2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache *s)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
137 * Issues still to be resolved:
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
141 * - Variable sizing of the per node arrays
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
154 #define MIN_PARTIAL 5
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
161 #define MAX_PARTIAL 10
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
182 static struct notifier_block slab_notifier;
186 * Tracking user of a slab.
188 #define TRACK_ADDRS_COUNT 16
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
214 #ifdef CONFIG_SLUB_STATS
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
219 raw_cpu_inc(s->cpu_slab->stat[si]);
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
236 base = page_address(page);
237 if (object < base || object >= base + page->objects * s->size ||
238 (object - base) % s->size) {
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
247 return *(void **)(object + s->offset);
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
252 prefetch(object + s->offset);
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
262 p = get_freepointer(s, object);
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
269 *(void **)(object + s->offset) = fp;
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284 return (p - addr) / s->size;
287 static inline size_t slab_ksize(const struct kmem_cache *s)
289 #ifdef CONFIG_SLUB_DEBUG
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
306 * Else we can use all the padding etc for the allocation
311 static inline int order_objects(int order, unsigned long size, int reserved)
313 return ((PAGE_SIZE << order) - reserved) / size;
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
326 static inline int oo_order(struct kmem_cache_order_objects x)
328 return x.x >> OO_SHIFT;
331 static inline int oo_objects(struct kmem_cache_order_objects x)
333 return x.x & OO_MASK;
337 * Per slab locking using the pagelock
339 static __always_inline void slab_lock(struct page *page)
341 bit_spin_lock(PG_locked, &page->flags);
344 static __always_inline void slab_unlock(struct page *page)
346 __bit_spin_unlock(PG_locked, &page->flags);
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
352 tmp.counters = counters_new;
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 set_page_slub_counters(page, counters_new);
393 stat(s, CMPXCHG_DOUBLE_FAIL);
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
419 local_irq_save(flags);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 set_page_slub_counters(page, counters_new);
426 local_irq_restore(flags);
430 local_irq_restore(flags);
434 stat(s, CMPXCHG_DOUBLE_FAIL);
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
443 #ifdef CONFIG_SLUB_DEBUG
445 * Determine a map of object in use on a page.
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453 void *addr = page_address(page);
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
462 #if defined(CONFIG_SLUB_DEBUG_ON)
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #elif defined(CONFIG_KASAN)
465 static int slub_debug = SLAB_STORE_USER;
467 static int slub_debug;
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
474 * slub is about to manipulate internal object metadata. This memory lies
475 * outside the range of the allocated object, so accessing it would normally
476 * be reported by kasan as a bounds error. metadata_access_enable() is used
477 * to tell kasan that these accesses are OK.
479 static inline void metadata_access_enable(void)
481 kasan_disable_current();
484 static inline void metadata_access_disable(void)
486 kasan_enable_current();
492 static void print_section(char *text, u8 *addr, unsigned int length)
494 metadata_access_enable();
495 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
497 metadata_access_disable();
500 static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
506 p = object + s->offset + sizeof(void *);
508 p = object + s->inuse;
513 static void set_track(struct kmem_cache *s, void *object,
514 enum track_item alloc, unsigned long addr)
516 struct track *p = get_track(s, object, alloc);
519 #ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
527 metadata_access_enable();
528 save_stack_trace(&trace);
529 metadata_access_disable();
531 /* See rant in lockdep.c */
532 if (trace.nr_entries != 0 &&
533 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
536 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
540 p->cpu = smp_processor_id();
541 p->pid = current->pid;
544 memset(p, 0, sizeof(struct track));
547 static void init_tracking(struct kmem_cache *s, void *object)
549 if (!(s->flags & SLAB_STORE_USER))
552 set_track(s, object, TRACK_FREE, 0UL);
553 set_track(s, object, TRACK_ALLOC, 0UL);
556 static void print_track(const char *s, struct track *t)
561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
562 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
563 #ifdef CONFIG_STACKTRACE
566 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
568 pr_err("\t%pS\n", (void *)t->addrs[i]);
575 static void print_tracking(struct kmem_cache *s, void *object)
577 if (!(s->flags & SLAB_STORE_USER))
580 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
581 print_track("Freed", get_track(s, object, TRACK_FREE));
584 static void print_page_info(struct page *page)
586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
587 page, page->objects, page->inuse, page->freelist, page->flags);
591 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
593 struct va_format vaf;
599 pr_err("=============================================================================\n");
600 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
601 pr_err("-----------------------------------------------------------------------------\n\n");
603 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
607 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
609 struct va_format vaf;
615 pr_err("FIX %s: %pV\n", s->name, &vaf);
619 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
621 unsigned int off; /* Offset of last byte */
622 u8 *addr = page_address(page);
624 print_tracking(s, p);
626 print_page_info(page);
628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
629 p, p - addr, get_freepointer(s, p));
632 print_section("Bytes b4 ", p - 16, 16);
634 print_section("Object ", p, min_t(unsigned long, s->object_size,
636 if (s->flags & SLAB_RED_ZONE)
637 print_section("Redzone ", p + s->object_size,
638 s->inuse - s->object_size);
641 off = s->offset + sizeof(void *);
645 if (s->flags & SLAB_STORE_USER)
646 off += 2 * sizeof(struct track);
649 /* Beginning of the filler is the free pointer */
650 print_section("Padding ", p + off, s->size - off);
655 void object_err(struct kmem_cache *s, struct page *page,
656 u8 *object, char *reason)
658 slab_bug(s, "%s", reason);
659 print_trailer(s, page, object);
662 static void slab_err(struct kmem_cache *s, struct page *page,
663 const char *fmt, ...)
669 vsnprintf(buf, sizeof(buf), fmt, args);
671 slab_bug(s, "%s", buf);
672 print_page_info(page);
676 static void init_object(struct kmem_cache *s, void *object, u8 val)
680 if (s->flags & __OBJECT_POISON) {
681 memset(p, POISON_FREE, s->object_size - 1);
682 p[s->object_size - 1] = POISON_END;
685 if (s->flags & SLAB_RED_ZONE)
686 memset(p + s->object_size, val, s->inuse - s->object_size);
689 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
690 void *from, void *to)
692 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
693 memset(from, data, to - from);
696 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
697 u8 *object, char *what,
698 u8 *start, unsigned int value, unsigned int bytes)
703 metadata_access_enable();
704 fault = memchr_inv(start, value, bytes);
705 metadata_access_disable();
710 while (end > fault && end[-1] == value)
713 slab_bug(s, "%s overwritten", what);
714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
715 fault, end - 1, fault[0], value);
716 print_trailer(s, page, object);
718 restore_bytes(s, what, value, fault, end);
726 * Bytes of the object to be managed.
727 * If the freepointer may overlay the object then the free
728 * pointer is the first word of the object.
730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
733 * object + s->object_size
734 * Padding to reach word boundary. This is also used for Redzoning.
735 * Padding is extended by another word if Redzoning is enabled and
736 * object_size == inuse.
738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
739 * 0xcc (RED_ACTIVE) for objects in use.
742 * Meta data starts here.
744 * A. Free pointer (if we cannot overwrite object on free)
745 * B. Tracking data for SLAB_STORE_USER
746 * C. Padding to reach required alignment boundary or at mininum
747 * one word if debugging is on to be able to detect writes
748 * before the word boundary.
750 * Padding is done using 0x5a (POISON_INUSE)
753 * Nothing is used beyond s->size.
755 * If slabcaches are merged then the object_size and inuse boundaries are mostly
756 * ignored. And therefore no slab options that rely on these boundaries
757 * may be used with merged slabcaches.
760 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
762 unsigned long off = s->inuse; /* The end of info */
765 /* Freepointer is placed after the object. */
766 off += sizeof(void *);
768 if (s->flags & SLAB_STORE_USER)
769 /* We also have user information there */
770 off += 2 * sizeof(struct track);
775 return check_bytes_and_report(s, page, p, "Object padding",
776 p + off, POISON_INUSE, s->size - off);
779 /* Check the pad bytes at the end of a slab page */
780 static int slab_pad_check(struct kmem_cache *s, struct page *page)
788 if (!(s->flags & SLAB_POISON))
791 start = page_address(page);
792 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
793 end = start + length;
794 remainder = length % s->size;
798 metadata_access_enable();
799 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
800 metadata_access_disable();
803 while (end > fault && end[-1] == POISON_INUSE)
806 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
807 print_section("Padding ", end - remainder, remainder);
809 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
813 static int check_object(struct kmem_cache *s, struct page *page,
814 void *object, u8 val)
817 u8 *endobject = object + s->object_size;
819 if (s->flags & SLAB_RED_ZONE) {
820 if (!check_bytes_and_report(s, page, object, "Redzone",
821 endobject, val, s->inuse - s->object_size))
824 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
825 check_bytes_and_report(s, page, p, "Alignment padding",
826 endobject, POISON_INUSE,
827 s->inuse - s->object_size);
831 if (s->flags & SLAB_POISON) {
832 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
833 (!check_bytes_and_report(s, page, p, "Poison", p,
834 POISON_FREE, s->object_size - 1) ||
835 !check_bytes_and_report(s, page, p, "Poison",
836 p + s->object_size - 1, POISON_END, 1)))
839 * check_pad_bytes cleans up on its own.
841 check_pad_bytes(s, page, p);
844 if (!s->offset && val == SLUB_RED_ACTIVE)
846 * Object and freepointer overlap. Cannot check
847 * freepointer while object is allocated.
851 /* Check free pointer validity */
852 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
853 object_err(s, page, p, "Freepointer corrupt");
855 * No choice but to zap it and thus lose the remainder
856 * of the free objects in this slab. May cause
857 * another error because the object count is now wrong.
859 set_freepointer(s, p, NULL);
865 static int check_slab(struct kmem_cache *s, struct page *page)
869 VM_BUG_ON(!irqs_disabled());
871 if (!PageSlab(page)) {
872 slab_err(s, page, "Not a valid slab page");
876 maxobj = order_objects(compound_order(page), s->size, s->reserved);
877 if (page->objects > maxobj) {
878 slab_err(s, page, "objects %u > max %u",
879 page->objects, maxobj);
882 if (page->inuse > page->objects) {
883 slab_err(s, page, "inuse %u > max %u",
884 page->inuse, page->objects);
887 /* Slab_pad_check fixes things up after itself */
888 slab_pad_check(s, page);
893 * Determine if a certain object on a page is on the freelist. Must hold the
894 * slab lock to guarantee that the chains are in a consistent state.
896 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
904 while (fp && nr <= page->objects) {
907 if (!check_valid_pointer(s, page, fp)) {
909 object_err(s, page, object,
910 "Freechain corrupt");
911 set_freepointer(s, object, NULL);
913 slab_err(s, page, "Freepointer corrupt");
914 page->freelist = NULL;
915 page->inuse = page->objects;
916 slab_fix(s, "Freelist cleared");
922 fp = get_freepointer(s, object);
926 max_objects = order_objects(compound_order(page), s->size, s->reserved);
927 if (max_objects > MAX_OBJS_PER_PAGE)
928 max_objects = MAX_OBJS_PER_PAGE;
930 if (page->objects != max_objects) {
931 slab_err(s, page, "Wrong number of objects. Found %d but "
932 "should be %d", page->objects, max_objects);
933 page->objects = max_objects;
934 slab_fix(s, "Number of objects adjusted.");
936 if (page->inuse != page->objects - nr) {
937 slab_err(s, page, "Wrong object count. Counter is %d but "
938 "counted were %d", page->inuse, page->objects - nr);
939 page->inuse = page->objects - nr;
940 slab_fix(s, "Object count adjusted.");
942 return search == NULL;
945 static void trace(struct kmem_cache *s, struct page *page, void *object,
948 if (s->flags & SLAB_TRACE) {
949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
951 alloc ? "alloc" : "free",
956 print_section("Object ", (void *)object,
964 * Tracking of fully allocated slabs for debugging purposes.
966 static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
969 if (!(s->flags & SLAB_STORE_USER))
972 lockdep_assert_held(&n->list_lock);
973 list_add(&page->lru, &n->full);
976 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
978 if (!(s->flags & SLAB_STORE_USER))
981 lockdep_assert_held(&n->list_lock);
982 list_del(&page->lru);
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
988 struct kmem_cache_node *n = get_node(s, node);
990 return atomic_long_read(&n->nr_slabs);
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
995 return atomic_long_read(&n->nr_slabs);
998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1000 struct kmem_cache_node *n = get_node(s, node);
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1009 atomic_long_inc(&n->nr_slabs);
1010 atomic_long_add(objects, &n->total_objects);
1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1015 struct kmem_cache_node *n = get_node(s, node);
1017 atomic_long_dec(&n->nr_slabs);
1018 atomic_long_sub(objects, &n->total_objects);
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1028 init_object(s, object, SLUB_RED_INACTIVE);
1029 init_tracking(s, object);
1032 static noinline int alloc_debug_processing(struct kmem_cache *s,
1034 void *object, unsigned long addr)
1036 if (!check_slab(s, page))
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
1051 init_object(s, object, SLUB_RED_ACTIVE);
1055 if (PageSlab(page)) {
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
1059 * as used avoids touching the remaining objects.
