swap: change block allocation algorithm for SSD
[firefly-linux-kernel-4.4.55.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 static atomic_t highest_priority_index = ATOMIC_INIT(-1);
55
56 static const char Bad_file[] = "Bad swap file entry ";
57 static const char Unused_file[] = "Unused swap file entry ";
58 static const char Bad_offset[] = "Bad swap offset entry ";
59 static const char Unused_offset[] = "Unused swap offset entry ";
60
61 struct swap_list_t swap_list = {-1, -1};
62
63 struct swap_info_struct *swap_info[MAX_SWAPFILES];
64
65 static DEFINE_MUTEX(swapon_mutex);
66
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
71 static inline unsigned char swap_count(unsigned char ent)
72 {
73         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
74 }
75
76 /* returns 1 if swap entry is freed */
77 static int
78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79 {
80         swp_entry_t entry = swp_entry(si->type, offset);
81         struct page *page;
82         int ret = 0;
83
84         page = find_get_page(swap_address_space(entry), entry.val);
85         if (!page)
86                 return 0;
87         /*
88          * This function is called from scan_swap_map() and it's called
89          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90          * We have to use trylock for avoiding deadlock. This is a special
91          * case and you should use try_to_free_swap() with explicit lock_page()
92          * in usual operations.
93          */
94         if (trylock_page(page)) {
95                 ret = try_to_free_swap(page);
96                 unlock_page(page);
97         }
98         page_cache_release(page);
99         return ret;
100 }
101
102 /*
103  * swapon tell device that all the old swap contents can be discarded,
104  * to allow the swap device to optimize its wear-levelling.
105  */
106 static int discard_swap(struct swap_info_struct *si)
107 {
108         struct swap_extent *se;
109         sector_t start_block;
110         sector_t nr_blocks;
111         int err = 0;
112
113         /* Do not discard the swap header page! */
114         se = &si->first_swap_extent;
115         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117         if (nr_blocks) {
118                 err = blkdev_issue_discard(si->bdev, start_block,
119                                 nr_blocks, GFP_KERNEL, 0);
120                 if (err)
121                         return err;
122                 cond_resched();
123         }
124
125         list_for_each_entry(se, &si->first_swap_extent.list, list) {
126                 start_block = se->start_block << (PAGE_SHIFT - 9);
127                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
128
129                 err = blkdev_issue_discard(si->bdev, start_block,
130                                 nr_blocks, GFP_KERNEL, 0);
131                 if (err)
132                         break;
133
134                 cond_resched();
135         }
136         return err;             /* That will often be -EOPNOTSUPP */
137 }
138
139 /*
140  * swap allocation tell device that a cluster of swap can now be discarded,
141  * to allow the swap device to optimize its wear-levelling.
142  */
143 static void discard_swap_cluster(struct swap_info_struct *si,
144                                  pgoff_t start_page, pgoff_t nr_pages)
145 {
146         struct swap_extent *se = si->curr_swap_extent;
147         int found_extent = 0;
148
149         while (nr_pages) {
150                 struct list_head *lh;
151
152                 if (se->start_page <= start_page &&
153                     start_page < se->start_page + se->nr_pages) {
154                         pgoff_t offset = start_page - se->start_page;
155                         sector_t start_block = se->start_block + offset;
156                         sector_t nr_blocks = se->nr_pages - offset;
157
158                         if (nr_blocks > nr_pages)
159                                 nr_blocks = nr_pages;
160                         start_page += nr_blocks;
161                         nr_pages -= nr_blocks;
162
163                         if (!found_extent++)
164                                 si->curr_swap_extent = se;
165
166                         start_block <<= PAGE_SHIFT - 9;
167                         nr_blocks <<= PAGE_SHIFT - 9;
168                         if (blkdev_issue_discard(si->bdev, start_block,
169                                     nr_blocks, GFP_NOIO, 0))
170                                 break;
171                 }
172
173                 lh = se->list.next;
174                 se = list_entry(lh, struct swap_extent, list);
175         }
176 }
177
178 static int wait_for_discard(void *word)
179 {
180         schedule();
181         return 0;
182 }
183
184 #define SWAPFILE_CLUSTER        256
185 #define LATENCY_LIMIT           256
186
187 static inline void cluster_set_flag(struct swap_cluster_info *info,
188         unsigned int flag)
189 {
190         info->flags = flag;
191 }
192
193 static inline unsigned int cluster_count(struct swap_cluster_info *info)
194 {
195         return info->data;
196 }
197
198 static inline void cluster_set_count(struct swap_cluster_info *info,
199                                      unsigned int c)
200 {
201         info->data = c;
202 }
203
204 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
205                                          unsigned int c, unsigned int f)
206 {
207         info->flags = f;
208         info->data = c;
209 }
210
211 static inline unsigned int cluster_next(struct swap_cluster_info *info)
212 {
213         return info->data;
214 }
215
216 static inline void cluster_set_next(struct swap_cluster_info *info,
217                                     unsigned int n)
218 {
219         info->data = n;
220 }
221
222 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
223                                          unsigned int n, unsigned int f)
224 {
225         info->flags = f;
226         info->data = n;
227 }
228
229 static inline bool cluster_is_free(struct swap_cluster_info *info)
230 {
231         return info->flags & CLUSTER_FLAG_FREE;
232 }
233
234 static inline bool cluster_is_null(struct swap_cluster_info *info)
235 {
236         return info->flags & CLUSTER_FLAG_NEXT_NULL;
237 }
238
239 static inline void cluster_set_null(struct swap_cluster_info *info)
240 {
241         info->flags = CLUSTER_FLAG_NEXT_NULL;
242         info->data = 0;
243 }
244
245 /*
246  * The cluster corresponding to page_nr will be used. The cluster will be
247  * removed from free cluster list and its usage counter will be increased.
248  */
249 static void inc_cluster_info_page(struct swap_info_struct *p,
250         struct swap_cluster_info *cluster_info, unsigned long page_nr)
251 {
252         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
253
254         if (!cluster_info)
255                 return;
256         if (cluster_is_free(&cluster_info[idx])) {
257                 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
258                 cluster_set_next_flag(&p->free_cluster_head,
259                         cluster_next(&cluster_info[idx]), 0);
260                 if (cluster_next(&p->free_cluster_tail) == idx) {
261                         cluster_set_null(&p->free_cluster_tail);
262                         cluster_set_null(&p->free_cluster_head);
263                 }
264                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
265         }
266
267         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
268         cluster_set_count(&cluster_info[idx],
269                 cluster_count(&cluster_info[idx]) + 1);
270 }
271
272 /*
273  * The cluster corresponding to page_nr decreases one usage. If the usage
274  * counter becomes 0, which means no page in the cluster is in using, we can
275  * optionally discard the cluster and add it to free cluster list.
276  */
277 static void dec_cluster_info_page(struct swap_info_struct *p,
278         struct swap_cluster_info *cluster_info, unsigned long page_nr)
279 {
280         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
281
282         if (!cluster_info)
283                 return;
284
285         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
286         cluster_set_count(&cluster_info[idx],
287                 cluster_count(&cluster_info[idx]) - 1);
288
289         if (cluster_count(&cluster_info[idx]) == 0) {
290                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
291                 if (cluster_is_null(&p->free_cluster_head)) {
292                         cluster_set_next_flag(&p->free_cluster_head, idx, 0);
293                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
294                 } else {
295                         unsigned int tail = cluster_next(&p->free_cluster_tail);
296                         cluster_set_next(&cluster_info[tail], idx);
297                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
298                 }
299         }
300 }
301
302 /*
303  * It's possible scan_swap_map() uses a free cluster in the middle of free
304  * cluster list. Avoiding such abuse to avoid list corruption.
305  */
306 static inline bool scan_swap_map_recheck_cluster(struct swap_info_struct *si,
307         unsigned long offset)
308 {
309         offset /= SWAPFILE_CLUSTER;
310         return !cluster_is_null(&si->free_cluster_head) &&
311                 offset != cluster_next(&si->free_cluster_head) &&
312                 cluster_is_free(&si->cluster_info[offset]);
313 }
314
315 static unsigned long scan_swap_map(struct swap_info_struct *si,
316                                    unsigned char usage)
317 {
318         unsigned long offset;
319         unsigned long scan_base;
320         unsigned long last_in_cluster = 0;
321         int latency_ration = LATENCY_LIMIT;
322         int found_free_cluster = 0;
323
324         /*
325          * We try to cluster swap pages by allocating them sequentially
326          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
327          * way, however, we resort to first-free allocation, starting
328          * a new cluster.  This prevents us from scattering swap pages
329          * all over the entire swap partition, so that we reduce
330          * overall disk seek times between swap pages.  -- sct
331          * But we do now try to find an empty cluster.  -Andrea
332          * And we let swap pages go all over an SSD partition.  Hugh
333          */
334
335         si->flags += SWP_SCANNING;
336         scan_base = offset = si->cluster_next;
337
338         if (unlikely(!si->cluster_nr--)) {
339                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
340                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
341                         goto checks;
342                 }
343                 if (si->flags & SWP_PAGE_DISCARD) {
344                         /*
345                          * Start range check on racing allocations, in case
346                          * they overlap the cluster we eventually decide on
347                          * (we scan without swap_lock to allow preemption).
348                          * It's hardly conceivable that cluster_nr could be
349                          * wrapped during our scan, but don't depend on it.
350                          */
351                         if (si->lowest_alloc)
352                                 goto checks;
353                         si->lowest_alloc = si->max;
354                         si->highest_alloc = 0;
355                 }
356 check_cluster:
357                 if (!cluster_is_null(&si->free_cluster_head)) {
358                         offset = cluster_next(&si->free_cluster_head) *
359                                                 SWAPFILE_CLUSTER;
360                         last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
361                         si->cluster_next = offset;
362                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
363                         found_free_cluster = 1;
364                         goto checks;
365                 } else if (si->cluster_info) {
366                         /*
367                          * Checking free cluster is fast enough, we can do the
368                          * check every time
369                          */
370                         si->cluster_nr = 0;
371                         si->lowest_alloc = 0;
372                         goto checks;
373                 }
374
375                 spin_unlock(&si->lock);
376
377                 /*
378                  * If seek is expensive, start searching for new cluster from
379                  * start of partition, to minimize the span of allocated swap.
380                  * But if seek is cheap, search from our current position, so
381                  * that swap is allocated from all over the partition: if the
382                  * Flash Translation Layer only remaps within limited zones,
383                  * we don't want to wear out the first zone too quickly.
