filecache.
655  */
656 static int shmem_unuse_inode(struct shmem_inode_info *info,
657                              swp_entry_t swap, struct page **pagep)
658 {
659         struct address_space *mapping = info->vfs_inode.i_mapping;
660         void *radswap;
661         pgoff_t index;
662         gfp_t gfp;
663         int error = 0;
664
665         radswap = swp_to_radix_entry(swap);
666         index = radix_tree_locate_item(&mapping->page_tree, radswap);
667         if (index == -1)
668                 return 0;
669
670         /*
671          * Move _head_ to start search for next from here.
672          * But be careful: shmem_evict_inode checks list_empty without taking
673          * mutex, and there's an instant in list_move_tail when info->swaplist
674          * would appear empty, if it were the only one on shmem_swaplist.
675          */
676         if (shmem_swaplist.next != &info->swaplist)
677                 list_move_tail(&shmem_swaplist, &info->swaplist);
678
679         gfp = mapping_gfp_mask(mapping);
680         if (shmem_should_replace_page(*pagep, gfp)) {
681                 mutex_unlock(&shmem_swaplist_mutex);
682                 error = shmem_replace_page(pagep, gfp, info, index);
683                 mutex_lock(&shmem_swaplist_mutex);
684                 /*
685                  * We needed to drop mutex to make that restrictive page
686                  * allocation, but the inode might have been freed while we
687                  * dropped it: although a racing shmem_evict_inode() cannot
688                  * complete without emptying the radix_tree, our page lock
689                  * on this swapcache page is not enough to prevent that -
690                  * free_swap_and_cache() of our swap entry will only
691                  * trylock_page(), removing swap from radix_tree whatever.
692                  *
693                  * We must not proceed to shmem_add_to_page_cache() if the
694                  * inode has been freed, but of course we cannot rely on
695                  * inode or mapping or info to check that.  However, we can
696                  * safely check if our swap entry is still in use (and here
697                  * it can't have got reused for another page): if it's still
698                  * in use, then the inode cannot have been freed yet, and we
699                  * can safely proceed (if it's no longer in use, that tells
700                  * nothing about the inode, but we don't need to unuse swap).
701                  */
702                 if (!page_swapcount(*pagep))
703                         error = -ENOENT;
704         }
705
706         /*
707          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
708          * but also to hold up shmem_evict_inode(): so inode cannot be freed
709          * beneath us (pagelock doesn't help until the page is in pagecache).
710          */
711         if (!error)
712                 error = shmem_add_to_page_cache(*pagep, mapping, index,
713                                                 GFP_NOWAIT, radswap);
714         if (error != -ENOMEM) {
715                 /*
716                  * Truncation and eviction use free_swap_and_cache(), which
717                  * only does trylock page: if we raced, best clean up here.
718                  */
719                 delete_from_swap_cache(*pagep);
720                 set_page_dirty(*pagep);
721                 if (!error) {
722                         spin_lock(&info->lock);
723                         info->swapped--;
724                         spin_unlock(&info->lock);
725                         swap_free(swap);
726                 }
727                 error = 1;      /* not an error, but entry was found */
728         }
729         return error;
730 }
731
732 /*
733  * Search through swapped inodes to find and replace swap by page.
734  */
735 int shmem_unuse(swp_entry_t swap, struct page *page)
736 {
737         struct list_head *this, *next;
738         struct shmem_inode_info *info;
739         int found = 0;
740         int error = 0;
741
742         /*
743          * There's a faint possibility that swap page was replaced before
744          * caller locked it: caller will come back later with the right page.
745          */
746         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
747                 goto out;
748
749         /*
750          * Charge page using GFP_KERNEL while we can wait, before taking
751          * the shmem_swaplist_mutex which might hold up shmem_writepage().
752          * Charged back to the user (not to caller) when swap account is used.
753          */
754         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
755         if (error)
756                 goto out;
757         /* No radix_tree_preload: swap entry keeps a place for page in tree */
758
759         mutex_lock(&shmem_swaplist_mutex);
760         list_for_each_safe(this, next, &shmem_swaplist) {
761                 info = list_entry(this, struct shmem_inode_info, swaplist);
762                 if (info->swapped)
763                         found = shmem_unuse_inode(info, swap, &page);
764                 else
765                         list_del_init(&info->swaplist);
766                 cond_resched();
767                 if (found)
768                         break;
769         }
770         mutex_unlock(&shmem_swaplist_mutex);
771
772         if (found < 0)
773                 error = found;
774 out:
775         unlock_page(page);
776         page_cache_release(page);
777         return error;
778 }
779
780 /*
781  * Move the page from the page cache to the swap cache.
782  */
783 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
784 {
785         struct shmem_inode_info *info;
786         struct address_space *mapping;
787         struct inode *inode;
788         swp_entry_t swap;
789         pgoff_t index;
790
791         BUG_ON(!PageLocked(page));
792         mapping = page->mapping;
793         index = page->index;
794         inode = mapping->host;
795         info = SHMEM_I(inode);
796         if (info->flags & VM_LOCKED)
797                 goto redirty;
798         if (!total_swap_pages)
799                 goto redirty;
800
801         /*
802          * shmem_backing_dev_info's capabilities prevent regular writeback or
803          * sync from ever calling shmem_writepage; but a stacking filesystem
804          * might use ->writepage of its underlying filesystem, in which case
805          * tmpfs should write out to swap only in response to memory pressure,
806          * and not for the writeback threads or sync.
807          */
808         if (!wbc->for_reclaim) {
809                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
810                 goto redirty;
811         }
812
813         /*
814          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
815          * value into swapfile.c, the only way we can correctly account for a
816          * fallocated page arriving here is now to initialize it and write it.
817          *
818          * That's okay for a page already fallocated earlier, but if we have
819          * not yet completed the fallocation, then (a) we want to keep track
820          * of this page in case we have to undo it, and (b) it may not be a
821          * good idea to continue anyway, once we're pushing into swap.  So
822          * reactivate the page, and let shmem_fallocate() quit when too many.
823          */
824         if (!PageUptodate(page)) {
825                 if (inode->i_private) {
826                         struct shmem_falloc *shmem_falloc;
827                         spin_lock(&inode->i_lock);
828                         shmem_falloc = inode->i_private;
829                         if (shmem_falloc &&
830                             !shmem_falloc->mode &&
831                             index >= shmem_falloc->start &&
832                             index < shmem_falloc->next)
833                                 shmem_falloc->nr_unswapped++;
834                         else
835                                 shmem_falloc = NULL;
836                         spin_unlock(&inode->i_lock);
837                         if (shmem_falloc)
838                                 goto redirty;
839                 }
840                 clear_highpage(page);
841                 flush_dcache_page(page);
842                 SetPageUptodate(page);
843         }
844
845         swap = get_swap_page();
846         if (!swap.val)
847                 goto redirty;
848
849         /*
850          * Add inode to shmem_unuse()'s list of swapped-out inodes,
851          * if it's not already there.  Do it now before the page is
852          * moved to swap cache, when its pagelock no longer protects
853          * the inode from eviction.  But don't unlock the mutex until
854          * we've incremented swapped, because shmem_unuse_inode() will
855          * prune a !swapped inode from the swaplist under this mutex.
856          */
857         mutex_lock(&shmem_swaplist_mutex);
858         if (list_empty(&info->swaplist))
859                 list_add_tail(&info->swaplist, &shmem_swaplist);
860
861         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
862                 swap_shmem_alloc(swap);
863                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
864
865                 spin_lock(&info->lock);
866                 info->swapped++;
867                 shmem_recalc_inode(inode);
868                 spin_unlock(&info->lock);
869
870                 mutex_unlock(&shmem_swaplist_mutex);
871                 BUG_ON(page_mapped(page));
872                 swap_writepage(page, wbc);
873                 return 0;
874         }
875
876         mutex_unlock(&shmem_swaplist_mutex);
877         swapcache_free(swap, NULL);
878 redirty:
879         set_page_dirty(page);
880         if (wbc->for_reclaim)
881                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
882         unlock_page(page);
883         return 0;
884 }
885
886 #ifdef CONFIG_NUMA
887 #ifdef CONFIG_TMPFS
888 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
889 {
890         char buffer[64];
891
892         if (!mpol || mpol->mode == MPOL_DEFAULT)
893                 return;         /* show nothing */
894
895         mpol_to_str(buffer, sizeof(buffer), mpol);
896
897         seq_printf(seq, ",mpol=%s", buffer);
898 }
899
900 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
901 {
902         struct mempolicy *mpol = NULL;
903         if (sbinfo->mpol) {
904                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
905                 mpol = sbinfo->mpol;
906                 mpol_get(mpol);
907                 spin_unlock(&sbinfo->stat_lock);
908         }
909         return mpol;
910 }
911 #endif /* CONFIG_TMPFS */
912
913 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
914                         struct shmem_inode_info *info, pgoff_t index)
915 {
916         struct vm_area_struct pvma;
917         struct page *page;
918
919         /* Create a pseudo vma that just contains the policy */
920         pvma.vm_start = 0;
921         /* Bias interleave by inode number to distribute better across nodes */
922         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
923         pvma.vm_ops = NULL;
924         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
925
926         page = swapin_readahead(swap, gfp, &pvma, 0);
927
928         /* Drop reference taken by mpol_shared_policy_lookup() */
929         mpol_cond_put(pvma.vm_policy);
930
931         return page;
932 }
933
934 static struct page *shmem_alloc_page(gfp_t gfp,
935                         struct shmem_inode_info *info, pgoff_t index)
936 {
937         struct vm_area_struct pvma;
938         struct page *page;
939
940         /* Create a pseudo vma that just contains the policy */
941         pvma.vm_start = 0;
942         /* Bias interleave by inode number to distribute better across nodes */
943         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
944         pvma.vm_ops = NULL;
945         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
946
947         page = alloc_page_vma(gfp, &pvma, 0);
948
949         /* Drop reference taken by mpol_shared_policy_lookup() */
950         mpol_cond_put(pvma.vm_policy);
951
952         return page;
953 }
954 #else /* !CONFIG_NUMA */
955 #ifdef CONFIG_TMPFS
956 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
957 {
958 }
959 #endif /* CONFIG_TMPFS */
960
961 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
962                         struct shmem_inode_info *info, pgoff_t index)
963 {
964         return swapin_readahead(swap, gfp, NULL, 0);
965 }
966
967 static inline struct page *shmem_alloc_page(gfp_t gfp,
968                         struct shmem_inode_info *info, pgoff_t index)
969 {
970         return alloc_page(gfp);
971 }
972 #endif /* CONFIG_NUMA */
973
974 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
975 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
976 {
977         return NULL;
978 }
979 #endif
980
981 /*
982  * When a page is moved from swapcache to shmem filecache (either by the
983  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
984  * shmem_unuse_inode()), it may have been read in earlier from swap, in
985  * ignorance of the mapping it belongs to.  If that mapping has special
986  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
987  * we may need to copy to a suitable page before moving to filecache.
