mm: try_to_free_swap replaces remove_exclusive_swap_page
[firefly-linux-kernel-4.4.55.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 #include <linux/memcontrol.h>
31
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
35
36 static DEFINE_SPINLOCK(swap_lock);
37 static unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
40 static int least_priority;
41
42 static const char Bad_file[] = "Bad swap file entry ";
43 static const char Unused_file[] = "Unused swap file entry ";
44 static const char Bad_offset[] = "Bad swap offset entry ";
45 static const char Unused_offset[] = "Unused swap offset entry ";
46
47 static struct swap_list_t swap_list = {-1, -1};
48
49 static struct swap_info_struct swap_info[MAX_SWAPFILES];
50
51 static DEFINE_MUTEX(swapon_mutex);
52
53 /*
54  * We need this because the bdev->unplug_fn can sleep and we cannot
55  * hold swap_lock while calling the unplug_fn. And swap_lock
56  * cannot be turned into a mutex.
57  */
58 static DECLARE_RWSEM(swap_unplug_sem);
59
60 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61 {
62         swp_entry_t entry;
63
64         down_read(&swap_unplug_sem);
65         entry.val = page_private(page);
66         if (PageSwapCache(page)) {
67                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68                 struct backing_dev_info *bdi;
69
70                 /*
71                  * If the page is removed from swapcache from under us (with a
72                  * racy try_to_unuse/swapoff) we need an additional reference
73                  * count to avoid reading garbage from page_private(page) above.
74                  * If the WARN_ON triggers during a swapoff it maybe the race
75                  * condition and it's harmless. However if it triggers without
76                  * swapoff it signals a problem.
77                  */
78                 WARN_ON(page_count(page) <= 1);
79
80                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
81                 blk_run_backing_dev(bdi, page);
82         }
83         up_read(&swap_unplug_sem);
84 }
85
86 #define SWAPFILE_CLUSTER        256
87 #define LATENCY_LIMIT           256
88
89 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
90 {
91         unsigned long offset, last_in_cluster;
92         int latency_ration = LATENCY_LIMIT;
93
94         /* 
95          * We try to cluster swap pages by allocating them sequentially
96          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
97          * way, however, we resort to first-free allocation, starting
98          * a new cluster.  This prevents us from scattering swap pages
99          * all over the entire swap partition, so that we reduce
100          * overall disk seek times between swap pages.  -- sct
101          * But we do now try to find an empty cluster.  -Andrea
102          */
103
104         si->flags += SWP_SCANNING;
105         if (unlikely(!si->cluster_nr)) {
106                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
107                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108                         goto lowest;
109                 spin_unlock(&swap_lock);
110
111                 offset = si->lowest_bit;
112                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113
114                 /* Locate the first empty (unaligned) cluster */
115                 for (; last_in_cluster <= si->highest_bit; offset++) {
116                         if (si->swap_map[offset])
117                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
118                         else if (offset == last_in_cluster) {
119                                 spin_lock(&swap_lock);
120                                 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
121                                 goto cluster;
122                         }
123                         if (unlikely(--latency_ration < 0)) {
124                                 cond_resched();
125                                 latency_ration = LATENCY_LIMIT;
126                         }
127                 }
128                 spin_lock(&swap_lock);
129                 goto lowest;
130         }
131
132         si->cluster_nr--;
133 cluster:
134         offset = si->cluster_next;
135         if (offset > si->highest_bit)
136 lowest:         offset = si->lowest_bit;
137 checks: if (!(si->flags & SWP_WRITEOK))
138                 goto no_page;
139         if (!si->highest_bit)
140                 goto no_page;
141         if (!si->swap_map[offset]) {
142                 if (offset == si->lowest_bit)
143                         si->lowest_bit++;
144                 if (offset == si->highest_bit)
145                         si->highest_bit--;
146                 si->inuse_pages++;
147                 if (si->inuse_pages == si->pages) {
148                         si->lowest_bit = si->max;
149                         si->highest_bit = 0;
150                 }
151                 si->swap_map[offset] = 1;
152                 si->cluster_next = offset + 1;
153                 si->flags -= SWP_SCANNING;
154                 return offset;
155         }
156
157         spin_unlock(&swap_lock);
158         while (++offset <= si->highest_bit) {
159                 if (!si->swap_map[offset]) {
160                         spin_lock(&swap_lock);
161                         goto checks;
162                 }
163                 if (unlikely(--latency_ration < 0)) {
164                         cond_resched();
165                         latency_ration = LATENCY_LIMIT;
166                 }
167         }
168         spin_lock(&swap_lock);
169         goto lowest;
170
171 no_page:
172         si->flags -= SWP_SCANNING;
173         return 0;
174 }
175
176 swp_entry_t get_swap_page(void)
177 {
178         struct swap_info_struct *si;
179         pgoff_t offset;
180         int type, next;
181         int wrapped = 0;
182
183         spin_lock(&swap_lock);
184         if (nr_swap_pages <= 0)
185                 goto noswap;
186         nr_swap_pages--;
187
188         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
189                 si = swap_info + type;
190                 next = si->next;
191                 if (next < 0 ||
192                     (!wrapped && si->prio != swap_info[next].prio)) {
193                         next = swap_list.head;
194                         wrapped++;
195                 }
196
197                 if (!si->highest_bit)
198                         continue;
199                 if (!(si->flags & SWP_WRITEOK))
200                         continue;
201
202                 swap_list.next = next;
203                 offset = scan_swap_map(si);
204                 if (offset) {
205                         spin_unlock(&swap_lock);
206                         return swp_entry(type, offset);
207                 }
208                 next = swap_list.next;
209         }
210
211         nr_swap_pages++;
212 noswap:
213         spin_unlock(&swap_lock);
214         return (swp_entry_t) {0};
215 }
216
217 swp_entry_t get_swap_page_of_type(int type)
218 {
219         struct swap_info_struct *si;
220         pgoff_t offset;
221
222         spin_lock(&swap_lock);
223         si = swap_info + type;
224         if (si->flags & SWP_WRITEOK) {
225                 nr_swap_pages--;
226                 offset = scan_swap_map(si);
227                 if (offset) {
228                         spin_unlock(&swap_lock);
229                         return swp_entry(type, offset);
230                 }
231                 nr_swap_pages++;
232         }
233         spin_unlock(&swap_lock);
234         return (swp_entry_t) {0};
235 }
236
237 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
238 {
239         struct swap_info_struct * p;
240         unsigned long offset, type;
241
242         if (!entry.val)
243                 goto out;
244         type = swp_type(entry);
245         if (type >= nr_swapfiles)
246                 goto bad_nofile;
247         p = & swap_info[type];
248         if (!(p->flags & SWP_USED))
249                 goto bad_device;
250         offset = swp_offset(entry);
251         if (offset >= p->max)
252                 goto bad_offset;
253         if (!p->swap_map[offset])
254                 goto bad_free;
255         spin_lock(&swap_lock);
256         return p;
257
258 bad_free:
259         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260         goto out;
261 bad_offset:
262         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263         goto out;
264 bad_device:
265         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266         goto out;
267 bad_nofile:
268         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
269 out:
270         return NULL;
271 }       
272
273 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
274 {
275         int count = p->swap_map[offset];
276
277         if (count < SWAP_MAP_MAX) {
278                 count--;
279                 p->swap_map[offset] = count;
280                 if (!count) {
281                         if (offset < p->lowest_bit)
282                                 p->lowest_bit = offset;
283                         if (offset > p->highest_bit)
284                                 p->highest_bit = offset;
285                         if (p->prio > swap_info[swap_list.next].prio)
286                                 swap_list.next = p - swap_info;
287                         nr_swap_pages++;
288                         p->inuse_pages--;
289                 }
290         }
291         return count;
292 }
293
294 /*
295  * Caller has made sure that the swapdevice corresponding to entry
296  * is still around or has not been recycled.