1061 slab_fix(s, "Marking all objects used");
1062 page->inuse = page->objects;
1063 page->freelist = NULL;
1068 /* Supports checking bulk free of a constructed freelist */
1069 static noinline struct kmem_cache_node *free_debug_processing(
1070 struct kmem_cache *s, struct page *page,
1071 void *head, void *tail, int bulk_cnt,
1072 unsigned long addr, unsigned long *flags)
1074 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1075 void *object = head;
1078 spin_lock_irqsave(&n->list_lock, *flags);
1081 if (!check_slab(s, page))
1087 if (!check_valid_pointer(s, page, object)) {
1088 slab_err(s, page, "Invalid object pointer 0x%p", object);
1092 if (on_freelist(s, page, object)) {
1093 object_err(s, page, object, "Object already free");
1097 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100 if (unlikely(s != page->slab_cache)) {
1101 if (!PageSlab(page)) {
1102 slab_err(s, page, "Attempt to free object(0x%p) "
1103 "outside of slab", object);
1104 } else if (!page->slab_cache) {
1105 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1109 object_err(s, page, object,
1110 "page slab pointer corrupt.");
1114 if (s->flags & SLAB_STORE_USER)
1115 set_track(s, object, TRACK_FREE, addr);
1116 trace(s, page, object, 0);
1117 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1118 init_object(s, object, SLUB_RED_INACTIVE);
1120 /* Reached end of constructed freelist yet? */
1121 if (object != tail) {
1122 object = get_freepointer(s, object);
1126 if (cnt != bulk_cnt)
1127 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1132 * Keep node_lock to preserve integrity
1133 * until the object is actually freed
1139 spin_unlock_irqrestore(&n->list_lock, *flags);
1140 slab_fix(s, "Object at 0x%p not freed", object);
1144 static int __init setup_slub_debug(char *str)
1146 slub_debug = DEBUG_DEFAULT_FLAGS;
1147 if (*str++ != '=' || !*str)
1149 * No options specified. Switch on full debugging.
1155 * No options but restriction on slabs. This means full
1156 * debugging for slabs matching a pattern.
1163 * Switch off all debugging measures.
1168 * Determine which debug features should be switched on
1170 for (; *str && *str != ','; str++) {
1171 switch (tolower(*str)) {
1173 slub_debug |= SLAB_DEBUG_FREE;
1176 slub_debug |= SLAB_RED_ZONE;
1179 slub_debug |= SLAB_POISON;
1182 slub_debug |= SLAB_STORE_USER;
1185 slub_debug |= SLAB_TRACE;
1188 slub_debug |= SLAB_FAILSLAB;
1192 * Avoid enabling debugging on caches if its minimum
1193 * order would increase as a result.
1195 disable_higher_order_debug = 1;
1198 pr_err("slub_debug option '%c' unknown. skipped\n",
1205 slub_debug_slabs = str + 1;
1210 __setup("slub_debug", setup_slub_debug);
1212 unsigned long kmem_cache_flags(unsigned long object_size,
1213 unsigned long flags, const char *name,
1214 void (*ctor)(void *))
1217 * Enable debugging if selected on the kernel commandline.
1219 if (slub_debug && (!slub_debug_slabs || (name &&
1220 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1221 flags |= slub_debug;
1225 #else /* !CONFIG_SLUB_DEBUG */
1226 static inline void setup_object_debug(struct kmem_cache *s,
1227 struct page *page, void *object) {}
1229 static inline int alloc_debug_processing(struct kmem_cache *s,
1230 struct page *page, void *object, unsigned long addr) { return 0; }
1232 static inline struct kmem_cache_node *free_debug_processing(
1233 struct kmem_cache *s, struct page *page,
1234 void *head, void *tail, int bulk_cnt,
1235 unsigned long addr, unsigned long *flags) { return NULL; }
1237 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1239 static inline int check_object(struct kmem_cache *s, struct page *page,
1240 void *object, u8 val) { return 1; }
1241 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1242 struct page *page) {}
1243 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1244 struct page *page) {}
1245 unsigned long kmem_cache_flags(unsigned long object_size,
1246 unsigned long flags, const char *name,
1247 void (*ctor)(void *))
1251 #define slub_debug 0
1253 #define disable_higher_order_debug 0
1255 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1257 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1259 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1261 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1264 #endif /* CONFIG_SLUB_DEBUG */
1267 * Hooks for other subsystems that check memory allocations. In a typical
1268 * production configuration these hooks all should produce no code at all.
1270 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1272 kmemleak_alloc(ptr, size, 1, flags);
1273 kasan_kmalloc_large(ptr, size);
1276 static inline void kfree_hook(const void *x)
1279 kasan_kfree_large(x);
1282 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1285 flags &= gfp_allowed_mask;
1286 lockdep_trace_alloc(flags);
1287 might_sleep_if(gfpflags_allow_blocking(flags));
1289 if (should_failslab(s->object_size, flags, s->flags))
1292 return memcg_kmem_get_cache(s, flags);
1295 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1296 size_t size, void **p)
1300 flags &= gfp_allowed_mask;
1301 for (i = 0; i < size; i++) {
1302 void *object = p[i];
1304 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1305 kmemleak_alloc_recursive(object, s->object_size, 1,
1307 kasan_slab_alloc(s, object);
1309 memcg_kmem_put_cache(s);
1312 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1314 kmemleak_free_recursive(x, s->flags);
1317 * Trouble is that we may no longer disable interrupts in the fast path
1318 * So in order to make the debug calls that expect irqs to be
1319 * disabled we need to disable interrupts temporarily.
1321 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1323 unsigned long flags;
1325 local_irq_save(flags);
1326 kmemcheck_slab_free(s, x, s->object_size);
1327 debug_check_no_locks_freed(x, s->object_size);
1328 local_irq_restore(flags);
1331 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1332 debug_check_no_obj_freed(x, s->object_size);
1334 kasan_slab_free(s, x);
1337 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1338 void *head, void *tail)
1341 * Compiler cannot detect this function can be removed if slab_free_hook()
1342 * evaluates to nothing. Thus, catch all relevant config debug options here.
1344 #if defined(CONFIG_KMEMCHECK) || \
1345 defined(CONFIG_LOCKDEP) || \
1346 defined(CONFIG_DEBUG_KMEMLEAK) || \
1347 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1348 defined(CONFIG_KASAN)
1350 void *object = head;
1351 void *tail_obj = tail ? : head;
1354 slab_free_hook(s, object);
1355 } while ((object != tail_obj) &&
1356 (object = get_freepointer(s, object)));
1360 static void setup_object(struct kmem_cache *s, struct page *page,
1363 setup_object_debug(s, page, object);
1364 if (unlikely(s->ctor)) {
1365 kasan_unpoison_object_data(s, object);
1367 kasan_poison_object_data(s, object);
1372 * Slab allocation and freeing
1374 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1375 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1378 int order = oo_order(oo);
1380 flags |= __GFP_NOTRACK;
1382 if (node == NUMA_NO_NODE)
1383 page = alloc_pages(flags, order);
1385 page = __alloc_pages_node(node, flags, order);
1387 if (page && memcg_charge_slab(page, flags, order, s)) {
1388 __free_pages(page, order);
1395 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1398 struct kmem_cache_order_objects oo = s->oo;
1403 flags &= gfp_allowed_mask;
1405 if (gfpflags_allow_blocking(flags))
1408 flags |= s->allocflags;
1411 * Let the initial higher-order allocation fail under memory pressure
1412 * so we fall-back to the minimum order allocation.
1414 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1415 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1416 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1418 page = alloc_slab_page(s, alloc_gfp, node, oo);
1419 if (unlikely(!page)) {
1423 * Allocation may have failed due to fragmentation.
1424 * Try a lower order alloc if possible
1426 page = alloc_slab_page(s, alloc_gfp, node, oo);
1427 if (unlikely(!page))
1429 stat(s, ORDER_FALLBACK);
1432 if (kmemcheck_enabled &&
1433 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1434 int pages = 1 << oo_order(oo);
1436 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1439 * Objects from caches that have a constructor don't get
1440 * cleared when they're allocated, so we need to do it here.
1443 kmemcheck_mark_uninitialized_pages(page, pages);
1445 kmemcheck_mark_unallocated_pages(page, pages);
1448 page->objects = oo_objects(oo);
1450 order = compound_order(page);
1451 page->slab_cache = s;
1452 __SetPageSlab(page);
1453 if (page_is_pfmemalloc(page))
1454 SetPageSlabPfmemalloc(page);
1456 start = page_address(page);
1458 if (unlikely(s->flags & SLAB_POISON))
1459 memset(start, POISON_INUSE, PAGE_SIZE << order);
1461 kasan_poison_slab(page);
1463 for_each_object_idx(p, idx, s, start, page->objects) {
1464 setup_object(s, page, p);
1465 if (likely(idx < page->objects))
1466 set_freepointer(s, p, p + s->size);
1468 set_freepointer(s, p, NULL);
1471 page->freelist = start;
1472 page->inuse = page->objects;
1476 if (gfpflags_allow_blocking(flags))
1477 local_irq_disable();
1481 mod_zone_page_state(page_zone(page),
1482 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1483 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1486 inc_slabs_node(s, page_to_nid(page), page->objects);
1491 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1493 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1494 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1498 return allocate_slab(s,
1499 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1502 static void __free_slab(struct kmem_cache *s, struct page *page)
1504 int order = compound_order(page);
1505 int pages = 1 << order;
1507 if (kmem_cache_debug(s)) {
1510 slab_pad_check(s, page);
1511 for_each_object(p, s, page_address(page),
1513 check_object(s, page, p, SLUB_RED_INACTIVE);
1516 kmemcheck_free_shadow(page, compound_order(page));
1518 mod_zone_page_state(page_zone(page),
1519 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1520 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1523 __ClearPageSlabPfmemalloc(page);
1524 __ClearPageSlab(page);
1526 page_mapcount_reset(page);
1527 if (current->reclaim_state)
1528 current->reclaim_state->reclaimed_slab += pages;
1529 __free_kmem_pages(page, order);
1532 #define need_reserve_slab_rcu \
1533 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1535 static void rcu_free_slab(struct rcu_head *h)
1539 if (need_reserve_slab_rcu)
1540 page = virt_to_head_page(h);
1542 page = container_of((struct list_head *)h, struct page, lru);
1544 __free_slab(page->slab_cache, page);
1547 static void free_slab(struct kmem_cache *s, struct page *page)
1549 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1550 struct rcu_head *head;
1552 if (need_reserve_slab_rcu) {
1553 int order = compound_order(page);
1554 int offset = (PAGE_SIZE << order) - s->reserved;
1556 VM_BUG_ON(s->reserved != sizeof(*head));
1557 head = page_address(page) + offset;
1559 head = &page->rcu_head;
1562 call_rcu(head, rcu_free_slab);
1564 __free_slab(s, page);
1567 static void discard_slab(struct kmem_cache *s, struct page *page)
1569 dec_slabs_node(s, page_to_nid(page), page->objects);
1574 * Management of partially allocated slabs.
1577 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1580 if (tail == DEACTIVATE_TO_TAIL)
1581 list_add_tail(&page->lru, &n->partial);
1583 list_add(&page->lru, &n->partial);
1586 static inline void add_partial(struct kmem_cache_node *n,
1587 struct page *page, int tail)
1589 lockdep_assert_held(&n->list_lock);
1590 __add_partial(n, page, tail);
1594 __remove_partial(struct kmem_cache_node *n, struct page *page)
1596 list_del(&page->lru);
1600 static inline void remove_partial(struct kmem_cache_node *n,
1603 lockdep_assert_held(&n->list_lock);
1604 __remove_partial(n, page);
1608 * Remove slab from the partial list, freeze it and
1609 * return the pointer to the freelist.
1611 * Returns a list of objects or NULL if it fails.
1613 static inline void *acquire_slab(struct kmem_cache *s,
1614 struct kmem_cache_node *n, struct page *page,
1615 int mode, int *objects)
1618 unsigned long counters;
1621 lockdep_assert_held(&n->list_lock);
1624 * Zap the freelist and set the frozen bit.
1625 * The old freelist is the list of objects for the
1626 * per cpu allocation list.
1628 freelist = page->freelist;
1629 counters = page->counters;
1630 new.counters = counters;
1631 *objects = new.objects - new.inuse;
1633 new.inuse = page->objects;
1634 new.freelist = NULL;
1636 new.freelist = freelist;
1639 VM_BUG_ON(new.frozen);
1642 if (!__cmpxchg_double_slab(s, page,
1644 new.freelist, new.counters,
1648 remove_partial(n, page);
1653 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1654 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1657 * Try to allocate a partial slab from a specific node.
1659 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1660 struct kmem_cache_cpu *c, gfp_t flags)
1662 struct page *page, *page2;
1663 void *object = NULL;
1668 * Racy check. If we mistakenly see no partial slabs then we
1669 * just allocate an empty slab. If we mistakenly try to get a
1670 * partial slab and there is none available then get_partials()
1673 if (!n || !n->nr_partial)
1676 spin_lock(&n->list_lock);
1677 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1680 if (!pfmemalloc_match(page, flags))
1683 t = acquire_slab(s, n, page, object == NULL, &objects);
1687 available += objects;
1690 stat(s, ALLOC_FROM_PARTIAL);
1693 put_cpu_partial(s, page, 0);
1694 stat(s, CPU_PARTIAL_NODE);
1696 if (!kmem_cache_has_cpu_partial(s)
1697 || available > s->cpu_partial / 2)
1701 spin_unlock(&n->list_lock);
1706 * Get a page from somewhere. Search in increasing NUMA distances.