988  *
989  * In a future release, this may well be extended to respect cpuset and
990  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
991  * but for now it is a simple matter of zone.
992  */
993 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
994 {
995         return page_zonenum(page) > gfp_zone(gfp);
996 }
997
998 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
999                                 struct shmem_inode_info *info, pgoff_t index)
1000 {
1001         struct page *oldpage, *newpage;
1002         struct address_space *swap_mapping;
1003         pgoff_t swap_index;
1004         int error;
1005
1006         oldpage = *pagep;
1007         swap_index = page_private(oldpage);
1008         swap_mapping = page_mapping(oldpage);
1009
1010         /*
1011          * We have arrived here because our zones are constrained, so don't
1012          * limit chance of success by further cpuset and node constraints.
1013          */
1014         gfp &= ~GFP_CONSTRAINT_MASK;
1015         newpage = shmem_alloc_page(gfp, info, index);
1016         if (!newpage)
1017                 return -ENOMEM;
1018
1019         page_cache_get(newpage);
1020         copy_highpage(newpage, oldpage);
1021         flush_dcache_page(newpage);
1022
1023         __set_page_locked(newpage);
1024         SetPageUptodate(newpage);
1025         SetPageSwapBacked(newpage);
1026         set_page_private(newpage, swap_index);
1027         SetPageSwapCache(newpage);
1028
1029         /*
1030          * Our caller will very soon move newpage out of swapcache, but it's
1031          * a nice clean interface for us to replace oldpage by newpage there.
1032          */
1033         spin_lock_irq(&swap_mapping->tree_lock);
1034         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1035                                                                    newpage);
1036         if (!error) {
1037                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1038                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1039         }
1040         spin_unlock_irq(&swap_mapping->tree_lock);
1041
1042         if (unlikely(error)) {
1043                 /*
1044                  * Is this possible?  I think not, now that our callers check
1045                  * both PageSwapCache and page_private after getting page lock;
1046                  * but be defensive.  Reverse old to newpage for clear and free.
1047                  */
1048                 oldpage = newpage;
1049         } else {
1050                 mem_cgroup_replace_page_cache(oldpage, newpage);
1051                 lru_cache_add_anon(newpage);
1052                 *pagep = newpage;
1053         }
1054
1055         ClearPageSwapCache(oldpage);
1056         set_page_private(oldpage, 0);
1057
1058         unlock_page(oldpage);
1059         page_cache_release(oldpage);
1060         page_cache_release(oldpage);
1061         return error;
1062 }
1063
1064 /*
1065  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1066  *
1067  * If we allocate a new one we do not mark it dirty. That's up to the
1068  * vm. If we swap it in we mark it dirty since we also free the swap
1069  * entry since a page cannot live in both the swap and page cache
1070  */
1071 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1072         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1073 {
1074         struct address_space *mapping = inode->i_mapping;
1075         struct shmem_inode_info *info;
1076         struct shmem_sb_info *sbinfo;
1077         struct page *page;
1078         swp_entry_t swap;
1079         int error;
1080         int once = 0;
1081         int alloced = 0;
1082
1083         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1084                 return -EFBIG;
1085 repeat:
1086         swap.val = 0;
1087         page = find_lock_page(mapping, index);
1088         if (radix_tree_exceptional_entry(page)) {
1089                 swap = radix_to_swp_entry(page);
1090                 page = NULL;
1091         }
1092
1093         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1094             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1095                 error = -EINVAL;
1096                 goto failed;
1097         }
1098
1099         /* fallocated page? */
1100         if (page && !PageUptodate(page)) {
1101                 if (sgp != SGP_READ)
1102                         goto clear;
1103                 unlock_page(page);
1104                 page_cache_release(page);
1105                 page = NULL;
1106         }
1107         if (page || (sgp == SGP_READ && !swap.val)) {
1108                 *pagep = page;
1109                 return 0;
1110         }
1111
1112         /*
1113          * Fast cache lookup did not find it:
1114          * bring it back from swap or allocate.
1115          */
1116         info = SHMEM_I(inode);
1117         sbinfo = SHMEM_SB(inode->i_sb);
1118
1119         if (swap.val) {
1120                 /* Look it up and read it in.. */
1121                 page = lookup_swap_cache(swap);
1122                 if (!page) {
1123                         /* here we actually do the io */
1124                         if (fault_type)
1125                                 *fault_type |= VM_FAULT_MAJOR;
1126                         page = shmem_swapin(swap, gfp, info, index);
1127                         if (!page) {
1128                                 error = -ENOMEM;
1129                                 goto failed;
1130                         }
1131                 }
1132
1133                 /* We have to do this with page locked to prevent races */
1134                 lock_page(page);
1135                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1136                     !shmem_confirm_swap(mapping, index, swap)) {
1137                         error = -EEXIST;        /* try again */
1138                         goto unlock;
1139                 }
1140                 if (!PageUptodate(page)) {
1141                         error = -EIO;
1142                         goto failed;
1143                 }
1144                 wait_on_page_writeback(page);
1145
1146                 if (shmem_should_replace_page(page, gfp)) {
1147                         error = shmem_replace_page(&page, gfp, info, index);
1148                         if (error)
1149                                 goto failed;
1150                 }
1151
1152                 error = mem_cgroup_cache_charge(page, current->mm,
1153                                                 gfp & GFP_RECLAIM_MASK);
1154                 if (!error) {
1155                         error = shmem_add_to_page_cache(page, mapping, index,
1156                                                 gfp, swp_to_radix_entry(swap));
1157                         /*
1158                          * We already confirmed swap under page lock, and make
1159                          * no memory allocation here, so usually no possibility
1160                          * of error; but free_swap_and_cache() only trylocks a
1161                          * page, so it is just possible that the entry has been
1162                          * truncated or holepunched since swap was confirmed.
1163                          * shmem_undo_range() will have done some of the
1164                          * unaccounting, now delete_from_swap_cache() will do
1165                          * the rest (including mem_cgroup_uncharge_swapcache).
1166                          * Reset swap.val? No, leave it so "failed" goes back to
1167                          * "repeat": reading a hole and writing should succeed.
1168                          */
1169                         if (error)
1170                                 delete_from_swap_cache(page);
1171                 }
1172                 if (error)
1173                         goto failed;
1174
1175                 spin_lock(&info->lock);
1176                 info->swapped--;
1177                 shmem_recalc_inode(inode);
1178                 spin_unlock(&info->lock);
1179
1180                 delete_from_swap_cache(page);
1181                 set_page_dirty(page);
1182                 swap_free(swap);
1183
1184         } else {
1185                 if (shmem_acct_block(info->flags)) {
1186                         error = -ENOSPC;
1187                         goto failed;
1188                 }
1189                 if (sbinfo->max_blocks) {
1190                         if (percpu_counter_compare(&sbinfo->used_blocks,
1191                                                 sbinfo->max_blocks) >= 0) {
1192                                 error = -ENOSPC;
1193                                 goto unacct;
1194                         }
1195                         percpu_counter_inc(&sbinfo->used_blocks);
1196                 }
1197
1198                 page = shmem_alloc_page(gfp, info, index);
1199                 if (!page) {
1200                         error = -ENOMEM;
1201                         goto decused;
1202                 }
1203
1204                 SetPageSwapBacked(page);
1205                 __set_page_locked(page);
1206                 error = mem_cgroup_cache_charge(page, current->mm,
1207                                                 gfp & GFP_RECLAIM_MASK);
1208                 if (error)
1209                         goto decused;
1210                 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1211                 if (!error) {
1212                         error = shmem_add_to_page_cache(page, mapping, index,
1213                                                         gfp, NULL);
1214                         radix_tree_preload_end();
1215                 }
1216                 if (error) {
1217                         mem_cgroup_uncharge_cache_page(page);
1218                         goto decused;
1219                 }
1220                 lru_cache_add_anon(page);
1221
1222                 spin_lock(&info->lock);
1223                 info->alloced++;
1224                 inode->i_blocks += BLOCKS_PER_PAGE;
1225                 shmem_recalc_inode(inode);
1226                 spin_unlock(&info->lock);
1227                 alloced = true;
1228
1229                 /*
1230                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1231                  */
1232                 if (sgp == SGP_FALLOC)
1233                         sgp = SGP_WRITE;
1234 clear:
1235                 /*
1236                  * Let SGP_WRITE caller clear ends if write does not fill page;
1237                  * but SGP_FALLOC on a page fallocated earlier must initialize
1238                  * it now, lest undo on failure cancel our earlier guarantee.
