vmscan: add shrink_slab tracepoints
[firefly-linux-kernel-4.4.55.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int swappiness;
99
100         int order;
101
102         /*
103          * Intend to reclaim enough continuous memory rather than reclaim
104          * enough amount of memory. i.e, mode for high order allocation.
105          */
106         reclaim_mode_t reclaim_mode;
107
108         /* Which cgroup do we reclaim from */
109         struct mem_cgroup *mem_cgroup;
110
111         /*
112          * Nodemask of nodes allowed by the caller. If NULL, all nodes
113          * are scanned.
114          */
115         nodemask_t      *nodemask;
116 };
117
118 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field)                    \
122         do {                                                            \
123                 if ((_page)->lru.prev != _base) {                       \
124                         struct page *prev;                              \
125                                                                         \
126                         prev = lru_to_page(&(_page->lru));              \
127                         prefetch(&prev->_field);                        \
128                 }                                                       \
129         } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
136         do {                                                            \
137                 if ((_page)->lru.prev != _base) {                       \
138                         struct page *prev;                              \
139                                                                         \
140                         prev = lru_to_page(&(_page->lru));              \
141                         prefetchw(&prev->_field);                       \
142                 }                                                       \
143         } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147
148 /*
149  * From 0 .. 100.  Higher means more swappy.
150  */
151 int vm_swappiness = 60;
152 long vm_total_pages;    /* The total number of pages which the VM controls */
153
154 static LIST_HEAD(shrinker_list);
155 static DECLARE_RWSEM(shrinker_rwsem);
156
157 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
158 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
159 #else
160 #define scanning_global_lru(sc) (1)
161 #endif
162
163 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164                                                   struct scan_control *sc)
165 {
166         if (!scanning_global_lru(sc))
167                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169         return &zone->reclaim_stat;
170 }
171
172 static unsigned long zone_nr_lru_pages(struct zone *zone,
173                                 struct scan_control *sc, enum lru_list lru)
174 {
175         if (!scanning_global_lru(sc))
176                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         shrinker->nr = 0;
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 unsigned long total_scan;
252                 unsigned long max_pass;
253                 int shrink_ret = 0;
254
255                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
256                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
257                 delta *= max_pass;
258                 do_div(delta, lru_pages + 1);
259                 shrinker->nr += delta;
260                 if (shrinker->nr < 0) {
261                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
262                                "delete nr=%ld\n",
263                                shrinker->shrink, shrinker->nr);
264                         shrinker->nr = max_pass;
265                 }
266
267                 /*
268                  * Avoid risking looping forever due to too large nr value:
269                  * never try to free more than twice the estimate number of
270                  * freeable entries.
271                  */
272                 if (shrinker->nr > max_pass * 2)
273                         shrinker->nr = max_pass * 2;
274
275                 total_scan = shrinker->nr;
276                 shrinker->nr = 0;
277
278                 trace_mm_shrink_slab_start(shrinker, shrink, total_scan,
279                                         nr_pages_scanned, lru_pages,
280                                         max_pass, delta, total_scan);
281
282                 while (total_scan >= SHRINK_BATCH) {
283                         long this_scan = SHRINK_BATCH;
284                         int nr_before;
285
286                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
288                                                         this_scan);
289                         if (shrink_ret == -1)
290                                 break;
291                         if (shrink_ret < nr_before)
292                                 ret += nr_before - shrink_ret;
293                         count_vm_events(SLABS_SCANNED, this_scan);
294                         total_scan -= this_scan;
295
296                         cond_resched();
297                 }
298
299                 shrinker->nr += total_scan;
300                 trace_mm_shrink_slab_end(shrinker, shrink_ret, total_scan,
301                                          shrinker->nr);
302         }
303         up_read(&shrinker_rwsem);
304 out:
305         cond_resched();
306         return ret;
307 }
308
309 static void set_reclaim_mode(int priority, struct scan_control *sc,
310                                    bool sync)
311 {
312         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
313
314         /*
315          * Initially assume we are entering either lumpy reclaim or
316          * reclaim/compaction.Depending on the order, we will either set the
317          * sync mode or just reclaim order-0 pages later.
318          */
319         if (COMPACTION_BUILD)
320                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
321         else
322                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
323
324         /*
325          * Avoid using lumpy reclaim or reclaim/compaction if possible by
326          * restricting when its set to either costly allocations or when
327          * under memory pressure
328          */
329         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
330                 sc->reclaim_mode |= syncmode;
331         else if (sc->order && priority < DEF_PRIORITY - 2)
332                 sc->reclaim_mode |= syncmode;
333         else
334                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
335 }
336
337 static void reset_reclaim_mode(struct scan_control *sc)
338 {
339         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
340 }
341
342 static inline int is_page_cache_freeable(struct page *page)
343 {
344         /*
345          * A freeable page cache page is referenced only by the caller
346          * that isolated the page, the page cache radix tree and
347          * optional buffer heads at page->private.
348          */
349         return page_count(page) - page_has_private(page) == 2;
350 }
351
352 static int may_write_to_queue(struct backing_dev_info *bdi,
353                               struct scan_control *sc)
354 {
355         if (current->flags & PF_SWAPWRITE)
356                 return 1;
357         if (!bdi_write_congested(bdi))
358                 return 1;
359         if (bdi == current->backing_dev_info)
360                 return 1;
361
362         /* lumpy reclaim for hugepage often need a lot of write */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 return 1;
365         return 0;
366 }
367
368 /*
369  * We detected a synchronous write error writing a page out.  Probably
370  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
371  * fsync(), msync() or close().
372  *
373  * The tricky part is that after writepage we cannot touch the mapping: nothing
374  * prevents it from being freed up.  But we have a ref on the page and once
375  * that page is locked, the mapping is pinned.
376  *
377  * We're allowed to run sleeping lock_page() here because we know the caller has
378  * __GFP_FS.
379  */
380 static void handle_write_error(struct address_space *mapping,
381                                 struct page *page, int error)
382 {
383         lock_page(page);
384         if (page_mapping(page) == mapping)
385                 mapping_set_error(mapping, error);
386         unlock_page(page);
387 }
388
389 /* possible outcome of pageout() */
390 typedef enum {
391         /* failed to write page out, page is locked */
392         PAGE_KEEP,
393         /* move page to the active list, page is locked */
394         PAGE_ACTIVATE,
395         /* page has been sent to the disk successfully, page is unlocked */
396         PAGE_SUCCESS,
397         /* page is clean and locked */
398         PAGE_CLEAN,
399 } pageout_t;
400
401 /*
402  * pageout is called by shrink_page_list() for each dirty page.
403  * Calls ->writepage().
404  */
405 static pageout_t pageout(struct page *page, struct address_space *mapping,
406                          struct scan_control *sc)
407 {
408         /*
409          * If the page is dirty, only perform writeback if that write
410          * will be non-blocking.  To prevent this allocation from being
411          * stalled by pagecache activity.  But note that there may be
412          * stalls if we need to run get_block().  We could test
413          * PagePrivate for that.
414          *
415          * If this process is currently in __generic_file_aio_write() against
416          * this page's queue, we can perform writeback even if that
417          * will block.
418          *
419          * If the page is swapcache, write it back even if that would
420          * block, for some throttling. This happens by accident, because
421          * swap_backing_dev_info is bust: it doesn't reflect the
422          * congestion state of the swapdevs.  Easy to fix, if needed.
423          */
424         if (!is_page_cache_freeable(page))
425                 return PAGE_KEEP;
426         if (!mapping) {
427                 /*
428                  * Some data journaling orphaned pages can have
429                  * page->mapping == NULL while being dirty with clean buffers.
430                  */
431                 if (page_has_private(page)) {
432                         if (try_to_free_buffers(page)) {
433                                 ClearPageDirty(page);
434                                 printk("%s: orphaned page\n", __func__);
435                                 return PAGE_CLEAN;
436                         }
437                 }
438                 return PAGE_KEEP;
439         }
440         if (mapping->a_ops->writepage == NULL)
441                 return PAGE_ACTIVATE;
442         if (!may_write_to_queue(mapping->backing_dev_info, sc))
443                 return PAGE_KEEP;
444
445         if (clear_page_dirty_for_io(page)) {
446                 int res;
447                 struct writeback_control wbc = {
448                         .sync_mode = WB_SYNC_NONE,
449                         .nr_to_write = SWAP_CLUSTER_MAX,
450                         .range_start = 0,
451                         .range_end = LLONG_MAX,
452                         .for_reclaim = 1,
453                 };
454
455                 SetPageReclaim(page);
456                 res = mapping->a_ops->writepage(page, &wbc);
457                 if (res < 0)
458                         handle_write_error(mapping, page, res);
459                 if (res == AOP_WRITEPAGE_ACTIVATE) {
460                         ClearPageReclaim(page);
461                         return PAGE_ACTIVATE;
462                 }
463
464                 /*
465                  * Wait on writeback if requested to. This happens when
466                  * direct reclaiming a large contiguous area and the
467                  * first attempt to free a range of pages fails.