1708 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1709 struct kmem_cache_cpu *c)
1712 struct zonelist *zonelist;
1715 enum zone_type high_zoneidx = gfp_zone(flags);
1717 unsigned int cpuset_mems_cookie;
1720 * The defrag ratio allows a configuration of the tradeoffs between
1721 * inter node defragmentation and node local allocations. A lower
1722 * defrag_ratio increases the tendency to do local allocations
1723 * instead of attempting to obtain partial slabs from other nodes.
1725 * If the defrag_ratio is set to 0 then kmalloc() always
1726 * returns node local objects. If the ratio is higher then kmalloc()
1727 * may return off node objects because partial slabs are obtained
1728 * from other nodes and filled up.
1730 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1731 * defrag_ratio = 1000) then every (well almost) allocation will
1732 * first attempt to defrag slab caches on other nodes. This means
1733 * scanning over all nodes to look for partial slabs which may be
1734 * expensive if we do it every time we are trying to find a slab
1735 * with available objects.
1737 if (!s->remote_node_defrag_ratio ||
1738 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1742 cpuset_mems_cookie = read_mems_allowed_begin();
1743 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1744 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1745 struct kmem_cache_node *n;
1747 n = get_node(s, zone_to_nid(zone));
1749 if (n && cpuset_zone_allowed(zone, flags) &&
1750 n->nr_partial > s->min_partial) {
1751 object = get_partial_node(s, n, c, flags);
1754 * Don't check read_mems_allowed_retry()
1755 * here - if mems_allowed was updated in
1756 * parallel, that was a harmless race
1757 * between allocation and the cpuset
1764 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1770 * Get a partial page, lock it and return it.
1772 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1773 struct kmem_cache_cpu *c)
1776 int searchnode = node;
1778 if (node == NUMA_NO_NODE)
1779 searchnode = numa_mem_id();
1780 else if (!node_present_pages(node))
1781 searchnode = node_to_mem_node(node);
1783 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1784 if (object || node != NUMA_NO_NODE)
1787 return get_any_partial(s, flags, c);
1790 #ifdef CONFIG_PREEMPT
1792 * Calculate the next globally unique transaction for disambiguiation
1793 * during cmpxchg. The transactions start with the cpu number and are then
1794 * incremented by CONFIG_NR_CPUS.
1796 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1799 * No preemption supported therefore also no need to check for
1805 static inline unsigned long next_tid(unsigned long tid)
1807 return tid + TID_STEP;
1810 static inline unsigned int tid_to_cpu(unsigned long tid)
1812 return tid % TID_STEP;
1815 static inline unsigned long tid_to_event(unsigned long tid)
1817 return tid / TID_STEP;
1820 static inline unsigned int init_tid(int cpu)
1825 static inline void note_cmpxchg_failure(const char *n,
1826 const struct kmem_cache *s, unsigned long tid)
1828 #ifdef SLUB_DEBUG_CMPXCHG
1829 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1831 pr_info("%s %s: cmpxchg redo ", n, s->name);
1833 #ifdef CONFIG_PREEMPT
1834 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1835 pr_warn("due to cpu change %d -> %d\n",
1836 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1839 if (tid_to_event(tid) != tid_to_event(actual_tid))
1840 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1841 tid_to_event(tid), tid_to_event(actual_tid));
1843 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1844 actual_tid, tid, next_tid(tid));
1846 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1849 static void init_kmem_cache_cpus(struct kmem_cache *s)
1853 for_each_possible_cpu(cpu)
1854 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1858 * Remove the cpu slab
1860 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1863 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1864 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1866 enum slab_modes l = M_NONE, m = M_NONE;
1868 int tail = DEACTIVATE_TO_HEAD;
1872 if (page->freelist) {
1873 stat(s, DEACTIVATE_REMOTE_FREES);
1874 tail = DEACTIVATE_TO_TAIL;
1878 * Stage one: Free all available per cpu objects back
1879 * to the page freelist while it is still frozen. Leave the
1882 * There is no need to take the list->lock because the page
1885 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1887 unsigned long counters;
1890 prior = page->freelist;
1891 counters = page->counters;
1892 set_freepointer(s, freelist, prior);
1893 new.counters = counters;
1895 VM_BUG_ON(!new.frozen);
1897 } while (!__cmpxchg_double_slab(s, page,
1899 freelist, new.counters,
1900 "drain percpu freelist"));
1902 freelist = nextfree;
1906 * Stage two: Ensure that the page is unfrozen while the
1907 * list presence reflects the actual number of objects
1910 * We setup the list membership and then perform a cmpxchg
1911 * with the count. If there is a mismatch then the page
1912 * is not unfrozen but the page is on the wrong list.
1914 * Then we restart the process which may have to remove
1915 * the page from the list that we just put it on again
1916 * because the number of objects in the slab may have
1921 old.freelist = page->freelist;
1922 old.counters = page->counters;
1923 VM_BUG_ON(!old.frozen);
1925 /* Determine target state of the slab */
1926 new.counters = old.counters;
1929 set_freepointer(s, freelist, old.freelist);
1930 new.freelist = freelist;
1932 new.freelist = old.freelist;
1936 if (!new.inuse && n->nr_partial >= s->min_partial)
1938 else if (new.freelist) {
1943 * Taking the spinlock removes the possiblity
1944 * that acquire_slab() will see a slab page that
1947 spin_lock(&n->list_lock);
1951 if (kmem_cache_debug(s) && !lock) {
1954 * This also ensures that the scanning of full
1955 * slabs from diagnostic functions will not see
1958 spin_lock(&n->list_lock);
1966 remove_partial(n, page);
1968 else if (l == M_FULL)
1970 remove_full(s, n, page);
1972 if (m == M_PARTIAL) {
1974 add_partial(n, page, tail);
1977 } else if (m == M_FULL) {
1979 stat(s, DEACTIVATE_FULL);
1980 add_full(s, n, page);
1986 if (!__cmpxchg_double_slab(s, page,
1987 old.freelist, old.counters,
1988 new.freelist, new.counters,
1993 spin_unlock(&n->list_lock);
1996 stat(s, DEACTIVATE_EMPTY);
1997 discard_slab(s, page);
2003 * Unfreeze all the cpu partial slabs.
2005 * This function must be called with interrupts disabled
2006 * for the cpu using c (or some other guarantee must be there
2007 * to guarantee no concurrent accesses).
2009 static void unfreeze_partials(struct kmem_cache *s,
2010 struct kmem_cache_cpu *c)
2012 #ifdef CONFIG_SLUB_CPU_PARTIAL
2013 struct kmem_cache_node *n = NULL, *n2 = NULL;
2014 struct page *page, *discard_page = NULL;
2016 while ((page = c->partial)) {
2020 c->partial = page->next;
2022 n2 = get_node(s, page_to_nid(page));
2025 spin_unlock(&n->list_lock);
2028 spin_lock(&n->list_lock);
2033 old.freelist = page->freelist;
2034 old.counters = page->counters;
2035 VM_BUG_ON(!old.frozen);
2037 new.counters = old.counters;
2038 new.freelist = old.freelist;
2042 } while (!__cmpxchg_double_slab(s, page,
2043 old.freelist, old.counters,
2044 new.freelist, new.counters,
2045 "unfreezing slab"));
2047 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2048 page->next = discard_page;
2049 discard_page = page;
2051 add_partial(n, page, DEACTIVATE_TO_TAIL);
2052 stat(s, FREE_ADD_PARTIAL);
2057 spin_unlock(&n->list_lock);
2059 while (discard_page) {
2060 page = discard_page;
2061 discard_page = discard_page->next;
2063 stat(s, DEACTIVATE_EMPTY);
2064 discard_slab(s, page);
2071 * Put a page that was just frozen (in __slab_free) into a partial page
2072 * slot if available. This is done without interrupts disabled and without
2073 * preemption disabled. The cmpxchg is racy and may put the partial page
2074 * onto a random cpus partial slot.
2076 * If we did not find a slot then simply move all the partials to the
2077 * per node partial list.
2079 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2081 #ifdef CONFIG_SLUB_CPU_PARTIAL
2082 struct page *oldpage;
2090 oldpage = this_cpu_read(s->cpu_slab->partial);
2093 pobjects = oldpage->pobjects;
2094 pages = oldpage->pages;
2095 if (drain && pobjects > s->cpu_partial) {
2096 unsigned long flags;
2098 * partial array is full. Move the existing
2099 * set to the per node partial list.
2101 local_irq_save(flags);
2102 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2103 local_irq_restore(flags);
2107 stat(s, CPU_PARTIAL_DRAIN);
2112 pobjects += page->objects - page->inuse;
2114 page->pages = pages;
2115 page->pobjects = pobjects;
2116 page->next = oldpage;
2118 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2120 if (unlikely(!s->cpu_partial)) {
2121 unsigned long flags;
2123 local_irq_save(flags);
2124 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2125 local_irq_restore(flags);
2131 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2133 stat(s, CPUSLAB_FLUSH);
2134 deactivate_slab(s, c->page, c->freelist);
2136 c->tid = next_tid(c->tid);
2144 * Called from IPI handler with interrupts disabled.
2146 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2148 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2154 unfreeze_partials(s, c);
2158 static void flush_cpu_slab(void *d)
2160 struct kmem_cache *s = d;
2162 __flush_cpu_slab(s, smp_processor_id());
2165 static bool has_cpu_slab(int cpu, void *info)
2167 struct kmem_cache *s = info;
2168 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2170 return c->page || c->partial;
2173 static void flush_all(struct kmem_cache *s)
2175 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2179 * Check if the objects in a per cpu structure fit numa
2180 * locality expectations.
2182 static inline int node_match(struct page *page, int node)
2185 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2191 #ifdef CONFIG_SLUB_DEBUG
2192 static int count_free(struct page *page)
2194 return page->objects - page->inuse;
2197 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2199 return atomic_long_read(&n->total_objects);
2201 #endif /* CONFIG_SLUB_DEBUG */
2203 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2204 static unsigned long count_partial(struct kmem_cache_node *n,
2205 int (*get_count)(struct page *))
2207 unsigned long flags;
2208 unsigned long x = 0;
2211 spin_lock_irqsave(&n->list_lock, flags);
2212 list_for_each_entry(page, &n->partial, lru)
2213 x += get_count(page);
2214 spin_unlock_irqrestore(&n->list_lock, flags);
2217 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2219 static noinline void
2220 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2222 #ifdef CONFIG_SLUB_DEBUG
2223 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2224 DEFAULT_RATELIMIT_BURST);
2226 struct kmem_cache_node *n;
2228 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2231 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2233 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2234 s->name, s->object_size, s->size, oo_order(s->oo),
2237 if (oo_order(s->min) > get_order(s->object_size))
2238 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2241 for_each_kmem_cache_node(s, node, n) {
2242 unsigned long nr_slabs;
2243 unsigned long nr_objs;
2244 unsigned long nr_free;
2246 nr_free = count_partial(n, count_free);
2247 nr_slabs = node_nr_slabs(n);
2248 nr_objs = node_nr_objs(n);
2250 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2251 node, nr_slabs, nr_objs, nr_free);
2256 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2257 int node, struct kmem_cache_cpu **pc)
2260 struct kmem_cache_cpu *c = *pc;
2263 freelist = get_partial(s, flags, node, c);
2268 page = new_slab(s, flags, node);
2270 c = raw_cpu_ptr(s->cpu_slab);
2275 * No other reference to the page yet so we can
2276 * muck around with it freely without cmpxchg
2278 freelist = page->freelist;
2279 page->freelist = NULL;
2281 stat(s, ALLOC_SLAB);
2290 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2292 if (unlikely(PageSlabPfmemalloc(page)))
2293 return gfp_pfmemalloc_allowed(gfpflags);
2299 * Check the page->freelist of a page and either transfer the freelist to the
2300 * per cpu freelist or deactivate the page.
2302 * The page is still frozen if the return value is not NULL.
2304 * If this function returns NULL then the page has been unfrozen.
2306 * This function must be called with interrupt disabled.
2308 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2311 unsigned long counters;
2315 freelist = page->freelist;
2316 counters = page->counters;
2318 new.counters = counters;
2319 VM_BUG_ON(!new.frozen);
2321 new.inuse = page->objects;
2322 new.frozen = freelist != NULL;
2324 } while (!__cmpxchg_double_slab(s, page,
2333 * Slow path. The lockless freelist is empty or we need to perform
2336 * Processing is still very fast if new objects have been freed to the
2337 * regular freelist. In that case we simply take over the regular freelist
2338 * as the lockless freelist and zap the regular freelist.
2340 * If that is not working then we fall back to the partial lists. We take the
2341 * first element of the freelist as the object to allocate now and move the
2342 * rest of the freelist to the lockless freelist.
2344 * And if we were unable to get a new slab from the partial slab lists then
2345 * we need to allocate a new slab. This is the slowest path since it involves
2346 * a call to the page allocator and the setup of a new slab.
2348 * Version of __slab_alloc to use when we know that interrupts are
2349 * already disabled (which is the case for bulk allocation).