1239                  */
1240                 if (sgp != SGP_WRITE) {
1241                         clear_highpage(page);
1242                         flush_dcache_page(page);
1243                         SetPageUptodate(page);
1244                 }
1245                 if (sgp == SGP_DIRTY)
1246                         set_page_dirty(page);
1247         }
1248
1249         /* Perhaps the file has been truncated since we checked */
1250         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1251             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1252                 error = -EINVAL;
1253                 if (alloced)
1254                         goto trunc;
1255                 else
1256                         goto failed;
1257         }
1258         *pagep = page;
1259         return 0;
1260
1261         /*
1262          * Error recovery.
1263          */
1264 trunc:
1265         info = SHMEM_I(inode);
1266         ClearPageDirty(page);
1267         delete_from_page_cache(page);
1268         spin_lock(&info->lock);
1269         info->alloced--;
1270         inode->i_blocks -= BLOCKS_PER_PAGE;
1271         spin_unlock(&info->lock);
1272 decused:
1273         sbinfo = SHMEM_SB(inode->i_sb);
1274         if (sbinfo->max_blocks)
1275                 percpu_counter_add(&sbinfo->used_blocks, -1);
1276 unacct:
1277         shmem_unacct_blocks(info->flags, 1);
1278 failed:
1279         if (swap.val && error != -EINVAL &&
1280             !shmem_confirm_swap(mapping, index, swap))
1281                 error = -EEXIST;
1282 unlock:
1283         if (page) {
1284                 unlock_page(page);
1285                 page_cache_release(page);
1286         }
1287         if (error == -ENOSPC && !once++) {
1288                 info = SHMEM_I(inode);
1289                 spin_lock(&info->lock);
1290                 shmem_recalc_inode(inode);
1291                 spin_unlock(&info->lock);
1292                 goto repeat;
1293         }
1294         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1295                 goto repeat;
1296         return error;
1297 }
1298
1299 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1300 {
1301         struct inode *inode = file_inode(vma->vm_file);
1302         int error;
1303         int ret = VM_FAULT_LOCKED;
1304
1305         /*
1306          * Trinity finds that probing a hole which tmpfs is punching can
1307          * prevent the hole-punch from ever completing: which in turn
1308          * locks writers out with its hold on i_mutex.  So refrain from
1309          * faulting pages into the hole while it's being punched, and
1310          * wait on i_mutex to be released if vmf->flags permits.
1311          */
1312         if (unlikely(inode->i_private)) {
1313                 struct shmem_falloc *shmem_falloc;
1314
1315                 spin_lock(&inode->i_lock);
1316                 shmem_falloc = inode->i_private;
1317                 if (!shmem_falloc ||
1318                     shmem_falloc->mode != FALLOC_FL_PUNCH_HOLE ||
1319                     vmf->pgoff < shmem_falloc->start ||
1320                     vmf->pgoff >= shmem_falloc->next)
1321                         shmem_falloc = NULL;
1322                 spin_unlock(&inode->i_lock);
1323                 /*
1324                  * i_lock has protected us from taking shmem_falloc seriously
1325                  * once return from shmem_fallocate() went back up that stack.
1326                  * i_lock does not serialize with i_mutex at all, but it does
1327                  * not matter if sometimes we wait unnecessarily, or sometimes
1328                  * miss out on waiting: we just need to make those cases rare.
1329                  */
1330                 if (shmem_falloc) {
1331                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1332                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1333                                 up_read(&vma->vm_mm->mmap_sem);
1334                                 mutex_lock(&inode->i_mutex);
1335                                 mutex_unlock(&inode->i_mutex);
1336                                 return VM_FAULT_RETRY;
1337                         }
1338                         /* cond_resched? Leave that to GUP or return to user */
1339                         return VM_FAULT_NOPAGE;
1340                 }
1341         }
1342
1343         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1344         if (error)
1345                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1346
1347         if (ret & VM_FAULT_MAJOR) {
1348                 count_vm_event(PGMAJFAULT);
1349                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1350         }
1351         return ret;
1352 }
1353
1354 #ifdef CONFIG_NUMA
1355 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1356 {
1357         struct inode *inode = file_inode(vma->vm_file);
1358         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1359 }
1360
1361 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1362                                           unsigned long addr)
1363 {
1364         struct inode *inode = file_inode(vma->vm_file);
1365         pgoff_t index;
1366
1367         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1368         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1369 }
1370 #endif
1371
1372 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1373 {
1374         struct inode *inode = file_inode(file);
1375         struct shmem_inode_info *info = SHMEM_I(inode);
1376         int retval = -ENOMEM;
1377
1378         spin_lock(&info->lock);
1379         if (lock && !(info->flags & VM_LOCKED)) {
1380                 if (!user_shm_lock(inode->i_size, user))
1381                         goto out_nomem;
1382                 info->flags |= VM_LOCKED;
1383                 mapping_set_unevictable(file->f_mapping);
1384         }
1385         if (!lock && (info->flags & VM_LOCKED) && user) {
1386                 user_shm_unlock(inode->i_size, user);
1387                 info->flags &= ~VM_LOCKED;
1388                 mapping_clear_unevictable(file->f_mapping);
1389         }
1390         retval = 0;
1391
1392 out_nomem:
1393         spin_unlock(&info->lock);
1394         return retval;
1395 }
1396
1397 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1398 {
1399         file_accessed(file);
1400         vma->vm_ops = &shmem_vm_ops;
1401         return 0;
1402 }
1403
1404 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1405                                      umode_t mode, dev_t dev, unsigned long flags)
1406 {
1407         struct inode *inode;
1408         struct shmem_inode_info *info;
1409         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1410
1411         if (shmem_reserve_inode(sb))
1412                 return NULL;
1413
1414         inode = new_inode(sb);
1415         if (inode) {
1416                 inode->i_ino = get_next_ino();
1417                 inode_init_owner(inode, dir, mode);
1418                 inode->i_blocks = 0;
1419                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1420                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1421                 inode->i_generation = get_seconds();
1422                 info = SHMEM_I(inode);
1423                 memset(info, 0, (char *)inode - (char *)info);
1424                 spin_lock_init(&info->lock);
1425                 info->flags = flags & VM_NORESERVE;
1426                 INIT_LIST_HEAD(&info->swaplist);
1427                 simple_xattrs_init(&info->xattrs);
1428                 cache_no_acl(inode);
1429
1430                 switch (mode & S_IFMT) {
1431                 default:
1432                         inode->i_op = &shmem_special_inode_operations;
1433                         init_special_inode(inode, mode, dev);
1434                         break;
1435                 case S_IFREG:
1436                         inode->i_mapping->a_ops = &shmem_aops;
1437                         inode->i_op = &shmem_inode_operations;
1438                         inode->i_fop = &shmem_file_operations;
1439                         mpol_shared_policy_init(&info->policy,
1440                                                  shmem_get_sbmpol(sbinfo));
1441                         break;
1442                 case S_IFDIR:
1443                         inc_nlink(inode);
1444                         /* Some things misbehave if size == 0 on a directory */
1445                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1446                         inode->i_op = &shmem_dir_inode_operations;
1447                         inode->i_fop = &simple_dir_operations;
1448                         break;
1449                 case S_IFLNK:
1450                         /*
1451                          * Must not load anything in the rbtree,
1452                          * mpol_free_shared_policy will not be called.
1453                          */
1454                         mpol_shared_policy_init(&info->policy, NULL);
1455                         break;
1456                 }
1457         } else
1458                 shmem_free_inode(sb);
1459         return inode;
1460 }
1461
1462 #ifdef CONFIG_TMPFS
1463 static const struct inode_operations shmem_symlink_inode_operations;
1464 static const struct inode_operations shmem_short_symlink_operations;
1465
1466 #ifdef CONFIG_TMPFS_XATTR
1467 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1468 #else
1469 #define shmem_initxattrs NULL
1470 #endif
1471
1472 static int
1473 shmem_write_begin(struct file *file, struct address_space *mapping,
1474                         loff_t pos, unsigned len, unsigned flags,
1475                         struct page **pagep, void **fsdata)
1476 {
1477         struct inode *inode = mapping->host;
1478         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1479         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1480 }
1481
1482 static int
1483 shmem_write_end(struct file *file, struct address_space *mapping,
1484                         loff_t pos, unsigned len, unsigned copied,
1485                         struct page *page, void *fsdata)
1486 {
1487         struct inode *inode = mapping->host;
1488
1489         if (pos + copied > inode->i_size)
1490                 i_size_write(inode, pos + copied);
1491
1492         if (!PageUptodate(page)) {
1493                 if (copied < PAGE_CACHE_SIZE) {
1494                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1495                         zero_user_segments(page, 0, from,
1496                                         from + copied, PAGE_CACHE_SIZE);
1497                 }
1498                 SetPageUptodate(page);
1499         }
1500         set_page_dirty(page);
1501         unlock_page(page);
1502         page_cache_release(page);
1503
1504         return copied;
1505 }
1506
1507 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1508 {
1509         struct inode *inode = file_inode(filp);
1510         struct address_space *mapping = inode->i_mapping;
1511         pgoff_t index;
1512         unsigned long offset;
1513         enum sgp_type sgp = SGP_READ;
1514
1515         /*
1516          * Might this read be for a stacking filesystem?  Then when reading
1517          * holes of a sparse file, we actually need to allocate those pages,
1518          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1519          */
1520         if (segment_eq(get_fs(), KERNEL_DS))
1521                 sgp = SGP_DIRTY;
1522
1523         index = *ppos >> PAGE_CACHE_SHIFT;
1524         offset = *ppos & ~PAGE_CACHE_MASK;
1525
1526         for (;;) {
1527                 struct page *page = NULL;
1528                 pgoff_t end_index;
1529                 unsigned long nr, ret;
1530                 loff_t i_size = i_size_read(inode);
1531
1532                 end_index = i_size >> PAGE_CACHE_SHIFT;
1533                 if (index > end_index)
1534                         break;
1535                 if (index == end_index) {
1536                         nr = i_size & ~PAGE_CACHE_MASK;
1537                         if (nr <= offset)
1538                                 break;
1539                 }
1540
1541                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1542                 if (desc->error) {
1543                         if (desc->error == -EINVAL)
1544                                 desc->error = 0;
1545                         break;
1546                 }
1547                 if (page)
1548                         unlock_page(page);
1549
1550                 /*
1551                  * We must evaluate after, since reads (unlike writes)
1552                  * are called without i_mutex protection against truncate
1553                  */
1554                 nr = PAGE_CACHE_SIZE;
1555                 i_size = i_size_read(inode);
1556                 end_index = i_size >> PAGE_CACHE_SHIFT;
1557                 if (index == end_index) {
1558                         nr = i_size & ~PAGE_CACHE_MASK;
1559                         if (nr <= offset) {
1560                                 if (page)
1561                                         page_cache_release(page);
1562                                 break;
1563                         }
1564                 }
1565                 nr -= offset;
1566
1567                 if (page) {
1568                         /*
1569                          * If users can be writing to this page using arbitrary
1570                          * virtual addresses, take care about potential aliasing
1571                          * before reading the page on the kernel side.