297  */
298 void swap_free(swp_entry_t entry)
299 {
300         struct swap_info_struct * p;
301
302         p = swap_info_get(entry);
303         if (p) {
304                 swap_entry_free(p, swp_offset(entry));
305                 spin_unlock(&swap_lock);
306         }
307 }
308
309 /*
310  * How many references to page are currently swapped out?
311  */
312 static inline int page_swapcount(struct page *page)
313 {
314         int count = 0;
315         struct swap_info_struct *p;
316         swp_entry_t entry;
317
318         entry.val = page_private(page);
319         p = swap_info_get(entry);
320         if (p) {
321                 /* Subtract the 1 for the swap cache itself */
322                 count = p->swap_map[swp_offset(entry)] - 1;
323                 spin_unlock(&swap_lock);
324         }
325         return count;
326 }
327
328 /*
329  * We can write to an anon page without COW if there are no other references
330  * to it.  And as a side-effect, free up its swap: because the old content
331  * on disk will never be read, and seeking back there to write new content
332  * later would only waste time away from clustering.
333  */
334 int reuse_swap_page(struct page *page)
335 {
336         int count;
337
338         VM_BUG_ON(!PageLocked(page));
339         count = page_mapcount(page);
340         if (count <= 1 && PageSwapCache(page)) {
341                 count += page_swapcount(page);
342                 if (count == 1 && !PageWriteback(page)) {
343                         delete_from_swap_cache(page);
344                         SetPageDirty(page);
345                 }
346         }
347         return count == 1;
348 }
349
350 /*
351  * If swap is getting full, or if there are no more mappings of this page,
352  * then try_to_free_swap is called to free its swap space.
353  */
354 int try_to_free_swap(struct page *page)
355 {
356         VM_BUG_ON(!PageLocked(page));
357
358         if (!PageSwapCache(page))
359                 return 0;
360         if (PageWriteback(page))
361                 return 0;
362         if (page_swapcount(page))
363                 return 0;
364
365         delete_from_swap_cache(page);
366         SetPageDirty(page);
367         return 1;
368 }
369
370 /*
371  * Free the swap entry like above, but also try to
372  * free the page cache entry if it is the last user.
373  */
374 void free_swap_and_cache(swp_entry_t entry)
375 {
376         struct swap_info_struct * p;
377         struct page *page = NULL;
378
379         if (is_migration_entry(entry))
380                 return;
381
382         p = swap_info_get(entry);
383         if (p) {
384                 if (swap_entry_free(p, swp_offset(entry)) == 1) {
385                         page = find_get_page(&swapper_space, entry.val);
386                         if (page && !trylock_page(page)) {
387                                 page_cache_release(page);
388                                 page = NULL;
389                         }
390                 }
391                 spin_unlock(&swap_lock);
392         }
393         if (page) {
394                 /*
395                  * Not mapped elsewhere, or swap space full? Free it!
396                  * Also recheck PageSwapCache now page is locked (above).
397                  */
398                 if (PageSwapCache(page) && !PageWriteback(page) &&
399                                 (!page_mapped(page) || vm_swap_full())) {
400                         delete_from_swap_cache(page);
401                         SetPageDirty(page);
402                 }
403                 unlock_page(page);
404                 page_cache_release(page);
405         }
406 }
407
408 #ifdef CONFIG_HIBERNATION
409 /*
410  * Find the swap type that corresponds to given device (if any).
411  *
412  * @offset - number of the PAGE_SIZE-sized block of the device, starting
413  * from 0, in which the swap header is expected to be located.
414  *
415  * This is needed for the suspend to disk (aka swsusp).
416  */
417 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
418 {
419         struct block_device *bdev = NULL;
420         int i;
421
422         if (device)
423                 bdev = bdget(device);
424
425         spin_lock(&swap_lock);
426         for (i = 0; i < nr_swapfiles; i++) {
427                 struct swap_info_struct *sis = swap_info + i;
428
429                 if (!(sis->flags & SWP_WRITEOK))
430                         continue;
431
432                 if (!bdev) {
433                         if (bdev_p)
434                                 *bdev_p = sis->bdev;
435
436                         spin_unlock(&swap_lock);
437                         return i;
438                 }
439                 if (bdev == sis->bdev) {
440                         struct swap_extent *se;
441
442                         se = list_entry(sis->extent_list.next,
443                                         struct swap_extent, list);
444                         if (se->start_block == offset) {
445                                 if (bdev_p)
446                                         *bdev_p = sis->bdev;
447
448                                 spin_unlock(&swap_lock);
449                                 bdput(bdev);
450                                 return i;
451                         }
452                 }
453         }
454         spin_unlock(&swap_lock);
455         if (bdev)
456                 bdput(bdev);
457
458         return -ENODEV;
459 }
460
461 /*
462  * Return either the total number of swap pages of given type, or the number
463  * of free pages of that type (depending on @free)
464  *
465  * This is needed for software suspend
466  */
467 unsigned int count_swap_pages(int type, int free)
468 {
469         unsigned int n = 0;
470
471         if (type < nr_swapfiles) {
472                 spin_lock(&swap_lock);
473                 if (swap_info[type].flags & SWP_WRITEOK) {
474                         n = swap_info[type].pages;
475                         if (free)
476                                 n -= swap_info[type].inuse_pages;
477                 }
478                 spin_unlock(&swap_lock);
479         }
480         return n;
481 }
482 #endif
483
484 /*
485  * No need to decide whether this PTE shares the swap entry with others,
486  * just let do_wp_page work it out if a write is requested later - to
487  * force COW, vm_page_prot omits write permission from any private vma.
488  */
489 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
490                 unsigned long addr, swp_entry_t entry, struct page *page)
491 {
492         spinlock_t *ptl;
493         pte_t *pte;
494         int ret = 1;
495
496         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
497                 ret = -ENOMEM;
498
499         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
500         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
501                 if (ret > 0)
502                         mem_cgroup_uncharge_page(page);
503                 ret = 0;
504                 goto out;
505         }
506
507         inc_mm_counter(vma->vm_mm, anon_rss);
508         get_page(page);
509         set_pte_at(vma->vm_mm, addr, pte,
510                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
511         page_add_anon_rmap(page, vma, addr);
512         swap_free(entry);
513         /*
514          * Move the page to the active list so it is not
515          * immediately swapped out again after swapon.