2351 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2352 unsigned long addr, struct kmem_cache_cpu *c)
2362 if (unlikely(!node_match(page, node))) {
2363 int searchnode = node;
2365 if (node != NUMA_NO_NODE && !node_present_pages(node))
2366 searchnode = node_to_mem_node(node);
2368 if (unlikely(!node_match(page, searchnode))) {
2369 stat(s, ALLOC_NODE_MISMATCH);
2370 deactivate_slab(s, page, c->freelist);
2378 * By rights, we should be searching for a slab page that was
2379 * PFMEMALLOC but right now, we are losing the pfmemalloc
2380 * information when the page leaves the per-cpu allocator
2382 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2383 deactivate_slab(s, page, c->freelist);
2389 /* must check again c->freelist in case of cpu migration or IRQ */
2390 freelist = c->freelist;
2394 freelist = get_freelist(s, page);
2398 stat(s, DEACTIVATE_BYPASS);
2402 stat(s, ALLOC_REFILL);
2406 * freelist is pointing to the list of objects to be used.
2407 * page is pointing to the page from which the objects are obtained.
2408 * That page must be frozen for per cpu allocations to work.
2410 VM_BUG_ON(!c->page->frozen);
2411 c->freelist = get_freepointer(s, freelist);
2412 c->tid = next_tid(c->tid);
2418 page = c->page = c->partial;
2419 c->partial = page->next;
2420 stat(s, CPU_PARTIAL_ALLOC);
2425 freelist = new_slab_objects(s, gfpflags, node, &c);
2427 if (unlikely(!freelist)) {
2428 slab_out_of_memory(s, gfpflags, node);
2433 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2436 /* Only entered in the debug case */
2437 if (kmem_cache_debug(s) &&
2438 !alloc_debug_processing(s, page, freelist, addr))
2439 goto new_slab; /* Slab failed checks. Next slab needed */
2441 deactivate_slab(s, page, get_freepointer(s, freelist));
2448 * Another one that disabled interrupt and compensates for possible
2449 * cpu changes by refetching the per cpu area pointer.
2451 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2452 unsigned long addr, struct kmem_cache_cpu *c)
2455 unsigned long flags;
2457 local_irq_save(flags);
2458 #ifdef CONFIG_PREEMPT
2460 * We may have been preempted and rescheduled on a different
2461 * cpu before disabling interrupts. Need to reload cpu area
2464 c = this_cpu_ptr(s->cpu_slab);
2467 p = ___slab_alloc(s, gfpflags, node, addr, c);
2468 local_irq_restore(flags);
2473 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2474 * have the fastpath folded into their functions. So no function call
2475 * overhead for requests that can be satisfied on the fastpath.
2477 * The fastpath works by first checking if the lockless freelist can be used.
2478 * If not then __slab_alloc is called for slow processing.
2480 * Otherwise we can simply pick the next object from the lockless free list.
2482 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2483 gfp_t gfpflags, int node, unsigned long addr)
2486 struct kmem_cache_cpu *c;
2490 s = slab_pre_alloc_hook(s, gfpflags);
2495 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2496 * enabled. We may switch back and forth between cpus while
2497 * reading from one cpu area. That does not matter as long
2498 * as we end up on the original cpu again when doing the cmpxchg.
2500 * We should guarantee that tid and kmem_cache are retrieved on
2501 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2502 * to check if it is matched or not.
2505 tid = this_cpu_read(s->cpu_slab->tid);
2506 c = raw_cpu_ptr(s->cpu_slab);
2507 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2508 unlikely(tid != READ_ONCE(c->tid)));
2511 * Irqless object alloc/free algorithm used here depends on sequence
2512 * of fetching cpu_slab's data. tid should be fetched before anything
2513 * on c to guarantee that object and page associated with previous tid
2514 * won't be used with current tid. If we fetch tid first, object and
2515 * page could be one associated with next tid and our alloc/free
2516 * request will be failed. In this case, we will retry. So, no problem.
2521 * The transaction ids are globally unique per cpu and per operation on
2522 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2523 * occurs on the right processor and that there was no operation on the
2524 * linked list in between.
2527 object = c->freelist;
2529 if (unlikely(!object || !node_match(page, node))) {
2530 object = __slab_alloc(s, gfpflags, node, addr, c);
2531 stat(s, ALLOC_SLOWPATH);
2533 void *next_object = get_freepointer_safe(s, object);
2536 * The cmpxchg will only match if there was no additional
2537 * operation and if we are on the right processor.
2539 * The cmpxchg does the following atomically (without lock
2541 * 1. Relocate first pointer to the current per cpu area.
2542 * 2. Verify that tid and freelist have not been changed
2543 * 3. If they were not changed replace tid and freelist
2545 * Since this is without lock semantics the protection is only
2546 * against code executing on this cpu *not* from access by
2549 if (unlikely(!this_cpu_cmpxchg_double(
2550 s->cpu_slab->freelist, s->cpu_slab->tid,
2552 next_object, next_tid(tid)))) {
2554 note_cmpxchg_failure("slab_alloc", s, tid);
2557 prefetch_freepointer(s, next_object);
2558 stat(s, ALLOC_FASTPATH);
2561 if (unlikely(gfpflags & __GFP_ZERO) && object)
2562 memset(object, 0, s->object_size);
2564 slab_post_alloc_hook(s, gfpflags, 1, &object);
2569 static __always_inline void *slab_alloc(struct kmem_cache *s,
2570 gfp_t gfpflags, unsigned long addr)
2572 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2575 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2577 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2579 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2584 EXPORT_SYMBOL(kmem_cache_alloc);
2586 #ifdef CONFIG_TRACING
2587 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2589 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2590 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2591 kasan_kmalloc(s, ret, size);
2594 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2598 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2600 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2602 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2603 s->object_size, s->size, gfpflags, node);
2607 EXPORT_SYMBOL(kmem_cache_alloc_node);
2609 #ifdef CONFIG_TRACING
2610 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2612 int node, size_t size)
2614 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2616 trace_kmalloc_node(_RET_IP_, ret,
2617 size, s->size, gfpflags, node);
2619 kasan_kmalloc(s, ret, size);
2622 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2627 * Slow path handling. This may still be called frequently since objects
2628 * have a longer lifetime than the cpu slabs in most processing loads.
2630 * So we still attempt to reduce cache line usage. Just take the slab
2631 * lock and free the item. If there is no additional partial page
2632 * handling required then we can return immediately.
2634 static void __slab_free(struct kmem_cache *s, struct page *page,
2635 void *head, void *tail, int cnt,
2642 unsigned long counters;
2643 struct kmem_cache_node *n = NULL;
2644 unsigned long uninitialized_var(flags);
2646 stat(s, FREE_SLOWPATH);
2648 if (kmem_cache_debug(s) &&
2649 !(n = free_debug_processing(s, page, head, tail, cnt,
2655 spin_unlock_irqrestore(&n->list_lock, flags);
2658 prior = page->freelist;
2659 counters = page->counters;
2660 set_freepointer(s, tail, prior);
2661 new.counters = counters;
2662 was_frozen = new.frozen;
2664 if ((!new.inuse || !prior) && !was_frozen) {
2666 if (kmem_cache_has_cpu_partial(s) && !prior) {
2669 * Slab was on no list before and will be
2671 * We can defer the list move and instead
2676 } else { /* Needs to be taken off a list */
2678 n = get_node(s, page_to_nid(page));
2680 * Speculatively acquire the list_lock.
2681 * If the cmpxchg does not succeed then we may
2682 * drop the list_lock without any processing.
2684 * Otherwise the list_lock will synchronize with
2685 * other processors updating the list of slabs.
2687 spin_lock_irqsave(&n->list_lock, flags);
2692 } while (!cmpxchg_double_slab(s, page,
2700 * If we just froze the page then put it onto the
2701 * per cpu partial list.
2703 if (new.frozen && !was_frozen) {
2704 put_cpu_partial(s, page, 1);
2705 stat(s, CPU_PARTIAL_FREE);
2708 * The list lock was not taken therefore no list
2709 * activity can be necessary.
2712 stat(s, FREE_FROZEN);
2716 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2720 * Objects left in the slab. If it was not on the partial list before
2723 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2724 if (kmem_cache_debug(s))
2725 remove_full(s, n, page);
2726 add_partial(n, page, DEACTIVATE_TO_TAIL);
2727 stat(s, FREE_ADD_PARTIAL);
2729 spin_unlock_irqrestore(&n->list_lock, flags);
2735 * Slab on the partial list.
2737 remove_partial(n, page);
2738 stat(s, FREE_REMOVE_PARTIAL);
2740 /* Slab must be on the full list */
2741 remove_full(s, n, page);
2744 spin_unlock_irqrestore(&n->list_lock, flags);
2746 discard_slab(s, page);
2750 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2751 * can perform fastpath freeing without additional function calls.
2753 * The fastpath is only possible if we are freeing to the current cpu slab
2754 * of this processor. This typically the case if we have just allocated
2757 * If fastpath is not possible then fall back to __slab_free where we deal
2758 * with all sorts of special processing.
2760 * Bulk free of a freelist with several objects (all pointing to the
2761 * same page) possible by specifying head and tail ptr, plus objects
2762 * count (cnt). Bulk free indicated by tail pointer being set.
2764 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2765 void *head, void *tail, int cnt,
2768 void *tail_obj = tail ? : head;
2769 struct kmem_cache_cpu *c;
2772 slab_free_freelist_hook(s, head, tail);
2776 * Determine the currently cpus per cpu slab.
2777 * The cpu may change afterward. However that does not matter since
2778 * data is retrieved via this pointer. If we are on the same cpu
2779 * during the cmpxchg then the free will succeed.
2782 tid = this_cpu_read(s->cpu_slab->tid);
2783 c = raw_cpu_ptr(s->cpu_slab);
2784 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2785 unlikely(tid != READ_ONCE(c->tid)));
2787 /* Same with comment on barrier() in slab_alloc_node() */
2790 if (likely(page == c->page)) {
2791 set_freepointer(s, tail_obj, c->freelist);
2793 if (unlikely(!this_cpu_cmpxchg_double(
2794 s->cpu_slab->freelist, s->cpu_slab->tid,
2796 head, next_tid(tid)))) {
2798 note_cmpxchg_failure("slab_free", s, tid);
2801 stat(s, FREE_FASTPATH);
2803 __slab_free(s, page, head, tail_obj, cnt, addr);
2807 void kmem_cache_free(struct kmem_cache *s, void *x)
2809 s = cache_from_obj(s, x);
2812 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2813 trace_kmem_cache_free(_RET_IP_, x);
2815 EXPORT_SYMBOL(kmem_cache_free);
2817 struct detached_freelist {
2822 struct kmem_cache *s;
2826 * This function progressively scans the array with free objects (with
2827 * a limited look ahead) and extract objects belonging to the same
2828 * page. It builds a detached freelist directly within the given
2829 * page/objects. This can happen without any need for
2830 * synchronization, because the objects are owned by running process.
2831 * The freelist is build up as a single linked list in the objects.
2832 * The idea is, that this detached freelist can then be bulk
2833 * transferred to the real freelist(s), but only requiring a single
2834 * synchronization primitive. Look ahead in the array is limited due
2835 * to performance reasons.
2838 int build_detached_freelist(struct kmem_cache *s, size_t size,
2839 void **p, struct detached_freelist *df)
2841 size_t first_skipped_index = 0;
2845 /* Always re-init detached_freelist */
2850 } while (!object && size);
2855 /* Support for memcg, compiler can optimize this out */
2856 df->s = cache_from_obj(s, object);
2858 /* Start new detached freelist */
2859 set_freepointer(df->s, object, NULL);
2860 df->page = virt_to_head_page(object);
2862 df->freelist = object;
2863 p[size] = NULL; /* mark object processed */
2869 continue; /* Skip processed objects */
2871 /* df->page is always set at this point */
2872 if (df->page == virt_to_head_page(object)) {
2873 /* Opportunity build freelist */
2874 set_freepointer(df->s, object, df->freelist);
2875 df->freelist = object;
2877 p[size] = NULL; /* mark object processed */
2882 /* Limit look ahead search */
2886 if (!first_skipped_index)
2887 first_skipped_index = size + 1;
2890 return first_skipped_index;
2893 /* Note that interrupts must be enabled when calling this function. */
2894 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2900 struct detached_freelist df;
2902 size = build_detached_freelist(s, size, p, &df);
2903 if (unlikely(!df.page))
2906 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
2907 } while (likely(size));
2909 EXPORT_SYMBOL(kmem_cache_free_bulk);
2911 /* Note that interrupts must be enabled when calling this function. */
2912 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2915 struct kmem_cache_cpu *c;
2918 /* memcg and kmem_cache debug support */
2919 s = slab_pre_alloc_hook(s, flags);
2923 * Drain objects in the per cpu slab, while disabling local
2924 * IRQs, which protects against PREEMPT and interrupts
2925 * handlers invoking normal fastpath.
