Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[firefly-linux-kernel-4.4.55.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4  * Internal slab definitions
5  */
6
7 #ifdef CONFIG_SLOB
8 /*
9  * Common fields provided in kmem_cache by all slab allocators
10  * This struct is either used directly by the allocator (SLOB)
11  * or the allocator must include definitions for all fields
12  * provided in kmem_cache_common in their definition of kmem_cache.
13  *
14  * Once we can do anonymous structs (C11 standard) we could put a
15  * anonymous struct definition in these allocators so that the
16  * separate allocations in the kmem_cache structure of SLAB and
17  * SLUB is no longer needed.
18  */
19 struct kmem_cache {
20         unsigned int object_size;/* The original size of the object */
21         unsigned int size;      /* The aligned/padded/added on size  */
22         unsigned int align;     /* Alignment as calculated */
23         unsigned long flags;    /* Active flags on the slab */
24         const char *name;       /* Slab name for sysfs */
25         int refcount;           /* Use counter */
26         void (*ctor)(void *);   /* Called on object slot creation */
27         struct list_head list;  /* List of all slab caches on the system */
28 };
29
30 #endif /* CONFIG_SLOB */
31
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39
40 #include <linux/memcontrol.h>
41
42 /*
43  * State of the slab allocator.
44  *
45  * This is used to describe the states of the allocator during bootup.
46  * Allocators use this to gradually bootstrap themselves. Most allocators
47  * have the problem that the structures used for managing slab caches are
48  * allocated from slab caches themselves.
49  */
50 enum slab_state {
51         DOWN,                   /* No slab functionality yet */
52         PARTIAL,                /* SLUB: kmem_cache_node available */
53         PARTIAL_NODE,           /* SLAB: kmalloc size for node struct available */
54         UP,                     /* Slab caches usable but not all extras yet */
55         FULL                    /* Everything is working */
56 };
57
58 extern enum slab_state slab_state;
59
60 /* The slab cache mutex protects the management structures during changes */
61 extern struct mutex slab_mutex;
62
63 /* The list of all slab caches on the system */
64 extern struct list_head slab_caches;
65
66 /* The slab cache that manages slab cache information */
67 extern struct kmem_cache *kmem_cache;
68
69 unsigned long calculate_alignment(unsigned long flags,
70                 unsigned long align, unsigned long size);
71
72 #ifndef CONFIG_SLOB
73 /* Kmalloc array related functions */
74 void create_kmalloc_caches(unsigned long);
75
76 /* Find the kmalloc slab corresponding for a certain size */
77 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
78 #endif
79
80
81 /* Functions provided by the slab allocators */
82 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
83
84 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
85                         unsigned long flags);
86 extern void create_boot_cache(struct kmem_cache *, const char *name,
87                         size_t size, unsigned long flags);
88
89 struct mem_cgroup;
90
91 int slab_unmergeable(struct kmem_cache *s);
92 struct kmem_cache *find_mergeable(size_t size, size_t align,
93                 unsigned long flags, const char *name, void (*ctor)(void *));
94 #ifndef CONFIG_SLOB
95 struct kmem_cache *
96 __kmem_cache_alias(const char *name, size_t size, size_t align,
97                    unsigned long flags, void (*ctor)(void *));
98
99 unsigned long kmem_cache_flags(unsigned long object_size,
100         unsigned long flags, const char *name,
101         void (*ctor)(void *));
102 #else
103 static inline struct kmem_cache *
104 __kmem_cache_alias(const char *name, size_t size, size_t align,
105                    unsigned long flags, void (*ctor)(void *))
106 { return NULL; }
107
108 static inline unsigned long kmem_cache_flags(unsigned long object_size,
109         unsigned long flags, const char *name,
110         void (*ctor)(void *))
111 {
112         return flags;
113 }
114 #endif
115
116
117 /* Legal flag mask for kmem_cache_create(), for various configurations */
118 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
119                          SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
120
121 #if defined(CONFIG_DEBUG_SLAB)
122 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
123 #elif defined(CONFIG_SLUB_DEBUG)
124 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
125                           SLAB_TRACE | SLAB_DEBUG_FREE)
126 #else
127 #define SLAB_DEBUG_FLAGS (0)
128 #endif
129
130 #if defined(CONFIG_SLAB)
131 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
132                           SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
133 #elif defined(CONFIG_SLUB)
134 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
135                           SLAB_TEMPORARY | SLAB_NOTRACK)
136 #else
137 #define SLAB_CACHE_FLAGS (0)
138 #endif
139
140 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
141
142 int __kmem_cache_shutdown(struct kmem_cache *);
143 int __kmem_cache_shrink(struct kmem_cache *);
144 void slab_kmem_cache_release(struct kmem_cache *);
145
146 struct seq_file;
147 struct file;
148
149 struct slabinfo {
150         unsigned long active_objs;
151         unsigned long num_objs;
152         unsigned long active_slabs;
153         unsigned long num_slabs;
154         unsigned long shared_avail;
155         unsigned int limit;
156         unsigned int batchcount;
157         unsigned int shared;
158         unsigned int objects_per_slab;
159         unsigned int cache_order;
160 };
161
162 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
163 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
164 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
165                        size_t count, loff_t *ppos);
166
167 #ifdef CONFIG_MEMCG_KMEM
168 static inline bool is_root_cache(struct kmem_cache *s)
169 {
170         return !s->memcg_params || s->memcg_params->is_root_cache;
171 }
172
173 static inline bool slab_equal_or_root(struct kmem_cache *s,
174                                         struct kmem_cache *p)
175 {
176         return (p == s) ||
177                 (s->memcg_params && (p == s->memcg_params->root_cache));
178 }
179
180 /*
181  * We use suffixes to the name in memcg because we can't have caches
182  * created in the system with the same name. But when we print them
183  * locally, better refer to them with the base name
184  */
185 static inline const char *cache_name(struct kmem_cache *s)
186 {
187         if (!is_root_cache(s))
188                 return s->memcg_params->root_cache->name;
189         return s->name;
190 }
191
192 /*
193  * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
194  * That said the caller must assure the memcg's cache won't go away. Since once
195  * created a memcg's cache is destroyed only along with the root cache, it is
196  * true if we are going to allocate from the cache or hold a reference to the
197  * root cache by other means. Otherwise, we should hold either the slab_mutex
198  * or the memcg's slab_caches_mutex while calling this function and accessing
199  * the returned value.