516          */
517         activate_page(page);
518 out:
519         pte_unmap_unlock(pte, ptl);
520         return ret;
521 }
522
523 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
524                                 unsigned long addr, unsigned long end,
525                                 swp_entry_t entry, struct page *page)
526 {
527         pte_t swp_pte = swp_entry_to_pte(entry);
528         pte_t *pte;
529         int ret = 0;
530
531         /*
532          * We don't actually need pte lock while scanning for swp_pte: since
533          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
534          * page table while we're scanning; though it could get zapped, and on
535          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
536          * of unmatched parts which look like swp_pte, so unuse_pte must
537          * recheck under pte lock.  Scanning without pte lock lets it be
538          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
539          */
540         pte = pte_offset_map(pmd, addr);
541         do {
542                 /*
543                  * swapoff spends a _lot_ of time in this loop!
544                  * Test inline before going to call unuse_pte.
545                  */
546                 if (unlikely(pte_same(*pte, swp_pte))) {
547                         pte_unmap(pte);
548                         ret = unuse_pte(vma, pmd, addr, entry, page);
549                         if (ret)
550                                 goto out;
551                         pte = pte_offset_map(pmd, addr);
552                 }
553         } while (pte++, addr += PAGE_SIZE, addr != end);
554         pte_unmap(pte - 1);
555 out:
556         return ret;
557 }
558
559 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
560                                 unsigned long addr, unsigned long end,
561                                 swp_entry_t entry, struct page *page)
562 {
563         pmd_t *pmd;
564         unsigned long next;
565         int ret;
566
567         pmd = pmd_offset(pud, addr);
568         do {
569                 next = pmd_addr_end(addr, end);
570                 if (pmd_none_or_clear_bad(pmd))
571                         continue;
572                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
573                 if (ret)
574                         return ret;
575         } while (pmd++, addr = next, addr != end);
576         return 0;
577 }
578
579 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
580                                 unsigned long addr, unsigned long end,
581                                 swp_entry_t entry, struct page *page)
582 {
583         pud_t *pud;
584         unsigned long next;
585         int ret;
586
587         pud = pud_offset(pgd, addr);
588         do {
589                 next = pud_addr_end(addr, end);
590                 if (pud_none_or_clear_bad(pud))
591                         continue;
592                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
593                 if (ret)
594                         return ret;
595         } while (pud++, addr = next, addr != end);
596         return 0;
597 }
598
599 static int unuse_vma(struct vm_area_struct *vma,
600                                 swp_entry_t entry, struct page *page)
601 {
602         pgd_t *pgd;
603         unsigned long addr, end, next;
604         int ret;
605
606         if (page->mapping) {
607                 addr = page_address_in_vma(page, vma);
608                 if (addr == -EFAULT)
609                         return 0;
610                 else
611                         end = addr + PAGE_SIZE;
612         } else {
613                 addr = vma->vm_start;
614                 end = vma->vm_end;
615         }
616
617         pgd = pgd_offset(vma->vm_mm, addr);
618         do {
619                 next = pgd_addr_end(addr, end);
620                 if (pgd_none_or_clear_bad(pgd))
621                         continue;
622                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
623                 if (ret)
624                         return ret;
625         } while (pgd++, addr = next, addr != end);
626         return 0;
627 }
628
629 static int unuse_mm(struct mm_struct *mm,
630                                 swp_entry_t entry, struct page *page)
631 {
632         struct vm_area_struct *vma;
633         int ret = 0;
634
635         if (!down_read_trylock(&mm->mmap_sem)) {
636                 /*
637                  * Activate page so shrink_inactive_list is unlikely to unmap
638                  * its ptes while lock is dropped, so swapoff can make progress.
639                  */
640                 activate_page(page);
641                 unlock_page(page);
642                 down_read(&mm->mmap_sem);
643                 lock_page(page);
644         }
645         for (vma = mm->mmap; vma; vma = vma->vm_next) {
646                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
647                         break;
648         }
649         up_read(&mm->mmap_sem);
650         return (ret < 0)? ret: 0;
651 }
652
653 /*
654  * Scan swap_map from current position to next entry still in use.
655  * Recycle to start on reaching the end, returning 0 when empty.
656  */
657 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
658                                         unsigned int prev)
659 {
660         unsigned int max = si->max;
661         unsigned int i = prev;
662         int count;
663
664         /*
665          * No need for swap_lock here: we're just looking
666          * for whether an entry is in use, not modifying it; false
667          * hits are okay, and sys_swapoff() has already prevented new
668          * allocations from this area (while holding swap_lock).
669          */
670         for (;;) {
671                 if (++i >= max) {
672                         if (!prev) {
673                                 i = 0;
674                                 break;
675                         }
676                         /*
677                          * No entries in use at top of swap_map,
678                          * loop back to start and recheck there.
679                          */
680                         max = prev + 1;
681                         prev = 0;
682                         i = 1;
683                 }
684                 count = si->swap_map[i];
685                 if (count && count != SWAP_MAP_BAD)
686                         break;
687         }
688         return i;
689 }
690
691 /*
692  * We completely avoid races by reading each swap page in advance,
693  * and then search for the process using it.  All the necessary
694  * page table adjustments can then be made atomically.
695  */
696 static int try_to_unuse(unsigned int type)
697 {
698         struct swap_info_struct * si = &swap_info[type];
699         struct mm_struct *start_mm;
700         unsigned short *swap_map;
701         unsigned short swcount;
702         struct page *page;
703         swp_entry_t entry;
704         unsigned int i = 0;
705         int retval = 0;
706         int reset_overflow = 0;
707         int shmem;
708
709         /*
710          * When searching mms for an entry, a good strategy is to
711          * start at the first mm we freed the previous entry from
712          * (though actually we don't notice whether we or coincidence
713          * freed the entry).  Initialize this start_mm with a hold.
714          *
715          * A simpler strategy would be to start at the last mm we
716          * freed the previous entry from; but that would take less
717          * advantage of mmlist ordering, which clusters forked mms
718          * together, child after parent.  If we race with dup_mmap(), we
719          * prefer to resolve parent before child, lest we miss entries
720          * duplicated after we scanned child: using last mm would invert
721          * that.  Though it's only a serious concern when an overflowed
722          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
723          */
724         start_mm = &init_mm;
725         atomic_inc(&init_mm.mm_users);
726
727         /*
728          * Keep on scanning until all entries have gone.  Usually,
729          * one pass through swap_map is enough, but not necessarily:
730          * there are races when an instance of an entry might be missed.
731          */
732         while ((i = find_next_to_unuse(si, i)) != 0) {
733                 if (signal_pending(current)) {
734                         retval = -EINTR;
735                         break;
736                 }
737
738                 /* 
739                  * Get a page for the entry, using the existing swap
740                  * cache page if there is one.  Otherwise, get a clean
741                  * page and read the swap into it. 
742                  */
743                 swap_map = &si->swap_map[i];
744                 entry = swp_entry(type, i);
745                 page = read_swap_cache_async(entry,
746                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
747                 if (!page) {
748                         /*
749                          * Either swap_duplicate() failed because entry
750                          * has been freed independently, and will not be
751                          * reused since sys_swapoff() already disabled
752                          * allocation from here, or alloc_page() failed.