2927 local_irq_disable();
2928 c = this_cpu_ptr(s->cpu_slab);
2930 for (i = 0; i < size; i++) {
2931 void *object = c->freelist;
2933 if (unlikely(!object)) {
2935 * Invoking slow path likely have side-effect
2936 * of re-populating per CPU c->freelist
2938 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2940 if (unlikely(!p[i]))
2943 c = this_cpu_ptr(s->cpu_slab);
2944 continue; /* goto for-loop */
2946 c->freelist = get_freepointer(s, object);
2949 c->tid = next_tid(c->tid);
2952 /* Clear memory outside IRQ disabled fastpath loop */
2953 if (unlikely(flags & __GFP_ZERO)) {
2956 for (j = 0; j < i; j++)
2957 memset(p[j], 0, s->object_size);
2960 /* memcg and kmem_cache debug support */
2961 slab_post_alloc_hook(s, flags, size, p);
2965 slab_post_alloc_hook(s, flags, i, p);
2966 __kmem_cache_free_bulk(s, i, p);
2969 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2973 * Object placement in a slab is made very easy because we always start at
2974 * offset 0. If we tune the size of the object to the alignment then we can
2975 * get the required alignment by putting one properly sized object after
2978 * Notice that the allocation order determines the sizes of the per cpu
2979 * caches. Each processor has always one slab available for allocations.
2980 * Increasing the allocation order reduces the number of times that slabs
2981 * must be moved on and off the partial lists and is therefore a factor in
2986 * Mininum / Maximum order of slab pages. This influences locking overhead
2987 * and slab fragmentation. A higher order reduces the number of partial slabs
2988 * and increases the number of allocations possible without having to
2989 * take the list_lock.
2991 static int slub_min_order;
2992 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2993 static int slub_min_objects;
2996 * Calculate the order of allocation given an slab object size.
2998 * The order of allocation has significant impact on performance and other
2999 * system components. Generally order 0 allocations should be preferred since
3000 * order 0 does not cause fragmentation in the page allocator. Larger objects
3001 * be problematic to put into order 0 slabs because there may be too much
3002 * unused space left. We go to a higher order if more than 1/16th of the slab
3005 * In order to reach satisfactory performance we must ensure that a minimum
3006 * number of objects is in one slab. Otherwise we may generate too much
3007 * activity on the partial lists which requires taking the list_lock. This is
3008 * less a concern for large slabs though which are rarely used.
3010 * slub_max_order specifies the order where we begin to stop considering the
3011 * number of objects in a slab as critical. If we reach slub_max_order then
3012 * we try to keep the page order as low as possible. So we accept more waste
3013 * of space in favor of a small page order.
3015 * Higher order allocations also allow the placement of more objects in a
3016 * slab and thereby reduce object handling overhead. If the user has
3017 * requested a higher mininum order then we start with that one instead of
3018 * the smallest order which will fit the object.
3020 static inline int slab_order(int size, int min_objects,
3021 int max_order, int fract_leftover, int reserved)
3025 int min_order = slub_min_order;
3027 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3028 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3030 for (order = max(min_order, get_order(min_objects * size + reserved));
3031 order <= max_order; order++) {
3033 unsigned long slab_size = PAGE_SIZE << order;
3035 rem = (slab_size - reserved) % size;
3037 if (rem <= slab_size / fract_leftover)
3044 static inline int calculate_order(int size, int reserved)
3052 * Attempt to find best configuration for a slab. This
3053 * works by first attempting to generate a layout with
3054 * the best configuration and backing off gradually.
3056 * First we increase the acceptable waste in a slab. Then
3057 * we reduce the minimum objects required in a slab.
3059 min_objects = slub_min_objects;
3061 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3062 max_objects = order_objects(slub_max_order, size, reserved);
3063 min_objects = min(min_objects, max_objects);
3065 while (min_objects > 1) {
3067 while (fraction >= 4) {
3068 order = slab_order(size, min_objects,
3069 slub_max_order, fraction, reserved);
3070 if (order <= slub_max_order)
3078 * We were unable to place multiple objects in a slab. Now
3079 * lets see if we can place a single object there.
3081 order = slab_order(size, 1, slub_max_order, 1, reserved);
3082 if (order <= slub_max_order)
3086 * Doh this slab cannot be placed using slub_max_order.
3088 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3089 if (order < MAX_ORDER)
3095 init_kmem_cache_node(struct kmem_cache_node *n)
3098 spin_lock_init(&n->list_lock);
3099 INIT_LIST_HEAD(&n->partial);
3100 #ifdef CONFIG_SLUB_DEBUG
3101 atomic_long_set(&n->nr_slabs, 0);
3102 atomic_long_set(&n->total_objects, 0);
3103 INIT_LIST_HEAD(&n->full);
3107 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3109 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3110 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3113 * Must align to double word boundary for the double cmpxchg
3114 * instructions to work; see __pcpu_double_call_return_bool().
3116 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3117 2 * sizeof(void *));
3122 init_kmem_cache_cpus(s);
3127 static struct kmem_cache *kmem_cache_node;
3130 * No kmalloc_node yet so do it by hand. We know that this is the first
3131 * slab on the node for this slabcache. There are no concurrent accesses
3134 * Note that this function only works on the kmem_cache_node
3135 * when allocating for the kmem_cache_node. This is used for bootstrapping
3136 * memory on a fresh node that has no slab structures yet.
3138 static void early_kmem_cache_node_alloc(int node)
3141 struct kmem_cache_node *n;
3143 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3145 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3148 if (page_to_nid(page) != node) {
3149 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3150 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3155 page->freelist = get_freepointer(kmem_cache_node, n);
3158 kmem_cache_node->node[node] = n;
3159 #ifdef CONFIG_SLUB_DEBUG
3160 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3161 init_tracking(kmem_cache_node, n);
3163 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3164 init_kmem_cache_node(n);
3165 inc_slabs_node(kmem_cache_node, node, page->objects);
3168 * No locks need to be taken here as it has just been
3169 * initialized and there is no concurrent access.
3171 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3174 static void free_kmem_cache_nodes(struct kmem_cache *s)
3177 struct kmem_cache_node *n;
3179 for_each_kmem_cache_node(s, node, n) {
3180 kmem_cache_free(kmem_cache_node, n);
3181 s->node[node] = NULL;
3185 static int init_kmem_cache_nodes(struct kmem_cache *s)
3189 for_each_node_state(node, N_NORMAL_MEMORY) {
3190 struct kmem_cache_node *n;
3192 if (slab_state == DOWN) {
3193 early_kmem_cache_node_alloc(node);
3196 n = kmem_cache_alloc_node(kmem_cache_node,
3200 free_kmem_cache_nodes(s);
3205 init_kmem_cache_node(n);
3210 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3212 if (min < MIN_PARTIAL)
3214 else if (min > MAX_PARTIAL)
3216 s->min_partial = min;
3220 * calculate_sizes() determines the order and the distribution of data within
3223 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3225 unsigned long flags = s->flags;
3226 unsigned long size = s->object_size;
3230 * Round up object size to the next word boundary. We can only
3231 * place the free pointer at word boundaries and this determines
3232 * the possible location of the free pointer.
3234 size = ALIGN(size, sizeof(void *));
3236 #ifdef CONFIG_SLUB_DEBUG
3238 * Determine if we can poison the object itself. If the user of
3239 * the slab may touch the object after free or before allocation
3240 * then we should never poison the object itself.
3242 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3244 s->flags |= __OBJECT_POISON;
3246 s->flags &= ~__OBJECT_POISON;
3250 * If we are Redzoning then check if there is some space between the
3251 * end of the object and the free pointer. If not then add an
3252 * additional word to have some bytes to store Redzone information.
3254 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3255 size += sizeof(void *);
3259 * With that we have determined the number of bytes in actual use
3260 * by the object. This is the potential offset to the free pointer.
3264 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3267 * Relocate free pointer after the object if it is not
3268 * permitted to overwrite the first word of the object on
3271 * This is the case if we do RCU, have a constructor or
3272 * destructor or are poisoning the objects.
3275 size += sizeof(void *);
3278 #ifdef CONFIG_SLUB_DEBUG
3279 if (flags & SLAB_STORE_USER)
3281 * Need to store information about allocs and frees after
3284 size += 2 * sizeof(struct track);
3286 if (flags & SLAB_RED_ZONE)
3288 * Add some empty padding so that we can catch
3289 * overwrites from earlier objects rather than let
3290 * tracking information or the free pointer be
3291 * corrupted if a user writes before the start
3294 size += sizeof(void *);
3298 * SLUB stores one object immediately after another beginning from
3299 * offset 0. In order to align the objects we have to simply size
3300 * each object to conform to the alignment.
3302 size = ALIGN(size, s->align);
3304 if (forced_order >= 0)
3305 order = forced_order;
3307 order = calculate_order(size, s->reserved);
3314 s->allocflags |= __GFP_COMP;
3316 if (s->flags & SLAB_CACHE_DMA)
3317 s->allocflags |= GFP_DMA;
3319 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3320 s->allocflags |= __GFP_RECLAIMABLE;
3323 * Determine the number of objects per slab
3325 s->oo = oo_make(order, size, s->reserved);
3326 s->min = oo_make(get_order(size), size, s->reserved);
3327 if (oo_objects(s->oo) > oo_objects(s->max))
3330 return !!oo_objects(s->oo);
3333 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3335 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3338 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3339 s->reserved = sizeof(struct rcu_head);
3341 if (!calculate_sizes(s, -1))
3343 if (disable_higher_order_debug) {
3345 * Disable debugging flags that store metadata if the min slab
3348 if (get_order(s->size) > get_order(s->object_size)) {
3349 s->flags &= ~DEBUG_METADATA_FLAGS;
3351 if (!calculate_sizes(s, -1))
3356 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3358 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3359 /* Enable fast mode */
3360 s->flags |= __CMPXCHG_DOUBLE;
3364 * The larger the object size is, the more pages we want on the partial
3365 * list to avoid pounding the page allocator excessively.
3367 set_min_partial(s, ilog2(s->size) / 2);
3370 * cpu_partial determined the maximum number of objects kept in the
3371 * per cpu partial lists of a processor.
3373 * Per cpu partial lists mainly contain slabs that just have one
3374 * object freed. If they are used for allocation then they can be
3375 * filled up again with minimal effort. The slab will never hit the
3376 * per node partial lists and therefore no locking will be required.
3378 * This setting also determines
3380 * A) The number of objects from per cpu partial slabs dumped to the
3381 * per node list when we reach the limit.
3382 * B) The number of objects in cpu partial slabs to extract from the
3383 * per node list when we run out of per cpu objects. We only fetch
3384 * 50% to keep some capacity around for frees.
3386 if (!kmem_cache_has_cpu_partial(s))
3388 else if (s->size >= PAGE_SIZE)
3390 else if (s->size >= 1024)
3392 else if (s->size >= 256)
3393 s->cpu_partial = 13;
3395 s->cpu_partial = 30;
3398 s->remote_node_defrag_ratio = 1000;
3400 if (!init_kmem_cache_nodes(s))
3403 if (alloc_kmem_cache_cpus(s))
3406 free_kmem_cache_nodes(s);
3408 if (flags & SLAB_PANIC)
3409 panic("Cannot create slab %s size=%lu realsize=%u "
3410 "order=%u offset=%u flags=%lx\n",
3411 s->name, (unsigned long)s->size, s->size,
3412 oo_order(s->oo), s->offset, flags);
3416 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3419 #ifdef CONFIG_SLUB_DEBUG
3420 void *addr = page_address(page);
3422 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3423 sizeof(long), GFP_ATOMIC);
3426 slab_err(s, page, text, s->name);
3429 get_map(s, page, map);
3430 for_each_object(p, s, addr, page->objects) {
3432 if (!test_bit(slab_index(p, s, addr), map)) {
3433 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3434 print_tracking(s, p);
3443 * Attempt to free all partial slabs on a node.
3444 * This is called from kmem_cache_close(). We must be the last thread
3445 * using the cache and therefore we do not need to lock anymore.
3447 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3449 struct page *page, *h;
3451 list_for_each_entry_safe(page, h, &n->partial, lru) {
3453 __remove_partial(n, page);
3454 discard_slab(s, page);
3456 list_slab_objects(s, page,
3457 "Objects remaining in %s on kmem_cache_close()");
3463 * Release all resources used by a slab cache.