468                  */
469                 if (PageWriteback(page) &&
470                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
471                         wait_on_page_writeback(page);
472
473                 if (!PageWriteback(page)) {
474                         /* synchronous write or broken a_ops? */
475                         ClearPageReclaim(page);
476                 }
477                 trace_mm_vmscan_writepage(page,
478                         trace_reclaim_flags(page, sc->reclaim_mode));
479                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
480                 return PAGE_SUCCESS;
481         }
482
483         return PAGE_CLEAN;
484 }
485
486 /*
487  * Same as remove_mapping, but if the page is removed from the mapping, it
488  * gets returned with a refcount of 0.
489  */
490 static int __remove_mapping(struct address_space *mapping, struct page *page)
491 {
492         BUG_ON(!PageLocked(page));
493         BUG_ON(mapping != page_mapping(page));
494
495         spin_lock_irq(&mapping->tree_lock);
496         /*
497          * The non racy check for a busy page.
498          *
499          * Must be careful with the order of the tests. When someone has
500          * a ref to the page, it may be possible that they dirty it then
501          * drop the reference. So if PageDirty is tested before page_count
502          * here, then the following race may occur:
503          *
504          * get_user_pages(&page);
505          * [user mapping goes away]
506          * write_to(page);
507          *                              !PageDirty(page)    [good]
508          * SetPageDirty(page);
509          * put_page(page);
510          *                              !page_count(page)   [good, discard it]
511          *
512          * [oops, our write_to data is lost]
513          *
514          * Reversing the order of the tests ensures such a situation cannot
515          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
516          * load is not satisfied before that of page->_count.
517          *
518          * Note that if SetPageDirty is always performed via set_page_dirty,
519          * and thus under tree_lock, then this ordering is not required.
520          */
521         if (!page_freeze_refs(page, 2))
522                 goto cannot_free;
523         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
524         if (unlikely(PageDirty(page))) {
525                 page_unfreeze_refs(page, 2);
526                 goto cannot_free;
527         }
528
529         if (PageSwapCache(page)) {
530                 swp_entry_t swap = { .val = page_private(page) };
531                 __delete_from_swap_cache(page);
532                 spin_unlock_irq(&mapping->tree_lock);
533                 swapcache_free(swap, page);
534         } else {
535                 void (*freepage)(struct page *);
536
537                 freepage = mapping->a_ops->freepage;
538
539                 __delete_from_page_cache(page);
540                 spin_unlock_irq(&mapping->tree_lock);
541                 mem_cgroup_uncharge_cache_page(page);
542
543                 if (freepage != NULL)
544                         freepage(page);
545         }
546
547         return 1;
548
549 cannot_free:
550         spin_unlock_irq(&mapping->tree_lock);
551         return 0;
552 }
553
554 /*
555  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
556  * someone else has a ref on the page, abort and return 0.  If it was
557  * successfully detached, return 1.  Assumes the caller has a single ref on
558  * this page.
559  */
560 int remove_mapping(struct address_space *mapping, struct page *page)
561 {
562         if (__remove_mapping(mapping, page)) {
563                 /*
564                  * Unfreezing the refcount with 1 rather than 2 effectively
565                  * drops the pagecache ref for us without requiring another
566                  * atomic operation.
567                  */
568                 page_unfreeze_refs(page, 1);
569                 return 1;
570         }
571         return 0;
572 }
573
574 /**
575  * putback_lru_page - put previously isolated page onto appropriate LRU list
576  * @page: page to be put back to appropriate lru list
577  *
578  * Add previously isolated @page to appropriate LRU list.
579  * Page may still be unevictable for other reasons.
580  *
581  * lru_lock must not be held, interrupts must be enabled.
582  */
583 void putback_lru_page(struct page *page)
584 {
585         int lru;
586         int active = !!TestClearPageActive(page);
587         int was_unevictable = PageUnevictable(page);
588
589         VM_BUG_ON(PageLRU(page));
590
591 redo:
592         ClearPageUnevictable(page);
593
594         if (page_evictable(page, NULL)) {
595                 /*
596                  * For evictable pages, we can use the cache.
597                  * In event of a race, worst case is we end up with an
598                  * unevictable page on [in]active list.
599                  * We know how to handle that.
600                  */
601                 lru = active + page_lru_base_type(page);
602                 lru_cache_add_lru(page, lru);
603         } else {
604                 /*
605                  * Put unevictable pages directly on zone's unevictable
606                  * list.
607                  */
608                 lru = LRU_UNEVICTABLE;
609                 add_page_to_unevictable_list(page);
610                 /*
611                  * When racing with an mlock clearing (page is
612                  * unlocked), make sure that if the other thread does
613                  * not observe our setting of PG_lru and fails
614                  * isolation, we see PG_mlocked cleared below and move
615                  * the page back to the evictable list.
616                  *
617                  * The other side is TestClearPageMlocked().
618                  */
619                 smp_mb();
620         }
621
622         /*
623          * page's status can change while we move it among lru. If an evictable
624          * page is on unevictable list, it never be freed. To avoid that,
625          * check after we added it to the list, again.
626          */
627         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
628                 if (!isolate_lru_page(page)) {
629                         put_page(page);
630                         goto redo;
631                 }
632                 /* This means someone else dropped this page from LRU
633                  * So, it will be freed or putback to LRU again. There is
634                  * nothing to do here.
635                  */
636         }
637
638         if (was_unevictable && lru != LRU_UNEVICTABLE)
639                 count_vm_event(UNEVICTABLE_PGRESCUED);
640         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
641                 count_vm_event(UNEVICTABLE_PGCULLED);
642
643         put_page(page);         /* drop ref from isolate */
644 }
645
646 enum page_references {
647         PAGEREF_RECLAIM,
648         PAGEREF_RECLAIM_CLEAN,
649         PAGEREF_KEEP,
650         PAGEREF_ACTIVATE,
651 };
652
653 static enum page_references page_check_references(struct page *page,
654                                                   struct scan_control *sc)
655 {
656         int referenced_ptes, referenced_page;
657         unsigned long vm_flags;
658
659         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
660         referenced_page = TestClearPageReferenced(page);
661
662         /* Lumpy reclaim - ignore references */
663         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
664                 return PAGEREF_RECLAIM;
665
666         /*
667          * Mlock lost the isolation race with us.  Let try_to_unmap()
668          * move the page to the unevictable list.
669          */
670         if (vm_flags & VM_LOCKED)
671                 return PAGEREF_RECLAIM;
672
673         if (referenced_ptes) {
674                 if (PageAnon(page))
675                         return PAGEREF_ACTIVATE;
676                 /*
677                  * All mapped pages start out with page table
678                  * references from the instantiating fault, so we need
679                  * to look twice if a mapped file page is used more
680                  * than once.
681                  *
682                  * Mark it and spare it for another trip around the
683                  * inactive list.  Another page table reference will
684                  * lead to its activation.
685                  *
686                  * Note: the mark is set for activated pages as well
687                  * so that recently deactivated but used pages are
688                  * quickly recovered.
689                  */
690                 SetPageReferenced(page);
691
692                 if (referenced_page)
693                         return PAGEREF_ACTIVATE;
694
695                 return PAGEREF_KEEP;
696         }
697
698         /* Reclaim if clean, defer dirty pages to writeback */
699         if (referenced_page && !PageSwapBacked(page))
700                 return PAGEREF_RECLAIM_CLEAN;
701
702         return PAGEREF_RECLAIM;
703 }
704
705 static noinline_for_stack void free_page_list(struct list_head *free_pages)
706 {
707         struct pagevec freed_pvec;
708         struct page *page, *tmp;
709
710         pagevec_init(&freed_pvec, 1);
711
712         list_for_each_entry_safe(page, tmp, free_pages, lru) {
713                 list_del(&page->lru);
714                 if (!pagevec_add(&freed_pvec, page)) {
715                         __pagevec_free(&freed_pvec);
716                         pagevec_reinit(&freed_pvec);
717                 }
718         }
719
720         pagevec_free(&freed_pvec);
721 }
722
723 /*
724  * shrink_page_list() returns the number of reclaimed pages
725  */
726 static unsigned long shrink_page_list(struct list_head *page_list,
727                                       struct zone *zone,
728                                       struct scan_control *sc)
729 {
730         LIST_HEAD(ret_pages);
731         LIST_HEAD(free_pages);
732         int pgactivate = 0;
733         unsigned long nr_dirty = 0;
734         unsigned long nr_congested = 0;
735         unsigned long nr_reclaimed = 0;
736
737         cond_resched();
738
739         while (!list_empty(page_list)) {
740                 enum page_references references;
741                 struct address_space *mapping;
742                 struct page *page;
743                 int may_enter_fs;
744
745                 cond_resched();
746
747                 page = lru_to_page(page_list);
748                 list_del(&page->lru);
749
750                 if (!trylock_page(page))
751                         goto keep;
752
753                 VM_BUG_ON(PageActive(page));
754                 VM_BUG_ON(page_zone(page) != zone);
755
756                 sc->nr_scanned++;
757
758                 if (unlikely(!page_evictable(page, NULL)))
759                         goto cull_mlocked;
760
761                 if (!sc->may_unmap && page_mapped(page))
762                         goto keep_locked;
763
764                 /* Double the slab pressure for mapped and swapcache pages */
765                 if (page_mapped(page) || PageSwapCache(page))
766                         sc->nr_scanned++;
767
768                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
769                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
770
771                 if (PageWriteback(page)) {
772                         /*
773                          * Synchronous reclaim is performed in two passes,
774                          * first an asynchronous pass over the list to
775                          * start parallel writeback, and a second synchronous
776                          * pass to wait for the IO to complete.  Wait here
777                          * for any page for which writeback has already
778                          * started.