384                  */
385                 if (!(si->flags & SWP_SOLIDSTATE))
386                         scan_base = offset = si->lowest_bit;
387                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
388
389                 /* Locate the first empty (unaligned) cluster */
390                 for (; last_in_cluster <= si->highest_bit; offset++) {
391                         if (si->swap_map[offset])
392                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
393                         else if (offset == last_in_cluster) {
394                                 spin_lock(&si->lock);
395                                 offset -= SWAPFILE_CLUSTER - 1;
396                                 si->cluster_next = offset;
397                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
398                                 found_free_cluster = 1;
399                                 goto checks;
400                         }
401                         if (unlikely(--latency_ration < 0)) {
402                                 cond_resched();
403                                 latency_ration = LATENCY_LIMIT;
404                         }
405                 }
406
407                 offset = si->lowest_bit;
408                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
409
410                 /* Locate the first empty (unaligned) cluster */
411                 for (; last_in_cluster < scan_base; offset++) {
412                         if (si->swap_map[offset])
413                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
414                         else if (offset == last_in_cluster) {
415                                 spin_lock(&si->lock);
416                                 offset -= SWAPFILE_CLUSTER - 1;
417                                 si->cluster_next = offset;
418                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
419                                 found_free_cluster = 1;
420                                 goto checks;
421                         }
422                         if (unlikely(--latency_ration < 0)) {
423                                 cond_resched();
424                                 latency_ration = LATENCY_LIMIT;
425                         }
426                 }
427
428                 offset = scan_base;
429                 spin_lock(&si->lock);
430                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
431                 si->lowest_alloc = 0;
432         }
433
434 checks:
435         if (scan_swap_map_recheck_cluster(si, offset))
436                 goto check_cluster;
437         if (!(si->flags & SWP_WRITEOK))
438                 goto no_page;
439         if (!si->highest_bit)
440                 goto no_page;
441         if (offset > si->highest_bit)
442                 scan_base = offset = si->lowest_bit;
443
444         /* reuse swap entry of cache-only swap if not busy. */
445         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
446                 int swap_was_freed;
447                 spin_unlock(&si->lock);
448                 swap_was_freed = __try_to_reclaim_swap(si, offset);
449                 spin_lock(&si->lock);
450                 /* entry was freed successfully, try to use this again */
451                 if (swap_was_freed)
452                         goto checks;
453                 goto scan; /* check next one */
454         }
455
456         if (si->swap_map[offset])
457                 goto scan;
458
459         if (offset == si->lowest_bit)
460                 si->lowest_bit++;
461         if (offset == si->highest_bit)
462                 si->highest_bit--;
463         si->inuse_pages++;
464         if (si->inuse_pages == si->pages) {
465                 si->lowest_bit = si->max;
466                 si->highest_bit = 0;
467         }
468         si->swap_map[offset] = usage;
469         inc_cluster_info_page(si, si->cluster_info, offset);
470         si->cluster_next = offset + 1;
471         si->flags -= SWP_SCANNING;
472
473         if (si->lowest_alloc) {
474                 /*
475                  * Only set when SWP_PAGE_DISCARD, and there's a scan
476                  * for a free cluster in progress or just completed.
477                  */
478                 if (found_free_cluster) {
479                         /*
480                          * To optimize wear-levelling, discard the
481                          * old data of the cluster, taking care not to
482                          * discard any of its pages that have already
483                          * been allocated by racing tasks (offset has
484                          * already stepped over any at the beginning).
485                          */
486                         if (offset < si->highest_alloc &&
487                             si->lowest_alloc <= last_in_cluster)
488                                 last_in_cluster = si->lowest_alloc - 1;
489                         si->flags |= SWP_DISCARDING;
490                         spin_unlock(&si->lock);
491
492                         if (offset < last_in_cluster)
493                                 discard_swap_cluster(si, offset,
494                                         last_in_cluster - offset + 1);
495
496                         spin_lock(&si->lock);
497                         si->lowest_alloc = 0;
498                         si->flags &= ~SWP_DISCARDING;
499
500                         smp_mb();       /* wake_up_bit advises this */
501                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
502
503                 } else if (si->flags & SWP_DISCARDING) {
504                         /*
505                          * Delay using pages allocated by racing tasks
506                          * until the whole discard has been issued. We
507                          * could defer that delay until swap_writepage,
508                          * but it's easier to keep this self-contained.
509                          */
510                         spin_unlock(&si->lock);
511                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
512                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
513                         spin_lock(&si->lock);
514                 } else {
515                         /*
516                          * Note pages allocated by racing tasks while
517                          * scan for a free cluster is in progress, so
518                          * that its final discard can exclude them.
519                          */
520                         if (offset < si->lowest_alloc)
521                                 si->lowest_alloc = offset;
522                         if (offset > si->highest_alloc)
523                                 si->highest_alloc = offset;
524                 }
525         }
526         return offset;
527
528 scan:
529         spin_unlock(&si->lock);
530         while (++offset <= si->highest_bit) {
531                 if (!si->swap_map[offset]) {
532                         spin_lock(&si->lock);
533                         goto checks;
534                 }
535                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
536                         spin_lock(&si->lock);
537                         goto checks;
538                 }
539                 if (unlikely(--latency_ration < 0)) {
540                         cond_resched();
541                         latency_ration = LATENCY_LIMIT;
542                 }
543         }
544         offset = si->lowest_bit;
545         while (++offset < scan_base) {
546                 if (!si->swap_map[offset]) {
547                         spin_lock(&si->lock);
548                         goto checks;
549                 }
550                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
551                         spin_lock(&si->lock);
552                         goto checks;
553                 }
554                 if (unlikely(--latency_ration < 0)) {
555                         cond_resched();
556                         latency_ration = LATENCY_LIMIT;
557                 }
558         }
559         spin_lock(&si->lock);
560
561 no_page:
562         si->flags -= SWP_SCANNING;
563         return 0;
564 }
565
566 swp_entry_t get_swap_page(void)
567 {
568         struct swap_info_struct *si;
569         pgoff_t offset;
570         int type, next;
571         int wrapped = 0;
572         int hp_index;
573
574         spin_lock(&swap_lock);
575         if (atomic_long_read(&nr_swap_pages) <= 0)
576                 goto noswap;
577         atomic_long_dec(&nr_swap_pages);
578
579         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
580                 hp_index = atomic_xchg(&highest_priority_index, -1);
581                 /*
582                  * highest_priority_index records current highest priority swap
583                  * type which just frees swap entries. If its priority is
584                  * higher than that of swap_list.next swap type, we use it.  It
585                  * isn't protected by swap_lock, so it can be an invalid value
586                  * if the corresponding swap type is swapoff. We double check
587                  * the flags here. It's even possible the swap type is swapoff
588                  * and swapon again and its priority is changed. In such rare
589                  * case, low prority swap type might be used, but eventually
590                  * high priority swap will be used after several rounds of
591                  * swap.
592                  */
593                 if (hp_index != -1 && hp_index != type &&
594                     swap_info[type]->prio < swap_info[hp_index]->prio &&
595                     (swap_info[hp_index]->flags & SWP_WRITEOK)) {
596                         type = hp_index;
597                         swap_list.next = type;
598                 }
599
600                 si = swap_info[type];
601                 next = si->next;
602                 if (next < 0 ||
603                     (!wrapped && si->prio != swap_info[next]->prio)) {
604                         next = swap_list.head;
605                         wrapped++;
606                 }
607
608                 spin_lock(&si->lock);
609                 if (!si->highest_bit) {
610                         spin_unlock(&si->lock);
611                         continue;
612                 }
613                 if (!(si->flags & SWP_WRITEOK)) {
614                         spin_unlock(&si->lock);
615                         continue;
616                 }
617
618                 swap_list.next = next;
619
620                 spin_unlock(&swap_lock);
621                 /* This is called for allocating swap entry for cache */
622                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
623                 spin_unlock(&si->lock);
624                 if (offset)
625                         return swp_entry(type, offset);
626                 spin_lock(&swap_lock);
627                 next = swap_list.next;
628         }
629
630         atomic_long_inc(&nr_swap_pages);
631 noswap:
632         spin_unlock(&swap_lock);
633         return (swp_entry_t) {0};
634 }
635
636 /* The only caller of this function is now susupend routine */
637 swp_entry_t get_swap_page_of_type(int type)
638 {
639         struct swap_info_struct *si;
640         pgoff_t offset;
641
642         si = swap_info[type];
643         spin_lock(&si->lock);
644         if (si && (si->flags & SWP_WRITEOK)) {
645                 atomic_long_dec(&nr_swap_pages);
646                 /* This is called for allocating swap entry, not cache */
647                 offset = scan_swap_map(si, 1);
648                 if (offset) {
649                         spin_unlock(&si->lock);
650                         return swp_entry(type, offset);
651                 }
652                 atomic_long_inc(&nr_swap_pages);
653         }
654         spin_unlock(&si->lock);
655         return (swp_entry_t) {0};
656 }
657
658 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
659 {
660         struct swap_info_struct *p;
661         unsigned long offset, type;
662
663         if (!entry.val)
664                 goto out;
665         type = swp_type(entry);
666         if (type >= nr_swapfiles)
667                 goto bad_nofile;
668         p = swap_info[type];
669         if (!(p->flags & SWP_USED))
670                 goto bad_device;
671         offset = swp_offset(entry);
672         if (offset >= p->max)
673                 goto bad_offset;
674         if (!p->swap_map[offset])
675                 goto bad_free;
676         spin_lock(&p->lock);
677         return p;
678
679 bad_free:
680         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
681         goto out;
682 bad_offset:
683         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
684         goto out;
685 bad_device:
686         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
687         goto out;
688 bad_nofile:
689         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
690 out:
691         return NULL;
692 }
693
694 /*
695  * This swap type frees swap entry, check if it is the highest priority swap
696  * type which just frees swap entry. get_swap_page() uses
697  * highest_priority_index to search highest priority swap type. The
698  * swap_info_struct.lock can't protect us if there are multiple swap types
699  * active, so we use atomic_cmpxchg.
700  */
701 static void set_highest_priority_index(int type)
702 {
703         int old_hp_index, new_hp_index;
704
705         do {
706                 old_hp_index = atomic_read(&highest_priority_index);
707                 if (old_hp_index != -1 &&
708                         swap_info[old_hp_index]->prio >= swap_info[type]->prio)
709                         break;
710                 new_hp_index = type;
711         } while (atomic_cmpxchg(&highest_priority_index,
712                 old_hp_index, new_hp_index) != old_hp_index);
713 }
714
715 static unsigned char swap_entry_free(struct swap_info_struct *p,
716                                      swp_entry_t entry, unsigned char usage)
717 {
718         unsigned long offset = swp_offset(entry);
719         unsigned char count;
720         unsigned char has_cache;
721
722         count = p->swap_map[offset];
723         has_cache = count & SWAP_HAS_CACHE;
724         count &= ~SWAP_HAS_CACHE;
725
726         if (usage == SWAP_HAS_CACHE) {
727                 VM_BUG_ON(!has_cache);
728                 has_cache = 0;
729         } else if (count == SWAP_MAP_SHMEM) {
730                 /*
731                  * Or we could insist on shmem.c using a special
732                  * swap_shmem_free() and free_shmem_swap_and_cache()...