200  */
201 static inline struct kmem_cache *
202 cache_from_memcg_idx(struct kmem_cache *s, int idx)
203 {
204         struct kmem_cache *cachep;
205         struct memcg_cache_params *params;
206
207         if (!s->memcg_params)
208                 return NULL;
209
210         rcu_read_lock();
211         params = rcu_dereference(s->memcg_params);
212         cachep = params->memcg_caches[idx];
213         rcu_read_unlock();
214
215         /*
216          * Make sure we will access the up-to-date value. The code updating
217          * memcg_caches issues a write barrier to match this (see
218          * memcg_register_cache()).
219          */
220         smp_read_barrier_depends();
221         return cachep;
222 }
223
224 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
225 {
226         if (is_root_cache(s))
227                 return s;
228         return s->memcg_params->root_cache;
229 }
230
231 static __always_inline int memcg_charge_slab(struct kmem_cache *s,
232                                              gfp_t gfp, int order)
233 {
234         if (!memcg_kmem_enabled())
235                 return 0;
236         if (is_root_cache(s))
237                 return 0;
238         return __memcg_charge_slab(s, gfp, order);
239 }
240
241 static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
242 {
243         if (!memcg_kmem_enabled())
244                 return;
245         if (is_root_cache(s))
246                 return;
247         __memcg_uncharge_slab(s, order);
248 }
249 #else
250 static inline bool is_root_cache(struct kmem_cache *s)
251 {
252         return true;
253 }
254
255 static inline bool slab_equal_or_root(struct kmem_cache *s,
256                                       struct kmem_cache *p)
257 {
258         return true;
259 }
260
261 static inline const char *cache_name(struct kmem_cache *s)
262 {
263         return s->name;
264 }
265
266 static inline struct kmem_cache *
267 cache_from_memcg_idx(struct kmem_cache *s, int idx)
268 {
269         return NULL;
270 }
271
272 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
273 {
274         return s;
275 }
276
277 static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
278 {
279         return 0;
280 }
281
282 static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
283 {
284 }
285 #endif
286
287 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
288 {
289         struct kmem_cache *cachep;
290         struct page *page;
291
292         /*
293          * When kmemcg is not being used, both assignments should return the
294          * same value. but we don't want to pay the assignment price in that
295          * case. If it is not compiled in, the compiler should be smart enough
296          * to not do even the assignment. In that case, slab_equal_or_root
297          * will also be a constant.
298          */
299         if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
300                 return s;
301
302         page = virt_to_head_page(x);
303         cachep = page->slab_cache;
304         if (slab_equal_or_root(cachep, s))
305                 return cachep;
306
307         pr_err("%s: Wrong slab cache. %s but object is from %s\n",
308                __func__, cachep->name, s->name);
309         WARN_ON_ONCE(1);
310         return s;
311 }
312
313 #ifndef CONFIG_SLOB
314 /*
315  * The slab lists for all objects.
316  */
317 struct kmem_cache_node {
318         spinlock_t list_lock;
319
320 #ifdef CONFIG_SLAB
321         struct list_head slabs_partial; /* partial list first, better asm code */
322         struct list_head slabs_full;
323         struct list_head slabs_free;
324         unsigned long free_objects;
325         unsigned int free_limit;
326         unsigned int colour_next;       /* Per-node cache coloring */
327         struct array_cache *shared;     /* shared per node */
328         struct alien_cache **alien;     /* on other nodes */
329         unsigned long next_reap;        /* updated without locking */
330         int free_touched;               /* updated without locking */
331 #endif
332
333 #ifdef CONFIG_SLUB
334         unsigned long nr_partial;
335         struct list_head partial;
336 #ifdef CONFIG_SLUB_DEBUG
337         atomic_long_t nr_slabs;
338         atomic_long_t total_objects;
339         struct list_head full;
340 #endif
341 #endif
342
343 };
344
345 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
346 {
347         return s->node[node];
348 }
349
350 /*
351  * Iterator over all nodes. The body will be executed for each node that has
352  * a kmem_cache_node structure allocated (which is true for all online nodes)
353  */
354 #define for_each_kmem_cache_node(__s, __node, __n) \
355         for (__node = 0; __node < nr_node_ids; __node++) \
356                  if ((__n = get_node(__s, __node)))
357
358 #endif
359
360 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
361 void slab_stop(struct seq_file *m, void *p);
362
363 #endif /* MM_SLAB_H */