3465 static inline int kmem_cache_close(struct kmem_cache *s)
3468 struct kmem_cache_node *n;
3471 /* Attempt to free all objects */
3472 for_each_kmem_cache_node(s, node, n) {
3474 if (n->nr_partial || slabs_node(s, node))
3477 free_percpu(s->cpu_slab);
3478 free_kmem_cache_nodes(s);
3482 int __kmem_cache_shutdown(struct kmem_cache *s)
3484 return kmem_cache_close(s);
3487 /********************************************************************
3489 *******************************************************************/
3491 static int __init setup_slub_min_order(char *str)
3493 get_option(&str, &slub_min_order);
3498 __setup("slub_min_order=", setup_slub_min_order);
3500 static int __init setup_slub_max_order(char *str)
3502 get_option(&str, &slub_max_order);
3503 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3508 __setup("slub_max_order=", setup_slub_max_order);
3510 static int __init setup_slub_min_objects(char *str)
3512 get_option(&str, &slub_min_objects);
3517 __setup("slub_min_objects=", setup_slub_min_objects);
3519 void *__kmalloc(size_t size, gfp_t flags)
3521 struct kmem_cache *s;
3524 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3525 return kmalloc_large(size, flags);
3527 s = kmalloc_slab(size, flags);
3529 if (unlikely(ZERO_OR_NULL_PTR(s)))
3532 ret = slab_alloc(s, flags, _RET_IP_);
3534 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3536 kasan_kmalloc(s, ret, size);
3540 EXPORT_SYMBOL(__kmalloc);
3543 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3548 flags |= __GFP_COMP | __GFP_NOTRACK;
3549 page = alloc_kmem_pages_node(node, flags, get_order(size));
3551 ptr = page_address(page);
3553 kmalloc_large_node_hook(ptr, size, flags);
3557 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3559 struct kmem_cache *s;
3562 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3563 ret = kmalloc_large_node(size, flags, node);
3565 trace_kmalloc_node(_RET_IP_, ret,
3566 size, PAGE_SIZE << get_order(size),
3572 s = kmalloc_slab(size, flags);
3574 if (unlikely(ZERO_OR_NULL_PTR(s)))
3577 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3579 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3581 kasan_kmalloc(s, ret, size);
3585 EXPORT_SYMBOL(__kmalloc_node);
3588 static size_t __ksize(const void *object)
3592 if (unlikely(object == ZERO_SIZE_PTR))
3595 page = virt_to_head_page(object);
3597 if (unlikely(!PageSlab(page))) {
3598 WARN_ON(!PageCompound(page));
3599 return PAGE_SIZE << compound_order(page);
3602 return slab_ksize(page->slab_cache);
3605 size_t ksize(const void *object)
3607 size_t size = __ksize(object);
3608 /* We assume that ksize callers could use whole allocated area,
3609 so we need unpoison this area. */
3610 kasan_krealloc(object, size);
3613 EXPORT_SYMBOL(ksize);
3615 void kfree(const void *x)
3618 void *object = (void *)x;
3620 trace_kfree(_RET_IP_, x);
3622 if (unlikely(ZERO_OR_NULL_PTR(x)))
3625 page = virt_to_head_page(x);
3626 if (unlikely(!PageSlab(page))) {
3627 BUG_ON(!PageCompound(page));
3629 __free_kmem_pages(page, compound_order(page));
3632 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3634 EXPORT_SYMBOL(kfree);
3636 #define SHRINK_PROMOTE_MAX 32
3639 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3640 * up most to the head of the partial lists. New allocations will then
3641 * fill those up and thus they can be removed from the partial lists.
3643 * The slabs with the least items are placed last. This results in them
3644 * being allocated from last increasing the chance that the last objects
3645 * are freed in them.
3647 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3651 struct kmem_cache_node *n;
3654 struct list_head discard;
3655 struct list_head promote[SHRINK_PROMOTE_MAX];
3656 unsigned long flags;
3661 * Disable empty slabs caching. Used to avoid pinning offline
3662 * memory cgroups by kmem pages that can be freed.
3668 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3669 * so we have to make sure the change is visible.
3671 kick_all_cpus_sync();
3675 for_each_kmem_cache_node(s, node, n) {
3676 INIT_LIST_HEAD(&discard);
3677 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3678 INIT_LIST_HEAD(promote + i);
3680 spin_lock_irqsave(&n->list_lock, flags);
3683 * Build lists of slabs to discard or promote.
3685 * Note that concurrent frees may occur while we hold the
3686 * list_lock. page->inuse here is the upper limit.
3688 list_for_each_entry_safe(page, t, &n->partial, lru) {
3689 int free = page->objects - page->inuse;
3691 /* Do not reread page->inuse */
3694 /* We do not keep full slabs on the list */
3697 if (free == page->objects) {
3698 list_move(&page->lru, &discard);
3700 } else if (free <= SHRINK_PROMOTE_MAX)
3701 list_move(&page->lru, promote + free - 1);
3705 * Promote the slabs filled up most to the head of the
3708 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3709 list_splice(promote + i, &n->partial);
3711 spin_unlock_irqrestore(&n->list_lock, flags);
3713 /* Release empty slabs */
3714 list_for_each_entry_safe(page, t, &discard, lru)
3715 discard_slab(s, page);
3717 if (slabs_node(s, node))
3724 static int slab_mem_going_offline_callback(void *arg)
3726 struct kmem_cache *s;
3728 mutex_lock(&slab_mutex);
3729 list_for_each_entry(s, &slab_caches, list)
3730 __kmem_cache_shrink(s, false);
3731 mutex_unlock(&slab_mutex);
3736 static void slab_mem_offline_callback(void *arg)
3738 struct kmem_cache_node *n;
3739 struct kmem_cache *s;
3740 struct memory_notify *marg = arg;
3743 offline_node = marg->status_change_nid_normal;
3746 * If the node still has available memory. we need kmem_cache_node
3749 if (offline_node < 0)
3752 mutex_lock(&slab_mutex);
3753 list_for_each_entry(s, &slab_caches, list) {
3754 n = get_node(s, offline_node);
3757 * if n->nr_slabs > 0, slabs still exist on the node
3758 * that is going down. We were unable to free them,
3759 * and offline_pages() function shouldn't call this
3760 * callback. So, we must fail.
3762 BUG_ON(slabs_node(s, offline_node));
3764 s->node[offline_node] = NULL;
3765 kmem_cache_free(kmem_cache_node, n);
3768 mutex_unlock(&slab_mutex);
3771 static int slab_mem_going_online_callback(void *arg)
3773 struct kmem_cache_node *n;
3774 struct kmem_cache *s;
3775 struct memory_notify *marg = arg;
3776 int nid = marg->status_change_nid_normal;
3780 * If the node's memory is already available, then kmem_cache_node is
3781 * already created. Nothing to do.
3787 * We are bringing a node online. No memory is available yet. We must
3788 * allocate a kmem_cache_node structure in order to bring the node
3791 mutex_lock(&slab_mutex);
3792 list_for_each_entry(s, &slab_caches, list) {
3794 * XXX: kmem_cache_alloc_node will fallback to other nodes
3795 * since memory is not yet available from the node that
3798 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3803 init_kmem_cache_node(n);
3807 mutex_unlock(&slab_mutex);
3811 static int slab_memory_callback(struct notifier_block *self,
3812 unsigned long action, void *arg)
3817 case MEM_GOING_ONLINE:
3818 ret = slab_mem_going_online_callback(arg);
3820 case MEM_GOING_OFFLINE:
3821 ret = slab_mem_going_offline_callback(arg);
3824 case MEM_CANCEL_ONLINE:
3825 slab_mem_offline_callback(arg);
3828 case MEM_CANCEL_OFFLINE:
3832 ret = notifier_from_errno(ret);
3838 static struct notifier_block slab_memory_callback_nb = {
3839 .notifier_call = slab_memory_callback,
3840 .priority = SLAB_CALLBACK_PRI,
3843 /********************************************************************
3844 * Basic setup of slabs
3845 *******************************************************************/
3848 * Used for early kmem_cache structures that were allocated using
3849 * the page allocator. Allocate them properly then fix up the pointers
3850 * that may be pointing to the wrong kmem_cache structure.
3853 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3856 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3857 struct kmem_cache_node *n;
3859 memcpy(s, static_cache, kmem_cache->object_size);
3862 * This runs very early, and only the boot processor is supposed to be
3863 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3866 __flush_cpu_slab(s, smp_processor_id());
3867 for_each_kmem_cache_node(s, node, n) {
3870 list_for_each_entry(p, &n->partial, lru)
3873 #ifdef CONFIG_SLUB_DEBUG
3874 list_for_each_entry(p, &n->full, lru)
3878 slab_init_memcg_params(s);
3879 list_add(&s->list, &slab_caches);
3883 void __init kmem_cache_init(void)
3885 static __initdata struct kmem_cache boot_kmem_cache,
3886 boot_kmem_cache_node;
3888 if (debug_guardpage_minorder())
3891 kmem_cache_node = &boot_kmem_cache_node;
3892 kmem_cache = &boot_kmem_cache;
3894 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3895 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3897 register_hotmemory_notifier(&slab_memory_callback_nb);
3899 /* Able to allocate the per node structures */
3900 slab_state = PARTIAL;
3902 create_boot_cache(kmem_cache, "kmem_cache",
3903 offsetof(struct kmem_cache, node) +
3904 nr_node_ids * sizeof(struct kmem_cache_node *),
3905 SLAB_HWCACHE_ALIGN);
3907 kmem_cache = bootstrap(&boot_kmem_cache);
3910 * Allocate kmem_cache_node properly from the kmem_cache slab.
3911 * kmem_cache_node is separately allocated so no need to
3912 * update any list pointers.
3914 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3916 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3917 setup_kmalloc_cache_index_table();
3918 create_kmalloc_caches(0);
3921 register_cpu_notifier(&slab_notifier);
3924 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3926 slub_min_order, slub_max_order, slub_min_objects,
3927 nr_cpu_ids, nr_node_ids);
3930 void __init kmem_cache_init_late(void)
3935 __kmem_cache_alias(const char *name, size_t size, size_t align,
3936 unsigned long flags, void (*ctor)(void *))
3938 struct kmem_cache *s, *c;
3940 s = find_mergeable(size, align, flags, name, ctor);
3945 * Adjust the object sizes so that we clear
3946 * the complete object on kzalloc.
3948 s->object_size = max(s->object_size, (int)size);
3949 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3951 for_each_memcg_cache(c, s) {
3952 c->object_size = s->object_size;
3953 c->inuse = max_t(int, c->inuse,
3954 ALIGN(size, sizeof(void *)));
3957 if (sysfs_slab_alias(s, name)) {
3966 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3970 err = kmem_cache_open(s, flags);
3974 /* Mutex is not taken during early boot */
3975 if (slab_state <= UP)
3978 memcg_propagate_slab_attrs(s);
3979 err = sysfs_slab_add(s);
3981 kmem_cache_close(s);
3988 * Use the cpu notifier to insure that the cpu slabs are flushed when
3991 static int slab_cpuup_callback(struct notifier_block *nfb,
3992 unsigned long action, void *hcpu)
3994 long cpu = (long)hcpu;
3995 struct kmem_cache *s;
3996 unsigned long flags;
3999 case CPU_UP_CANCELED:
4000 case CPU_UP_CANCELED_FROZEN:
4002 case CPU_DEAD_FROZEN:
4003 mutex_lock(&slab_mutex);
4004 list_for_each_entry(s, &slab_caches, list) {
4005 local_irq_save(flags);
4006 __flush_cpu_slab(s, cpu);
4007 local_irq_restore(flags);
4009 mutex_unlock(&slab_mutex);
4017 static struct notifier_block slab_notifier = {
4018 .notifier_call = slab_cpuup_callback
4023 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4025 struct kmem_cache *s;
4028 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4029 return kmalloc_large(size, gfpflags);
4031 s = kmalloc_slab(size, gfpflags);
4033 if (unlikely(ZERO_OR_NULL_PTR(s)))
4036 ret = slab_alloc(s, gfpflags, caller);
4038 /* Honor the call site pointer we received. */
4039 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4045 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4046 int node, unsigned long caller)
4048 struct kmem_cache *s;
4051 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4052 ret = kmalloc_large_node(size, gfpflags, node);
4054 trace_kmalloc_node(caller, ret,
4055 size, PAGE_SIZE << get_order(size),
4061 s = kmalloc_slab(size, gfpflags);
4063 if (unlikely(ZERO_OR_NULL_PTR(s)))
4066 ret = slab_alloc_node(s, gfpflags, node, caller);
4068 /* Honor the call site pointer we received. */
4069 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4076 static int count_inuse(struct page *page)
4081 static int count_total(struct page *page)
4083 return page->objects;
4087 #ifdef CONFIG_SLUB_DEBUG
4088 static int validate_slab(struct kmem_cache *s, struct page *page,
4092 void *addr = page_address(page);
4094 if (!check_slab(s, page) ||
4095 !on_freelist(s, page, NULL))
4098 /* Now we know that a valid freelist exists */
4099 bitmap_zero(map, page->objects);
4101 get_map(s, page, map);
4102 for_each_object(p, s, addr, page->objects) {
4103 if (test_bit(slab_index(p, s, addr), map))
4104 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4108 for_each_object(p, s, addr, page->objects)
4109 if (!test_bit(slab_index(p, s, addr), map))
4110 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4115 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4119 validate_slab(s, page, map);
4123 static int validate_slab_node(struct kmem_cache *s,
4124 struct kmem_cache_node *n, unsigned long *map)
4126 unsigned long count = 0;
4128 unsigned long flags;
4130 spin_lock_irqsave(&n->list_lock, flags);
4132 list_for_each_entry(page, &n->partial, lru) {
4133 validate_slab_slab(s, page, map);
4136 if (count != n->nr_partial)
4137 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4138 s->name, count, n->nr_partial);
4140 if (!(s->flags & SLAB_STORE_USER))
4143 list_for_each_entry(page, &n->full, lru) {
4144 validate_slab_slab(s, page, map);
4147 if (count != atomic_long_read(&n->nr_slabs))
4148 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4149 s->name, count, atomic_long_read(&n->nr_slabs));
4152 spin_unlock_irqrestore(&n->list_lock, flags);
4156 static long validate_slab_cache(struct kmem_cache *s)
4159 unsigned long count = 0;
4160 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4161 sizeof(unsigned long), GFP_KERNEL);
4162 struct kmem_cache_node *n;
4168 for_each_kmem_cache_node(s, node, n)
4169 count += validate_slab_node(s, n, map);
4174 * Generate lists of code addresses where slabcache objects are allocated
4179 unsigned long count;
4186 DECLARE_BITMAP(cpus, NR_CPUS);
4192 unsigned long count;
4193 struct location *loc;
4196 static void free_loc_track(struct loc_track *t)
4199 free_pages((unsigned long)t->loc,
4200 get_order(sizeof(struct location) * t->max));
4203 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4208 order = get_order(sizeof(struct location) * max);
4210 l = (void *)__get_free_pages(flags, order);
4215 memcpy(l, t->loc, sizeof(struct location) * t->count);
4223 static int add_location(struct loc_track *t, struct kmem_cache *s,
4224 const struct track *track)
4226 long start, end, pos;
4228 unsigned long caddr;
4229 unsigned long age = jiffies - track->when;
4235 pos = start + (end - start + 1) / 2;
4238 * There is nothing at "end". If we end up there
4239 * we need to add something to before end.