733                  */
734                 count = 0;
735         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
736                 if (count == COUNT_CONTINUED) {
737                         if (swap_count_continued(p, offset, count))
738                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
739                         else
740                                 count = SWAP_MAP_MAX;
741                 } else
742                         count--;
743         }
744
745         if (!count)
746                 mem_cgroup_uncharge_swap(entry);
747
748         usage = count | has_cache;
749         p->swap_map[offset] = usage;
750
751         /* free if no reference */
752         if (!usage) {
753                 dec_cluster_info_page(p, p->cluster_info, offset);
754                 if (offset < p->lowest_bit)
755                         p->lowest_bit = offset;
756                 if (offset > p->highest_bit)
757                         p->highest_bit = offset;
758                 set_highest_priority_index(p->type);
759                 atomic_long_inc(&nr_swap_pages);
760                 p->inuse_pages--;
761                 frontswap_invalidate_page(p->type, offset);
762                 if (p->flags & SWP_BLKDEV) {
763                         struct gendisk *disk = p->bdev->bd_disk;
764                         if (disk->fops->swap_slot_free_notify)
765                                 disk->fops->swap_slot_free_notify(p->bdev,
766                                                                   offset);
767                 }
768         }
769
770         return usage;
771 }
772
773 /*
774  * Caller has made sure that the swapdevice corresponding to entry
775  * is still around or has not been recycled.
776  */
777 void swap_free(swp_entry_t entry)
778 {
779         struct swap_info_struct *p;
780
781         p = swap_info_get(entry);
782         if (p) {
783                 swap_entry_free(p, entry, 1);
784                 spin_unlock(&p->lock);
785         }
786 }
787
788 /*
789  * Called after dropping swapcache to decrease refcnt to swap entries.
790  */
791 void swapcache_free(swp_entry_t entry, struct page *page)
792 {
793         struct swap_info_struct *p;
794         unsigned char count;
795
796         p = swap_info_get(entry);
797         if (p) {
798                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
799                 if (page)
800                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
801                 spin_unlock(&p->lock);
802         }
803 }
804
805 /*
806  * How many references to page are currently swapped out?
807  * This does not give an exact answer when swap count is continued,
808  * but does include the high COUNT_CONTINUED flag to allow for that.
809  */
810 int page_swapcount(struct page *page)
811 {
812         int count = 0;
813         struct swap_info_struct *p;
814         swp_entry_t entry;
815
816         entry.val = page_private(page);
817         p = swap_info_get(entry);
818         if (p) {
819                 count = swap_count(p->swap_map[swp_offset(entry)]);
820                 spin_unlock(&p->lock);
821         }
822         return count;
823 }
824
825 /*
826  * We can write to an anon page without COW if there are no other references
827  * to it.  And as a side-effect, free up its swap: because the old content
828  * on disk will never be read, and seeking back there to write new content
829  * later would only waste time away from clustering.
830  */
831 int reuse_swap_page(struct page *page)
832 {
833         int count;
834
835         VM_BUG_ON(!PageLocked(page));
836         if (unlikely(PageKsm(page)))
837                 return 0;
838         count = page_mapcount(page);
839         if (count <= 1 && PageSwapCache(page)) {
840                 count += page_swapcount(page);
841                 if (count == 1 && !PageWriteback(page)) {
842                         delete_from_swap_cache(page);
843                         SetPageDirty(page);
844                 }
845         }
846         return count <= 1;
847 }
848
849 /*
850  * If swap is getting full, or if there are no more mappings of this page,
851  * then try_to_free_swap is called to free its swap space.
852  */
853 int try_to_free_swap(struct page *page)
854 {
855         VM_BUG_ON(!PageLocked(page));
856
857         if (!PageSwapCache(page))
858                 return 0;
859         if (PageWriteback(page))
860                 return 0;
861         if (page_swapcount(page))
862                 return 0;
863
864         /*
865          * Once hibernation has begun to create its image of memory,
866          * there's a danger that one of the calls to try_to_free_swap()
867          * - most probably a call from __try_to_reclaim_swap() while
868          * hibernation is allocating its own swap pages for the image,
869          * but conceivably even a call from memory reclaim - will free
870          * the swap from a page which has already been recorded in the
871          * image as a clean swapcache page, and then reuse its swap for
872          * another page of the image.  On waking from hibernation, the
873          * original page might be freed under memory pressure, then
874          * later read back in from swap, now with the wrong data.
875          *
876          * Hibration suspends storage while it is writing the image
877          * to disk so check that here.
878          */
879         if (pm_suspended_storage())
880                 return 0;
881
882         delete_from_swap_cache(page);
883         SetPageDirty(page);
884         return 1;
885 }
886
887 /*
888  * Free the swap entry like above, but also try to
889  * free the page cache entry if it is the last user.
890  */
891 int free_swap_and_cache(swp_entry_t entry)
892 {
893         struct swap_info_struct *p;
894         struct page *page = NULL;
895
896         if (non_swap_entry(entry))
897                 return 1;
898
899         p = swap_info_get(entry);
900         if (p) {
901                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
902                         page = find_get_page(swap_address_space(entry),
903                                                 entry.val);
904                         if (page && !trylock_page(page)) {
905                                 page_cache_release(page);
906                                 page = NULL;
907                         }
908                 }
909                 spin_unlock(&p->lock);
910         }
911         if (page) {
912                 /*
913                  * Not mapped elsewhere, or swap space full? Free it!
914                  * Also recheck PageSwapCache now page is locked (above).
915                  */
916                 if (PageSwapCache(page) && !PageWriteback(page) &&
917                                 (!page_mapped(page) || vm_swap_full())) {
918                         delete_from_swap_cache(page);
919                         SetPageDirty(page);
920                 }
921                 unlock_page(page);
922                 page_cache_release(page);
923         }
924         return p != NULL;
925 }
926
927 #ifdef CONFIG_HIBERNATION
928 /*
929  * Find the swap type that corresponds to given device (if any).
930  *
931  * @offset - number of the PAGE_SIZE-sized block of the device, starting
932  * from 0, in which the swap header is expected to be located.
933  *
934  * This is needed for the suspend to disk (aka swsusp).
935  */
936 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
937 {
938         struct block_device *bdev = NULL;
939         int type;
940
941         if (device)
942                 bdev = bdget(device);
943
944         spin_lock(&swap_lock);
945         for (type = 0; type < nr_swapfiles; type++) {
946                 struct swap_info_struct *sis = swap_info[type];
947
948                 if (!(sis->flags & SWP_WRITEOK))
949                         continue;
950
951                 if (!bdev) {
952                         if (bdev_p)
953                                 *bdev_p = bdgrab(sis->bdev);
954
955                         spin_unlock(&swap_lock);
956                         return type;
957                 }
958                 if (bdev == sis->bdev) {
959                         struct swap_extent *se = &sis->first_swap_extent;
960
961                         if (se->start_block == offset) {
962                                 if (bdev_p)
963                                         *bdev_p = bdgrab(sis->bdev);
964
965                                 spin_unlock(&swap_lock);
966                                 bdput(bdev);
967                                 return type;
968                         }
969                 }
970         }
971         spin_unlock(&swap_lock);
972         if (bdev)
973                 bdput(bdev);
974
975         return -ENODEV;
976 }
977
978 /*
979  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
980  * corresponding to given index in swap_info (swap type).
981  */
982 sector_t swapdev_block(int type, pgoff_t offset)
983 {
984         struct block_device *bdev;
985
986         if ((unsigned int)type >= nr_swapfiles)
987                 return 0;
988         if (!(swap_info[type]->flags & SWP_WRITEOK))
989                 return 0;
990         return map_swap_entry(swp_entry(type, offset), &bdev);
991 }
992
993 /*
994  * Return either the total number of swap pages of given type, or the number
995  * of free pages of that type (depending on @free)
996  *
997  * This is needed for software suspend
998  */
999 unsigned int count_swap_pages(int type, int free)
1000 {
1001         unsigned int n = 0;
1002
1003         spin_lock(&swap_lock);
1004         if ((unsigned int)type < nr_swapfiles) {
1005                 struct swap_info_struct *sis = swap_info[type];
1006
1007                 spin_lock(&sis->lock);
1008                 if (sis->flags & SWP_WRITEOK) {
1009                         n = sis->pages;
1010                         if (free)
1011                                 n -= sis->inuse_pages;
1012                 }
1013                 spin_unlock(&sis->lock);
1014         }
1015         spin_unlock(&swap_lock);
1016         return n;
1017 }
1018 #endif /* CONFIG_HIBERNATION */
1019
1020 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1021 {
1022 #ifdef CONFIG_MEM_SOFT_DIRTY
1023         /*
1024          * When pte keeps soft dirty bit the pte generated
1025          * from swap entry does not has it, still it's same
1026          * pte from logical point of view.
1027          */
1028         pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1029         return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1030 #else
1031         return pte_same(pte, swp_pte);
1032 #endif
1033 }
1034
1035 /*
1036  * No need to decide whether this PTE shares the swap entry with others,
1037  * just let do_wp_page work it out if a write is requested later - to
1038  * force COW, vm_page_prot omits write permission from any private vma.
1039  */
1040 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1041                 unsigned long addr, swp_entry_t entry, struct page *page)
1042 {
1043         struct page *swapcache;
1044         struct mem_cgroup *memcg;
1045         spinlock_t *ptl;
1046         pte_t *pte;
1047         int ret = 1;
1048
1049         swapcache = page;
1050         page = ksm_might_need_to_copy(page, vma, addr);
1051         if (unlikely(!page))
1052                 return -ENOMEM;
1053
1054         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1055                                          GFP_KERNEL, &memcg)) {
1056                 ret = -ENOMEM;
1057                 goto out_nolock;
1058         }
1059
1060         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1061         if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1062                 mem_cgroup_cancel_charge_swapin(memcg);
1063                 ret = 0;
1064                 goto out;
1065         }
1066
1067         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1068         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1069         get_page(page);
1070         set_pte_at(vma->vm_mm, addr, pte,
1071                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1072         if (page == swapcache)
1073                 page_add_anon_rmap(page, vma, addr);
1074         else /* ksm created a completely new copy */
1075                 page_add_new_anon_rmap(page, vma, addr);
1076         mem_cgroup_commit_charge_swapin(page, memcg);
1077         swap_free(entry);
1078         /*
1079          * Move the page to the active list so it is not
1080          * immediately swapped out again after swapon.
1081          */
1082         activate_page(page);
1083 out:
1084         pte_unmap_unlock(pte, ptl);
1085 out_nolock:
1086         if (page != swapcache) {
1087                 unlock_page(page);
1088                 put_page(page);
1089         }
1090         return ret;
1091 }
1092
1093 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1094                                 unsigned long addr, unsigned long end,
1095                                 swp_entry_t entry, struct page *page)
1096 {
1097         pte_t swp_pte = swp_entry_to_pte(entry);
1098         pte_t *pte;
1099         int ret = 0;
1100
1101         /*
1102          * We don't actually need pte lock while scanning for swp_pte: since
1103          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1104          * page table while we're scanning; though it could get zapped, and on
1105          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1106          * of unmatched parts which look like swp_pte, so unuse_pte must
1107          * recheck under pte lock.  Scanning without pte lock lets it be
1108          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1109          */
1110         pte = pte_offset_map(pmd, addr);
1111         do {
1112                 /*
1113                  * swapoff spends a _lot_ of time in this loop!