753                          */
754                         if (!*swap_map)
755                                 continue;
756                         retval = -ENOMEM;
757                         break;
758                 }
759
760                 /*
761                  * Don't hold on to start_mm if it looks like exiting.
762                  */
763                 if (atomic_read(&start_mm->mm_users) == 1) {
764                         mmput(start_mm);
765                         start_mm = &init_mm;
766                         atomic_inc(&init_mm.mm_users);
767                 }
768
769                 /*
770                  * Wait for and lock page.  When do_swap_page races with
771                  * try_to_unuse, do_swap_page can handle the fault much
772                  * faster than try_to_unuse can locate the entry.  This
773                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
774                  * defer to do_swap_page in such a case - in some tests,
775                  * do_swap_page and try_to_unuse repeatedly compete.
776                  */
777                 wait_on_page_locked(page);
778                 wait_on_page_writeback(page);
779                 lock_page(page);
780                 wait_on_page_writeback(page);
781
782                 /*
783                  * Remove all references to entry.
784                  * Whenever we reach init_mm, there's no address space
785                  * to search, but use it as a reminder to search shmem.
786                  */
787                 shmem = 0;
788                 swcount = *swap_map;
789                 if (swcount > 1) {
790                         if (start_mm == &init_mm)
791                                 shmem = shmem_unuse(entry, page);
792                         else
793                                 retval = unuse_mm(start_mm, entry, page);
794                 }
795                 if (*swap_map > 1) {
796                         int set_start_mm = (*swap_map >= swcount);
797                         struct list_head *p = &start_mm->mmlist;
798                         struct mm_struct *new_start_mm = start_mm;
799                         struct mm_struct *prev_mm = start_mm;
800                         struct mm_struct *mm;
801
802                         atomic_inc(&new_start_mm->mm_users);
803                         atomic_inc(&prev_mm->mm_users);
804                         spin_lock(&mmlist_lock);
805                         while (*swap_map > 1 && !retval && !shmem &&
806                                         (p = p->next) != &start_mm->mmlist) {
807                                 mm = list_entry(p, struct mm_struct, mmlist);
808                                 if (!atomic_inc_not_zero(&mm->mm_users))
809                                         continue;
810                                 spin_unlock(&mmlist_lock);
811                                 mmput(prev_mm);
812                                 prev_mm = mm;
813
814                                 cond_resched();
815
816                                 swcount = *swap_map;
817                                 if (swcount <= 1)
818                                         ;
819                                 else if (mm == &init_mm) {
820                                         set_start_mm = 1;
821                                         shmem = shmem_unuse(entry, page);
822                                 } else
823                                         retval = unuse_mm(mm, entry, page);
824                                 if (set_start_mm && *swap_map < swcount) {
825                                         mmput(new_start_mm);
826                                         atomic_inc(&mm->mm_users);
827                                         new_start_mm = mm;
828                                         set_start_mm = 0;
829                                 }
830                                 spin_lock(&mmlist_lock);
831                         }
832                         spin_unlock(&mmlist_lock);
833                         mmput(prev_mm);
834                         mmput(start_mm);
835                         start_mm = new_start_mm;
836                 }
837                 if (shmem) {
838                         /* page has already been unlocked and released */
839                         if (shmem > 0)
840                                 continue;
841                         retval = shmem;
842                         break;
843                 }
844                 if (retval) {
845                         unlock_page(page);
846                         page_cache_release(page);
847                         break;
848                 }
849
850                 /*
851                  * How could swap count reach 0x7fff when the maximum
852                  * pid is 0x7fff, and there's no way to repeat a swap
853                  * page within an mm (except in shmem, where it's the
854                  * shared object which takes the reference count)?
855                  * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
856                  *
857                  * If that's wrong, then we should worry more about
858                  * exit_mmap() and do_munmap() cases described above:
859                  * we might be resetting SWAP_MAP_MAX too early here.
860                  * We know "Undead"s can happen, they're okay, so don't
861                  * report them; but do report if we reset SWAP_MAP_MAX.
862                  */
863                 if (*swap_map == SWAP_MAP_MAX) {
864                         spin_lock(&swap_lock);
865                         *swap_map = 1;
866                         spin_unlock(&swap_lock);
867                         reset_overflow = 1;
868                 }
869
870                 /*
871                  * If a reference remains (rare), we would like to leave
872                  * the page in the swap cache; but try_to_unmap could
873                  * then re-duplicate the entry once we drop page lock,
874                  * so we might loop indefinitely; also, that page could
875                  * not be swapped out to other storage meanwhile.  So:
876                  * delete from cache even if there's another reference,
877                  * after ensuring that the data has been saved to disk -
878                  * since if the reference remains (rarer), it will be
879                  * read from disk into another page.  Splitting into two
880                  * pages would be incorrect if swap supported "shared
881                  * private" pages, but they are handled by tmpfs files.
882                  */
883                 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
884                         struct writeback_control wbc = {
885                                 .sync_mode = WB_SYNC_NONE,
886                         };
887
888                         swap_writepage(page, &wbc);
889                         lock_page(page);
890                         wait_on_page_writeback(page);
891                 }
892                 if (PageSwapCache(page))
893                         delete_from_swap_cache(page);
894
895                 /*
896                  * So we could skip searching mms once swap count went
897                  * to 1, we did not mark any present ptes as dirty: must
898                  * mark page dirty so shrink_page_list will preserve it.
899                  */
900                 SetPageDirty(page);
901                 unlock_page(page);
902                 page_cache_release(page);
903
904                 /*
905                  * Make sure that we aren't completely killing
906                  * interactive performance.
907                  */
908                 cond_resched();
909         }
910
911         mmput(start_mm);
912         if (reset_overflow) {
913                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
914                 swap_overflow = 0;
915         }
916         return retval;
917 }
918
919 /*
920  * After a successful try_to_unuse, if no swap is now in use, we know
921  * we can empty the mmlist.  swap_lock must be held on entry and exit.
922  * Note that mmlist_lock nests inside swap_lock, and an mm must be
923  * added to the mmlist just after page_duplicate - before would be racy.
924  */
925 static void drain_mmlist(void)
926 {
927         struct list_head *p, *next;
928         unsigned int i;
929
930         for (i = 0; i < nr_swapfiles; i++)
931                 if (swap_info[i].inuse_pages)
932                         return;
933         spin_lock(&mmlist_lock);
934         list_for_each_safe(p, next, &init_mm.mmlist)
935                 list_del_init(p);
936         spin_unlock(&mmlist_lock);
937 }
938
939 /*
940  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
941  * corresponds to page offset `offset'.
942  */
943 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
944 {
945         struct swap_extent *se = sis->curr_swap_extent;
946         struct swap_extent *start_se = se;
947
948         for ( ; ; ) {
949                 struct list_head *lh;
950
951                 if (se->start_page <= offset &&
952                                 offset < (se->start_page + se->nr_pages)) {
953                         return se->start_block + (offset - se->start_page);
954                 }
955                 lh = se->list.next;
956                 if (lh == &sis->extent_list)
957                         lh = lh->next;
958                 se = list_entry(lh, struct swap_extent, list);
959                 sis->curr_swap_extent = se;
960                 BUG_ON(se == start_se);         /* It *must* be present */
961         }
962 }
963
964 #ifdef CONFIG_HIBERNATION
965 /*
966  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
967  * corresponding to given index in swap_info (swap type).