1572                          */
1573                         if (mapping_writably_mapped(mapping))
1574                                 flush_dcache_page(page);
1575                         /*
1576                          * Mark the page accessed if we read the beginning.
1577                          */
1578                         if (!offset)
1579                                 mark_page_accessed(page);
1580                 } else {
1581                         page = ZERO_PAGE(0);
1582                         page_cache_get(page);
1583                 }
1584
1585                 /*
1586                  * Ok, we have the page, and it's up-to-date, so
1587                  * now we can copy it to user space...
1588                  *
1589                  * The actor routine returns how many bytes were actually used..
1590                  * NOTE! This may not be the same as how much of a user buffer
1591                  * we filled up (we may be padding etc), so we can only update
1592                  * "pos" here (the actor routine has to update the user buffer
1593                  * pointers and the remaining count).
1594                  */
1595                 ret = actor(desc, page, offset, nr);
1596                 offset += ret;
1597                 index += offset >> PAGE_CACHE_SHIFT;
1598                 offset &= ~PAGE_CACHE_MASK;
1599
1600                 page_cache_release(page);
1601                 if (ret != nr || !desc->count)
1602                         break;
1603
1604                 cond_resched();
1605         }
1606
1607         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1608         file_accessed(filp);
1609 }
1610
1611 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1612                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1613 {
1614         struct file *filp = iocb->ki_filp;
1615         ssize_t retval;
1616         unsigned long seg;
1617         size_t count;
1618         loff_t *ppos = &iocb->ki_pos;
1619
1620         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1621         if (retval)
1622                 return retval;
1623
1624         for (seg = 0; seg < nr_segs; seg++) {
1625                 read_descriptor_t desc;
1626
1627                 desc.written = 0;
1628                 desc.arg.buf = iov[seg].iov_base;
1629                 desc.count = iov[seg].iov_len;
1630                 if (desc.count == 0)
1631                         continue;
1632                 desc.error = 0;
1633                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1634                 retval += desc.written;
1635                 if (desc.error) {
1636                         retval = retval ?: desc.error;
1637                         break;
1638                 }
1639                 if (desc.count > 0)
1640                         break;
1641         }
1642         return retval;
1643 }
1644
1645 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1646                                 struct pipe_inode_info *pipe, size_t len,
1647                                 unsigned int flags)
1648 {
1649         struct address_space *mapping = in->f_mapping;
1650         struct inode *inode = mapping->host;
1651         unsigned int loff, nr_pages, req_pages;
1652         struct page *pages[PIPE_DEF_BUFFERS];
1653         struct partial_page partial[PIPE_DEF_BUFFERS];
1654         struct page *page;
1655         pgoff_t index, end_index;
1656         loff_t isize, left;
1657         int error, page_nr;
1658         struct splice_pipe_desc spd = {
1659                 .pages = pages,
1660                 .partial = partial,
1661                 .nr_pages_max = PIPE_DEF_BUFFERS,
1662                 .flags = flags,
1663                 .ops = &page_cache_pipe_buf_ops,
1664                 .spd_release = spd_release_page,
1665         };
1666
1667         isize = i_size_read(inode);
1668         if (unlikely(*ppos >= isize))
1669                 return 0;
1670
1671         left = isize - *ppos;
1672         if (unlikely(left < len))
1673                 len = left;
1674
1675         if (splice_grow_spd(pipe, &spd))
1676                 return -ENOMEM;
1677
1678         index = *ppos >> PAGE_CACHE_SHIFT;
1679         loff = *ppos & ~PAGE_CACHE_MASK;
1680         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1681         nr_pages = min(req_pages, pipe->buffers);
1682
1683         spd.nr_pages = find_get_pages_contig(mapping, index,
1684                                                 nr_pages, spd.pages);
1685         index += spd.nr_pages;
1686         error = 0;
1687
1688         while (spd.nr_pages < nr_pages) {
1689                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1690                 if (error)
1691                         break;
1692                 unlock_page(page);
1693                 spd.pages[spd.nr_pages++] = page;
1694                 index++;
1695         }
1696
1697         index = *ppos >> PAGE_CACHE_SHIFT;
1698         nr_pages = spd.nr_pages;
1699         spd.nr_pages = 0;
1700
1701         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1702                 unsigned int this_len;
1703
1704                 if (!len)
1705                         break;
1706
1707                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1708                 page = spd.pages[page_nr];
1709
1710                 if (!PageUptodate(page) || page->mapping != mapping) {
1711                         error = shmem_getpage(inode, index, &page,
1712                                                         SGP_CACHE, NULL);
1713                         if (error)
1714                                 break;
1715                         unlock_page(page);
1716                         page_cache_release(spd.pages[page_nr]);
1717                         spd.pages[page_nr] = page;
1718                 }
1719
1720                 isize = i_size_read(inode);
1721                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1722                 if (unlikely(!isize || index > end_index))
1723                         break;
1724
1725                 if (end_index == index) {
1726                         unsigned int plen;
1727
1728                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1729                         if (plen <= loff)
1730                                 break;
1731
1732                         this_len = min(this_len, plen - loff);
1733                         len = this_len;
1734                 }
1735
1736                 spd.partial[page_nr].offset = loff;
1737                 spd.partial[page_nr].len = this_len;
1738                 len -= this_len;
1739                 loff = 0;
1740                 spd.nr_pages++;
1741                 index++;
1742         }
1743
1744         while (page_nr < nr_pages)
1745                 page_cache_release(spd.pages[page_nr++]);
1746
1747         if (spd.nr_pages)
1748                 error = splice_to_pipe(pipe, &spd);
1749
1750         splice_shrink_spd(&spd);
1751
1752         if (error > 0) {
1753                 *ppos += error;
1754                 file_accessed(in);
1755         }
1756         return error;
1757 }
1758
1759 /*
1760  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1761  */
1762 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1763                                     pgoff_t index, pgoff_t end, int whence)
1764 {
1765         struct page *page;
1766         struct pagevec pvec;
1767         pgoff_t indices[PAGEVEC_SIZE];
1768         bool done = false;
1769         int i;
1770
1771         pagevec_init(&pvec, 0);
1772         pvec.nr = 1;            /* start small: we may be there already */
1773         while (!done) {
1774                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1775                                         pvec.nr, pvec.pages, indices);
1776                 if (!pvec.nr) {
1777                         if (whence == SEEK_DATA)
1778                                 index = end;
1779                         break;
1780                 }
1781                 for (i = 0; i < pvec.nr; i++, index++) {
1782                         if (index < indices[i]) {
1783                                 if (whence == SEEK_HOLE) {
1784                                         done = true;
1785                                         break;
1786                                 }
1787                                 index = indices[i];
1788                         }
1789                         page = pvec.pages[i];
1790                         if (page && !radix_tree_exceptional_entry(page)) {
1791                                 if (!PageUptodate(page))
1792                                         page = NULL;
1793                         }
1794                         if (index >= end ||
1795                             (page && whence == SEEK_DATA) ||
1796                             (!page && whence == SEEK_HOLE)) {
1797                                 done = true;
1798                                 break;
1799                         }
1800                 }
1801                 shmem_deswap_pagevec(&pvec);
1802                 pagevec_release(&pvec);
1803                 pvec.nr = PAGEVEC_SIZE;
1804                 cond_resched();
1805         }
1806         return index;
1807 }
1808
1809 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1810 {
1811         struct address_space *mapping = file->f_mapping;
1812         struct inode *inode = mapping->host;
1813         pgoff_t start, end;
1814         loff_t new_offset;
1815
1816         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1817                 return generic_file_llseek_size(file, offset, whence,
1818                                         MAX_LFS_FILESIZE, i_size_read(inode));
1819         mutex_lock(&inode->i_mutex);
1820         /* We're holding i_mutex so we can access i_size directly */
1821
1822         if (offset < 0)
1823                 offset = -EINVAL;
1824         else if (offset >= inode->i_size)
1825                 offset = -ENXIO;
1826         else {
1827                 start = offset >> PAGE_CACHE_SHIFT;