1114                  * Test inline before going to call unuse_pte.
1115                  */
1116                 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1117                         pte_unmap(pte);
1118                         ret = unuse_pte(vma, pmd, addr, entry, page);
1119                         if (ret)
1120                                 goto out;
1121                         pte = pte_offset_map(pmd, addr);
1122                 }
1123         } while (pte++, addr += PAGE_SIZE, addr != end);
1124         pte_unmap(pte - 1);
1125 out:
1126         return ret;
1127 }
1128
1129 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1130                                 unsigned long addr, unsigned long end,
1131                                 swp_entry_t entry, struct page *page)
1132 {
1133         pmd_t *pmd;
1134         unsigned long next;
1135         int ret;
1136
1137         pmd = pmd_offset(pud, addr);
1138         do {
1139                 next = pmd_addr_end(addr, end);
1140                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1141                         continue;
1142                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1143                 if (ret)
1144                         return ret;
1145         } while (pmd++, addr = next, addr != end);
1146         return 0;
1147 }
1148
1149 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1150                                 unsigned long addr, unsigned long end,
1151                                 swp_entry_t entry, struct page *page)
1152 {
1153         pud_t *pud;
1154         unsigned long next;
1155         int ret;
1156
1157         pud = pud_offset(pgd, addr);
1158         do {
1159                 next = pud_addr_end(addr, end);
1160                 if (pud_none_or_clear_bad(pud))
1161                         continue;
1162                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1163                 if (ret)
1164                         return ret;
1165         } while (pud++, addr = next, addr != end);
1166         return 0;
1167 }
1168
1169 static int unuse_vma(struct vm_area_struct *vma,
1170                                 swp_entry_t entry, struct page *page)
1171 {
1172         pgd_t *pgd;
1173         unsigned long addr, end, next;
1174         int ret;
1175
1176         if (page_anon_vma(page)) {
1177                 addr = page_address_in_vma(page, vma);
1178                 if (addr == -EFAULT)
1179                         return 0;
1180                 else
1181                         end = addr + PAGE_SIZE;
1182         } else {
1183                 addr = vma->vm_start;
1184                 end = vma->vm_end;
1185         }
1186
1187         pgd = pgd_offset(vma->vm_mm, addr);
1188         do {
1189                 next = pgd_addr_end(addr, end);
1190                 if (pgd_none_or_clear_bad(pgd))
1191                         continue;
1192                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1193                 if (ret)
1194                         return ret;
1195         } while (pgd++, addr = next, addr != end);
1196         return 0;
1197 }
1198
1199 static int unuse_mm(struct mm_struct *mm,
1200                                 swp_entry_t entry, struct page *page)
1201 {
1202         struct vm_area_struct *vma;
1203         int ret = 0;
1204
1205         if (!down_read_trylock(&mm->mmap_sem)) {
1206                 /*
1207                  * Activate page so shrink_inactive_list is unlikely to unmap
1208                  * its ptes while lock is dropped, so swapoff can make progress.
1209                  */
1210                 activate_page(page);
1211                 unlock_page(page);
1212                 down_read(&mm->mmap_sem);
1213                 lock_page(page);
1214         }
1215         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1216                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1217                         break;
1218         }
1219         up_read(&mm->mmap_sem);
1220         return (ret < 0)? ret: 0;
1221 }
1222
1223 /*
1224  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1225  * from current position to next entry still in use.
1226  * Recycle to start on reaching the end, returning 0 when empty.
1227  */
1228 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1229                                         unsigned int prev, bool frontswap)
1230 {
1231         unsigned int max = si->max;
1232         unsigned int i = prev;
1233         unsigned char count;
1234
1235         /*
1236          * No need for swap_lock here: we're just looking
1237          * for whether an entry is in use, not modifying it; false
1238          * hits are okay, and sys_swapoff() has already prevented new
1239          * allocations from this area (while holding swap_lock).
1240          */
1241         for (;;) {
1242                 if (++i >= max) {
1243                         if (!prev) {
1244                                 i = 0;
1245                                 break;
1246                         }
1247                         /*
1248                          * No entries in use at top of swap_map,
1249                          * loop back to start and recheck there.
1250                          */
1251                         max = prev + 1;
1252                         prev = 0;
1253                         i = 1;
1254                 }
1255                 if (frontswap) {
1256                         if (frontswap_test(si, i))
1257                                 break;
1258                         else
1259                                 continue;
1260                 }
1261                 count = si->swap_map[i];
1262                 if (count && swap_count(count) != SWAP_MAP_BAD)
1263                         break;
1264         }
1265         return i;
1266 }
1267
1268 /*
1269  * We completely avoid races by reading each swap page in advance,
1270  * and then search for the process using it.  All the necessary
1271  * page table adjustments can then be made atomically.
1272  *
1273  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1274  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1275  */
1276 int try_to_unuse(unsigned int type, bool frontswap,
1277                  unsigned long pages_to_unuse)
1278 {
1279         struct swap_info_struct *si = swap_info[type];
1280         struct mm_struct *start_mm;
1281         unsigned char *swap_map;
1282         unsigned char swcount;
1283         struct page *page;
1284         swp_entry_t entry;
1285         unsigned int i = 0;
1286         int retval = 0;
1287
1288         /*
1289          * When searching mms for an entry, a good strategy is to
1290          * start at the first mm we freed the previous entry from
1291          * (though actually we don't notice whether we or coincidence
1292          * freed the entry).  Initialize this start_mm with a hold.
1293          *
1294          * A simpler strategy would be to start at the last mm we
1295          * freed the previous entry from; but that would take less
1296          * advantage of mmlist ordering, which clusters forked mms
1297          * together, child after parent.  If we race with dup_mmap(), we
1298          * prefer to resolve parent before child, lest we miss entries
1299          * duplicated after we scanned child: using last mm would invert
1300          * that.
1301          */
1302         start_mm = &init_mm;
1303         atomic_inc(&init_mm.mm_users);
1304
1305         /*
1306          * Keep on scanning until all entries have gone.  Usually,
1307          * one pass through swap_map is enough, but not necessarily:
1308          * there are races when an instance of an entry might be missed.
1309          */
1310         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1311                 if (signal_pending(current)) {
1312                         retval = -EINTR;
1313                         break;
1314                 }
1315
1316                 /*
1317                  * Get a page for the entry, using the existing swap
1318                  * cache page if there is one.  Otherwise, get a clean
1319                  * page and read the swap into it.
1320                  */
1321                 swap_map = &si->swap_map[i];
1322                 entry = swp_entry(type, i);
1323                 page = read_swap_cache_async(entry,
1324                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1325                 if (!page) {
1326                         /*
1327                          * Either swap_duplicate() failed because entry
1328                          * has been freed independently, and will not be
1329                          * reused since sys_swapoff() already disabled
1330                          * allocation from here, or alloc_page() failed.
1331                          */
1332                         if (!*swap_map)
1333                                 continue;
1334                         retval = -ENOMEM;
1335                         break;
1336                 }
1337
1338                 /*
1339                  * Don't hold on to start_mm if it looks like exiting.
1340                  */
1341                 if (atomic_read(&start_mm->mm_users) == 1) {
1342                         mmput(start_mm);
1343                         start_mm = &init_mm;
1344                         atomic_inc(&init_mm.mm_users);
1345                 }
1346
1347                 /*
1348                  * Wait for and lock page.  When do_swap_page races with
1349                  * try_to_unuse, do_swap_page can handle the fault much
1350                  * faster than try_to_unuse can locate the entry.  This
1351                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1352                  * defer to do_swap_page in such a case - in some tests,
1353                  * do_swap_page and try_to_unuse repeatedly compete.
1354                  */
1355                 wait_on_page_locked(page);
1356                 wait_on_page_writeback(page);
1357                 lock_page(page);
1358                 wait_on_page_writeback(page);
1359
1360                 /*
1361                  * Remove all references to entry.
1362                  */
1363                 swcount = *swap_map;
1364                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1365                         retval = shmem_unuse(entry, page);
1366                         /* page has already been unlocked and released */
1367                         if (retval < 0)
1368                                 break;
1369                         continue;
1370                 }
1371                 if (swap_count(swcount) && start_mm != &init_mm)
1372                         retval = unuse_mm(start_mm, entry, page);
1373
1374                 if (swap_count(*swap_map)) {
1375                         int set_start_mm = (*swap_map >= swcount);
1376                         struct list_head *p = &start_mm->mmlist;
1377                         struct mm_struct *new_start_mm = start_mm;
1378                         struct mm_struct *prev_mm = start_mm;
1379                         struct mm_struct *mm;
1380
1381                         atomic_inc(&new_start_mm->mm_users);
1382                         atomic_inc(&prev_mm->mm_users);
1383                         spin_lock(&mmlist_lock);
1384                         while (swap_count(*swap_map) && !retval &&
1385                                         (p = p->next) != &start_mm->mmlist) {
1386                                 mm = list_entry(p, struct mm_struct, mmlist);
1387                                 if (!atomic_inc_not_zero(&mm->mm_users))
1388                                         continue;
1389                                 spin_unlock(&mmlist_lock);
1390                                 mmput(prev_mm);
1391                                 prev_mm = mm;
1392
1393                                 cond_resched();
1394
1395                                 swcount = *swap_map;
1396                                 if (!swap_count(swcount)) /* any usage ? */
1397                                         ;
1398                                 else if (mm == &init_mm)
1399                                         set_start_mm = 1;
1400                                 else
1401                                         retval = unuse_mm(mm, entry, page);
1402
1403                                 if (set_start_mm && *swap_map < swcount) {
1404                                         mmput(new_start_mm);
1405                                         atomic_inc(&mm->mm_users);
1406                                         new_start_mm = mm;
1407                                         set_start_mm = 0;
1408                                 }
1409                                 spin_lock(&mmlist_lock);
1410                         }
1411                         spin_unlock(&mmlist_lock);
1412                         mmput(prev_mm);
1413                         mmput(start_mm);
1414                         start_mm = new_start_mm;
1415                 }
1416                 if (retval) {
1417                         unlock_page(page);
1418                         page_cache_release(page);
1419                         break;
1420                 }
1421
1422                 /*
1423                  * If a reference remains (rare), we would like to leave
1424                  * the page in the swap cache; but try_to_unmap could
1425                  * then re-duplicate the entry once we drop page lock,
1426                  * so we might loop indefinitely; also, that page could
1427                  * not be swapped out to other storage meanwhile.  So:
1428                  * delete from cache even if there's another reference,
1429                  * after ensuring that the data has been saved to disk -
1430                  * since if the reference remains (rarer), it will be
1431                  * read from disk into another page.  Splitting into two
1432                  * pages would be incorrect if swap supported "shared
1433                  * private" pages, but they are handled by tmpfs files.
1434                  *
1435                  * Given how unuse_vma() targets one particular offset
1436                  * in an anon_vma, once the anon_vma has been determined,
1437                  * this splitting happens to be just what is needed to
1438                  * handle where KSM pages have been swapped out: re-reading
1439                  * is unnecessarily slow, but we can fix that later on.