968  */
969 sector_t swapdev_block(int swap_type, pgoff_t offset)
970 {
971         struct swap_info_struct *sis;
972
973         if (swap_type >= nr_swapfiles)
974                 return 0;
975
976         sis = swap_info + swap_type;
977         return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
978 }
979 #endif /* CONFIG_HIBERNATION */
980
981 /*
982  * Free all of a swapdev's extent information
983  */
984 static void destroy_swap_extents(struct swap_info_struct *sis)
985 {
986         while (!list_empty(&sis->extent_list)) {
987                 struct swap_extent *se;
988
989                 se = list_entry(sis->extent_list.next,
990                                 struct swap_extent, list);
991                 list_del(&se->list);
992                 kfree(se);
993         }
994 }
995
996 /*
997  * Add a block range (and the corresponding page range) into this swapdev's
998  * extent list.  The extent list is kept sorted in page order.
999  *
1000  * This function rather assumes that it is called in ascending page order.
1001  */
1002 static int
1003 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1004                 unsigned long nr_pages, sector_t start_block)
1005 {
1006         struct swap_extent *se;
1007         struct swap_extent *new_se;
1008         struct list_head *lh;
1009
1010         lh = sis->extent_list.prev;     /* The highest page extent */
1011         if (lh != &sis->extent_list) {
1012                 se = list_entry(lh, struct swap_extent, list);
1013                 BUG_ON(se->start_page + se->nr_pages != start_page);
1014                 if (se->start_block + se->nr_pages == start_block) {
1015                         /* Merge it */
1016                         se->nr_pages += nr_pages;
1017                         return 0;
1018                 }
1019         }
1020
1021         /*
1022          * No merge.  Insert a new extent, preserving ordering.
1023          */
1024         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1025         if (new_se == NULL)
1026                 return -ENOMEM;
1027         new_se->start_page = start_page;
1028         new_se->nr_pages = nr_pages;
1029         new_se->start_block = start_block;
1030
1031         list_add_tail(&new_se->list, &sis->extent_list);
1032         return 1;
1033 }
1034
1035 /*
1036  * A `swap extent' is a simple thing which maps a contiguous range of pages
1037  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1038  * is built at swapon time and is then used at swap_writepage/swap_readpage
1039  * time for locating where on disk a page belongs.
1040  *
1041  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1042  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1043  * swap files identically.
1044  *
1045  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1046  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1047  * swapfiles are handled *identically* after swapon time.
1048  *
1049  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1050  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1051  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1052  * requirements, they are simply tossed out - we will never use those blocks
1053  * for swapping.
1054  *
1055  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1056  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1057  * which will scribble on the fs.
1058  *
1059  * The amount of disk space which a single swap extent represents varies.
1060  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1061  * extents in the list.  To avoid much list walking, we cache the previous
1062  * search location in `curr_swap_extent', and start new searches from there.
1063  * This is extremely effective.  The average number of iterations in
1064  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1065  */
1066 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1067 {
1068         struct inode *inode;
1069         unsigned blocks_per_page;
1070         unsigned long page_no;
1071         unsigned blkbits;
1072         sector_t probe_block;
1073         sector_t last_block;
1074         sector_t lowest_block = -1;
1075         sector_t highest_block = 0;
1076         int nr_extents = 0;
1077         int ret;
1078
1079         inode = sis->swap_file->f_mapping->host;
1080         if (S_ISBLK(inode->i_mode)) {
1081                 ret = add_swap_extent(sis, 0, sis->max, 0);
1082                 *span = sis->pages;
1083                 goto done;
1084         }
1085
1086         blkbits = inode->i_blkbits;
1087         blocks_per_page = PAGE_SIZE >> blkbits;
1088
1089         /*
1090          * Map all the blocks into the extent list.  This code doesn't try
1091          * to be very smart.
1092          */
1093         probe_block = 0;
1094         page_no = 0;
1095         last_block = i_size_read(inode) >> blkbits;
1096         while ((probe_block + blocks_per_page) <= last_block &&
1097                         page_no < sis->max) {
1098                 unsigned block_in_page;
1099                 sector_t first_block;
1100
1101                 first_block = bmap(inode, probe_block);
1102                 if (first_block == 0)
1103                         goto bad_bmap;
1104
1105                 /*
1106                  * It must be PAGE_SIZE aligned on-disk
1107                  */
1108                 if (first_block & (blocks_per_page - 1)) {
1109                         probe_block++;
1110                         goto reprobe;
1111                 }
1112
1113                 for (block_in_page = 1; block_in_page < blocks_per_page;
1114                                         block_in_page++) {
1115                         sector_t block;
1116
1117                         block = bmap(inode, probe_block + block_in_page);
1118                         if (block == 0)
1119                                 goto bad_bmap;
1120                         if (block != first_block + block_in_page) {
1121                                 /* Discontiguity */
1122                                 probe_block++;
1123                                 goto reprobe;
1124                         }
1125                 }
1126
1127                 first_block >>= (PAGE_SHIFT - blkbits);
1128                 if (page_no) {  /* exclude the header page */
1129                         if (first_block < lowest_block)
1130                                 lowest_block = first_block;
1131                         if (first_block > highest_block)
1132                                 highest_block = first_block;
1133                 }
1134
1135                 /*
1136                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1137                  */
1138                 ret = add_swap_extent(sis, page_no, 1, first_block);
1139                 if (ret < 0)
1140                         goto out;
1141                 nr_extents += ret;
1142                 page_no++;
1143                 probe_block += blocks_per_page;
1144 reprobe:
1145                 continue;
1146         }
1147         ret = nr_extents;
1148         *span = 1 + highest_block - lowest_block;
1149         if (page_no == 0)
1150                 page_no = 1;    /* force Empty message */
1151         sis->max = page_no;
1152         sis->pages = page_no - 1;
1153         sis->highest_bit = page_no - 1;
1154 done:
1155         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1156                                         struct swap_extent, list);
1157         goto out;
1158 bad_bmap:
1159         printk(KERN_ERR "swapon: swapfile has holes\n");
1160         ret = -EINVAL;
1161 out:
1162         return ret;
1163 }
1164
1165 #if 0   /* We don't need this yet */
1166 #include <linux/backing-dev.h>
1167 int page_queue_congested(struct page *page)
1168 {
1169         struct backing_dev_info *bdi;
1170
1171         VM_BUG_ON(!PageLocked(page));   /* It pins the swap_info_struct */