1828                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1829                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1830                 new_offset <<= PAGE_CACHE_SHIFT;
1831                 if (new_offset > offset) {
1832                         if (new_offset < inode->i_size)
1833                                 offset = new_offset;
1834                         else if (whence == SEEK_DATA)
1835                                 offset = -ENXIO;
1836                         else
1837                                 offset = inode->i_size;
1838                 }
1839         }
1840
1841         if (offset >= 0 && offset != file->f_pos) {
1842                 file->f_pos = offset;
1843                 file->f_version = 0;
1844         }
1845         mutex_unlock(&inode->i_mutex);
1846         return offset;
1847 }
1848
1849 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1850                                                          loff_t len)
1851 {
1852         struct inode *inode = file_inode(file);
1853         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1854         struct shmem_falloc shmem_falloc;
1855         pgoff_t start, index, end;
1856         int error;
1857
1858         mutex_lock(&inode->i_mutex);
1859
1860         shmem_falloc.mode = mode & ~FALLOC_FL_KEEP_SIZE;
1861
1862         if (mode & FALLOC_FL_PUNCH_HOLE) {
1863                 struct address_space *mapping = file->f_mapping;
1864                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1865                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1866
1867                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1868                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1869                 spin_lock(&inode->i_lock);
1870                 inode->i_private = &shmem_falloc;
1871                 spin_unlock(&inode->i_lock);
1872
1873                 if ((u64)unmap_end > (u64)unmap_start)
1874                         unmap_mapping_range(mapping, unmap_start,
1875                                             1 + unmap_end - unmap_start, 0);
1876                 shmem_truncate_range(inode, offset, offset + len - 1);
1877                 /* No need to unmap again: hole-punching leaves COWed pages */
1878                 error = 0;
1879                 goto undone;
1880         }
1881
1882         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1883         error = inode_newsize_ok(inode, offset + len);
1884         if (error)
1885                 goto out;
1886
1887         start = offset >> PAGE_CACHE_SHIFT;
1888         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1889         /* Try to avoid a swapstorm if len is impossible to satisfy */
1890         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1891                 error = -ENOSPC;
1892                 goto out;
1893         }
1894
1895         shmem_falloc.start = start;
1896         shmem_falloc.next  = start;
1897         shmem_falloc.nr_falloced = 0;
1898         shmem_falloc.nr_unswapped = 0;
1899         spin_lock(&inode->i_lock);
1900         inode->i_private = &shmem_falloc;
1901         spin_unlock(&inode->i_lock);
1902
1903         for (index = start; index < end; index++) {
1904                 struct page *page;
1905
1906                 /*
1907                  * Good, the fallocate(2) manpage permits EINTR: we may have
1908                  * been interrupted because we are using up too much memory.
1909                  */
1910                 if (signal_pending(current))
1911                         error = -EINTR;
1912                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1913                         error = -ENOMEM;
1914                 else
1915                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1916                                                                         NULL);
1917                 if (error) {
1918                         /* Remove the !PageUptodate pages we added */
1919                         shmem_undo_range(inode,
1920                                 (loff_t)start << PAGE_CACHE_SHIFT,
1921                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1922                         goto undone;
1923                 }
1924
1925                 /*
1926                  * Inform shmem_writepage() how far we have reached.
1927                  * No need for lock or barrier: we have the page lock.
1928                  */
1929                 shmem_falloc.next++;
1930                 if (!PageUptodate(page))
1931                         shmem_falloc.nr_falloced++;
1932
1933                 /*
1934                  * If !PageUptodate, leave it that way so that freeable pages
1935                  * can be recognized if we need to rollback on error later.
1936                  * But set_page_dirty so that memory pressure will swap rather
1937                  * than free the pages we are allocating (and SGP_CACHE pages
1938                  * might still be clean: we now need to mark those dirty too).
1939                  */
1940                 set_page_dirty(page);
1941                 unlock_page(page);
1942                 page_cache_release(page);
1943                 cond_resched();
1944         }
1945
1946         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1947                 i_size_write(inode, offset + len);
1948         inode->i_ctime = CURRENT_TIME;
1949 undone:
1950         spin_lock(&inode->i_lock);
1951         inode->i_private = NULL;
1952         spin_unlock(&inode->i_lock);
1953 out:
1954         mutex_unlock(&inode->i_mutex);
1955         return error;
1956 }
1957
1958 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1959 {
1960         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1961
1962         buf->f_type = TMPFS_MAGIC;
1963         buf->f_bsize = PAGE_CACHE_SIZE;
1964         buf->f_namelen = NAME_MAX;
1965         if (sbinfo->max_blocks) {
1966                 buf->f_blocks = sbinfo->max_blocks;
1967                 buf->f_bavail =
1968                 buf->f_bfree  = sbinfo->max_blocks -
1969                                 percpu_counter_sum(&sbinfo->used_blocks);
1970         }
1971         if (sbinfo->max_inodes) {
1972                 buf->f_files = sbinfo->max_inodes;
1973                 buf->f_ffree = sbinfo->free_inodes;
1974         }
1975         /* else leave those fields 0 like simple_statfs */
1976         return 0;
1977 }
1978
1979 /*
1980  * File creation. Allocate an inode, and we're done..
1981  */
1982 static int
1983 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1984 {
1985         struct inode *inode;
1986         int error = -ENOSPC;
1987
1988         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1989         if (inode) {
1990                 error = security_inode_init_security(inode, dir,
1991                                                      &dentry->d_name,
1992                                                      shmem_initxattrs, NULL);
1993                 if (error) {
1994                         if (error != -EOPNOTSUPP) {
1995                                 iput(inode);
1996                                 return error;
1997                         }
1998                 }
1999 #ifdef CONFIG_TMPFS_POSIX_ACL
2000                 error = generic_acl_init(inode, dir);
2001                 if (error) {
2002                         iput(inode);
2003                         return error;
2004                 }
2005 #else
2006                 error = 0;
2007 #endif
2008                 dir->i_size += BOGO_DIRENT_SIZE;
2009                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2010                 d_instantiate(dentry, inode);
2011                 dget(dentry); /* Extra count - pin the dentry in core */
2012         }
2013         return error;
2014 }
2015
2016 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2017 {
2018         int error;
2019
2020         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2021                 return error;
2022         inc_nlink(dir);
2023         return 0;
2024 }
2025
2026 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2027                 bool excl)
2028 {
2029         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2030 }
2031
2032 /*
2033  * Link a file..
2034  */
2035 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2036 {
2037         struct inode *inode = old_dentry->d_inode;
2038         int ret;
2039
2040         /*
2041          * No ordinary (disk based) filesystem counts links as inodes;
2042          * but each new link needs a new dentry, pinning lowmem, and
2043          * tmpfs dentries cannot be pruned until they are unlinked.
2044          */
2045         ret = shmem_reserve_inode(inode->i_sb);
2046         if (ret)
2047                 goto out;
2048
2049         dir->i_size += BOGO_DIRENT_SIZE;
2050         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2051         inc_nlink(inode);
2052         ihold(inode);   /* New dentry reference */
2053         dget(dentry);           /* Extra pinning count for the created dentry */
2054         d_instantiate(dentry, inode);
2055 out:
2056         return ret;
2057 }
2058
2059 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2060 {
2061         struct inode *inode = dentry->d_inode;
2062
2063         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2064                 shmem_free_inode(inode->i_sb);
2065
2066         dir->i_size -= BOGO_DIRENT_SIZE;
2067         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2068         drop_nlink(inode);
2069         dput(dentry);   /* Undo the count from "create" - this does all the work */
2070         return 0;
2071 }
2072
2073 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2074 {
2075         if (!simple_empty(dentry))
2076                 return -ENOTEMPTY;
2077
2078         drop_nlink(dentry->d_inode);
2079         drop_nlink(dir);
2080         return shmem_unlink(dir, dentry);
2081 }
2082
2083 /*
2084  * The VFS layer already does all the dentry stuff for rename,
2085  * we just have to decrement the usage count for the target if
2086  * it exists so that the VFS layer correctly free's it when it
2087  * gets overwritten.