1440                  */
1441                 if (swap_count(*swap_map) &&
1442                      PageDirty(page) && PageSwapCache(page)) {
1443                         struct writeback_control wbc = {
1444                                 .sync_mode = WB_SYNC_NONE,
1445                         };
1446
1447                         swap_writepage(page, &wbc);
1448                         lock_page(page);
1449                         wait_on_page_writeback(page);
1450                 }
1451
1452                 /*
1453                  * It is conceivable that a racing task removed this page from
1454                  * swap cache just before we acquired the page lock at the top,
1455                  * or while we dropped it in unuse_mm().  The page might even
1456                  * be back in swap cache on another swap area: that we must not
1457                  * delete, since it may not have been written out to swap yet.
1458                  */
1459                 if (PageSwapCache(page) &&
1460                     likely(page_private(page) == entry.val))
1461                         delete_from_swap_cache(page);
1462
1463                 /*
1464                  * So we could skip searching mms once swap count went
1465                  * to 1, we did not mark any present ptes as dirty: must
1466                  * mark page dirty so shrink_page_list will preserve it.
1467                  */
1468                 SetPageDirty(page);
1469                 unlock_page(page);
1470                 page_cache_release(page);
1471
1472                 /*
1473                  * Make sure that we aren't completely killing
1474                  * interactive performance.
1475                  */
1476                 cond_resched();
1477                 if (frontswap && pages_to_unuse > 0) {
1478                         if (!--pages_to_unuse)
1479                                 break;
1480                 }
1481         }
1482
1483         mmput(start_mm);
1484         return retval;
1485 }
1486
1487 /*
1488  * After a successful try_to_unuse, if no swap is now in use, we know
1489  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1490  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1491  * added to the mmlist just after page_duplicate - before would be racy.
1492  */
1493 static void drain_mmlist(void)
1494 {
1495         struct list_head *p, *next;
1496         unsigned int type;
1497
1498         for (type = 0; type < nr_swapfiles; type++)
1499                 if (swap_info[type]->inuse_pages)
1500                         return;
1501         spin_lock(&mmlist_lock);
1502         list_for_each_safe(p, next, &init_mm.mmlist)
1503                 list_del_init(p);
1504         spin_unlock(&mmlist_lock);
1505 }
1506
1507 /*
1508  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1509  * corresponds to page offset for the specified swap entry.
1510  * Note that the type of this function is sector_t, but it returns page offset
1511  * into the bdev, not sector offset.
1512  */
1513 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1514 {
1515         struct swap_info_struct *sis;
1516         struct swap_extent *start_se;
1517         struct swap_extent *se;
1518         pgoff_t offset;
1519
1520         sis = swap_info[swp_type(entry)];
1521         *bdev = sis->bdev;
1522
1523         offset = swp_offset(entry);
1524         start_se = sis->curr_swap_extent;
1525         se = start_se;
1526
1527         for ( ; ; ) {
1528                 struct list_head *lh;
1529
1530                 if (se->start_page <= offset &&
1531                                 offset < (se->start_page + se->nr_pages)) {
1532                         return se->start_block + (offset - se->start_page);
1533                 }
1534                 lh = se->list.next;
1535                 se = list_entry(lh, struct swap_extent, list);
1536                 sis->curr_swap_extent = se;
1537                 BUG_ON(se == start_se);         /* It *must* be present */
1538         }
1539 }
1540
1541 /*
1542  * Returns the page offset into bdev for the specified page's swap entry.
1543  */
1544 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1545 {
1546         swp_entry_t entry;
1547         entry.val = page_private(page);
1548         return map_swap_entry(entry, bdev);
1549 }
1550
1551 /*
1552  * Free all of a swapdev's extent information
1553  */
1554 static void destroy_swap_extents(struct swap_info_struct *sis)
1555 {
1556         while (!list_empty(&sis->first_swap_extent.list)) {
1557                 struct swap_extent *se;
1558
1559                 se = list_entry(sis->first_swap_extent.list.next,
1560                                 struct swap_extent, list);
1561                 list_del(&se->list);
1562                 kfree(se);
1563         }
1564
1565         if (sis->flags & SWP_FILE) {
1566                 struct file *swap_file = sis->swap_file;
1567                 struct address_space *mapping = swap_file->f_mapping;
1568
1569                 sis->flags &= ~SWP_FILE;
1570                 mapping->a_ops->swap_deactivate(swap_file);
1571         }
1572 }
1573
1574 /*
1575  * Add a block range (and the corresponding page range) into this swapdev's
1576  * extent list.  The extent list is kept sorted in page order.
1577  *
1578  * This function rather assumes that it is called in ascending page order.
1579  */
1580 int
1581 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1582                 unsigned long nr_pages, sector_t start_block)
1583 {
1584         struct swap_extent *se;
1585         struct swap_extent *new_se;
1586         struct list_head *lh;
1587
1588         if (start_page == 0) {
1589                 se = &sis->first_swap_extent;
1590                 sis->curr_swap_extent = se;
1591                 se->start_page = 0;
1592                 se->nr_pages = nr_pages;
1593                 se->start_block = start_block;
1594                 return 1;
1595         } else {
1596                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1597                 se = list_entry(lh, struct swap_extent, list);
1598                 BUG_ON(se->start_page + se->nr_pages != start_page);
1599                 if (se->start_block + se->nr_pages == start_block) {
1600                         /* Merge it */
1601                         se->nr_pages += nr_pages;
1602                         return 0;
1603                 }
1604         }
1605
1606         /*
1607          * No merge.  Insert a new extent, preserving ordering.
1608          */
1609         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1610         if (new_se == NULL)
1611                 return -ENOMEM;
1612         new_se->start_page = start_page;
1613         new_se->nr_pages = nr_pages;
1614         new_se->start_block = start_block;
1615
1616         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1617         return 1;
1618 }
1619
1620 /*
1621  * A `swap extent' is a simple thing which maps a contiguous range of pages
1622  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1623  * is built at swapon time and is then used at swap_writepage/swap_readpage
1624  * time for locating where on disk a page belongs.
1625  *
1626  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1627  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1628  * swap files identically.
1629  *
1630  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1631  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1632  * swapfiles are handled *identically* after swapon time.
1633  *
1634  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1635  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1636  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1637  * requirements, they are simply tossed out - we will never use those blocks
1638  * for swapping.
1639  *
1640  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1641  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1642  * which will scribble on the fs.
1643  *
1644  * The amount of disk space which a single swap extent represents varies.
1645  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1646  * extents in the list.  To avoid much list walking, we cache the previous
1647  * search location in `curr_swap_extent', and start new searches from there.
1648  * This is extremely effective.  The average number of iterations in
1649  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1650  */
1651 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1652 {
1653         struct file *swap_file = sis->swap_file;
1654         struct address_space *mapping = swap_file->f_mapping;
1655         struct inode *inode = mapping->host;
1656         int ret;
1657
1658         if (S_ISBLK(inode->i_mode)) {
1659                 ret = add_swap_extent(sis, 0, sis->max, 0);
1660                 *span = sis->pages;
1661                 return ret;
1662         }
1663
1664         if (mapping->a_ops->swap_activate) {
1665                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1666                 if (!ret) {
1667                         sis->flags |= SWP_FILE;
1668                         ret = add_swap_extent(sis, 0, sis->max, 0);
1669                         *span = sis->pages;
1670                 }
1671                 return ret;
1672         }
1673
1674         return generic_swapfile_activate(sis, swap_file, span);
1675 }
1676
1677 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1678                                 unsigned char *swap_map,
1679                                 struct swap_cluster_info *cluster_info)
1680 {
1681         int i, prev;
1682
1683         if (prio >= 0)
1684                 p->prio = prio;
1685         else
1686                 p->prio = --least_priority;
1687         p->swap_map = swap_map;
1688         p->cluster_info = cluster_info;
1689         p->flags |= SWP_WRITEOK;
1690         atomic_long_add(p->pages, &nr_swap_pages);
1691         total_swap_pages += p->pages;
1692
1693         /* insert swap space into swap_list: */
1694         prev = -1;
1695         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1696                 if (p->prio >= swap_info[i]->prio)
1697                         break;
1698                 prev = i;
1699         }
1700         p->next = i;
1701         if (prev < 0)
1702                 swap_list.head = swap_list.next = p->type;
1703         else
1704                 swap_info[prev]->next = p->type;
1705 }
1706
1707 static void enable_swap_info(struct swap_info_struct *p, int prio,
1708                                 unsigned char *swap_map,
1709                                 struct swap_cluster_info *cluster_info,
1710                                 unsigned long *frontswap_map)
1711 {
1712         frontswap_init(p->type, frontswap_map);
1713         spin_lock(&swap_lock);
1714         spin_lock(&p->lock);
1715          _enable_swap_info(p, prio, swap_map, cluster_info);
1716         spin_unlock(&p->lock);
1717         spin_unlock(&swap_lock);
1718 }
1719
1720 static void reinsert_swap_info(struct swap_info_struct *p)
1721 {
1722         spin_lock(&swap_lock);
1723         spin_lock(&p->lock);
1724         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1725         spin_unlock(&p->lock);
1726         spin_unlock(&swap_lock);
1727 }
1728
1729 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1730 {
1731         struct swap_info_struct *p = NULL;
1732         unsigned char *swap_map;
1733         struct swap_cluster_info *cluster_info;
1734         unsigned long *frontswap_map;
1735         struct file *swap_file, *victim;
1736         struct address_space *mapping;
1737         struct inode *inode;
1738         struct filename *pathname;
1739         int i, type, prev;
1740         int err;
1741
1742         if (!capable(CAP_SYS_ADMIN))
1743                 return -EPERM;
1744
1745         BUG_ON(!current->mm);
1746
1747         pathname = getname(specialfile);
1748         if (IS_ERR(pathname))
1749                 return PTR_ERR(pathname);
1750
1751         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1752         err = PTR_ERR(victim);
1753         if (IS_ERR(victim))
1754                 goto out;
1755
1756         mapping = victim->f_mapping;
1757         prev = -1;
1758         spin_lock(&swap_lock);
1759         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1760                 p = swap_info[type];
1761                 if (p->flags & SWP_WRITEOK) {
1762                         if (p->swap_file->f_mapping == mapping)
1763                                 break;
1764                 }
1765                 prev = type;
1766         }
1767         if (type < 0) {
1768                 err = -EINVAL;
1769                 spin_unlock(&swap_lock);
1770                 goto out_dput;