779                          */
780                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
781                             may_enter_fs)
782                                 wait_on_page_writeback(page);
783                         else {
784                                 unlock_page(page);
785                                 goto keep_lumpy;
786                         }
787                 }
788
789                 references = page_check_references(page, sc);
790                 switch (references) {
791                 case PAGEREF_ACTIVATE:
792                         goto activate_locked;
793                 case PAGEREF_KEEP:
794                         goto keep_locked;
795                 case PAGEREF_RECLAIM:
796                 case PAGEREF_RECLAIM_CLEAN:
797                         ; /* try to reclaim the page below */
798                 }
799
800                 /*
801                  * Anonymous process memory has backing store?
802                  * Try to allocate it some swap space here.
803                  */
804                 if (PageAnon(page) && !PageSwapCache(page)) {
805                         if (!(sc->gfp_mask & __GFP_IO))
806                                 goto keep_locked;
807                         if (!add_to_swap(page))
808                                 goto activate_locked;
809                         may_enter_fs = 1;
810                 }
811
812                 mapping = page_mapping(page);
813
814                 /*
815                  * The page is mapped into the page tables of one or more
816                  * processes. Try to unmap it here.
817                  */
818                 if (page_mapped(page) && mapping) {
819                         switch (try_to_unmap(page, TTU_UNMAP)) {
820                         case SWAP_FAIL:
821                                 goto activate_locked;
822                         case SWAP_AGAIN:
823                                 goto keep_locked;
824                         case SWAP_MLOCK:
825                                 goto cull_mlocked;
826                         case SWAP_SUCCESS:
827                                 ; /* try to free the page below */
828                         }
829                 }
830
831                 if (PageDirty(page)) {
832                         nr_dirty++;
833
834                         if (references == PAGEREF_RECLAIM_CLEAN)
835                                 goto keep_locked;
836                         if (!may_enter_fs)
837                                 goto keep_locked;
838                         if (!sc->may_writepage)
839                                 goto keep_locked;
840
841                         /* Page is dirty, try to write it out here */
842                         switch (pageout(page, mapping, sc)) {
843                         case PAGE_KEEP:
844                                 nr_congested++;
845                                 goto keep_locked;
846                         case PAGE_ACTIVATE:
847                                 goto activate_locked;
848                         case PAGE_SUCCESS:
849                                 if (PageWriteback(page))
850                                         goto keep_lumpy;
851                                 if (PageDirty(page))
852                                         goto keep;
853
854                                 /*
855                                  * A synchronous write - probably a ramdisk.  Go
856                                  * ahead and try to reclaim the page.
857                                  */
858                                 if (!trylock_page(page))
859                                         goto keep;
860                                 if (PageDirty(page) || PageWriteback(page))
861                                         goto keep_locked;
862                                 mapping = page_mapping(page);
863                         case PAGE_CLEAN:
864                                 ; /* try to free the page below */
865                         }
866                 }
867
868                 /*
869                  * If the page has buffers, try to free the buffer mappings
870                  * associated with this page. If we succeed we try to free
871                  * the page as well.
872                  *
873                  * We do this even if the page is PageDirty().
874                  * try_to_release_page() does not perform I/O, but it is
875                  * possible for a page to have PageDirty set, but it is actually
876                  * clean (all its buffers are clean).  This happens if the
877                  * buffers were written out directly, with submit_bh(). ext3
878                  * will do this, as well as the blockdev mapping.
879                  * try_to_release_page() will discover that cleanness and will
880                  * drop the buffers and mark the page clean - it can be freed.
881                  *
882                  * Rarely, pages can have buffers and no ->mapping.  These are
883                  * the pages which were not successfully invalidated in
884                  * truncate_complete_page().  We try to drop those buffers here
885                  * and if that worked, and the page is no longer mapped into
886                  * process address space (page_count == 1) it can be freed.
887                  * Otherwise, leave the page on the LRU so it is swappable.
888                  */
889                 if (page_has_private(page)) {
890                         if (!try_to_release_page(page, sc->gfp_mask))
891                                 goto activate_locked;
892                         if (!mapping && page_count(page) == 1) {
893                                 unlock_page(page);
894                                 if (put_page_testzero(page))
895                                         goto free_it;
896                                 else {
897                                         /*
898                                          * rare race with speculative reference.
899                                          * the speculative reference will free
900                                          * this page shortly, so we may
901                                          * increment nr_reclaimed here (and
902                                          * leave it off the LRU).
903                                          */
904                                         nr_reclaimed++;
905                                         continue;
906                                 }
907                         }
908                 }
909
910                 if (!mapping || !__remove_mapping(mapping, page))
911                         goto keep_locked;
912
913                 /*
914                  * At this point, we have no other references and there is
915                  * no way to pick any more up (removed from LRU, removed
916                  * from pagecache). Can use non-atomic bitops now (and
917                  * we obviously don't have to worry about waking up a process
918                  * waiting on the page lock, because there are no references.
919                  */
920                 __clear_page_locked(page);
921 free_it:
922                 nr_reclaimed++;
923
924                 /*
925                  * Is there need to periodically free_page_list? It would
926                  * appear not as the counts should be low
927                  */
928                 list_add(&page->lru, &free_pages);
929                 continue;
930
931 cull_mlocked:
932                 if (PageSwapCache(page))
933                         try_to_free_swap(page);
934                 unlock_page(page);
935                 putback_lru_page(page);
936                 reset_reclaim_mode(sc);
937                 continue;
938
939 activate_locked:
940                 /* Not a candidate for swapping, so reclaim swap space. */
941                 if (PageSwapCache(page) && vm_swap_full())
942                         try_to_free_swap(page);
943                 VM_BUG_ON(PageActive(page));
944                 SetPageActive(page);
945                 pgactivate++;
946 keep_locked:
947                 unlock_page(page);
948 keep:
949                 reset_reclaim_mode(sc);
950 keep_lumpy:
951                 list_add(&page->lru, &ret_pages);
952                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
953         }
954
955         /*
956          * Tag a zone as congested if all the dirty pages encountered were
957          * backed by a congested BDI. In this case, reclaimers should just
958          * back off and wait for congestion to clear because further reclaim
959          * will encounter the same problem
960          */
961         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
962                 zone_set_flag(zone, ZONE_CONGESTED);
963
964         free_page_list(&free_pages);
965
966         list_splice(&ret_pages, page_list);
967         count_vm_events(PGACTIVATE, pgactivate);
968         return nr_reclaimed;
969 }
970
971 /*
972  * Attempt to remove the specified page from its LRU.  Only take this page
973  * if it is of the appropriate PageActive status.  Pages which are being
974  * freed elsewhere are also ignored.
975  *
976  * page:        page to consider
977  * mode:        one of the LRU isolation modes defined above
978  *
979  * returns 0 on success, -ve errno on failure.
980  */
981 int __isolate_lru_page(struct page *page, int mode, int file)
982 {
983         int ret = -EINVAL;
984
985         /* Only take pages on the LRU. */
986         if (!PageLRU(page))
987                 return ret;
988
989         /*
990          * When checking the active state, we need to be sure we are
991          * dealing with comparible boolean values.  Take the logical not
992          * of each.
993          */
994         if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
995                 return ret;
996
997         if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
998                 return ret;
999
1000         /*
1001          * When this function is being called for lumpy reclaim, we
1002          * initially look into all LRU pages, active, inactive and
1003          * unevictable; only give shrink_page_list evictable pages.
1004          */
1005         if (PageUnevictable(page))
1006                 return ret;
1007
1008         ret = -EBUSY;
1009
1010         if (likely(get_page_unless_zero(page))) {
1011                 /*
1012                  * Be careful not to clear PageLRU until after we're
1013                  * sure the page is not being freed elsewhere -- the
1014                  * page release code relies on it.
1015                  */
1016                 ClearPageLRU(page);
1017                 ret = 0;
1018         }
1019
1020         return ret;
1021 }
1022
1023 /*
1024  * zone->lru_lock is heavily contended.  Some of the functions that
1025  * shrink the lists perform better by taking out a batch of pages
1026  * and working on them outside the LRU lock.
1027  *
1028  * For pagecache intensive workloads, this function is the hottest
1029  * spot in the kernel (apart from copy_*_user functions).
1030  *
1031  * Appropriate locks must be held before calling this function.
1032  *
1033  * @nr_to_scan: The number of pages to look through on the list.
1034  * @src:        The LRU list to pull pages off.
1035  * @dst:        The temp list to put pages on to.
1036  * @scanned:    The number of pages that were scanned.
1037  * @order:      The caller's attempted allocation order
1038  * @mode:       One of the LRU isolation modes
1039  * @file:       True [1] if isolating file [!anon] pages
1040  *
1041  * returns how many pages were moved onto *@dst.