4244 caddr = t->loc[pos].addr;
4245 if (track->addr == caddr) {
4251 if (age < l->min_time)
4253 if (age > l->max_time)
4256 if (track->pid < l->min_pid)
4257 l->min_pid = track->pid;
4258 if (track->pid > l->max_pid)
4259 l->max_pid = track->pid;
4261 cpumask_set_cpu(track->cpu,
4262 to_cpumask(l->cpus));
4264 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4268 if (track->addr < caddr)
4275 * Not found. Insert new tracking element.
4277 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4283 (t->count - pos) * sizeof(struct location));
4286 l->addr = track->addr;
4290 l->min_pid = track->pid;
4291 l->max_pid = track->pid;
4292 cpumask_clear(to_cpumask(l->cpus));
4293 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4294 nodes_clear(l->nodes);
4295 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4299 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4300 struct page *page, enum track_item alloc,
4303 void *addr = page_address(page);
4306 bitmap_zero(map, page->objects);
4307 get_map(s, page, map);
4309 for_each_object(p, s, addr, page->objects)
4310 if (!test_bit(slab_index(p, s, addr), map))
4311 add_location(t, s, get_track(s, p, alloc));
4314 static int list_locations(struct kmem_cache *s, char *buf,
4315 enum track_item alloc)
4319 struct loc_track t = { 0, 0, NULL };
4321 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4322 sizeof(unsigned long), GFP_KERNEL);
4323 struct kmem_cache_node *n;
4325 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4328 return sprintf(buf, "Out of memory\n");
4330 /* Push back cpu slabs */
4333 for_each_kmem_cache_node(s, node, n) {
4334 unsigned long flags;
4337 if (!atomic_long_read(&n->nr_slabs))
4340 spin_lock_irqsave(&n->list_lock, flags);
4341 list_for_each_entry(page, &n->partial, lru)
4342 process_slab(&t, s, page, alloc, map);
4343 list_for_each_entry(page, &n->full, lru)
4344 process_slab(&t, s, page, alloc, map);
4345 spin_unlock_irqrestore(&n->list_lock, flags);
4348 for (i = 0; i < t.count; i++) {
4349 struct location *l = &t.loc[i];
4351 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4353 len += sprintf(buf + len, "%7ld ", l->count);
4356 len += sprintf(buf + len, "%pS", (void *)l->addr);
4358 len += sprintf(buf + len, "<not-available>");
4360 if (l->sum_time != l->min_time) {
4361 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4363 (long)div_u64(l->sum_time, l->count),
4366 len += sprintf(buf + len, " age=%ld",
4369 if (l->min_pid != l->max_pid)
4370 len += sprintf(buf + len, " pid=%ld-%ld",
4371 l->min_pid, l->max_pid);
4373 len += sprintf(buf + len, " pid=%ld",
4376 if (num_online_cpus() > 1 &&
4377 !cpumask_empty(to_cpumask(l->cpus)) &&
4378 len < PAGE_SIZE - 60)
4379 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4381 cpumask_pr_args(to_cpumask(l->cpus)));
4383 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4384 len < PAGE_SIZE - 60)
4385 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4387 nodemask_pr_args(&l->nodes));
4389 len += sprintf(buf + len, "\n");
4395 len += sprintf(buf, "No data\n");
4400 #ifdef SLUB_RESILIENCY_TEST
4401 static void __init resiliency_test(void)
4405 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4407 pr_err("SLUB resiliency testing\n");
4408 pr_err("-----------------------\n");
4409 pr_err("A. Corruption after allocation\n");
4411 p = kzalloc(16, GFP_KERNEL);
4413 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4416 validate_slab_cache(kmalloc_caches[4]);
4418 /* Hmmm... The next two are dangerous */
4419 p = kzalloc(32, GFP_KERNEL);
4420 p[32 + sizeof(void *)] = 0x34;
4421 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4423 pr_err("If allocated object is overwritten then not detectable\n\n");
4425 validate_slab_cache(kmalloc_caches[5]);
4426 p = kzalloc(64, GFP_KERNEL);
4427 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4429 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4431 pr_err("If allocated object is overwritten then not detectable\n\n");
4432 validate_slab_cache(kmalloc_caches[6]);
4434 pr_err("\nB. Corruption after free\n");
4435 p = kzalloc(128, GFP_KERNEL);
4438 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4439 validate_slab_cache(kmalloc_caches[7]);
4441 p = kzalloc(256, GFP_KERNEL);
4444 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4445 validate_slab_cache(kmalloc_caches[8]);
4447 p = kzalloc(512, GFP_KERNEL);
4450 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4451 validate_slab_cache(kmalloc_caches[9]);
4455 static void resiliency_test(void) {};
4460 enum slab_stat_type {
4461 SL_ALL, /* All slabs */
4462 SL_PARTIAL, /* Only partially allocated slabs */
4463 SL_CPU, /* Only slabs used for cpu caches */
4464 SL_OBJECTS, /* Determine allocated objects not slabs */
4465 SL_TOTAL /* Determine object capacity not slabs */
4468 #define SO_ALL (1 << SL_ALL)
4469 #define SO_PARTIAL (1 << SL_PARTIAL)
4470 #define SO_CPU (1 << SL_CPU)
4471 #define SO_OBJECTS (1 << SL_OBJECTS)
4472 #define SO_TOTAL (1 << SL_TOTAL)
4474 static ssize_t show_slab_objects(struct kmem_cache *s,
4475 char *buf, unsigned long flags)
4477 unsigned long total = 0;
4480 unsigned long *nodes;
4482 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4486 if (flags & SO_CPU) {
4489 for_each_possible_cpu(cpu) {
4490 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4495 page = READ_ONCE(c->page);
4499 node = page_to_nid(page);
4500 if (flags & SO_TOTAL)
4502 else if (flags & SO_OBJECTS)
4510 page = READ_ONCE(c->partial);
4512 node = page_to_nid(page);
4513 if (flags & SO_TOTAL)
4515 else if (flags & SO_OBJECTS)
4526 #ifdef CONFIG_SLUB_DEBUG
4527 if (flags & SO_ALL) {
4528 struct kmem_cache_node *n;
4530 for_each_kmem_cache_node(s, node, n) {
4532 if (flags & SO_TOTAL)
4533 x = atomic_long_read(&n->total_objects);
4534 else if (flags & SO_OBJECTS)
4535 x = atomic_long_read(&n->total_objects) -
4536 count_partial(n, count_free);
4538 x = atomic_long_read(&n->nr_slabs);
4545 if (flags & SO_PARTIAL) {
4546 struct kmem_cache_node *n;
4548 for_each_kmem_cache_node(s, node, n) {
4549 if (flags & SO_TOTAL)
4550 x = count_partial(n, count_total);
4551 else if (flags & SO_OBJECTS)
4552 x = count_partial(n, count_inuse);
4559 x = sprintf(buf, "%lu", total);
4561 for (node = 0; node < nr_node_ids; node++)
4563 x += sprintf(buf + x, " N%d=%lu",
4568 return x + sprintf(buf + x, "\n");
4571 #ifdef CONFIG_SLUB_DEBUG
4572 static int any_slab_objects(struct kmem_cache *s)
4575 struct kmem_cache_node *n;
4577 for_each_kmem_cache_node(s, node, n)
4578 if (atomic_long_read(&n->total_objects))
4585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4586 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4588 struct slab_attribute {
4589 struct attribute attr;
4590 ssize_t (*show)(struct kmem_cache *s, char *buf);
4591 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4594 #define SLAB_ATTR_RO(_name) \
4595 static struct slab_attribute _name##_attr = \
4596 __ATTR(_name, 0400, _name##_show, NULL)
4598 #define SLAB_ATTR(_name) \
4599 static struct slab_attribute _name##_attr = \
4600 __ATTR(_name, 0600, _name##_show, _name##_store)
4602 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4604 return sprintf(buf, "%d\n", s->size);
4606 SLAB_ATTR_RO(slab_size);
4608 static ssize_t align_show(struct kmem_cache *s, char *buf)
4610 return sprintf(buf, "%d\n", s->align);
4612 SLAB_ATTR_RO(align);
4614 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4616 return sprintf(buf, "%d\n", s->object_size);
4618 SLAB_ATTR_RO(object_size);
4620 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4622 return sprintf(buf, "%d\n", oo_objects(s->oo));
4624 SLAB_ATTR_RO(objs_per_slab);
4626 static ssize_t order_store(struct kmem_cache *s,
4627 const char *buf, size_t length)
4629 unsigned long order;
4632 err = kstrtoul(buf, 10, &order);
4636 if (order > slub_max_order || order < slub_min_order)
4639 calculate_sizes(s, order);
4643 static ssize_t order_show(struct kmem_cache *s, char *buf)
4645 return sprintf(buf, "%d\n", oo_order(s->oo));
4649 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4651 return sprintf(buf, "%lu\n", s->min_partial);
4654 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4660 err = kstrtoul(buf, 10, &min);
4664 set_min_partial(s, min);
4667 SLAB_ATTR(min_partial);
4669 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4671 return sprintf(buf, "%u\n", s->cpu_partial);
4674 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4677 unsigned long objects;
4680 err = kstrtoul(buf, 10, &objects);
4683 if (objects && !kmem_cache_has_cpu_partial(s))
4686 s->cpu_partial = objects;
4690 SLAB_ATTR(cpu_partial);
4692 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4696 return sprintf(buf, "%pS\n", s->ctor);
4700 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4702 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4704 SLAB_ATTR_RO(aliases);
4706 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4708 return show_slab_objects(s, buf, SO_PARTIAL);
4710 SLAB_ATTR_RO(partial);
4712 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4714 return show_slab_objects(s, buf, SO_CPU);
4716 SLAB_ATTR_RO(cpu_slabs);
4718 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4720 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4722 SLAB_ATTR_RO(objects);
4724 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4726 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4728 SLAB_ATTR_RO(objects_partial);
4730 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4737 for_each_online_cpu(cpu) {
4738 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4741 pages += page->pages;
4742 objects += page->pobjects;
4746 len = sprintf(buf, "%d(%d)", objects, pages);
4749 for_each_online_cpu(cpu) {
4750 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4752 if (page && len < PAGE_SIZE - 20)
4753 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4754 page->pobjects, page->pages);
4757 return len + sprintf(buf + len, "\n");
4759 SLAB_ATTR_RO(slabs_cpu_partial);
4761 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4766 static ssize_t reclaim_account_store(struct kmem_cache *s,
4767 const char *buf, size_t length)
4769 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4771 s->flags |= SLAB_RECLAIM_ACCOUNT;
4774 SLAB_ATTR(reclaim_account);
4776 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4780 SLAB_ATTR_RO(hwcache_align);
4782 #ifdef CONFIG_ZONE_DMA
4783 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4785 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4787 SLAB_ATTR_RO(cache_dma);
4790 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4792 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4794 SLAB_ATTR_RO(destroy_by_rcu);
4796 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4798 return sprintf(buf, "%d\n", s->reserved);
4800 SLAB_ATTR_RO(reserved);
4802 #ifdef CONFIG_SLUB_DEBUG
4803 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4805 return show_slab_objects(s, buf, SO_ALL);
4807 SLAB_ATTR_RO(slabs);
4809 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4811 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4813 SLAB_ATTR_RO(total_objects);
4815 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4817 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4820 static ssize_t sanity_checks_store(struct kmem_cache *s,
4821 const char *buf, size_t length)
4823 s->flags &= ~SLAB_DEBUG_FREE;
4824 if (buf[0] == '1') {
4825 s->flags &= ~__CMPXCHG_DOUBLE;
4826 s->flags |= SLAB_DEBUG_FREE;
4830 SLAB_ATTR(sanity_checks);
4832 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4834 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4837 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4841 * Tracing a merged cache is going to give confusing results
4842 * as well as cause other issues like converting a mergeable
4843 * cache into an umergeable one.