1771         }
1772         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1773                 vm_unacct_memory(p->pages);
1774         else {
1775                 err = -ENOMEM;
1776                 spin_unlock(&swap_lock);
1777                 goto out_dput;
1778         }
1779         if (prev < 0)
1780                 swap_list.head = p->next;
1781         else
1782                 swap_info[prev]->next = p->next;
1783         if (type == swap_list.next) {
1784                 /* just pick something that's safe... */
1785                 swap_list.next = swap_list.head;
1786         }
1787         spin_lock(&p->lock);
1788         if (p->prio < 0) {
1789                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1790                         swap_info[i]->prio = p->prio--;
1791                 least_priority++;
1792         }
1793         atomic_long_sub(p->pages, &nr_swap_pages);
1794         total_swap_pages -= p->pages;
1795         p->flags &= ~SWP_WRITEOK;
1796         spin_unlock(&p->lock);
1797         spin_unlock(&swap_lock);
1798
1799         set_current_oom_origin();
1800         err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1801         clear_current_oom_origin();
1802
1803         if (err) {
1804                 /* re-insert swap space back into swap_list */
1805                 reinsert_swap_info(p);
1806                 goto out_dput;
1807         }
1808
1809         destroy_swap_extents(p);
1810         if (p->flags & SWP_CONTINUED)
1811                 free_swap_count_continuations(p);
1812
1813         mutex_lock(&swapon_mutex);
1814         spin_lock(&swap_lock);
1815         spin_lock(&p->lock);
1816         drain_mmlist();
1817
1818         /* wait for anyone still in scan_swap_map */
1819         p->highest_bit = 0;             /* cuts scans short */
1820         while (p->flags >= SWP_SCANNING) {
1821                 spin_unlock(&p->lock);
1822                 spin_unlock(&swap_lock);
1823                 schedule_timeout_uninterruptible(1);
1824                 spin_lock(&swap_lock);
1825                 spin_lock(&p->lock);
1826         }
1827
1828         swap_file = p->swap_file;
1829         p->swap_file = NULL;
1830         p->max = 0;
1831         swap_map = p->swap_map;
1832         p->swap_map = NULL;
1833         cluster_info = p->cluster_info;
1834         p->cluster_info = NULL;
1835         p->flags = 0;
1836         frontswap_map = frontswap_map_get(p);
1837         frontswap_map_set(p, NULL);
1838         spin_unlock(&p->lock);
1839         spin_unlock(&swap_lock);
1840         frontswap_invalidate_area(type);
1841         mutex_unlock(&swapon_mutex);
1842         vfree(swap_map);
1843         vfree(cluster_info);
1844         vfree(frontswap_map);
1845         /* Destroy swap account informatin */
1846         swap_cgroup_swapoff(type);
1847
1848         inode = mapping->host;
1849         if (S_ISBLK(inode->i_mode)) {
1850                 struct block_device *bdev = I_BDEV(inode);
1851                 set_blocksize(bdev, p->old_block_size);
1852                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1853         } else {
1854                 mutex_lock(&inode->i_mutex);
1855                 inode->i_flags &= ~S_SWAPFILE;
1856                 mutex_unlock(&inode->i_mutex);
1857         }
1858         filp_close(swap_file, NULL);
1859         err = 0;
1860         atomic_inc(&proc_poll_event);
1861         wake_up_interruptible(&proc_poll_wait);
1862
1863 out_dput:
1864         filp_close(victim, NULL);
1865 out:
1866         putname(pathname);
1867         return err;
1868 }
1869
1870 #ifdef CONFIG_PROC_FS
1871 static unsigned swaps_poll(struct file *file, poll_table *wait)
1872 {
1873         struct seq_file *seq = file->private_data;
1874
1875         poll_wait(file, &proc_poll_wait, wait);
1876
1877         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1878                 seq->poll_event = atomic_read(&proc_poll_event);
1879                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1880         }
1881
1882         return POLLIN | POLLRDNORM;
1883 }
1884
1885 /* iterator */
1886 static void *swap_start(struct seq_file *swap, loff_t *pos)
1887 {
1888         struct swap_info_struct *si;
1889         int type;
1890         loff_t l = *pos;
1891
1892         mutex_lock(&swapon_mutex);
1893
1894         if (!l)
1895                 return SEQ_START_TOKEN;
1896
1897         for (type = 0; type < nr_swapfiles; type++) {
1898                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1899                 si = swap_info[type];
1900                 if (!(si->flags & SWP_USED) || !si->swap_map)
1901                         continue;
1902                 if (!--l)
1903                         return si;
1904         }
1905
1906         return NULL;
1907 }
1908
1909 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1910 {
1911         struct swap_info_struct *si = v;
1912         int type;
1913
1914         if (v == SEQ_START_TOKEN)
1915                 type = 0;
1916         else
1917                 type = si->type + 1;
1918
1919         for (; type < nr_swapfiles; type++) {
1920                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1921                 si = swap_info[type];
1922                 if (!(si->flags & SWP_USED) || !si->swap_map)
1923                         continue;
1924                 ++*pos;
1925                 return si;
1926         }
1927
1928         return NULL;
1929 }
1930
1931 static void swap_stop(struct seq_file *swap, void *v)
1932 {
1933         mutex_unlock(&swapon_mutex);
1934 }
1935
1936 static int swap_show(struct seq_file *swap, void *v)
1937 {
1938         struct swap_info_struct *si = v;
1939         struct file *file;
1940         int len;
1941
1942         if (si == SEQ_START_TOKEN) {
1943                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1944                 return 0;
1945         }
1946
1947         file = si->swap_file;
1948         len = seq_path(swap, &file->f_path, " \t\n\\");
1949         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1950                         len < 40 ? 40 - len : 1, " ",
1951                         S_ISBLK(file_inode(file)->i_mode) ?
1952                                 "partition" : "file\t",
1953                         si->pages << (PAGE_SHIFT - 10),
1954                         si->inuse_pages << (PAGE_SHIFT - 10),
1955                         si->prio);
1956         return 0;
1957 }
1958
1959 static const struct seq_operations swaps_op = {
1960         .start =        swap_start,
1961         .next =         swap_next,
1962         .stop =         swap_stop,
1963         .show =         swap_show
1964 };
1965
1966 static int swaps_open(struct inode *inode, struct file *file)
1967 {
1968         struct seq_file *seq;
1969         int ret;
1970
1971         ret = seq_open(file, &swaps_op);
1972         if (ret)
1973                 return ret;
1974
1975         seq = file->private_data;
1976         seq->poll_event = atomic_read(&proc_poll_event);
1977         return 0;
1978 }
1979
1980 static const struct file_operations proc_swaps_operations = {
1981         .open           = swaps_open,
1982         .read           = seq_read,
1983         .llseek         = seq_lseek,
1984         .release        = seq_release,
1985         .poll           = swaps_poll,
1986 };
1987
1988 static int __init procswaps_init(void)
1989 {
1990         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1991         return 0;
1992 }
1993 __initcall(procswaps_init);
1994 #endif /* CONFIG_PROC_FS */
1995
1996 #ifdef MAX_SWAPFILES_CHECK
1997 static int __init max_swapfiles_check(void)
1998 {
1999         MAX_SWAPFILES_CHECK();
2000         return 0;
2001 }
2002 late_initcall(max_swapfiles_check);
2003 #endif
2004
2005 static struct swap_info_struct *alloc_swap_info(void)
2006 {
2007         struct swap_info_struct *p;
2008         unsigned int type;
2009
2010         p = kzalloc(sizeof(*p), GFP_KERNEL);
2011         if (!p)
2012                 return ERR_PTR(-ENOMEM);
2013
2014         spin_lock(&swap_lock);
2015         for (type = 0; type < nr_swapfiles; type++) {
2016                 if (!(swap_info[type]->flags & SWP_USED))
2017                         break;
2018         }
2019         if (type >= MAX_SWAPFILES) {
2020                 spin_unlock(&swap_lock);
2021                 kfree(p);
2022                 return ERR_PTR(-EPERM);
2023         }
2024         if (type >= nr_swapfiles) {
2025                 p->type = type;
2026                 swap_info[type] = p;
2027                 /*
2028                  * Write swap_info[type] before nr_swapfiles, in case a
2029                  * racing procfs swap_start() or swap_next() is reading them.
2030                  * (We never shrink nr_swapfiles, we never free this entry.)
2031                  */
2032                 smp_wmb();
2033                 nr_swapfiles++;
2034         } else {
2035                 kfree(p);
2036                 p = swap_info[type];
2037                 /*
2038                  * Do not memset this entry: a racing procfs swap_next()
2039                  * would be relying on p->type to remain valid.
2040                  */
2041         }
2042         INIT_LIST_HEAD(&p->first_swap_extent.list);
2043         p->flags = SWP_USED;
2044         p->next = -1;
2045         spin_unlock(&swap_lock);
2046         spin_lock_init(&p->lock);
2047
2048         return p;
2049 }
2050
2051 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2052 {
2053         int error;
2054
2055         if (S_ISBLK(inode->i_mode)) {
2056                 p->bdev = bdgrab(I_BDEV(inode));
2057                 error = blkdev_get(p->bdev,
2058                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2059                                    sys_swapon);
2060                 if (error < 0) {
2061                         p->bdev = NULL;
2062                         return -EINVAL;
2063                 }
2064                 p->old_block_size = block_size(p->bdev);
2065                 error = set_blocksize(p->bdev, PAGE_SIZE);
2066                 if (error < 0)
2067                         return error;
2068                 p->flags |= SWP_BLKDEV;
2069         } else if (S_ISREG(inode->i_mode)) {
2070                 p->bdev = inode->i_sb->s_bdev;
2071                 mutex_lock(&inode->i_mutex);
2072                 if (IS_SWAPFILE(inode))
2073                         return -EBUSY;
2074         } else
2075                 return -EINVAL;
2076
2077         return 0;
2078 }
2079
2080 static unsigned long read_swap_header(struct swap_info_struct *p,
2081                                         union swap_header *swap_header,
2082                                         struct inode *inode)
2083 {
2084         int i;
2085         unsigned long maxpages;
2086         unsigned long swapfilepages;
2087         unsigned long last_page;
2088
2089         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2090                 pr_err("Unable to find swap-space signature\n");
2091                 return 0;
2092         }
2093
2094         /* swap partition endianess hack... */
2095         if (swab32(swap_header->info.version) == 1) {
2096                 swab32s(&swap_header->info.version);
2097                 swab32s(&swap_header->info.last_page);
2098                 swab32s(&swap_header->info.nr_badpages);
2099                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2100                         swab32s(&swap_header->info.badpages[i]);
2101         }
2102         /* Check the swap header's sub-version */
2103         if (swap_header->info.version != 1) {
2104                 pr_warn("Unable to handle swap header version %d\n",
2105                         swap_header->info.version);
2106                 return 0;
2107         }
2108
2109         p->lowest_bit  = 1;
2110         p->cluster_next = 1;
2111         p->cluster_nr = 0;
2112
2113         /*
2114          * Find out how many pages are allowed for a single swap
2115          * device. There are two limiting factors: 1) the number
2116          * of bits for the swap offset in the swp_entry_t type, and
2117          * 2) the number of bits in the swap pte as defined by the
2118          * different architectures. In order to find the
2119          * largest possible bit mask, a swap entry with swap type 0
2120          * and swap offset ~0UL is created, encoded to a swap pte,
2121          * decoded to a swp_entry_t again, and finally the swap
2122          * offset is extracted. This will mask all the bits from
2123          * the initial ~0UL mask that can't be encoded in either
2124          * the swp_entry_t or the architecture definition of a
2125          * swap pte.