1172
1173         if (PageSwapCache(page)) {
1174                 swp_entry_t entry = { .val = page_private(page) };
1175                 struct swap_info_struct *sis;
1176
1177                 sis = get_swap_info_struct(swp_type(entry));
1178                 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1179         } else
1180                 bdi = page->mapping->backing_dev_info;
1181         return bdi_write_congested(bdi);
1182 }
1183 #endif
1184
1185 asmlinkage long sys_swapoff(const char __user * specialfile)
1186 {
1187         struct swap_info_struct * p = NULL;
1188         unsigned short *swap_map;
1189         struct file *swap_file, *victim;
1190         struct address_space *mapping;
1191         struct inode *inode;
1192         char * pathname;
1193         int i, type, prev;
1194         int err;
1195         
1196         if (!capable(CAP_SYS_ADMIN))
1197                 return -EPERM;
1198
1199         pathname = getname(specialfile);
1200         err = PTR_ERR(pathname);
1201         if (IS_ERR(pathname))
1202                 goto out;
1203
1204         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1205         putname(pathname);
1206         err = PTR_ERR(victim);
1207         if (IS_ERR(victim))
1208                 goto out;
1209
1210         mapping = victim->f_mapping;
1211         prev = -1;
1212         spin_lock(&swap_lock);
1213         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1214                 p = swap_info + type;
1215                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1216                         if (p->swap_file->f_mapping == mapping)
1217                                 break;
1218                 }
1219                 prev = type;
1220         }
1221         if (type < 0) {
1222                 err = -EINVAL;
1223                 spin_unlock(&swap_lock);
1224                 goto out_dput;
1225         }
1226         if (!security_vm_enough_memory(p->pages))
1227                 vm_unacct_memory(p->pages);
1228         else {
1229                 err = -ENOMEM;
1230                 spin_unlock(&swap_lock);
1231                 goto out_dput;
1232         }
1233         if (prev < 0) {
1234                 swap_list.head = p->next;
1235         } else {
1236                 swap_info[prev].next = p->next;
1237         }
1238         if (type == swap_list.next) {
1239                 /* just pick something that's safe... */
1240                 swap_list.next = swap_list.head;
1241         }
1242         if (p->prio < 0) {
1243                 for (i = p->next; i >= 0; i = swap_info[i].next)
1244                         swap_info[i].prio = p->prio--;
1245                 least_priority++;
1246         }
1247         nr_swap_pages -= p->pages;
1248         total_swap_pages -= p->pages;
1249         p->flags &= ~SWP_WRITEOK;
1250         spin_unlock(&swap_lock);
1251
1252         current->flags |= PF_SWAPOFF;
1253         err = try_to_unuse(type);
1254         current->flags &= ~PF_SWAPOFF;
1255
1256         if (err) {
1257                 /* re-insert swap space back into swap_list */
1258                 spin_lock(&swap_lock);
1259                 if (p->prio < 0)
1260                         p->prio = --least_priority;
1261                 prev = -1;
1262                 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1263                         if (p->prio >= swap_info[i].prio)
1264                                 break;
1265                         prev = i;
1266                 }
1267                 p->next = i;
1268                 if (prev < 0)
1269                         swap_list.head = swap_list.next = p - swap_info;
1270                 else
1271                         swap_info[prev].next = p - swap_info;
1272                 nr_swap_pages += p->pages;
1273                 total_swap_pages += p->pages;
1274                 p->flags |= SWP_WRITEOK;
1275                 spin_unlock(&swap_lock);
1276                 goto out_dput;
1277         }
1278
1279         /* wait for any unplug function to finish */
1280         down_write(&swap_unplug_sem);
1281         up_write(&swap_unplug_sem);
1282
1283         destroy_swap_extents(p);
1284         mutex_lock(&swapon_mutex);
1285         spin_lock(&swap_lock);
1286         drain_mmlist();
1287
1288         /* wait for anyone still in scan_swap_map */
1289         p->highest_bit = 0;             /* cuts scans short */
1290         while (p->flags >= SWP_SCANNING) {
1291                 spin_unlock(&swap_lock);
1292                 schedule_timeout_uninterruptible(1);
1293                 spin_lock(&swap_lock);
1294         }
1295
1296         swap_file = p->swap_file;
1297         p->swap_file = NULL;
1298         p->max = 0;
1299         swap_map = p->swap_map;
1300         p->swap_map = NULL;
1301         p->flags = 0;
1302         spin_unlock(&swap_lock);
1303         mutex_unlock(&swapon_mutex);
1304         vfree(swap_map);
1305         inode = mapping->host;
1306         if (S_ISBLK(inode->i_mode)) {
1307                 struct block_device *bdev = I_BDEV(inode);
1308                 set_blocksize(bdev, p->old_block_size);
1309                 bd_release(bdev);
1310         } else {
1311                 mutex_lock(&inode->i_mutex);
1312                 inode->i_flags &= ~S_SWAPFILE;
1313                 mutex_unlock(&inode->i_mutex);
1314         }
1315         filp_close(swap_file, NULL);
1316         err = 0;
1317
1318 out_dput:
1319         filp_close(victim, NULL);
1320 out:
1321         return err;
1322 }
1323
1324 #ifdef CONFIG_PROC_FS
1325 /* iterator */
1326 static void *swap_start(struct seq_file *swap, loff_t *pos)
1327 {
1328         struct swap_info_struct *ptr = swap_info;
1329         int i;
1330         loff_t l = *pos;
1331
1332         mutex_lock(&swapon_mutex);
1333
1334         if (!l)
1335                 return SEQ_START_TOKEN;
1336
1337         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1338                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1339                         continue;
1340                 if (!--l)
1341                         return ptr;
1342         }
1343
1344         return NULL;
1345 }
1346
1347 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1348 {
1349         struct swap_info_struct *ptr;
1350         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1351
1352         if (v == SEQ_START_TOKEN)
1353                 ptr = swap_info;
1354         else {
1355                 ptr = v;
1356                 ptr++;
1357         }
1358
1359         for (; ptr < endptr; ptr++) {
1360                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1361                         continue;
1362                 ++*pos;
1363                 return ptr;
1364         }
1365
1366         return NULL;
1367 }
1368
1369 static void swap_stop(struct seq_file *swap, void *v)
1370 {
1371         mutex_unlock(&swapon_mutex);
1372 }
1373
1374 static int swap_show(struct seq_file *swap, void *v)
1375 {
1376         struct swap_info_struct *ptr = v;
1377         struct file *file;
1378         int len;
1379
1380         if (ptr == SEQ_START_TOKEN) {
1381                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1382                 return 0;
1383         }
1384
1385         file = ptr->swap_file;
1386         len = seq_path(swap, &file->f_path, " \t\n\\");
1387         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1388                        len < 40 ? 40 - len : 1, " ",
1389                        S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1390                                 "partition" : "file\t",
1391                        ptr->pages << (PAGE_SHIFT - 10),
1392                        ptr->inuse_pages << (PAGE_SHIFT - 10),
1393                        ptr->prio);
1394         return 0;
1395 }
1396