4845 if (s->refcount > 1)
4848 s->flags &= ~SLAB_TRACE;
4849 if (buf[0] == '1') {
4850 s->flags &= ~__CMPXCHG_DOUBLE;
4851 s->flags |= SLAB_TRACE;
4857 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4859 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4862 static ssize_t red_zone_store(struct kmem_cache *s,
4863 const char *buf, size_t length)
4865 if (any_slab_objects(s))
4868 s->flags &= ~SLAB_RED_ZONE;
4869 if (buf[0] == '1') {
4870 s->flags &= ~__CMPXCHG_DOUBLE;
4871 s->flags |= SLAB_RED_ZONE;
4873 calculate_sizes(s, -1);
4876 SLAB_ATTR(red_zone);
4878 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4880 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4883 static ssize_t poison_store(struct kmem_cache *s,
4884 const char *buf, size_t length)
4886 if (any_slab_objects(s))
4889 s->flags &= ~SLAB_POISON;
4890 if (buf[0] == '1') {
4891 s->flags &= ~__CMPXCHG_DOUBLE;
4892 s->flags |= SLAB_POISON;
4894 calculate_sizes(s, -1);
4899 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4901 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4904 static ssize_t store_user_store(struct kmem_cache *s,
4905 const char *buf, size_t length)
4907 if (any_slab_objects(s))
4910 s->flags &= ~SLAB_STORE_USER;
4911 if (buf[0] == '1') {
4912 s->flags &= ~__CMPXCHG_DOUBLE;
4913 s->flags |= SLAB_STORE_USER;
4915 calculate_sizes(s, -1);
4918 SLAB_ATTR(store_user);
4920 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4925 static ssize_t validate_store(struct kmem_cache *s,
4926 const char *buf, size_t length)
4930 if (buf[0] == '1') {
4931 ret = validate_slab_cache(s);
4937 SLAB_ATTR(validate);
4939 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4941 if (!(s->flags & SLAB_STORE_USER))
4943 return list_locations(s, buf, TRACK_ALLOC);
4945 SLAB_ATTR_RO(alloc_calls);
4947 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4949 if (!(s->flags & SLAB_STORE_USER))
4951 return list_locations(s, buf, TRACK_FREE);
4953 SLAB_ATTR_RO(free_calls);
4954 #endif /* CONFIG_SLUB_DEBUG */
4956 #ifdef CONFIG_FAILSLAB
4957 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4959 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4962 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4965 if (s->refcount > 1)
4968 s->flags &= ~SLAB_FAILSLAB;
4970 s->flags |= SLAB_FAILSLAB;
4973 SLAB_ATTR(failslab);
4976 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4981 static ssize_t shrink_store(struct kmem_cache *s,
4982 const char *buf, size_t length)
4985 kmem_cache_shrink(s);
4993 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4995 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4998 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4999 const char *buf, size_t length)
5001 unsigned long ratio;
5004 err = kstrtoul(buf, 10, &ratio);
5009 s->remote_node_defrag_ratio = ratio * 10;
5013 SLAB_ATTR(remote_node_defrag_ratio);
5016 #ifdef CONFIG_SLUB_STATS
5017 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5019 unsigned long sum = 0;
5022 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5027 for_each_online_cpu(cpu) {
5028 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5034 len = sprintf(buf, "%lu", sum);
5037 for_each_online_cpu(cpu) {
5038 if (data[cpu] && len < PAGE_SIZE - 20)
5039 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5043 return len + sprintf(buf + len, "\n");
5046 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5050 for_each_online_cpu(cpu)
5051 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5054 #define STAT_ATTR(si, text) \
5055 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5057 return show_stat(s, buf, si); \
5059 static ssize_t text##_store(struct kmem_cache *s, \
5060 const char *buf, size_t length) \
5062 if (buf[0] != '0') \
5064 clear_stat(s, si); \
5069 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5070 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5071 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5072 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5073 STAT_ATTR(FREE_FROZEN, free_frozen);
5074 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5075 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5076 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5077 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5078 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5079 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5080 STAT_ATTR(FREE_SLAB, free_slab);
5081 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5082 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5083 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5084 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5085 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5086 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5087 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5088 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5089 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5090 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5091 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5092 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5093 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5094 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5097 static struct attribute *slab_attrs[] = {
5098 &slab_size_attr.attr,
5099 &object_size_attr.attr,
5100 &objs_per_slab_attr.attr,
5102 &min_partial_attr.attr,
5103 &cpu_partial_attr.attr,
5105 &objects_partial_attr.attr,
5107 &cpu_slabs_attr.attr,
5111 &hwcache_align_attr.attr,
5112 &reclaim_account_attr.attr,
5113 &destroy_by_rcu_attr.attr,
5115 &reserved_attr.attr,
5116 &slabs_cpu_partial_attr.attr,
5117 #ifdef CONFIG_SLUB_DEBUG
5118 &total_objects_attr.attr,
5120 &sanity_checks_attr.attr,
5122 &red_zone_attr.attr,
5124 &store_user_attr.attr,
5125 &validate_attr.attr,
5126 &alloc_calls_attr.attr,
5127 &free_calls_attr.attr,
5129 #ifdef CONFIG_ZONE_DMA
5130 &cache_dma_attr.attr,
5133 &remote_node_defrag_ratio_attr.attr,
5135 #ifdef CONFIG_SLUB_STATS
5136 &alloc_fastpath_attr.attr,
5137 &alloc_slowpath_attr.attr,
5138 &free_fastpath_attr.attr,
5139 &free_slowpath_attr.attr,
5140 &free_frozen_attr.attr,
5141 &free_add_partial_attr.attr,
5142 &free_remove_partial_attr.attr,
5143 &alloc_from_partial_attr.attr,
5144 &alloc_slab_attr.attr,
5145 &alloc_refill_attr.attr,
5146 &alloc_node_mismatch_attr.attr,
5147 &free_slab_attr.attr,
5148 &cpuslab_flush_attr.attr,
5149 &deactivate_full_attr.attr,
5150 &deactivate_empty_attr.attr,
5151 &deactivate_to_head_attr.attr,
5152 &deactivate_to_tail_attr.attr,
5153 &deactivate_remote_frees_attr.attr,
5154 &deactivate_bypass_attr.attr,
5155 &order_fallback_attr.attr,
5156 &cmpxchg_double_fail_attr.attr,
5157 &cmpxchg_double_cpu_fail_attr.attr,
5158 &cpu_partial_alloc_attr.attr,
5159 &cpu_partial_free_attr.attr,
5160 &cpu_partial_node_attr.attr,
5161 &cpu_partial_drain_attr.attr,
5163 #ifdef CONFIG_FAILSLAB
5164 &failslab_attr.attr,
5170 static struct attribute_group slab_attr_group = {
5171 .attrs = slab_attrs,
5174 static ssize_t slab_attr_show(struct kobject *kobj,
5175 struct attribute *attr,
5178 struct slab_attribute *attribute;
5179 struct kmem_cache *s;
5182 attribute = to_slab_attr(attr);
5185 if (!attribute->show)
5188 err = attribute->show(s, buf);
5193 static ssize_t slab_attr_store(struct kobject *kobj,
5194 struct attribute *attr,
5195 const char *buf, size_t len)
5197 struct slab_attribute *attribute;
5198 struct kmem_cache *s;
5201 attribute = to_slab_attr(attr);
5204 if (!attribute->store)
5207 err = attribute->store(s, buf, len);
5208 #ifdef CONFIG_MEMCG_KMEM
5209 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5210 struct kmem_cache *c;
5212 mutex_lock(&slab_mutex);
5213 if (s->max_attr_size < len)
5214 s->max_attr_size = len;
5217 * This is a best effort propagation, so this function's return
5218 * value will be determined by the parent cache only. This is
5219 * basically because not all attributes will have a well
5220 * defined semantics for rollbacks - most of the actions will
5221 * have permanent effects.
5223 * Returning the error value of any of the children that fail
5224 * is not 100 % defined, in the sense that users seeing the
5225 * error code won't be able to know anything about the state of
5228 * Only returning the error code for the parent cache at least
5229 * has well defined semantics. The cache being written to
5230 * directly either failed or succeeded, in which case we loop
5231 * through the descendants with best-effort propagation.
5233 for_each_memcg_cache(c, s)
5234 attribute->store(c, buf, len);
5235 mutex_unlock(&slab_mutex);
5241 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5243 #ifdef CONFIG_MEMCG_KMEM
5245 char *buffer = NULL;
5246 struct kmem_cache *root_cache;
5248 if (is_root_cache(s))
5251 root_cache = s->memcg_params.root_cache;
5254 * This mean this cache had no attribute written. Therefore, no point
5255 * in copying default values around
5257 if (!root_cache->max_attr_size)
5260 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5263 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5265 if (!attr || !attr->store || !attr->show)
5269 * It is really bad that we have to allocate here, so we will
5270 * do it only as a fallback. If we actually allocate, though,
5271 * we can just use the allocated buffer until the end.
5273 * Most of the slub attributes will tend to be very small in
5274 * size, but sysfs allows buffers up to a page, so they can
5275 * theoretically happen.
5279 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5282 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5283 if (WARN_ON(!buffer))
5288 attr->show(root_cache, buf);
5289 attr->store(s, buf, strlen(buf));
5293 free_page((unsigned long)buffer);
5297 static void kmem_cache_release(struct kobject *k)
5299 slab_kmem_cache_release(to_slab(k));
5302 static const struct sysfs_ops slab_sysfs_ops = {
5303 .show = slab_attr_show,
5304 .store = slab_attr_store,
5307 static struct kobj_type slab_ktype = {
5308 .sysfs_ops = &slab_sysfs_ops,
5309 .release = kmem_cache_release,
5312 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5314 struct kobj_type *ktype = get_ktype(kobj);
5316 if (ktype == &slab_ktype)
5321 static const struct kset_uevent_ops slab_uevent_ops = {
5322 .filter = uevent_filter,
5325 static struct kset *slab_kset;
5327 static inline struct kset *cache_kset(struct kmem_cache *s)
5329 #ifdef CONFIG_MEMCG_KMEM
5330 if (!is_root_cache(s))
5331 return s->memcg_params.root_cache->memcg_kset;
5336 #define ID_STR_LENGTH 64
5338 /* Create a unique string id for a slab cache:
5340 * Format :[flags-]size
5342 static char *create_unique_id(struct kmem_cache *s)
5344 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5351 * First flags affecting slabcache operations. We will only
5352 * get here for aliasable slabs so we do not need to support
5353 * too many flags. The flags here must cover all flags that
5354 * are matched during merging to guarantee that the id is
5357 if (s->flags & SLAB_CACHE_DMA)
5359 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5361 if (s->flags & SLAB_DEBUG_FREE)
5363 if (!(s->flags & SLAB_NOTRACK))
5367 p += sprintf(p, "%07d", s->size);
5369 BUG_ON(p > name + ID_STR_LENGTH - 1);
5373 static int sysfs_slab_add(struct kmem_cache *s)
5377 int unmergeable = slab_unmergeable(s);
5381 * Slabcache can never be merged so we can use the name proper.
5382 * This is typically the case for debug situations. In that
5383 * case we can catch duplicate names easily.
5385 sysfs_remove_link(&slab_kset->kobj, s->name);
5389 * Create a unique name for the slab as a target
5392 name = create_unique_id(s);
5395 s->kobj.kset = cache_kset(s);
5396 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5400 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5404 #ifdef CONFIG_MEMCG_KMEM
5405 if (is_root_cache(s)) {
5406 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5407 if (!s->memcg_kset) {
5414 kobject_uevent(&s->kobj, KOBJ_ADD);
5416 /* Setup first alias */
5417 sysfs_slab_alias(s, s->name);
5424 kobject_del(&s->kobj);
5428 void sysfs_slab_remove(struct kmem_cache *s)
5430 if (slab_state < FULL)
5432 * Sysfs has not been setup yet so no need to remove the
5437 #ifdef CONFIG_MEMCG_KMEM
5438 kset_unregister(s->memcg_kset);
5440 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5441 kobject_del(&s->kobj);
5442 kobject_put(&s->kobj);
5446 * Need to buffer aliases during bootup until sysfs becomes
5447 * available lest we lose that information.
5449 struct saved_alias {
5450 struct kmem_cache *s;
5452 struct saved_alias *next;
5455 static struct saved_alias *alias_list;
5457 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5459 struct saved_alias *al;
5461 if (slab_state == FULL) {
5463 * If we have a leftover link then remove it.
5465 sysfs_remove_link(&slab_kset->kobj, name);
5466 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5469 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5475 al->next = alias_list;
5480 static int __init slab_sysfs_init(void)
5482 struct kmem_cache *s;
5485 mutex_lock(&slab_mutex);
5487 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5489 mutex_unlock(&slab_mutex);
5490 pr_err("Cannot register slab subsystem.\n");
5496 list_for_each_entry(s, &slab_caches, list) {
5497 err = sysfs_slab_add(s);
5499 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5503 while (alias_list) {
5504 struct saved_alias *al = alias_list;
5506 alias_list = alias_list->next;
5507 err = sysfs_slab_alias(al->s, al->name);
5509 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5514 mutex_unlock(&slab_mutex);
5519 __initcall(slab_sysfs_init);
5520 #endif /* CONFIG_SYSFS */
5523 * The /proc/slabinfo ABI
5525 #ifdef CONFIG_SLABINFO
5526 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5528 unsigned long nr_slabs = 0;
5529 unsigned long nr_objs = 0;
5530 unsigned long nr_free = 0;
5532 struct kmem_cache_node *n;
5534 for_each_kmem_cache_node(s, node, n) {
5535 nr_slabs += node_nr_slabs(n);
5536 nr_objs += node_nr_objs(n);
5537 nr_free += count_partial(n, count_free);
5540 sinfo->active_objs = nr_objs - nr_free;
5541 sinfo->num_objs = nr_objs;
5542 sinfo->active_slabs = nr_slabs;
5543 sinfo->num_slabs = nr_slabs;
5544 sinfo->objects_per_slab = oo_objects(s->oo);
5545 sinfo->cache_order = oo_order(s->oo);
5548 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5552 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5553 size_t count, loff_t *ppos)
5557 #endif /* CONFIG_SLABINFO */