2126          */
2127         maxpages = swp_offset(pte_to_swp_entry(
2128                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2129         last_page = swap_header->info.last_page;
2130         if (last_page > maxpages) {
2131                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2132                         maxpages << (PAGE_SHIFT - 10),
2133                         last_page << (PAGE_SHIFT - 10));
2134         }
2135         if (maxpages > last_page) {
2136                 maxpages = last_page + 1;
2137                 /* p->max is an unsigned int: don't overflow it */
2138                 if ((unsigned int)maxpages == 0)
2139                         maxpages = UINT_MAX;
2140         }
2141         p->highest_bit = maxpages - 1;
2142
2143         if (!maxpages)
2144                 return 0;
2145         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2146         if (swapfilepages && maxpages > swapfilepages) {
2147                 pr_warn("Swap area shorter than signature indicates\n");
2148                 return 0;
2149         }
2150         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2151                 return 0;
2152         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2153                 return 0;
2154
2155         return maxpages;
2156 }
2157
2158 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2159                                         union swap_header *swap_header,
2160                                         unsigned char *swap_map,
2161                                         struct swap_cluster_info *cluster_info,
2162                                         unsigned long maxpages,
2163                                         sector_t *span)
2164 {
2165         int i;
2166         unsigned int nr_good_pages;
2167         int nr_extents;
2168         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2169         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2170
2171         nr_good_pages = maxpages - 1;   /* omit header page */
2172
2173         cluster_set_null(&p->free_cluster_head);
2174         cluster_set_null(&p->free_cluster_tail);
2175
2176         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2177                 unsigned int page_nr = swap_header->info.badpages[i];
2178                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2179                         return -EINVAL;
2180                 if (page_nr < maxpages) {
2181                         swap_map[page_nr] = SWAP_MAP_BAD;
2182                         nr_good_pages--;
2183                         /*
2184                          * Haven't marked the cluster free yet, no list
2185                          * operation involved
2186                          */
2187                         inc_cluster_info_page(p, cluster_info, page_nr);
2188                 }
2189         }
2190
2191         /* Haven't marked the cluster free yet, no list operation involved */
2192         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2193                 inc_cluster_info_page(p, cluster_info, i);
2194
2195         if (nr_good_pages) {
2196                 swap_map[0] = SWAP_MAP_BAD;
2197                 /*
2198                  * Not mark the cluster free yet, no list
2199                  * operation involved
2200                  */
2201                 inc_cluster_info_page(p, cluster_info, 0);
2202                 p->max = maxpages;
2203                 p->pages = nr_good_pages;
2204                 nr_extents = setup_swap_extents(p, span);
2205                 if (nr_extents < 0)
2206                         return nr_extents;
2207                 nr_good_pages = p->pages;
2208         }
2209         if (!nr_good_pages) {
2210                 pr_warn("Empty swap-file\n");
2211                 return -EINVAL;
2212         }
2213
2214         if (!cluster_info)
2215                 return nr_extents;
2216
2217         for (i = 0; i < nr_clusters; i++) {
2218                 if (!cluster_count(&cluster_info[idx])) {
2219                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2220                         if (cluster_is_null(&p->free_cluster_head)) {
2221                                 cluster_set_next_flag(&p->free_cluster_head,
2222                                                                 idx, 0);
2223                                 cluster_set_next_flag(&p->free_cluster_tail,
2224                                                                 idx, 0);
2225                         } else {
2226                                 unsigned int tail;
2227
2228                                 tail = cluster_next(&p->free_cluster_tail);
2229                                 cluster_set_next(&cluster_info[tail], idx);
2230                                 cluster_set_next_flag(&p->free_cluster_tail,
2231                                                                 idx, 0);
2232                         }
2233                 }
2234                 idx++;
2235                 if (idx == nr_clusters)
2236                         idx = 0;
2237         }
2238         return nr_extents;
2239 }
2240
2241 /*
2242  * Helper to sys_swapon determining if a given swap
2243  * backing device queue supports DISCARD operations.
2244  */
2245 static bool swap_discardable(struct swap_info_struct *si)
2246 {
2247         struct request_queue *q = bdev_get_queue(si->bdev);
2248
2249         if (!q || !blk_queue_discard(q))
2250                 return false;
2251
2252         return true;
2253 }
2254
2255 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2256 {
2257         struct swap_info_struct *p;
2258         struct filename *name;
2259         struct file *swap_file = NULL;
2260         struct address_space *mapping;
2261         int i;
2262         int prio;
2263         int error;
2264         union swap_header *swap_header;
2265         int nr_extents;
2266         sector_t span;
2267         unsigned long maxpages;
2268         unsigned char *swap_map = NULL;
2269         struct swap_cluster_info *cluster_info = NULL;
2270         unsigned long *frontswap_map = NULL;
2271         struct page *page = NULL;
2272         struct inode *inode = NULL;
2273
2274         if (swap_flags & ~SWAP_FLAGS_VALID)
2275                 return -EINVAL;
2276
2277         if (!capable(CAP_SYS_ADMIN))
2278                 return -EPERM;
2279
2280         p = alloc_swap_info();
2281         if (IS_ERR(p))
2282                 return PTR_ERR(p);
2283
2284         name = getname(specialfile);
2285         if (IS_ERR(name)) {
2286                 error = PTR_ERR(name);
2287                 name = NULL;
2288                 goto bad_swap;
2289         }
2290         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2291         if (IS_ERR(swap_file)) {
2292                 error = PTR_ERR(swap_file);
2293                 swap_file = NULL;
2294                 goto bad_swap;
2295         }
2296
2297         p->swap_file = swap_file;
2298         mapping = swap_file->f_mapping;
2299
2300         for (i = 0; i < nr_swapfiles; i++) {
2301                 struct swap_info_struct *q = swap_info[i];
2302
2303                 if (q == p || !q->swap_file)
2304                         continue;
2305                 if (mapping == q->swap_file->f_mapping) {
2306                         error = -EBUSY;
2307                         goto bad_swap;
2308                 }
2309         }
2310
2311         inode = mapping->host;
2312         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2313         error = claim_swapfile(p, inode);
2314         if (unlikely(error))
2315                 goto bad_swap;
2316
2317         /*
2318          * Read the swap header.
2319          */
2320         if (!mapping->a_ops->readpage) {
2321                 error = -EINVAL;
2322                 goto bad_swap;
2323         }
2324         page = read_mapping_page(mapping, 0, swap_file);
2325         if (IS_ERR(page)) {
2326                 error = PTR_ERR(page);
2327                 goto bad_swap;
2328         }
2329         swap_header = kmap(page);
2330
2331         maxpages = read_swap_header(p, swap_header, inode);
2332         if (unlikely(!maxpages)) {
2333                 error = -EINVAL;
2334                 goto bad_swap;
2335         }
2336
2337         /* OK, set up the swap map and apply the bad block list */
2338         swap_map = vzalloc(maxpages);
2339         if (!swap_map) {
2340                 error = -ENOMEM;
2341                 goto bad_swap;
2342         }
2343         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2344                 p->flags |= SWP_SOLIDSTATE;
2345                 /*
2346                  * select a random position to start with to help wear leveling
2347                  * SSD
2348                  */
2349                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2350
2351                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2352                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2353                 if (!cluster_info) {
2354                         error = -ENOMEM;
2355                         goto bad_swap;
2356                 }
2357         }
2358
2359         error = swap_cgroup_swapon(p->type, maxpages);
2360         if (error)
2361                 goto bad_swap;
2362
2363         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2364                 cluster_info, maxpages, &span);
2365         if (unlikely(nr_extents < 0)) {
2366                 error = nr_extents;
2367                 goto bad_swap;
2368         }
2369         /* frontswap enabled? set up bit-per-page map for frontswap */
2370         if (frontswap_enabled)
2371                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2372
2373         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2374                 /*
2375                  * When discard is enabled for swap with no particular
2376                  * policy flagged, we set all swap discard flags here in
2377                  * order to sustain backward compatibility with older
2378                  * swapon(8) releases.
2379                  */
2380                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2381                              SWP_PAGE_DISCARD);
2382
2383                 /*
2384                  * By flagging sys_swapon, a sysadmin can tell us to
2385                  * either do single-time area discards only, or to just
2386                  * perform discards for released swap page-clusters.
2387                  * Now it's time to adjust the p->flags accordingly.
2388                  */
2389                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2390                         p->flags &= ~SWP_PAGE_DISCARD;
2391                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2392                         p->flags &= ~SWP_AREA_DISCARD;
2393
2394                 /* issue a swapon-time discard if it's still required */
2395                 if (p->flags & SWP_AREA_DISCARD) {
2396                         int err = discard_swap(p);
2397                         if (unlikely(err))
2398                                 pr_err("swapon: discard_swap(%p): %d\n",
2399                                         p, err);
2400                 }
2401         }
2402
2403         mutex_lock(&swapon_mutex);
2404         prio = -1;
2405         if (swap_flags & SWAP_FLAG_PREFER)
2406                 prio =
2407                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2408         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2409
2410         pr_info("Adding %uk swap on %s.  "
2411                         "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2412                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2413                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2414                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2415                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2416                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2417                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2418                 (frontswap_map) ? "FS" : "");
2419
2420         mutex_unlock(&swapon_mutex);
2421         atomic_inc(&proc_poll_event);
2422         wake_up_interruptible(&proc_poll_wait);
2423
2424         if (S_ISREG(inode->i_mode))
2425                 inode->i_flags |= S_SWAPFILE;
2426         error = 0;
2427         goto out;
2428 bad_swap:
2429         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2430                 set_blocksize(p->bdev, p->old_block_size);
2431                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2432         }
2433         destroy_swap_extents(p);
2434         swap_cgroup_swapoff(p->type);
2435         spin_lock(&swap_lock);
2436         p->swap_file = NULL;
2437         p->flags = 0;
2438         spin_unlock(&swap_lock);
2439         vfree(swap_map);
2440         vfree(cluster_info);
2441         if (swap_file) {
2442                 if (inode && S_ISREG(inode->i_mode)) {
2443                         mutex_unlock(&inode->i_mutex);
2444                         inode = NULL;
2445                 }
2446                 filp_close(swap_file, NULL);
2447         }
2448 out:
2449         if (page && !IS_ERR(page)) {
2450                 kunmap(page);
2451                 page_cache_release(page);
2452         }
2453         if (name)
2454                 putname(name);
2455         if (inode && S_ISREG(inode->i_mode))
2456                 mutex_unlock(&inode->i_mutex);
2457         return error;
2458 }
2459
2460 void si_swapinfo(struct sysinfo *val)
2461 {
2462         unsigned int type;
2463         unsigned long nr_to_be_unused = 0;
2464
2465         spin_lock(&swap_lock);
2466         for (type = 0; type < nr_swapfiles; type++) {
2467                 struct swap_info_struct *si = swap_info[type];
2468
2469                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2470                         nr_to_be_unused += si->inuse_pages;
2471         }
2472         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2473         val->totalswap = total_swap_pages + nr_to_be_unused;
2474         spin_unlock(&swap_lock);
2475 }
2476
2477 /*
2478  * Verify that a swap entry is valid and increment its swap map count.