1397 static const struct seq_operations swaps_op = {
1398         .start =        swap_start,
1399         .next =         swap_next,
1400         .stop =         swap_stop,
1401         .show =         swap_show
1402 };
1403
1404 static int swaps_open(struct inode *inode, struct file *file)
1405 {
1406         return seq_open(file, &swaps_op);
1407 }
1408
1409 static const struct file_operations proc_swaps_operations = {
1410         .open           = swaps_open,
1411         .read           = seq_read,
1412         .llseek         = seq_lseek,
1413         .release        = seq_release,
1414 };
1415
1416 static int __init procswaps_init(void)
1417 {
1418         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1419         return 0;
1420 }
1421 __initcall(procswaps_init);
1422 #endif /* CONFIG_PROC_FS */
1423
1424 #ifdef MAX_SWAPFILES_CHECK
1425 static int __init max_swapfiles_check(void)
1426 {
1427         MAX_SWAPFILES_CHECK();
1428         return 0;
1429 }
1430 late_initcall(max_swapfiles_check);
1431 #endif
1432
1433 /*
1434  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1435  *
1436  * The swapon system call
1437  */
1438 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1439 {
1440         struct swap_info_struct * p;
1441         char *name = NULL;
1442         struct block_device *bdev = NULL;
1443         struct file *swap_file = NULL;
1444         struct address_space *mapping;
1445         unsigned int type;
1446         int i, prev;
1447         int error;
1448         union swap_header *swap_header = NULL;
1449         int swap_header_version;
1450         unsigned int nr_good_pages = 0;
1451         int nr_extents = 0;
1452         sector_t span;
1453         unsigned long maxpages = 1;
1454         int swapfilesize;
1455         unsigned short *swap_map = NULL;
1456         struct page *page = NULL;
1457         struct inode *inode = NULL;
1458         int did_down = 0;
1459
1460         if (!capable(CAP_SYS_ADMIN))
1461                 return -EPERM;
1462         spin_lock(&swap_lock);
1463         p = swap_info;
1464         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1465                 if (!(p->flags & SWP_USED))
1466                         break;
1467         error = -EPERM;
1468         if (type >= MAX_SWAPFILES) {
1469                 spin_unlock(&swap_lock);
1470                 goto out;
1471         }
1472         if (type >= nr_swapfiles)
1473                 nr_swapfiles = type+1;
1474         memset(p, 0, sizeof(*p));
1475         INIT_LIST_HEAD(&p->extent_list);
1476         p->flags = SWP_USED;
1477         p->next = -1;
1478         spin_unlock(&swap_lock);
1479         name = getname(specialfile);
1480         error = PTR_ERR(name);
1481         if (IS_ERR(name)) {
1482                 name = NULL;
1483                 goto bad_swap_2;
1484         }
1485         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1486         error = PTR_ERR(swap_file);
1487         if (IS_ERR(swap_file)) {
1488                 swap_file = NULL;
1489                 goto bad_swap_2;
1490         }
1491
1492         p->swap_file = swap_file;
1493         mapping = swap_file->f_mapping;
1494         inode = mapping->host;
1495
1496         error = -EBUSY;
1497         for (i = 0; i < nr_swapfiles; i++) {
1498                 struct swap_info_struct *q = &swap_info[i];
1499
1500                 if (i == type || !q->swap_file)
1501                         continue;
1502                 if (mapping == q->swap_file->f_mapping)
1503                         goto bad_swap;
1504         }
1505
1506         error = -EINVAL;
1507         if (S_ISBLK(inode->i_mode)) {
1508                 bdev = I_BDEV(inode);
1509                 error = bd_claim(bdev, sys_swapon);
1510                 if (error < 0) {
1511                         bdev = NULL;
1512                         error = -EINVAL;
1513                         goto bad_swap;
1514                 }
1515                 p->old_block_size = block_size(bdev);
1516                 error = set_blocksize(bdev, PAGE_SIZE);
1517                 if (error < 0)
1518                         goto bad_swap;
1519                 p->bdev = bdev;
1520         } else if (S_ISREG(inode->i_mode)) {
1521                 p->bdev = inode->i_sb->s_bdev;
1522                 mutex_lock(&inode->i_mutex);
1523                 did_down = 1;
1524                 if (IS_SWAPFILE(inode)) {
1525                         error = -EBUSY;
1526                         goto bad_swap;
1527                 }
1528         } else {
1529                 goto bad_swap;
1530         }
1531
1532         swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1533
1534         /*
1535          * Read the swap header.
1536          */
1537         if (!mapping->a_ops->readpage) {
1538                 error = -EINVAL;
1539                 goto bad_swap;
1540         }
1541         page = read_mapping_page(mapping, 0, swap_file);
1542         if (IS_ERR(page)) {
1543                 error = PTR_ERR(page);
1544                 goto bad_swap;
1545         }
1546         kmap(page);
1547         swap_header = page_address(page);
1548
1549         if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1550                 swap_header_version = 1;
1551         else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1552                 swap_header_version = 2;
1553         else {
1554                 printk(KERN_ERR "Unable to find swap-space signature\n");
1555                 error = -EINVAL;
1556                 goto bad_swap;
1557         }
1558         
1559         switch (swap_header_version) {
1560         case 1:
1561                 printk(KERN_ERR "version 0 swap is no longer supported. "
1562                         "Use mkswap -v1 %s\n", name);
1563                 error = -EINVAL;
1564                 goto bad_swap;
1565         case 2:
1566                 /* swap partition endianess hack... */
1567                 if (swab32(swap_header->info.version) == 1) {
1568                         swab32s(&swap_header->info.version);
1569                         swab32s(&swap_header->info.last_page);
1570                         swab32s(&swap_header->info.nr_badpages);
1571                         for (i = 0; i < swap_header->info.nr_badpages; i++)
1572                                 swab32s(&swap_header->info.badpages[i]);
1573                 }
1574                 /* Check the swap header's sub-version and the size of
1575                    the swap file and bad block lists */
1576                 if (swap_header->info.version != 1) {
1577                         printk(KERN_WARNING
1578                                "Unable to handle swap header version %d\n",
1579                                swap_header->info.version);
1580                         error = -EINVAL;
1581                         goto bad_swap;
1582                 }
1583
1584                 p->lowest_bit  = 1;
1585                 p->cluster_next = 1;
1586
1587                 /*
1588                  * Find out how many pages are allowed for a single swap
1589                  * device. There are two limiting factors: 1) the number of
1590                  * bits for the swap offset in the swp_entry_t type and
1591                  * 2) the number of bits in the a swap pte as defined by
1592                  * the different architectures. In order to find the
1593                  * largest possible bit mask a swap entry with swap type 0
1594                  * and swap offset ~0UL is created, encoded to a swap pte,
1595                  * decoded to a swp_entry_t again and finally the swap
1596                  * offset is extracted. This will mask all the bits from
1597                  * the initial ~0UL mask that can't be encoded in either
1598                  * the swp_entry_t or the architecture definition of a
1599                  * swap pte.