1042  */
1043 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1044                 struct list_head *src, struct list_head *dst,
1045                 unsigned long *scanned, int order, int mode, int file)
1046 {
1047         unsigned long nr_taken = 0;
1048         unsigned long nr_lumpy_taken = 0;
1049         unsigned long nr_lumpy_dirty = 0;
1050         unsigned long nr_lumpy_failed = 0;
1051         unsigned long scan;
1052
1053         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1054                 struct page *page;
1055                 unsigned long pfn;
1056                 unsigned long end_pfn;
1057                 unsigned long page_pfn;
1058                 int zone_id;
1059
1060                 page = lru_to_page(src);
1061                 prefetchw_prev_lru_page(page, src, flags);
1062
1063                 VM_BUG_ON(!PageLRU(page));
1064
1065                 switch (__isolate_lru_page(page, mode, file)) {
1066                 case 0:
1067                         list_move(&page->lru, dst);
1068                         mem_cgroup_del_lru(page);
1069                         nr_taken += hpage_nr_pages(page);
1070                         break;
1071
1072                 case -EBUSY:
1073                         /* else it is being freed elsewhere */
1074                         list_move(&page->lru, src);
1075                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1076                         continue;
1077
1078                 default:
1079                         BUG();
1080                 }
1081
1082                 if (!order)
1083                         continue;
1084
1085                 /*
1086                  * Attempt to take all pages in the order aligned region
1087                  * surrounding the tag page.  Only take those pages of
1088                  * the same active state as that tag page.  We may safely
1089                  * round the target page pfn down to the requested order
1090                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1091                  * where that page is in a different zone we will detect
1092                  * it from its zone id and abort this block scan.
1093                  */
1094                 zone_id = page_zone_id(page);
1095                 page_pfn = page_to_pfn(page);
1096                 pfn = page_pfn & ~((1 << order) - 1);
1097                 end_pfn = pfn + (1 << order);
1098                 for (; pfn < end_pfn; pfn++) {
1099                         struct page *cursor_page;
1100
1101                         /* The target page is in the block, ignore it. */
1102                         if (unlikely(pfn == page_pfn))
1103                                 continue;
1104
1105                         /* Avoid holes within the zone. */
1106                         if (unlikely(!pfn_valid_within(pfn)))
1107                                 break;
1108
1109                         cursor_page = pfn_to_page(pfn);
1110
1111                         /* Check that we have not crossed a zone boundary. */
1112                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1113                                 break;
1114
1115                         /*
1116                          * If we don't have enough swap space, reclaiming of
1117                          * anon page which don't already have a swap slot is
1118                          * pointless.
1119                          */
1120                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1121                             !PageSwapCache(cursor_page))
1122                                 break;
1123
1124                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1125                                 list_move(&cursor_page->lru, dst);
1126                                 mem_cgroup_del_lru(cursor_page);
1127                                 nr_taken += hpage_nr_pages(page);
1128                                 nr_lumpy_taken++;
1129                                 if (PageDirty(cursor_page))
1130                                         nr_lumpy_dirty++;
1131                                 scan++;
1132                         } else {
1133                                 /*
1134                                  * Check if the page is freed already.
1135                                  *
1136                                  * We can't use page_count() as that
1137                                  * requires compound_head and we don't
1138                                  * have a pin on the page here. If a
1139                                  * page is tail, we may or may not
1140                                  * have isolated the head, so assume
1141                                  * it's not free, it'd be tricky to
1142                                  * track the head status without a
1143                                  * page pin.
1144                                  */
1145                                 if (!PageTail(cursor_page) &&
1146                                     !atomic_read(&cursor_page->_count))
1147                                         continue;
1148                                 break;
1149                         }
1150                 }
1151
1152                 /* If we break out of the loop above, lumpy reclaim failed */
1153                 if (pfn < end_pfn)
1154                         nr_lumpy_failed++;
1155         }
1156
1157         *scanned = scan;
1158
1159         trace_mm_vmscan_lru_isolate(order,
1160                         nr_to_scan, scan,
1161                         nr_taken,
1162                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1163                         mode);
1164         return nr_taken;
1165 }
1166
1167 static unsigned long isolate_pages_global(unsigned long nr,
1168                                         struct list_head *dst,
1169                                         unsigned long *scanned, int order,
1170                                         int mode, struct zone *z,
1171                                         int active, int file)
1172 {
1173         int lru = LRU_BASE;
1174         if (active)
1175                 lru += LRU_ACTIVE;
1176         if (file)
1177                 lru += LRU_FILE;
1178         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1179                                                                 mode, file);
1180 }
1181
1182 /*
1183  * clear_active_flags() is a helper for shrink_active_list(), clearing
1184  * any active bits from the pages in the list.
1185  */
1186 static unsigned long clear_active_flags(struct list_head *page_list,
1187                                         unsigned int *count)
1188 {
1189         int nr_active = 0;
1190         int lru;
1191         struct page *page;
1192
1193         list_for_each_entry(page, page_list, lru) {
1194                 int numpages = hpage_nr_pages(page);
1195                 lru = page_lru_base_type(page);
1196                 if (PageActive(page)) {
1197                         lru += LRU_ACTIVE;
1198                         ClearPageActive(page);
1199                         nr_active += numpages;
1200                 }
1201                 if (count)
1202                         count[lru] += numpages;
1203         }
1204
1205         return nr_active;
1206 }
1207
1208 /**
1209  * isolate_lru_page - tries to isolate a page from its LRU list
1210  * @page: page to isolate from its LRU list
1211  *
1212  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1213  * vmstat statistic corresponding to whatever LRU list the page was on.
1214  *
1215  * Returns 0 if the page was removed from an LRU list.
1216  * Returns -EBUSY if the page was not on an LRU list.
1217  *
1218  * The returned page will have PageLRU() cleared.  If it was found on
1219  * the active list, it will have PageActive set.  If it was found on
1220  * the unevictable list, it will have the PageUnevictable bit set. That flag
1221  * may need to be cleared by the caller before letting the page go.
1222  *
1223  * The vmstat statistic corresponding to the list on which the page was
1224  * found will be decremented.
1225  *
1226  * Restrictions:
1227  * (1) Must be called with an elevated refcount on the page. This is a
1228  *     fundamentnal difference from isolate_lru_pages (which is called
1229  *     without a stable reference).
1230  * (2) the lru_lock must not be held.
1231  * (3) interrupts must be enabled.
1232  */
1233 int isolate_lru_page(struct page *page)
1234 {
1235         int ret = -EBUSY;
1236
1237         VM_BUG_ON(!page_count(page));
1238
1239         if (PageLRU(page)) {
1240                 struct zone *zone = page_zone(page);
1241
1242                 spin_lock_irq(&zone->lru_lock);
1243                 if (PageLRU(page)) {
1244                         int lru = page_lru(page);
1245                         ret = 0;
1246                         get_page(page);
1247                         ClearPageLRU(page);
1248
1249                         del_page_from_lru_list(zone, page, lru);
1250                 }
1251                 spin_unlock_irq(&zone->lru_lock);
1252         }
1253         return ret;
1254 }
1255
1256 /*
1257  * Are there way too many processes in the direct reclaim path already?
1258  */
1259 static int too_many_isolated(struct zone *zone, int file,
1260                 struct scan_control *sc)
1261 {
1262         unsigned long inactive, isolated;
1263
1264         if (current_is_kswapd())
1265                 return 0;
1266
1267         if (!scanning_global_lru(sc))
1268                 return 0;
1269
1270         if (file) {
1271                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1272                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1273         } else {
1274                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1275                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1276         }
1277
1278         return isolated > inactive;
1279 }
1280
1281 /*
1282  * TODO: Try merging with migrations version of putback_lru_pages
1283  */
1284 static noinline_for_stack void
1285 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1286                                 unsigned long nr_anon, unsigned long nr_file,
1287                                 struct list_head *page_list)
1288 {
1289         struct page *page;
1290         struct pagevec pvec;
1291         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1292
1293         pagevec_init(&pvec, 1);
1294
1295         /*
1296          * Put back any unfreeable pages.
1297          */
1298         spin_lock(&zone->lru_lock);
1299         while (!list_empty(page_list)) {
1300                 int lru;
1301                 page = lru_to_page(page_list);
1302                 VM_BUG_ON(PageLRU(page));
1303                 list_del(&page->lru);
1304                 if (unlikely(!page_evictable(page, NULL))) {
1305                         spin_unlock_irq(&zone->lru_lock);
1306                         putback_lru_page(page);
1307                         spin_lock_irq(&zone->lru_lock);
1308                         continue;
1309                 }
1310                 SetPageLRU(page);
1311                 lru = page_lru(page);
1312                 add_page_to_lru_list(zone, page, lru);
1313                 if (is_active_lru(lru)) {
1314                         int file = is_file_lru(lru);
1315                         int numpages = hpage_nr_pages(page);
1316                         reclaim_stat->recent_rotated[file] += numpages;
1317                 }
1318                 if (!pagevec_add(&pvec, page)) {
1319                         spin_unlock_irq(&zone->lru_lock);
1320                         __pagevec_release(&pvec);
1321                         spin_lock_irq(&zone->lru_lock);
1322                 }
1323         }
1324         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1325         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1326
1327         spin_unlock_irq(&zone->lru_lock);
1328         pagevec_release(&pvec);
1329 }
1330
1331 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1332                                         struct scan_control *sc,
1333                                         unsigned long *nr_anon,
1334                                         unsigned long *nr_file,
1335                                         struct list_head *isolated_list)
1336 {
1337         unsigned long nr_active;
1338         unsigned int count[NR_LRU_LISTS] = { 0, };
1339         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1340
1341         nr_active = clear_active_flags(isolated_list, count);
1342         __count_vm_events(PGDEACTIVATE, nr_active);
1343
1344         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1345                               -count[LRU_ACTIVE_FILE]);
1346         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1347                               -count[LRU_INACTIVE_FILE]);
1348         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1349                               -count[LRU_ACTIVE_ANON]);
1350         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1351                               -count[LRU_INACTIVE_ANON]);
1352
1353         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1354         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1355         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1356         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1357
1358         reclaim_stat->recent_scanned[0] += *nr_anon;
1359         reclaim_stat->recent_scanned[1] += *nr_file;
1360 }
1361
1362 /*
1363  * Returns true if the caller should wait to clean dirty/writeback pages.