2479  *
2480  * Returns error code in following case.
2481  * - success -> 0
2482  * - swp_entry is invalid -> EINVAL
2483  * - swp_entry is migration entry -> EINVAL
2484  * - swap-cache reference is requested but there is already one. -> EEXIST
2485  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2486  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2487  */
2488 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2489 {
2490         struct swap_info_struct *p;
2491         unsigned long offset, type;
2492         unsigned char count;
2493         unsigned char has_cache;
2494         int err = -EINVAL;
2495
2496         if (non_swap_entry(entry))
2497                 goto out;
2498
2499         type = swp_type(entry);
2500         if (type >= nr_swapfiles)
2501                 goto bad_file;
2502         p = swap_info[type];
2503         offset = swp_offset(entry);
2504
2505         spin_lock(&p->lock);
2506         if (unlikely(offset >= p->max))
2507                 goto unlock_out;
2508
2509         count = p->swap_map[offset];
2510         has_cache = count & SWAP_HAS_CACHE;
2511         count &= ~SWAP_HAS_CACHE;
2512         err = 0;
2513
2514         if (usage == SWAP_HAS_CACHE) {
2515
2516                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2517                 if (!has_cache && count)
2518                         has_cache = SWAP_HAS_CACHE;
2519                 else if (has_cache)             /* someone else added cache */
2520                         err = -EEXIST;
2521                 else                            /* no users remaining */
2522                         err = -ENOENT;
2523
2524         } else if (count || has_cache) {
2525
2526                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2527                         count += usage;
2528                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2529                         err = -EINVAL;
2530                 else if (swap_count_continued(p, offset, count))
2531                         count = COUNT_CONTINUED;
2532                 else
2533                         err = -ENOMEM;
2534         } else
2535                 err = -ENOENT;                  /* unused swap entry */
2536
2537         p->swap_map[offset] = count | has_cache;
2538
2539 unlock_out:
2540         spin_unlock(&p->lock);
2541 out:
2542         return err;
2543
2544 bad_file:
2545         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2546         goto out;
2547 }
2548
2549 /*
2550  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2551  * (in which case its reference count is never incremented).
2552  */
2553 void swap_shmem_alloc(swp_entry_t entry)
2554 {
2555         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2556 }
2557
2558 /*
2559  * Increase reference count of swap entry by 1.
2560  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2561  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2562  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2563  * might occur if a page table entry has got corrupted.
2564  */
2565 int swap_duplicate(swp_entry_t entry)
2566 {
2567         int err = 0;
2568
2569         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2570                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2571         return err;
2572 }
2573
2574 /*
2575  * @entry: swap entry for which we allocate swap cache.
2576  *
2577  * Called when allocating swap cache for existing swap entry,
2578  * This can return error codes. Returns 0 at success.
2579  * -EBUSY means there is a swap cache.
2580  * Note: return code is different from swap_duplicate().
2581  */
2582 int swapcache_prepare(swp_entry_t entry)
2583 {
2584         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2585 }
2586
2587 struct swap_info_struct *page_swap_info(struct page *page)
2588 {
2589         swp_entry_t swap = { .val = page_private(page) };
2590         BUG_ON(!PageSwapCache(page));
2591         return swap_info[swp_type(swap)];
2592 }
2593
2594 /*
2595  * out-of-line __page_file_ methods to avoid include hell.
2596  */
2597 struct address_space *__page_file_mapping(struct page *page)
2598 {
2599         VM_BUG_ON(!PageSwapCache(page));
2600         return page_swap_info(page)->swap_file->f_mapping;
2601 }
2602 EXPORT_SYMBOL_GPL(__page_file_mapping);
2603
2604 pgoff_t __page_file_index(struct page *page)
2605 {
2606         swp_entry_t swap = { .val = page_private(page) };
2607         VM_BUG_ON(!PageSwapCache(page));
2608         return swp_offset(swap);
2609 }
2610 EXPORT_SYMBOL_GPL(__page_file_index);
2611
2612 /*
2613  * add_swap_count_continuation - called when a swap count is duplicated
2614  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2615  * page of the original vmalloc'ed swap_map, to hold the continuation count
2616  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2617  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2618  *
2619  * These continuation pages are seldom referenced: the common paths all work
2620  * on the original swap_map, only referring to a continuation page when the
2621  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2622  *
2623  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2624  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2625  * can be called after dropping locks.
2626  */
2627 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2628 {
2629         struct swap_info_struct *si;
2630         struct page *head;
2631         struct page *page;
2632         struct page *list_page;
2633         pgoff_t offset;
2634         unsigned char count;
2635
2636         /*
2637          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2638          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2639          */
2640         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2641
2642         si = swap_info_get(entry);
2643         if (!si) {
2644                 /*
2645                  * An acceptable race has occurred since the failing
2646                  * __swap_duplicate(): the swap entry has been freed,
2647                  * perhaps even the whole swap_map cleared for swapoff.
2648                  */
2649                 goto outer;
2650         }
2651
2652         offset = swp_offset(entry);
2653         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2654
2655         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2656                 /*
2657                  * The higher the swap count, the more likely it is that tasks
2658                  * will race to add swap count continuation: we need to avoid
2659                  * over-provisioning.
2660                  */
2661                 goto out;
2662         }
2663
2664         if (!page) {
2665                 spin_unlock(&si->lock);
2666                 return -ENOMEM;
2667         }
2668
2669         /*
2670          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2671          * no architecture is using highmem pages for kernel pagetables: so it
2672          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2673          */
2674         head = vmalloc_to_page(si->swap_map + offset);
2675         offset &= ~PAGE_MASK;
2676
2677         /*
2678          * Page allocation does not initialize the page's lru field,
2679          * but it does always reset its private field.
2680          */
2681         if (!page_private(head)) {
2682                 BUG_ON(count & COUNT_CONTINUED);
2683                 INIT_LIST_HEAD(&head->lru);
2684                 set_page_private(head, SWP_CONTINUED);
2685                 si->flags |= SWP_CONTINUED;
2686         }
2687
2688         list_for_each_entry(list_page, &head->lru, lru) {
2689                 unsigned char *map;
2690
2691                 /*
2692                  * If the previous map said no continuation, but we've found
2693                  * a continuation page, free our allocation and use this one.
2694                  */
2695                 if (!(count & COUNT_CONTINUED))
2696                         goto out;
2697
2698                 map = kmap_atomic(list_page) + offset;
2699                 count = *map;
2700                 kunmap_atomic(map);
2701
2702                 /*
2703                  * If this continuation count now has some space in it,
2704                  * free our allocation and use this one.
2705                  */
2706                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2707                         goto out;
2708         }
2709
2710         list_add_tail(&page->lru, &head->lru);
2711         page = NULL;                    /* now it's attached, don't free it */
2712 out:
2713         spin_unlock(&si->lock);
2714 outer:
2715         if (page)
2716                 __free_page(page);
2717         return 0;
2718 }
2719
2720 /*
2721  * swap_count_continued - when the original swap_map count is incremented
2722  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2723  * into, carry if so, or else fail until a new continuation page is allocated;
2724  * when the original swap_map count is decremented from 0 with continuation,
2725  * borrow from the continuation and report whether it still holds more.
2726  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2727  */
2728 static bool swap_count_continued(struct swap_info_struct *si,
2729                                  pgoff_t offset, unsigned char count)
2730 {
2731         struct page *head;
2732         struct page *page;
2733         unsigned char *map;
2734
2735         head = vmalloc_to_page(si->swap_map + offset);
2736         if (page_private(head) != SWP_CONTINUED) {
2737                 BUG_ON(count & COUNT_CONTINUED);
2738                 return false;           /* need to add count continuation */
2739         }
2740
2741         offset &= ~PAGE_MASK;
2742         page = list_entry(head->lru.next, struct page, lru);
2743         map = kmap_atomic(page) + offset;
2744
2745         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2746                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2747
2748         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2749                 /*
2750                  * Think of how you add 1 to 999
2751                  */
2752                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2753                         kunmap_atomic(map);
2754                         page = list_entry(page->lru.next, struct page, lru);
2755                         BUG_ON(page == head);
2756                         map = kmap_atomic(page) + offset;
2757                 }
2758                 if (*map == SWAP_CONT_MAX) {
2759                         kunmap_atomic(map);
2760                         page = list_entry(page->lru.next, struct page, lru);
2761                         if (page == head)
2762                                 return false;   /* add count continuation */
2763                         map = kmap_atomic(page) + offset;
2764 init_map:               *map = 0;               /* we didn't zero the page */
2765                 }
2766                 *map += 1;
2767                 kunmap_atomic(map);
2768                 page = list_entry(page->lru.prev, struct page, lru);
2769                 while (page != head) {
2770                         map = kmap_atomic(page) + offset;
2771                         *map = COUNT_CONTINUED;
2772                         kunmap_atomic(map);
2773                         page = list_entry(page->lru.prev, struct page, lru);
2774                 }
2775                 return true;                    /* incremented */
2776
2777         } else {                                /* decrementing */
2778                 /*
2779                  * Think of how you subtract 1 from 1000
2780                  */
2781                 BUG_ON(count != COUNT_CONTINUED);
2782                 while (*map == COUNT_CONTINUED) {
2783                         kunmap_atomic(map);
2784                         page = list_entry(page->lru.next, struct page, lru);
2785                         BUG_ON(page == head);
2786                         map = kmap_atomic(page) + offset;
2787                 }
2788                 BUG_ON(*map == 0);
2789                 *map -= 1;
2790                 if (*map == 0)
2791                         count = 0;
2792                 kunmap_atomic(map);
2793                 page = list_entry(page->lru.prev, struct page, lru);
2794                 while (page != head) {
2795                         map = kmap_atomic(page) + offset;
2796                         *map = SWAP_CONT_MAX | count;
2797                         count = COUNT_CONTINUED;
2798                         kunmap_atomic(map);
2799                         page = list_entry(page->lru.prev, struct page, lru);
2800                 }
2801                 return count == COUNT_CONTINUED;
2802         }
2803 }
2804
2805 /*
2806  * free_swap_count_continuations - swapoff free all the continuation pages
2807  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2808  */
2809 static void free_swap_count_continuations(struct swap_info_struct *si)
2810 {
2811         pgoff_t offset;
2812
2813         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2814                 struct page *head;
2815                 head = vmalloc_to_page(si->swap_map + offset);
2816                 if (page_private(head)) {
2817                         struct list_head *this, *next;
2818                         list_for_each_safe(this, next, &head->lru) {
2819                                 struct page *page;
2820                                 page = list_entry(this, struct page, lru);
2821                                 list_del(this);
2822                                 __free_page(page);
2823                         }
2824                 }
2825         }
2826 }