2088  */
2089 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2090 {
2091         struct inode *inode = old_dentry->d_inode;
2092         int they_are_dirs = S_ISDIR(inode->i_mode);
2093
2094         if (!simple_empty(new_dentry))
2095                 return -ENOTEMPTY;
2096
2097         if (new_dentry->d_inode) {
2098                 (void) shmem_unlink(new_dir, new_dentry);
2099                 if (they_are_dirs)
2100                         drop_nlink(old_dir);
2101         } else if (they_are_dirs) {
2102                 drop_nlink(old_dir);
2103                 inc_nlink(new_dir);
2104         }
2105
2106         old_dir->i_size -= BOGO_DIRENT_SIZE;
2107         new_dir->i_size += BOGO_DIRENT_SIZE;
2108         old_dir->i_ctime = old_dir->i_mtime =
2109         new_dir->i_ctime = new_dir->i_mtime =
2110         inode->i_ctime = CURRENT_TIME;
2111         return 0;
2112 }
2113
2114 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2115 {
2116         int error;
2117         int len;
2118         struct inode *inode;
2119         struct page *page;
2120         char *kaddr;
2121         struct shmem_inode_info *info;
2122
2123         len = strlen(symname) + 1;
2124         if (len > PAGE_CACHE_SIZE)
2125                 return -ENAMETOOLONG;
2126
2127         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2128         if (!inode)
2129                 return -ENOSPC;
2130
2131         error = security_inode_init_security(inode, dir, &dentry->d_name,
2132                                              shmem_initxattrs, NULL);
2133         if (error) {
2134                 if (error != -EOPNOTSUPP) {
2135                         iput(inode);
2136                         return error;
2137                 }
2138                 error = 0;
2139         }
2140
2141         info = SHMEM_I(inode);
2142         inode->i_size = len-1;
2143         if (len <= SHORT_SYMLINK_LEN) {
2144                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2145                 if (!info->symlink) {
2146                         iput(inode);
2147                         return -ENOMEM;
2148                 }
2149                 inode->i_op = &shmem_short_symlink_operations;
2150         } else {
2151                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2152                 if (error) {
2153                         iput(inode);
2154                         return error;
2155                 }
2156                 inode->i_mapping->a_ops = &shmem_aops;
2157                 inode->i_op = &shmem_symlink_inode_operations;
2158                 kaddr = kmap_atomic(page);
2159                 memcpy(kaddr, symname, len);
2160                 kunmap_atomic(kaddr);
2161                 SetPageUptodate(page);
2162                 set_page_dirty(page);
2163                 unlock_page(page);
2164                 page_cache_release(page);
2165         }
2166         dir->i_size += BOGO_DIRENT_SIZE;
2167         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2168         d_instantiate(dentry, inode);
2169         dget(dentry);
2170         return 0;
2171 }
2172
2173 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2174 {
2175         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2176         return NULL;
2177 }
2178
2179 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2180 {
2181         struct page *page = NULL;
2182         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2183         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2184         if (page)
2185                 unlock_page(page);
2186         return page;
2187 }
2188
2189 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2190 {
2191         if (!IS_ERR(nd_get_link(nd))) {
2192                 struct page *page = cookie;
2193                 kunmap(page);
2194                 mark_page_accessed(page);
2195                 page_cache_release(page);
2196         }
2197 }
2198
2199 #ifdef CONFIG_TMPFS_XATTR
2200 /*
2201  * Superblocks without xattr inode operations may get some security.* xattr
2202  * support from the LSM "for free". As soon as we have any other xattrs
2203  * like ACLs, we also need to implement the security.* handlers at
2204  * filesystem level, though.
2205  */
2206
2207 /*
2208  * Callback for security_inode_init_security() for acquiring xattrs.
2209  */
2210 static int shmem_initxattrs(struct inode *inode,
2211                             const struct xattr *xattr_array,
2212                             void *fs_info)
2213 {
2214         struct shmem_inode_info *info = SHMEM_I(inode);
2215         const struct xattr *xattr;
2216         struct simple_xattr *new_xattr;
2217         size_t len;
2218
2219         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2220                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2221                 if (!new_xattr)
2222                         return -ENOMEM;
2223
2224                 len = strlen(xattr->name) + 1;
2225                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2226                                           GFP_KERNEL);
2227                 if (!new_xattr->name) {
2228                         kfree(new_xattr);
2229                         return -ENOMEM;
2230                 }
2231
2232                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2233                        XATTR_SECURITY_PREFIX_LEN);
2234                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2235                        xattr->name, len);
2236
2237                 simple_xattr_list_add(&info->xattrs, new_xattr);
2238         }
2239
2240         return 0;
2241 }
2242
2243 static const struct xattr_handler *shmem_xattr_handlers[] = {
2244 #ifdef CONFIG_TMPFS_POSIX_ACL
2245         &generic_acl_access_handler,
2246         &generic_acl_default_handler,
2247 #endif
2248         NULL
2249 };
2250
2251 static int shmem_xattr_validate(const char *name)
2252 {
2253         struct { const char *prefix; size_t len; } arr[] = {
2254                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2255                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2256         };
2257         int i;
2258
2259         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2260                 size_t preflen = arr[i].len;
2261                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2262                         if (!name[preflen])
2263                                 return -EINVAL;
2264                         return 0;
2265                 }
2266         }
2267         return -EOPNOTSUPP;
2268 }
2269
2270 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2271                               void *buffer, size_t size)
2272 {
2273         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2274         int err;
2275
2276         /*
2277          * If this is a request for a synthetic attribute in the system.*
2278          * namespace use the generic infrastructure to resolve a handler
2279          * for it via sb->s_xattr.
2280          */
2281         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2282                 return generic_getxattr(dentry, name, buffer, size);
2283
2284         err = shmem_xattr_validate(name);
2285         if (err)
2286                 return err;
2287
2288         return simple_xattr_get(&info->xattrs, name, buffer, size);
2289 }
2290
2291 static int shmem_setxattr(struct dentry *dentry, const char *name,
2292                           const void *value, size_t size, int flags)
2293 {
2294         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2295         int err;
2296
2297         /*
2298          * If this is a request for a synthetic attribute in the system.*
2299          * namespace use the generic infrastructure to resolve a handler
2300          * for it via sb->s_xattr.
2301          */
2302         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2303                 return generic_setxattr(dentry, name, value, size, flags);
2304
2305         err = shmem_xattr_validate(name);
2306         if (err)
2307                 return err;
2308
2309         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2310 }
2311
2312 static int shmem_removexattr(struct dentry *dentry, const char *name)
2313 {
2314         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2315         int err;
2316
2317         /*
2318          * If this is a request for a synthetic attribute in the system.*
2319          * namespace use the generic infrastructure to resolve a handler
2320          * for it via sb->s_xattr.
2321          */
2322         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2323                 return generic_removexattr(dentry, name);
2324
2325         err = shmem_xattr_validate(name);
2326         if (err)
2327                 return err;
2328
2329         return simple_xattr_remove(&info->xattrs, name);
2330 }
2331
2332 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2333 {
2334         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2335         return simple_xattr_list(&info->xattrs, buffer, size);
2336 }
2337 #endif /* CONFIG_TMPFS_XATTR */
2338
2339 static const struct inode_operations shmem_short_symlink_operations = {
2340         .readlink       = generic_readlink,
2341         .follow_link    = shmem_follow_short_symlink,
2342 #ifdef CONFIG_TMPFS_XATTR
2343         .setxattr       = shmem_setxattr,
2344         .getxattr       = shmem_getxattr,
2345         .listxattr      = shmem_listxattr,
2346         .removexattr    = shmem_removexattr,
2347 #endif
2348 };
2349
2350 static const struct inode_operations shmem_symlink_inode_operations = {
2351         .readlink       = generic_readlink,
2352         .follow_link    = shmem_follow_link,
2353         .put_link       = shmem_put_link,
2354 #ifdef CONFIG_TMPFS_XATTR
2355         .setxattr       = shmem_setxattr,
2356         .getxattr       = shmem_getxattr,
2357         .listxattr      = shmem_listxattr,
2358         .removexattr    = shmem_removexattr,
2359 #endif
2360 };
2361
2362 static struct dentry *shmem_get_parent(struct dentry *child)
2363 {
2364         return ERR_PTR(-ESTALE);
2365 }
2366
2367 static int shmem_match(struct inode *ino, void *vfh)
2368 {
2369         __u32 *fh = vfh;
2370         __u64 inum = fh[2];
2371         inum = (inum << 32) | fh[1];
2372         return ino->i_ino == inum && fh[0] == ino->i_generation;
2373 }
2374
2375 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2376                 struct fid *fid, int fh_len, int fh_type)
2377 {
2378         struct inode *inode;
2379         struct dentry *dentry = NULL;
2380         u64 inum;
2381
2382         if (fh_len < 3)
2383                 return NULL;
2384
2385         inum = fid->raw[2];
2386         inum = (inum << 32) | fid->raw[1];
2387
2388         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2389                         shmem_match, fid->raw);
2390         if (inode) {
2391                 dentry = d_find_alias(inode);
2392                 iput(inode);
2393         }
2394
2395         return dentry;
2396 }
2397
2398 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2399                                 struct inode *parent)
2400 {
2401         if (*len < 3) {
2402                 *len = 3;
2403                 return FILEID_INVALID;
2404         }
2405
2406         if (inode_unhashed(inode)) {
2407                 /* Unfortunately insert_inode_hash is not idempotent,
2408                  * so as we hash inodes here rather than at creation
2409                  * time, we need a lock to ensure we only try
2410                  * to do it once
2411                  */
2412                 static DEFINE_SPINLOCK(lock);
2413                 spin_lock(&lock);
2414                 if (inode_unhashed(inode))
2415                         __insert_inode_hash(inode,
2416                                             inode->i_ino + inode->i_generation);
2417                 spin_unlock(&lock);
2418         }
2419
2420         fh[0] = inode->i_generation;
2421         fh[1] = inode->i_ino;
2422         fh[2] = ((__u64)inode->i_ino) >> 32;
2423
2424         *len = 3;
2425         return 1;
2426 }
2427
2428 static const struct export_operations shmem_export_ops = {
2429         .get_parent     = shmem_get_parent,
2430         .encode_fh      = shmem_encode_fh,
2431         .fh_to_dentry   = shmem_fh_to_dentry,
2432 };
2433
2434 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2435                                bool remount)
2436 {
2437         char *this_char, *value, *rest;
2438         struct mempolicy *mpol = NULL;
2439         uid_t uid;
2440         gid_t gid;
2441
2442         while (options != NULL) {
2443                 this_char = options;
2444                 for (;;) {
2445                         /*
2446                          * NUL-terminate this option: unfortunately,
2447                          * mount options form a comma-separated list,
2448                          * but mpol's nodelist may also contain commas.