1600                  */
1601                 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1602                 if (maxpages > swap_header->info.last_page)
1603                         maxpages = swap_header->info.last_page;
1604                 p->highest_bit = maxpages - 1;
1605
1606                 error = -EINVAL;
1607                 if (!maxpages)
1608                         goto bad_swap;
1609                 if (swapfilesize && maxpages > swapfilesize) {
1610                         printk(KERN_WARNING
1611                                "Swap area shorter than signature indicates\n");
1612                         goto bad_swap;
1613                 }
1614                 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1615                         goto bad_swap;
1616                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1617                         goto bad_swap;
1618
1619                 /* OK, set up the swap map and apply the bad block list */
1620                 swap_map = vmalloc(maxpages * sizeof(short));
1621                 if (!swap_map) {
1622                         error = -ENOMEM;
1623                         goto bad_swap;
1624                 }
1625
1626                 error = 0;
1627                 memset(swap_map, 0, maxpages * sizeof(short));
1628                 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1629                         int page_nr = swap_header->info.badpages[i];
1630                         if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1631                                 error = -EINVAL;
1632                         else
1633                                 swap_map[page_nr] = SWAP_MAP_BAD;
1634                 }
1635                 nr_good_pages = swap_header->info.last_page -
1636                                 swap_header->info.nr_badpages -
1637                                 1 /* header page */;
1638                 if (error)
1639                         goto bad_swap;
1640         }
1641
1642         if (nr_good_pages) {
1643                 swap_map[0] = SWAP_MAP_BAD;
1644                 p->max = maxpages;
1645                 p->pages = nr_good_pages;
1646                 nr_extents = setup_swap_extents(p, &span);
1647                 if (nr_extents < 0) {
1648                         error = nr_extents;
1649                         goto bad_swap;
1650                 }
1651                 nr_good_pages = p->pages;
1652         }
1653         if (!nr_good_pages) {
1654                 printk(KERN_WARNING "Empty swap-file\n");
1655                 error = -EINVAL;
1656                 goto bad_swap;
1657         }
1658
1659         mutex_lock(&swapon_mutex);
1660         spin_lock(&swap_lock);
1661         if (swap_flags & SWAP_FLAG_PREFER)
1662                 p->prio =
1663                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1664         else
1665                 p->prio = --least_priority;
1666         p->swap_map = swap_map;
1667         p->flags = SWP_ACTIVE;
1668         nr_swap_pages += nr_good_pages;
1669         total_swap_pages += nr_good_pages;
1670
1671         printk(KERN_INFO "Adding %uk swap on %s.  "
1672                         "Priority:%d extents:%d across:%lluk\n",
1673                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1674                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1675
1676         /* insert swap space into swap_list: */
1677         prev = -1;
1678         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1679                 if (p->prio >= swap_info[i].prio) {
1680                         break;
1681                 }
1682                 prev = i;
1683         }
1684         p->next = i;
1685         if (prev < 0) {
1686                 swap_list.head = swap_list.next = p - swap_info;
1687         } else {
1688                 swap_info[prev].next = p - swap_info;
1689         }
1690         spin_unlock(&swap_lock);
1691         mutex_unlock(&swapon_mutex);
1692         error = 0;
1693         goto out;
1694 bad_swap:
1695         if (bdev) {
1696                 set_blocksize(bdev, p->old_block_size);
1697                 bd_release(bdev);
1698         }
1699         destroy_swap_extents(p);
1700 bad_swap_2:
1701         spin_lock(&swap_lock);
1702         p->swap_file = NULL;
1703         p->flags = 0;
1704         spin_unlock(&swap_lock);
1705         vfree(swap_map);
1706         if (swap_file)
1707                 filp_close(swap_file, NULL);
1708 out:
1709         if (page && !IS_ERR(page)) {
1710                 kunmap(page);
1711                 page_cache_release(page);
1712         }
1713         if (name)
1714                 putname(name);
1715         if (did_down) {
1716                 if (!error)
1717                         inode->i_flags |= S_SWAPFILE;
1718                 mutex_unlock(&inode->i_mutex);
1719         }
1720         return error;
1721 }
1722
1723 void si_swapinfo(struct sysinfo *val)
1724 {
1725         unsigned int i;
1726         unsigned long nr_to_be_unused = 0;
1727
1728         spin_lock(&swap_lock);
1729         for (i = 0; i < nr_swapfiles; i++) {
1730                 if (!(swap_info[i].flags & SWP_USED) ||
1731                      (swap_info[i].flags & SWP_WRITEOK))
1732                         continue;
1733                 nr_to_be_unused += swap_info[i].inuse_pages;
1734         }
1735         val->freeswap = nr_swap_pages + nr_to_be_unused;
1736         val->totalswap = total_swap_pages + nr_to_be_unused;
1737         spin_unlock(&swap_lock);
1738 }
1739
1740 /*
1741  * Verify that a swap entry is valid and increment its swap map count.
1742  *
1743  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1744  * "permanent", but will be reclaimed by the next swapoff.
1745  */
1746 int swap_duplicate(swp_entry_t entry)
1747 {
1748         struct swap_info_struct * p;
1749         unsigned long offset, type;
1750         int result = 0;
1751
1752         if (is_migration_entry(entry))
1753                 return 1;
1754
1755         type = swp_type(entry);
1756         if (type >= nr_swapfiles)
1757                 goto bad_file;
1758         p = type + swap_info;
1759         offset = swp_offset(entry);
1760
1761         spin_lock(&swap_lock);
1762         if (offset < p->max && p->swap_map[offset]) {
1763                 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1764                         p->swap_map[offset]++;
1765                         result = 1;
1766                 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1767                         if (swap_overflow++ < 5)
1768                                 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1769                         p->swap_map[offset] = SWAP_MAP_MAX;
1770                         result = 1;
1771                 }
1772         }
1773         spin_unlock(&swap_lock);
1774 out:
1775         return result;
1776
1777 bad_file:
1778         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1779         goto out;
1780 }
1781
1782 struct swap_info_struct *
1783 get_swap_info_struct(unsigned type)
1784 {
1785         return &swap_info[type];
1786 }
1787
1788 /*
1789  * swap_lock prevents swap_map being freed. Don't grab an extra
1790  * reference on the swaphandle, it doesn't matter if it becomes unused.
1791  */
1792 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1793 {
1794         struct swap_info_struct *si;
1795         int our_page_cluster = page_cluster;
1796         pgoff_t target, toff;
1797         pgoff_t base, end;
1798         int nr_pages = 0;
1799
1800         if (!our_page_cluster)  /* no readahead */
1801                 return 0;
1802
1803         si = &swap_info[swp_type(entry)];
1804         target = swp_offset(entry);
1805         base = (target >> our_page_cluster) << our_page_cluster;
1806         end = base + (1 << our_page_cluster);
1807         if (!base)              /* first page is swap header */
1808                 base++;
1809
1810         spin_lock(&swap_lock);
1811         if (end > si->max)      /* don't go beyond end of map */
1812                 end = si->max;
1813
1814         /* Count contiguous allocated slots above our target */
1815         for (toff = target; ++toff < end; nr_pages++) {
1816                 /* Don't read in free or bad pages */
1817                 if (!si->swap_map[toff])
1818                         break;
1819                 if (si->swap_map[toff] == SWAP_MAP_BAD)
1820                         break;
1821         }
1822         /* Count contiguous allocated slots below our target */
1823         for (toff = target; --toff >= base; nr_pages++) {
1824                 /* Don't read in free or bad pages */
1825                 if (!si->swap_map[toff])
1826                         break;
1827                 if (si->swap_map[toff] == SWAP_MAP_BAD)
1828                         break;
1829         }
1830         spin_unlock(&swap_lock);
1831
1832         /*
1833          * Indicate starting offset, and return number of pages to get:
1834          * if only 1, say 0, since there's then no readahead to be done.
1835          */
1836         *offset = ++toff;
1837         return nr_pages? ++nr_pages: 0;
1838 }