1364  *
1365  * If we are direct reclaiming for contiguous pages and we do not reclaim
1366  * everything in the list, try again and wait for writeback IO to complete.
1367  * This will stall high-order allocations noticeably. Only do that when really
1368  * need to free the pages under high memory pressure.
1369  */
1370 static inline bool should_reclaim_stall(unsigned long nr_taken,
1371                                         unsigned long nr_freed,
1372                                         int priority,
1373                                         struct scan_control *sc)
1374 {
1375         int lumpy_stall_priority;
1376
1377         /* kswapd should not stall on sync IO */
1378         if (current_is_kswapd())
1379                 return false;
1380
1381         /* Only stall on lumpy reclaim */
1382         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1383                 return false;
1384
1385         /* If we have relaimed everything on the isolated list, no stall */
1386         if (nr_freed == nr_taken)
1387                 return false;
1388
1389         /*
1390          * For high-order allocations, there are two stall thresholds.
1391          * High-cost allocations stall immediately where as lower
1392          * order allocations such as stacks require the scanning
1393          * priority to be much higher before stalling.
1394          */
1395         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1396                 lumpy_stall_priority = DEF_PRIORITY;
1397         else
1398                 lumpy_stall_priority = DEF_PRIORITY / 3;
1399
1400         return priority <= lumpy_stall_priority;
1401 }
1402
1403 /*
1404  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1405  * of reclaimed pages
1406  */
1407 static noinline_for_stack unsigned long
1408 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1409                         struct scan_control *sc, int priority, int file)
1410 {
1411         LIST_HEAD(page_list);
1412         unsigned long nr_scanned;
1413         unsigned long nr_reclaimed = 0;
1414         unsigned long nr_taken;
1415         unsigned long nr_anon;
1416         unsigned long nr_file;
1417
1418         while (unlikely(too_many_isolated(zone, file, sc))) {
1419                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1420
1421                 /* We are about to die and free our memory. Return now. */
1422                 if (fatal_signal_pending(current))
1423                         return SWAP_CLUSTER_MAX;
1424         }
1425
1426         set_reclaim_mode(priority, sc, false);
1427         lru_add_drain();
1428         spin_lock_irq(&zone->lru_lock);
1429
1430         if (scanning_global_lru(sc)) {
1431                 nr_taken = isolate_pages_global(nr_to_scan,
1432                         &page_list, &nr_scanned, sc->order,
1433                         sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1434                                         ISOLATE_BOTH : ISOLATE_INACTIVE,
1435                         zone, 0, file);
1436                 zone->pages_scanned += nr_scanned;
1437                 if (current_is_kswapd())
1438                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1439                                                nr_scanned);
1440                 else
1441                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1442                                                nr_scanned);
1443         } else {
1444                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1445                         &page_list, &nr_scanned, sc->order,
1446                         sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1447                                         ISOLATE_BOTH : ISOLATE_INACTIVE,
1448                         zone, sc->mem_cgroup,
1449                         0, file);
1450                 /*
1451                  * mem_cgroup_isolate_pages() keeps track of
1452                  * scanned pages on its own.
1453                  */
1454         }
1455
1456         if (nr_taken == 0) {
1457                 spin_unlock_irq(&zone->lru_lock);
1458                 return 0;
1459         }
1460
1461         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1462
1463         spin_unlock_irq(&zone->lru_lock);
1464
1465         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1466
1467         /* Check if we should syncronously wait for writeback */
1468         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1469                 set_reclaim_mode(priority, sc, true);
1470                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1471         }
1472
1473         local_irq_disable();
1474         if (current_is_kswapd())
1475                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1476         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1477
1478         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1479
1480         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1481                 zone_idx(zone),
1482                 nr_scanned, nr_reclaimed,
1483                 priority,
1484                 trace_shrink_flags(file, sc->reclaim_mode));
1485         return nr_reclaimed;
1486 }
1487
1488 /*
1489  * This moves pages from the active list to the inactive list.
1490  *
1491  * We move them the other way if the page is referenced by one or more
1492  * processes, from rmap.
1493  *
1494  * If the pages are mostly unmapped, the processing is fast and it is
1495  * appropriate to hold zone->lru_lock across the whole operation.  But if
1496  * the pages are mapped, the processing is slow (page_referenced()) so we
1497  * should drop zone->lru_lock around each page.  It's impossible to balance
1498  * this, so instead we remove the pages from the LRU while processing them.
1499  * It is safe to rely on PG_active against the non-LRU pages in here because
1500  * nobody will play with that bit on a non-LRU page.
1501  *
1502  * The downside is that we have to touch page->_count against each page.
1503  * But we had to alter page->flags anyway.
1504  */
1505
1506 static void move_active_pages_to_lru(struct zone *zone,
1507                                      struct list_head *list,
1508                                      enum lru_list lru)
1509 {
1510         unsigned long pgmoved = 0;
1511         struct pagevec pvec;
1512         struct page *page;
1513
1514         pagevec_init(&pvec, 1);
1515
1516         while (!list_empty(list)) {
1517                 page = lru_to_page(list);
1518
1519                 VM_BUG_ON(PageLRU(page));
1520                 SetPageLRU(page);
1521
1522                 list_move(&page->lru, &zone->lru[lru].list);
1523                 mem_cgroup_add_lru_list(page, lru);
1524                 pgmoved += hpage_nr_pages(page);
1525
1526                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1527                         spin_unlock_irq(&zone->lru_lock);
1528                         if (buffer_heads_over_limit)
1529                                 pagevec_strip(&pvec);
1530                         __pagevec_release(&pvec);
1531                         spin_lock_irq(&zone->lru_lock);
1532                 }
1533         }
1534         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1535         if (!is_active_lru(lru))
1536                 __count_vm_events(PGDEACTIVATE, pgmoved);
1537 }
1538
1539 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1540                         struct scan_control *sc, int priority, int file)
1541 {
1542         unsigned long nr_taken;
1543         unsigned long pgscanned;
1544         unsigned long vm_flags;
1545         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1546         LIST_HEAD(l_active);
1547         LIST_HEAD(l_inactive);
1548         struct page *page;
1549         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1550         unsigned long nr_rotated = 0;
1551
1552         lru_add_drain();
1553         spin_lock_irq(&zone->lru_lock);
1554         if (scanning_global_lru(sc)) {
1555                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1556                                                 &pgscanned, sc->order,
1557                                                 ISOLATE_ACTIVE, zone,
1558                                                 1, file);
1559                 zone->pages_scanned += pgscanned;
1560         } else {
1561                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1562                                                 &pgscanned, sc->order,
1563                                                 ISOLATE_ACTIVE, zone,
1564                                                 sc->mem_cgroup, 1, file);
1565                 /*
1566                  * mem_cgroup_isolate_pages() keeps track of
1567                  * scanned pages on its own.
1568                  */
1569         }
1570
1571         reclaim_stat->recent_scanned[file] += nr_taken;
1572
1573         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1574         if (file)
1575                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1576         else
1577                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1578         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1579         spin_unlock_irq(&zone->lru_lock);
1580
1581         while (!list_empty(&l_hold)) {
1582                 cond_resched();
1583                 page = lru_to_page(&l_hold);
1584                 list_del(&page->lru);
1585
1586                 if (unlikely(!page_evictable(page, NULL))) {
1587                         putback_lru_page(page);
1588                         continue;
1589                 }
1590
1591                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1592                         nr_rotated += hpage_nr_pages(page);
1593                         /*
1594                          * Identify referenced, file-backed active pages and
1595                          * give them one more trip around the active list. So
1596                          * that executable code get better chances to stay in
1597                          * memory under moderate memory pressure.  Anon pages
1598                          * are not likely to be evicted by use-once streaming
1599                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1600                          * so we ignore them here.
1601                          */
1602                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1603                                 list_add(&page->lru, &l_active);
1604                                 continue;
1605                         }
1606                 }
1607
1608                 ClearPageActive(page);  /* we are de-activating */
1609                 list_add(&page->lru, &l_inactive);
1610         }
1611
1612         /*
1613          * Move pages back to the lru list.
1614          */
1615         spin_lock_irq(&zone->lru_lock);
1616         /*
1617          * Count referenced pages from currently used mappings as rotated,
1618          * even though only some of them are actually re-activated.  This
1619          * helps balance scan pressure between file and anonymous pages in
1620          * get_scan_ratio.