2449                          */
2450                         options = strchr(options, ',');
2451                         if (options == NULL)
2452                                 break;
2453                         options++;
2454                         if (!isdigit(*options)) {
2455                                 options[-1] = '\0';
2456                                 break;
2457                         }
2458                 }
2459                 if (!*this_char)
2460                         continue;
2461                 if ((value = strchr(this_char,'=')) != NULL) {
2462                         *value++ = 0;
2463                 } else {
2464                         printk(KERN_ERR
2465                             "tmpfs: No value for mount option '%s'\n",
2466                             this_char);
2467                         goto error;
2468                 }
2469
2470                 if (!strcmp(this_char,"size")) {
2471                         unsigned long long size;
2472                         size = memparse(value,&rest);
2473                         if (*rest == '%') {
2474                                 size <<= PAGE_SHIFT;
2475                                 size *= totalram_pages;
2476                                 do_div(size, 100);
2477                                 rest++;
2478                         }
2479                         if (*rest)
2480                                 goto bad_val;
2481                         sbinfo->max_blocks =
2482                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2483                 } else if (!strcmp(this_char,"nr_blocks")) {
2484                         sbinfo->max_blocks = memparse(value, &rest);
2485                         if (*rest)
2486                                 goto bad_val;
2487                 } else if (!strcmp(this_char,"nr_inodes")) {
2488                         sbinfo->max_inodes = memparse(value, &rest);
2489                         if (*rest)
2490                                 goto bad_val;
2491                 } else if (!strcmp(this_char,"mode")) {
2492                         if (remount)
2493                                 continue;
2494                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2495                         if (*rest)
2496                                 goto bad_val;
2497                 } else if (!strcmp(this_char,"uid")) {
2498                         if (remount)
2499                                 continue;
2500                         uid = simple_strtoul(value, &rest, 0);
2501                         if (*rest)
2502                                 goto bad_val;
2503                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2504                         if (!uid_valid(sbinfo->uid))
2505                                 goto bad_val;
2506                 } else if (!strcmp(this_char,"gid")) {
2507                         if (remount)
2508                                 continue;
2509                         gid = simple_strtoul(value, &rest, 0);
2510                         if (*rest)
2511                                 goto bad_val;
2512                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2513                         if (!gid_valid(sbinfo->gid))
2514                                 goto bad_val;
2515                 } else if (!strcmp(this_char,"mpol")) {
2516                         mpol_put(mpol);
2517                         mpol = NULL;
2518                         if (mpol_parse_str(value, &mpol))
2519                                 goto bad_val;
2520                 } else {
2521                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2522                                this_char);
2523                         goto error;
2524                 }
2525         }
2526         sbinfo->mpol = mpol;
2527         return 0;
2528
2529 bad_val:
2530         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2531                value, this_char);
2532 error:
2533         mpol_put(mpol);
2534         return 1;
2535
2536 }
2537
2538 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2539 {
2540         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2541         struct shmem_sb_info config = *sbinfo;
2542         unsigned long inodes;
2543         int error = -EINVAL;
2544
2545         config.mpol = NULL;
2546         if (shmem_parse_options(data, &config, true))
2547                 return error;
2548
2549         spin_lock(&sbinfo->stat_lock);
2550         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2551         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2552                 goto out;
2553         if (config.max_inodes < inodes)
2554                 goto out;
2555         /*
2556          * Those tests disallow limited->unlimited while any are in use;
2557          * but we must separately disallow unlimited->limited, because
2558          * in that case we have no record of how much is already in use.
2559          */
2560         if (config.max_blocks && !sbinfo->max_blocks)
2561                 goto out;
2562         if (config.max_inodes && !sbinfo->max_inodes)
2563                 goto out;
2564
2565         error = 0;
2566         sbinfo->max_blocks  = config.max_blocks;
2567         sbinfo->max_inodes  = config.max_inodes;
2568         sbinfo->free_inodes = config.max_inodes - inodes;
2569
2570         /*
2571          * Preserve previous mempolicy unless mpol remount option was specified.
2572          */
2573         if (config.mpol) {
2574                 mpol_put(sbinfo->mpol);
2575                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2576         }
2577 out:
2578         spin_unlock(&sbinfo->stat_lock);
2579         return error;
2580 }
2581
2582 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2583 {
2584         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2585
2586         if (sbinfo->max_blocks != shmem_default_max_blocks())
2587                 seq_printf(seq, ",size=%luk",
2588                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2589         if (sbinfo->max_inodes != shmem_default_max_inodes())
2590                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2591         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2592                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2593         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2594                 seq_printf(seq, ",uid=%u",
2595                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2596         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2597                 seq_printf(seq, ",gid=%u",
2598                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2599         shmem_show_mpol(seq, sbinfo->mpol);
2600         return 0;
2601 }
2602 #endif /* CONFIG_TMPFS */
2603
2604 static void shmem_put_super(struct super_block *sb)
2605 {
2606         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2607
2608         percpu_counter_destroy(&sbinfo->used_blocks);
2609         mpol_put(sbinfo->mpol);
2610         kfree(sbinfo);
2611         sb->s_fs_info = NULL;
2612 }
2613
2614 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2615 {
2616         struct inode *inode;
2617         struct shmem_sb_info *sbinfo;
2618         int err = -ENOMEM;
2619
2620         /* Round up to L1_CACHE_BYTES to resist false sharing */
2621         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2622                                 L1_CACHE_BYTES), GFP_KERNEL);
2623         if (!sbinfo)
2624                 return -ENOMEM;
2625
2626         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2627         sbinfo->uid = current_fsuid();
2628         sbinfo->gid = current_fsgid();
2629         sb->s_fs_info = sbinfo;
2630
2631 #ifdef CONFIG_TMPFS
2632         /*
2633          * Per default we only allow half of the physical ram per
2634          * tmpfs instance, limiting inodes to one per page of lowmem;
2635          * but the internal instance is left unlimited.
2636          */
2637         if (!(sb->s_flags & MS_NOUSER)) {
2638                 sbinfo->max_blocks = shmem_default_max_blocks();
2639                 sbinfo->max_inodes = shmem_default_max_inodes();
2640                 if (shmem_parse_options(data, sbinfo, false)) {
2641                         err = -EINVAL;
2642                         goto failed;
2643                 }
2644         }
2645         sb->s_export_op = &shmem_export_ops;
2646         sb->s_flags |= MS_NOSEC;
2647 #else
2648         sb->s_flags |= MS_NOUSER;
2649 #endif
2650
2651         spin_lock_init(&sbinfo->stat_lock);
2652         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2653                 goto failed;
2654         sbinfo->free_inodes = sbinfo->max_inodes;
2655
2656         sb->s_maxbytes = MAX_LFS_FILESIZE;
2657         sb->s_blocksize = PAGE_CACHE_SIZE;
2658         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2659         sb->s_magic = TMPFS_MAGIC;
2660         sb->s_op = &shmem_ops;
2661         sb->s_time_gran = 1;
2662 #ifdef CONFIG_TMPFS_XATTR
2663         sb->s_xattr = shmem_xattr_handlers;
2664 #endif
2665 #ifdef CONFIG_TMPFS_POSIX_ACL
2666         sb->s_flags |= MS_POSIXACL;
2667 #endif
2668
2669         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2670         if (!inode)
2671                 goto failed;
2672         inode->i_uid = sbinfo->uid;
2673         inode->i_gid = sbinfo->gid;
2674         sb->s_root = d_make_root(inode);
2675         if (!sb->s_root)
2676                 goto failed;
2677         return 0;
2678
2679 failed:
2680         shmem_put_super(sb);
2681         return err;
2682 }
2683
2684 static struct kmem_cache *shmem_inode_cachep;
2685
2686 static struct inode *shmem_alloc_inode(struct super_block *sb)
2687 {
2688         struct shmem_inode_info *info;
2689         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2690         if (!info)
2691                 return NULL;
2692         return &info->vfs_inode;
2693 }
2694
2695 static void shmem_destroy_callback(struct rcu_head *head)
2696 {
2697         struct inode *inode = container_of(head, struct inode, i_rcu);
2698         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2699 }
2700
2701 static void shmem_destroy_inode(struct inode *inode)
2702 {
2703         if (S_ISREG(inode->i_mode))
2704                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2705         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2706 }
2707
2708 static void shmem_init_inode(void *foo)
2709 {
2710         struct shmem_inode_info *info = foo;
2711         inode_init_once(&info->vfs_inode);
2712 }
2713
2714 static int shmem_init_inodecache(void)
2715 {
2716         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2717                                 sizeof(struct shmem_inode_info),
2718                                 0, SLAB_PANIC, shmem_init_inode);
2719         return 0;
2720 }
2721
2722 static void shmem_destroy_inodecache(void)
2723 {
2724         kmem_cache_destroy(shmem_inode_cachep);
2725 }
2726
2727 static const struct address_space_operations shmem_aops = {
2728         .writepage      = shmem_writepage,
2729         .set_page_dirty = __set_page_dirty_no_writeback,
2730 #ifdef CONFIG_TMPFS
2731         .write_begin    = shmem_write_begin,
2732         .write_end      = shmem_write_end,
2733 #endif
2734         .migratepage    = migrate_page,
2735         .error_remove_page = generic_error_remove_page,
2736 };
2737
2738 static const struct file_operations shmem_file_operations = {
2739         .mmap           = shmem_mmap,
2740 #ifdef CONFIG_TMPFS
2741         .llseek         = shmem_file_llseek,
2742         .read           = do_sync_read,
2743         .write          = do_sync_write,
2744         .aio_read       = shmem_file_aio_read,
2745         .aio_write      = generic_file_aio_write,
2746         .fsync          = noop_fsync,
2747         .splice_read    = shmem_file_splice_read,
2748         .splice_write   = generic_file_splice_write,
2749         .fallocate      = shmem_fallocate,
2750 #endif
2751 };
2752
2753 static const struct inode_operations shmem_inode_operations = {
2754         .setattr        = shmem_setattr,
2755 #ifdef CONFIG_TMPFS_XATTR
2756         .setxattr       = shmem_setxattr,
2757         .getxattr       = shmem_getxattr,
2758         .listxattr      = shmem_listxattr,
2759         .removexattr    = shmem_removexattr,
2760 #endif
2761 };
2762
2763 static const struct inode_operations shmem_dir_inode_operations = {
2764 #ifdef CONFIG_TMPFS
2765         .create         = shmem_create,
2766         .lookup         = simple_lookup,
2767         .link           = shmem_link,
2768         .unlink         = shmem_unlink,
2769         .symlink        = shmem_symlink,
2770         .mkdir          = shmem_mkdir,
2771         .rmdir          = shmem_rmdir,
2772         .mknod          = shmem_mknod,
2773         .rename         = shmem_rename,
2774 #endif
2775 #ifdef CONFIG_TMPFS_XATTR
2776         .setxattr       = shmem_setxattr,
2777         .getxattr       = shmem_getxattr,
2778         .listxattr      = shmem_listxattr,
2779         .removexattr    = shmem_removexattr,
2780 #endif
2781 #ifdef CONFIG_TMPFS_POSIX_ACL
2782         .setattr        = shmem_setattr,
2783 #endif
2784 };
2785
2786 static const struct inode_operations shmem_special_inode_operations = {
2787 #ifdef CONFIG_TMPFS_XATTR
2788         .setxattr       = shmem_setxattr,
2789         .getxattr       = shmem_getxattr,
2790         .listxattr      = shmem_listxattr,
2791         .removexattr    = shmem_removexattr,
2792 #endif
2793 #ifdef CONFIG_TMPFS_POSIX_ACL
2794         .setattr        = shmem_setattr,
2795 #endif
2796 };
2797
2798 static const struct super_operations shmem_ops = {
2799         .alloc_inode    = shmem_alloc_inode,
2800         .destroy_inode  = shmem_destroy_inode,
2801 #ifdef CONFIG_TMPFS
2802         .statfs         = shmem_statfs,
2803         .remount_fs     = shmem_remount_fs,
2804         .show_options   = shmem_show_options,
2805 #endif
2806         .evict_inode    = shmem_evict_inode,
2807         .drop_inode     = generic_delete_inode,
2808         .put_super      = shmem_put_super,
2809 };
2810
2811 static const struct vm_operations_struct shmem_vm_ops = {
2812         .fault          = shmem_fault,
2813 #ifdef CONFIG_NUMA
2814         .set_policy     = shmem_set_policy,
2815         .get_policy     = shmem_get_policy,
2816 #endif
2817         .remap_pages    = generic_file_remap_pages,
2818 };
2819
2820 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2821         int flags, const char *dev_name, void *data)
2822 {
2823         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2824 }
2825
2826 static struct file_system_type shmem_fs_type = {
2827         .owner          = THIS_MODULE,
2828         .name           = "tmpfs",
2829         .mount          = shmem_mount,
2830         .kill_sb        = kill_litter_super,
2831         .fs_flags       = FS_USERNS_MOUNT,
2832 };
2833
2834 int __init shmem_init(void)
2835 {
2836         int error;
2837
2838         error = bdi_init(&shmem_backing_dev_info);
2839         if (error)
2840                 goto out4;
2841
2842         error = shmem_init_inodecache();
2843         if (error)
2844                 goto out3;
2845
2846         error = register_filesystem(&shmem_fs_type);
2847         if (error) {
2848                 printk(KERN_ERR "Could not register tmpfs\n");
2849                 goto out2;
2850         }
2851
2852         shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2853                                  shmem_fs_type.name, NULL);
2854         if (IS_ERR(shm_mnt)) {
2855                 error = PTR_ERR(shm_mnt);
2856                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2857                 goto out1;
2858         }
2859         return 0;
2860
2861 out1:
2862         unregister_filesystem(&shmem_fs_type);
2863 out2:
2864         shmem_destroy_inodecache();
2865 out3:
2866         bdi_destroy(&shmem_backing_dev_info);
2867 out4:
2868         shm_mnt = ERR_PTR(error);
2869         return error;
2870 }
2871
2872 #else /* !CONFIG_SHMEM */
2873
2874 /*
2875  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2876  *
2877  * This is intended for small system where the benefits of the full
2878  * shmem code (swap-backed and resource-limited) are outweighed by
2879  * their complexity. On systems without swap this code should be
2880  * effectively equivalent, but much lighter weight.
2881  */
2882
2883 static struct file_system_type shmem_fs_type = {
2884         .name           = "tmpfs",
2885         .mount          = ramfs_mount,
2886         .kill_sb        = kill_litter_super,
2887         .fs_flags       = FS_USERNS_MOUNT,
2888 };
2889
2890 int __init shmem_init(void)
2891 {
2892         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2893
2894         shm_mnt = kern_mount(&shmem_fs_type);
2895         BUG_ON(IS_ERR(shm_mnt));
2896
2897         return 0;
2898 }
2899
2900 int shmem_unuse(swp_entry_t swap, struct page *page)
2901 {
2902         return 0;
2903 }
2904
2905 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2906 {
2907         return 0;
2908 }
2909
2910 void shmem_unlock_mapping(struct address_space *mapping)
2911 {
2912 }
2913
2914 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2915 {
2916         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2917 }
2918 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2919
2920 #define shmem_vm_ops                            generic_file_vm_ops
2921 #define shmem_file_operations                   ramfs_file_operations
2922 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2923 #define shmem_acct_size(flags, size)            0
2924 #define shmem_unacct_size(flags, size)          do {} while (0)
2925
2926 #endif /* CONFIG_SHMEM */
2927
2928 /* common code */
2929
2930 static struct dentry_operations anon_ops = {
2931         .d_dname = simple_dname
2932 };
2933
2934 /**
2935  * shmem_file_setup - get an unlinked file living in tmpfs
2936  * @name: name for dentry (to be seen in /proc/<pid>/maps
2937  * @size: size to be set for the file
2938  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2939  */
2940 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2941 {
2942         struct file *res;
2943         struct inode *inode;
2944         struct path path;
2945         struct super_block *sb;
2946         struct qstr this;
2947
2948         if (IS_ERR(shm_mnt))
2949                 return ERR_CAST(shm_mnt);
2950
2951         if (size < 0 || size > MAX_LFS_FILESIZE)
2952                 return ERR_PTR(-EINVAL);
2953
2954         if (shmem_acct_size(flags, size))
2955                 return ERR_PTR(-ENOMEM);
2956
2957         res = ERR_PTR(-ENOMEM);
2958         this.name = name;
2959         this.len = strlen(name);
2960         this.hash = 0; /* will go */
2961         sb = shm_mnt->mnt_sb;
2962         path.dentry = d_alloc_pseudo(sb, &this);
2963         if (!path.dentry)
2964                 goto put_memory;
2965         d_set_d_op(path.dentry, &anon_ops);
2966         path.mnt = mntget(shm_mnt);
2967
2968         res = ERR_PTR(-ENOSPC);
2969         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2970         if (!inode)
2971                 goto put_dentry;
2972
2973         d_instantiate(path.dentry, inode);
2974         inode->i_size = size;
2975         clear_nlink(inode);     /* It is unlinked */
2976         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2977         if (IS_ERR(res))
2978                 goto put_dentry;
2979
2980         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2981                   &shmem_file_operations);
2982         if (IS_ERR(res))
2983                 goto put_dentry;
2984
2985         return res;
2986
2987 put_dentry:
2988         path_put(&path);
2989 put_memory:
2990         shmem_unacct_size(flags, size);
2991         return res;
2992 }
2993 EXPORT_SYMBOL_GPL(shmem_file_setup);
2994
2995 /**
2996  * shmem_zero_setup - setup a shared anonymous mapping
2997  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2998  */
2999 int shmem_zero_setup(struct vm_area_struct *vma)
3000 {
3001         struct file *file;
3002         loff_t size = vma->vm_end - vma->vm_start;
3003
3004         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3005         if (IS_ERR(file))
3006                 return PTR_ERR(file);
3007
3008         if (vma->vm_file)
3009                 fput(vma->vm_file);
3010         vma->vm_file = file;
3011         vma->vm_ops = &shmem_vm_ops;
3012         return 0;
3013 }
3014
3015 /**
3016  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3017  * @mapping:    the page's address_space
3018  * @index:      the page index
3019  * @gfp:        the page allocator flags to use if allocating
3020  *
3021  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3022  * with any new page allocations done using the specified allocation flags.
3023  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3024  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3025  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3026  *
3027  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3028  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3029  */
3030 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3031                                          pgoff_t index, gfp_t gfp)
3032 {
3033 #ifdef CONFIG_SHMEM
3034         struct inode *inode = mapping->host;
3035         struct page *page;
3036         int error;
3037
3038         BUG_ON(mapping->a_ops != &shmem_aops);
3039         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3040         if (error)
3041                 page = ERR_PTR(error);
3042         else
3043                 unlock_page(page);
3044         return page;
3045 #else
3046         /*
3047          * The tiny !SHMEM case uses ramfs without swap
3048          */
3049         return read_cache_page_gfp(mapping, index, gfp);
3050 #endif
3051 }
3052 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);