1621          */
1622         reclaim_stat->recent_rotated[file] += nr_rotated;
1623
1624         move_active_pages_to_lru(zone, &l_active,
1625                                                 LRU_ACTIVE + file * LRU_FILE);
1626         move_active_pages_to_lru(zone, &l_inactive,
1627                                                 LRU_BASE   + file * LRU_FILE);
1628         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1629         spin_unlock_irq(&zone->lru_lock);
1630 }
1631
1632 #ifdef CONFIG_SWAP
1633 static int inactive_anon_is_low_global(struct zone *zone)
1634 {
1635         unsigned long active, inactive;
1636
1637         active = zone_page_state(zone, NR_ACTIVE_ANON);
1638         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1639
1640         if (inactive * zone->inactive_ratio < active)
1641                 return 1;
1642
1643         return 0;
1644 }
1645
1646 /**
1647  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1648  * @zone: zone to check
1649  * @sc:   scan control of this context
1650  *
1651  * Returns true if the zone does not have enough inactive anon pages,
1652  * meaning some active anon pages need to be deactivated.
1653  */
1654 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1655 {
1656         int low;
1657
1658         /*
1659          * If we don't have swap space, anonymous page deactivation
1660          * is pointless.
1661          */
1662         if (!total_swap_pages)
1663                 return 0;
1664
1665         if (scanning_global_lru(sc))
1666                 low = inactive_anon_is_low_global(zone);
1667         else
1668                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1669         return low;
1670 }
1671 #else
1672 static inline int inactive_anon_is_low(struct zone *zone,
1673                                         struct scan_control *sc)
1674 {
1675         return 0;
1676 }
1677 #endif
1678
1679 static int inactive_file_is_low_global(struct zone *zone)
1680 {
1681         unsigned long active, inactive;
1682
1683         active = zone_page_state(zone, NR_ACTIVE_FILE);
1684         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1685
1686         return (active > inactive);
1687 }
1688
1689 /**
1690  * inactive_file_is_low - check if file pages need to be deactivated
1691  * @zone: zone to check
1692  * @sc:   scan control of this context
1693  *
1694  * When the system is doing streaming IO, memory pressure here
1695  * ensures that active file pages get deactivated, until more
1696  * than half of the file pages are on the inactive list.
1697  *
1698  * Once we get to that situation, protect the system's working
1699  * set from being evicted by disabling active file page aging.
1700  *
1701  * This uses a different ratio than the anonymous pages, because
1702  * the page cache uses a use-once replacement algorithm.
1703  */
1704 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1705 {
1706         int low;
1707
1708         if (scanning_global_lru(sc))
1709                 low = inactive_file_is_low_global(zone);
1710         else
1711                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1712         return low;
1713 }
1714
1715 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1716                                 int file)
1717 {
1718         if (file)
1719                 return inactive_file_is_low(zone, sc);
1720         else
1721                 return inactive_anon_is_low(zone, sc);
1722 }
1723
1724 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1725         struct zone *zone, struct scan_control *sc, int priority)
1726 {
1727         int file = is_file_lru(lru);
1728
1729         if (is_active_lru(lru)) {
1730                 if (inactive_list_is_low(zone, sc, file))
1731                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1732                 return 0;
1733         }
1734
1735         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1736 }
1737
1738 /*
1739  * Determine how aggressively the anon and file LRU lists should be
1740  * scanned.  The relative value of each set of LRU lists is determined
1741  * by looking at the fraction of the pages scanned we did rotate back
1742  * onto the active list instead of evict.
1743  *
1744  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1745  */
1746 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1747                                         unsigned long *nr, int priority)
1748 {
1749         unsigned long anon, file, free;
1750         unsigned long anon_prio, file_prio;
1751         unsigned long ap, fp;
1752         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1753         u64 fraction[2], denominator;
1754         enum lru_list l;
1755         int noswap = 0;
1756         int force_scan = 0;
1757
1758
1759         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1760                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1761         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1762                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1763
1764         if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1765                 /* kswapd does zone balancing and need to scan this zone */
1766                 if (scanning_global_lru(sc) && current_is_kswapd())
1767                         force_scan = 1;
1768                 /* memcg may have small limit and need to avoid priority drop */
1769                 if (!scanning_global_lru(sc))
1770                         force_scan = 1;
1771         }
1772
1773         /* If we have no swap space, do not bother scanning anon pages. */
1774         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1775                 noswap = 1;
1776                 fraction[0] = 0;
1777                 fraction[1] = 1;
1778                 denominator = 1;
1779                 goto out;
1780         }
1781
1782         if (scanning_global_lru(sc)) {
1783                 free  = zone_page_state(zone, NR_FREE_PAGES);
1784                 /* If we have very few page cache pages,
1785                    force-scan anon pages. */
1786                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1787                         fraction[0] = 1;
1788                         fraction[1] = 0;
1789                         denominator = 1;
1790                         goto out;
1791                 }
1792         }
1793
1794         /*
1795          * With swappiness at 100, anonymous and file have the same priority.
1796          * This scanning priority is essentially the inverse of IO cost.
1797          */
1798         anon_prio = sc->swappiness;
1799         file_prio = 200 - sc->swappiness;
1800
1801         /*
1802          * OK, so we have swap space and a fair amount of page cache
1803          * pages.  We use the recently rotated / recently scanned
1804          * ratios to determine how valuable each cache is.
1805          *
1806          * Because workloads change over time (and to avoid overflow)
1807          * we keep these statistics as a floating average, which ends
1808          * up weighing recent references more than old ones.
1809          *
1810          * anon in [0], file in [1]
1811          */
1812         spin_lock_irq(&zone->lru_lock);
1813         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1814                 reclaim_stat->recent_scanned[0] /= 2;
1815                 reclaim_stat->recent_rotated[0] /= 2;
1816         }
1817
1818         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1819                 reclaim_stat->recent_scanned[1] /= 2;
1820                 reclaim_stat->recent_rotated[1] /= 2;
1821         }
1822
1823         /*
1824          * The amount of pressure on anon vs file pages is inversely
1825          * proportional to the fraction of recently scanned pages on
1826          * each list that were recently referenced and in active use.
1827          */
1828         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1829         ap /= reclaim_stat->recent_rotated[0] + 1;
1830
1831         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1832         fp /= reclaim_stat->recent_rotated[1] + 1;
1833         spin_unlock_irq(&zone->lru_lock);
1834
1835         fraction[0] = ap;
1836         fraction[1] = fp;
1837         denominator = ap + fp + 1;
1838 out:
1839         for_each_evictable_lru(l) {
1840                 int file = is_file_lru(l);
1841                 unsigned long scan;
1842
1843                 scan = zone_nr_lru_pages(zone, sc, l);
1844                 if (priority || noswap) {
1845                         scan >>= priority;
1846                         scan = div64_u64(scan * fraction[file], denominator);
1847                 }
1848
1849                 /*
1850                  * If zone is small or memcg is small, nr[l] can be 0.
1851                  * This results no-scan on this priority and priority drop down.
1852                  * For global direct reclaim, it can visit next zone and tend
1853                  * not to have problems. For global kswapd, it's for zone
1854                  * balancing and it need to scan a small amounts. When using
1855                  * memcg, priority drop can cause big latency. So, it's better
1856                  * to scan small amount. See may_noscan above.
1857                  */
1858                 if (!scan && force_scan) {
1859                         if (file)
1860                                 scan = SWAP_CLUSTER_MAX;
1861                         else if (!noswap)
1862                                 scan = SWAP_CLUSTER_MAX;
1863                 }
1864                 nr[l] = scan;
1865         }
1866 }
1867
1868 /*
1869  * Reclaim/compaction depends on a number of pages being freed. To avoid
1870  * disruption to the system, a small number of order-0 pages continue to be
1871  * rotated and reclaimed in the normal fashion. However, by the time we get
1872  * back to the allocator and call try_to_compact_zone(), we ensure that
1873  * there are enough free pages for it to be likely successful
1874  */
1875 static inline bool should_continue_reclaim(struct zone *zone,
1876                                         unsigned long nr_reclaimed,
1877                                         unsigned long nr_scanned,
1878                                         struct scan_control *sc)
1879 {
1880         unsigned long pages_for_compaction;
1881         unsigned long inactive_lru_pages;
1882
1883         /* If not in reclaim/compaction mode, stop */
1884         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1885                 return false;
1886
1887         /* Consider stopping depending on scan and reclaim activity */
1888         if (sc->gfp_mask & __GFP_REPEAT) {
1889                 /*
1890                  * For __GFP_REPEAT allocations, stop reclaiming if the
1891                  * full LRU list has been scanned and we are still failing
1892                  * to reclaim pages. This full LRU scan is potentially
1893                  * expensive but a __GFP_REPEAT caller really wants to succeed
1894                  */
1895                 if (!nr_reclaimed && !nr_scanned)
1896                         return false;
1897         } else {
1898                 /*
1899                  * For non-__GFP_REPEAT allocations which can presumably
1900                  * fail without consequence, stop if we failed to reclaim
1901                  * any pages from the last SWAP_CLUSTER_MAX number of
1902                  * pages that were scanned. This will return to the
1903                  * caller faster at the risk reclaim/compaction and
1904                  * the resulting allocation attempt fails
1905                  */
1906                 if (!nr_reclaimed)
1907                         return false;
1908         }
1909
1910         /*
1911          * If we have not reclaimed enough pages for compaction and the
1912          * inactive lists are large enough, continue reclaiming
1913          */
1914         pages_for_compaction = (2UL << sc->order);
1915         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1916                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1917         if (sc->nr_reclaimed < pages_for_compaction &&
1918                         inactive_lru_pages > pages_for_compaction)
1919                 return true;
1920
1921         /* If compaction would go ahead or the allocation would succeed, stop */
1922         switch (compaction_suitable(zone, sc->order)) {
1923         case COMPACT_PARTIAL:
1924         case COMPACT_CONTINUE:
1925                 return false;
1926         default:
1927                 return true;
1928         }
1929 }
1930
1931 /*
1932  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1933  */
1934 static void shrink_zone(int priority, struct zone *zone,
1935                                 struct scan_control *sc)
1936 {
1937         unsigned long nr[NR_LRU_LISTS];
1938         unsigned long nr_to_scan;
1939         enum lru_list l;
1940         unsigned long nr_reclaimed, nr_scanned;
1941         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1942
1943 restart:
1944         nr_reclaimed = 0;
1945         nr_scanned = sc->nr_scanned;
1946         get_scan_count(zone, sc, nr, priority);
1947
1948         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1949                                         nr[LRU_INACTIVE_FILE]) {
1950                 for_each_evictable_lru(l) {
1951                         if (nr[l]) {
1952                                 nr_to_scan = min_t(unsigned long,
1953                                                    nr[l], SWAP_CLUSTER_MAX);
1954                                 nr[l] -= nr_to_scan;
1955
1956                                 nr_reclaimed += shrink_list(l, nr_to_scan,
1957                                                             zone, sc, priority);
1958                         }
1959                 }
1960                 /*
1961                  * On large memory systems, scan >> priority can become
1962                  * really large. This is fine for the starting priority;
1963                  * we want to put equal scanning pressure on each zone.
1964                  * However, if the VM has a harder time of freeing pages,
1965                  * with multiple processes reclaiming pages, the total
1966                  * freeing target can get unreasonably large.
1967                  */
1968                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1969                         break;
1970         }
1971         sc->nr_reclaimed += nr_reclaimed;
1972
1973         /*
1974          * Even if we did not try to evict anon pages at all, we want to
1975          * rebalance the anon lru active/inactive ratio.
1976          */
1977         if (inactive_anon_is_low(zone, sc))
1978                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1979
1980         /* reclaim/compaction might need reclaim to continue */
1981         if (should_continue_reclaim(zone, nr_reclaimed,
1982                                         sc->nr_scanned - nr_scanned, sc))
1983                 goto restart;
1984
1985         throttle_vm_writeout(sc->gfp_mask);
1986 }
1987
1988 /*
1989  * This is the direct reclaim path, for page-allocating processes.  We only
1990  * try to reclaim pages from zones which will satisfy the caller's allocation
1991  * request.
1992  *
1993  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1994  * Because:
1995  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1996  *    allocation or
1997  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1998  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1999  *    zone defense algorithm.
2000  *
2001  * If a zone is deemed to be full of pinned pages then just give it a light
2002  * scan then give up on it.
2003  */
2004 static void shrink_zones(int priority, struct zonelist *zonelist,
2005                                         struct scan_control *sc)
2006 {
2007         struct zoneref *z;
2008         struct zone *zone;
2009         unsigned long nr_soft_reclaimed;
2010         unsigned long nr_soft_scanned;
2011
2012         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2013                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2014                 if (!populated_zone(zone))
2015                         continue;
2016                 /*
2017                  * Take care memory controller reclaiming has small influence
2018                  * to global LRU.
2019                  */
2020                 if (scanning_global_lru(sc)) {
2021                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2022                                 continue;
2023                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2024                                 continue;       /* Let kswapd poll it */
2025                         /*
2026                          * This steals pages from memory cgroups over softlimit
2027                          * and returns the number of reclaimed pages and
2028                          * scanned pages. This works for global memory pressure
2029                          * and balancing, not for a memcg's limit.
2030                          */
2031                         nr_soft_scanned = 0;
2032                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2033                                                 sc->order, sc->gfp_mask,
2034                                                 &nr_soft_scanned);
2035                         sc->nr_reclaimed += nr_soft_reclaimed;
2036                         sc->nr_scanned += nr_soft_scanned;
2037                         /* need some check for avoid more shrink_zone() */
2038                 }
2039
2040                 shrink_zone(priority, zone, sc);
2041         }
2042 }
2043
2044 static bool zone_reclaimable(struct zone *zone)
2045 {
2046         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2047 }
2048
2049 /* All zones in zonelist are unreclaimable? */
2050 static bool all_unreclaimable(struct zonelist *zonelist,
2051                 struct scan_control *sc)
2052 {
2053         struct zoneref *z;
2054         struct zone *zone;
2055
2056         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2057                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2058                 if (!populated_zone(zone))
2059                         continue;
2060                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2061                         continue;
2062                 if (!zone->all_unreclaimable)
2063                         return false;
2064         }
2065
2066         return true;
2067 }
2068
2069 /*
2070  * This is the main entry point to direct page reclaim.
2071  *
2072  * If a full scan of the inactive list fails to free enough memory then we
2073  * are "out of memory" and something needs to be killed.
2074  *
2075  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2076  * high - the zone may be full of dirty or under-writeback pages, which this
2077  * caller can't do much about.  We kick the writeback threads and take explicit
2078  * naps in the hope that some of these pages can be written.  But if the
2079  * allocating task holds filesystem locks which prevent writeout this might not
2080  * work, and the allocation attempt will fail.
2081  *
2082  * returns:     0, if no pages reclaimed
2083  *              else, the number of pages reclaimed
2084  */
2085 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2086                                         struct scan_control *sc,
2087                                         struct shrink_control *shrink)
2088 {
2089         int priority;
2090         unsigned long total_scanned = 0;
2091         struct reclaim_state *reclaim_state = current->reclaim_state;
2092         struct zoneref *z;
2093         struct zone *zone;
2094         unsigned long writeback_threshold;
2095
2096         get_mems_allowed();
2097         delayacct_freepages_start();
2098
2099         if (scanning_global_lru(sc))
2100                 count_vm_event(ALLOCSTALL);
2101
2102         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2103                 sc->nr_scanned = 0;
2104                 if (!priority)
2105                         disable_swap_token(sc->mem_cgroup);
2106                 shrink_zones(priority, zonelist, sc);
2107                 /*
2108                  * Don't shrink slabs when reclaiming memory from
2109                  * over limit cgroups
2110                  */
2111                 if (scanning_global_lru(sc)) {
2112                         unsigned long lru_pages = 0;
2113                         for_each_zone_zonelist(zone, z, zonelist,
2114                                         gfp_zone(sc->gfp_mask)) {
2115                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2116                                         continue;
2117
2118                                 lru_pages += zone_reclaimable_pages(zone);
2119                         }
2120
2121                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2122                         if (reclaim_state) {
2123                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2124                                 reclaim_state->reclaimed_slab = 0;
2125                         }
2126                 }
2127                 total_scanned += sc->nr_scanned;
2128                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2129                         goto out;
2130
2131                 /*
2132                  * Try to write back as many pages as we just scanned.  This
2133                  * tends to cause slow streaming writers to write data to the
2134                  * disk smoothly, at the dirtying rate, which is nice.   But
2135                  * that's undesirable in laptop mode, where we *want* lumpy
2136                  * writeout.  So in laptop mode, write out the whole world.
2137                  */
2138                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2139                 if (total_scanned > writeback_threshold) {
2140                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2141                         sc->may_writepage = 1;
2142                 }
2143
2144                 /* Take a nap, wait for some writeback to complete */
2145                 if (!sc->hibernation_mode && sc->nr_scanned &&
2146                     priority < DEF_PRIORITY - 2) {
2147                         struct zone *preferred_zone;
2148
2149                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2150                                                 &cpuset_current_mems_allowed,
2151                                                 &preferred_zone);
2152                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2153                 }
2154         }
2155
2156 out:
2157         delayacct_freepages_end();
2158         put_mems_allowed();
2159
2160         if (sc->nr_reclaimed)
2161                 return sc->nr_reclaimed;
2162
2163         /*
2164          * As hibernation is going on, kswapd is freezed so that it can't mark
2165          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2166          * check.
2167          */
2168         if (oom_killer_disabled)
2169                 return 0;
2170
2171         /* top priority shrink_zones still had more to do? don't OOM, then */
2172         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2173                 return 1;
2174
2175         return 0;
2176 }
2177
2178 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2179                                 gfp_t gfp_mask, nodemask_t *nodemask)
2180 {
2181         unsigned long nr_reclaimed;
2182         struct scan_control sc = {
2183                 .gfp_mask = gfp_mask,
2184                 .may_writepage = !laptop_mode,
2185                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2186                 .may_unmap = 1,
2187                 .may_swap = 1,
2188                 .swappiness = vm_swappiness,
2189                 .order = order,
2190                 .mem_cgroup = NULL,
2191                 .nodemask = nodemask,
2192         };
2193         struct shrink_control shrink = {
2194                 .gfp_mask = sc.gfp_mask,
2195         };
2196
2197         trace_mm_vmscan_direct_reclaim_begin(order,
2198                                 sc.may_writepage,
2199                                 gfp_mask);
2200
2201         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2202
2203         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2204
2205         return nr_reclaimed;
2206 }
2207
2208 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2209
2210 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2211                                                 gfp_t gfp_mask, bool noswap,
2212                                                 unsigned int swappiness,
2213                                                 struct zone *zone,
2214                                                 unsigned long *nr_scanned)
2215 {
2216         struct scan_control sc = {
2217                 .nr_scanned = 0,
2218                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2219                 .may_writepage = !laptop_mode,
2220                 .may_unmap = 1,
2221                 .may_swap = !noswap,
2222                 .swappiness = swappiness,
2223                 .order = 0,
2224                 .mem_cgroup = mem,
2225         };
2226
2227         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2228                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2229
2230         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2231                                                       sc.may_writepage,
2232                                                       sc.gfp_mask);
2233
2234         /*
2235          * NOTE: Although we can get the priority field, using it
2236          * here is not a good idea, since it limits the pages we can scan.
2237          * if we don't reclaim here, the shrink_zone from balance_pgdat
2238          * will pick up pages from other mem cgroup's as well. We hack
2239          * the priority and make it zero.
2240          */
2241         shrink_zone(0, zone, &sc);
2242
2243         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2244
2245         *nr_scanned = sc.nr_scanned;
2246         return sc.nr_reclaimed;
2247 }
2248
2249 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2250                                            gfp_t gfp_mask,
2251                                            bool noswap,
2252                                            unsigned int swappiness)
2253 {
2254         struct zonelist *zonelist;
2255         unsigned long nr_reclaimed;
2256         int nid;
2257         struct scan_control sc = {
2258                 .may_writepage = !laptop_mode,
2259                 .may_unmap = 1,
2260                 .may_swap = !noswap,
2261                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2262                 .swappiness = swappiness,
2263                 .order = 0,
2264                 .mem_cgroup = mem_cont,
2265                 .nodemask = NULL, /* we don't care the placement */
2266                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2267                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2268         };
2269         struct shrink_control shrink = {
2270                 .gfp_mask = sc.gfp_mask,
2271         };
2272
2273         /*
2274          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2275          * take care of from where we get pages. So the node where we start the
2276          * scan does not need to be the current node.
2277          */
2278         nid = mem_cgroup_select_victim_node(mem_cont);
2279
2280         zonelist = NODE_DATA(nid)->node_zonelists;
2281
2282         trace_mm_vmscan_memcg_reclaim_begin(0,
2283                                             sc.may_writepage,
2284                                             sc.gfp_mask);
2285
2286         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2287
2288         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2289
2290         return nr_reclaimed;
2291 }
2292 #endif
2293
2294 /*
2295  * pgdat_balanced is used when checking if a node is balanced for high-order
2296  * allocations. Only zones that meet watermarks and are in a zone allowed
2297  * by the callers classzone_idx are added to balanced_pages. The total of
2298  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2299  * for the node to be considered balanced. Forcing all zones to be balanced
2300  * for high orders can cause excessive reclaim when there are imbalanced zones.
2301  * The choice of 25% is due to
2302  *   o a 16M DMA zone that is balanced will not balance a zone on any
2303  *     reasonable sized machine
2304  *   o On all other machines, the top zone must be at least a reasonable
2305  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2306  *     would need to be at least 256M for it to be balance a whole node.
2307  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2308  *     to balance a node on its own. These seemed like reasonable ratios.
2309  */
2310 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2311                                                 int classzone_idx)
2312 {
2313         unsigned long present_pages = 0;
2314         int i;
2315
2316         for (i = 0; i <= classzone_idx; i++)
2317                 present_pages += pgdat->node_zones[i].present_pages;
2318
2319         /* A special case here: if zone has no page, we think it's balanced */
2320         return balanced_pages >= (present_pages >> 2);
2321 }
2322
2323 /* is kswapd sleeping prematurely? */
2324 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2325                                         int classzone_idx)
2326 {
2327         int i;
2328         unsigned long balanced = 0;
2329         bool all_zones_ok = true;
2330
2331         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2332         if (remaining)
2333                 return true;
2334
2335         /* Check the watermark levels */
2336         for (i = 0; i <= classzone_idx; i++) {
2337                 struct zone *zone = pgdat->node_zones + i;
2338
2339                 if (!populated_zone(zone))
2340                         continue;
2341
2342                 /*
2343                  * balance_pgdat() skips over all_unreclaimable after
2344                  * DEF_PRIORITY. Effectively, it considers them balanced so
2345                  * they must be considered balanced here as well if kswapd
2346                  * is to sleep
2347                  */
2348                 if (zone->all_unreclaimable) {
2349                         balanced += zone->present_pages;
2350                         continue;
2351                 }
2352
2353                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2354                                                         i, 0))
2355                         all_zones_ok = false;
2356                 else
2357                         balanced += zone->present_pages;
2358         }
2359
2360         /*
2361          * For high-order requests, the balanced zones must contain at least
2362          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2363          * must be balanced
2364          */
2365         if (order)
2366                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2367         else
2368                 return !all_zones_ok;
2369 }
2370
2371 /*
2372  * For kswapd, balance_pgdat() will work across all this node's zones until
2373  * they are all at high_wmark_pages(zone).
2374  *
2375  * Returns the final order kswapd was reclaiming at
2376  *
2377  * There is special handling here for zones which are full of pinned pages.
2378  * This can happen if the pages are all mlocked, or if they are all used by
2379  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2380  * What we do is to detect the case where all pages in the zone have been
2381  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2382  * dead and from now on, only perform a short scan.  Basically we're polling
2383  * the zone for when the problem goes away.
2384  *
2385  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2386  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2387  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2388  * lower zones regardless of the number of free pages in the lower zones. This
2389  * interoperates with the page allocator fallback scheme to ensure that aging
2390  * of pages is balanced across the zones.
2391  */
2392 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2393                                                         int *classzone_idx)
2394 {
2395         int all_zones_ok;
2396         unsigned long balanced;
2397         int priority;
2398         int i;
2399         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2400         unsigned long total_scanned;
2401         struct reclaim_state *reclaim_state = current->reclaim_state;
2402         unsigned long nr_soft_reclaimed;
2403         unsigned long nr_soft_scanned;
2404         struct scan_control sc = {
2405                 .gfp_mask = GFP_KERNEL,
2406                 .may_unmap = 1,
2407                 .may_swap = 1,
2408                 /*
2409                  * kswapd doesn't want to be bailed out while reclaim. because
2410                  * we want to put equal scanning pressure on each zone.
2411                  */
2412                 .nr_to_reclaim = ULONG_MAX,
2413                 .swappiness = vm_swappiness,
2414                 .order = order,
2415                 .mem_cgroup = NULL,
2416         };
2417         struct shrink_control shrink = {
2418                 .gfp_mask = sc.gfp_mask,
2419         };
2420 loop_again:
2421         total_scanned = 0;
2422         sc.nr_reclaimed = 0;
2423         sc.may_writepage = !laptop_mode;
2424         count_vm_event(PAGEOUTRUN);
2425
2426         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2427                 unsigned long lru_pages = 0;
2428                 int has_under_min_watermark_zone = 0;
2429
2430                 /* The swap token gets in the way of swapout... */
2431                 if (!priority)
2432                         disable_swap_token(NULL);
2433
2434                 all_zones_ok = 1;
2435                 balanced = 0;
2436
2437                 /*
2438                  * Scan in the highmem->dma direction for the highest
2439                  * zone which needs scanning
2440                  */
2441                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2442                         struct zone *zone = pgdat->node_zones + i;
2443
2444                         if (!populated_zone(zone))
2445                                 continue;
2446
2447                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2448                                 continue;
2449
2450                         /*
2451                          * Do some background aging of the anon list, to give
2452                          * pages a chance to be referenced before reclaiming.
2453                          */
2454                         if (inactive_anon_is_low(zone, &sc))
2455                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2456                                                         &sc, priority, 0);
2457
2458                         if (!zone_watermark_ok_safe(zone, order,
2459                                         high_wmark_pages(zone), 0, 0)) {
2460                                 end_zone = i;
2461                                 break;
2462                         }
2463                 }
2464                 if (i < 0)
2465                         goto out;
2466
2467                 for (i = 0; i <= end_zone; i++) {
2468                         struct zone *zone = pgdat->node_zones + i;
2469
2470                         lru_pages += zone_reclaimable_pages(zone);
2471                 }
2472
2473                 /*
2474                  * Now scan the zone in the dma->highmem direction, stopping
2475                  * at the last zone which needs scanning.
2476                  *
2477                  * We do this because the page allocator works in the opposite
2478                  * direction.  This prevents the page allocator from allocating
2479                  * pages behind kswapd's direction of progress, which would
2480                  * cause too much scanning of the lower zones.
2481                  */
2482                 for (i = 0; i <= end_zone; i++) {
2483                         struct zone *zone = pgdat->node_zones + i;
2484                         int nr_slab;
2485                         unsigned long balance_gap;
2486
2487                         if (!populated_zone(zone))
2488                                 continue;
2489
2490                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2491                                 continue;
2492
2493                         sc.nr_scanned = 0;
2494
2495                         nr_soft_scanned = 0;
2496                         /*
2497                          * Call soft limit reclaim before calling shrink_zone.
2498                          */
2499                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2500                                                         order, sc.gfp_mask,
2501                                                         &nr_soft_scanned);
2502                         sc.nr_reclaimed += nr_soft_reclaimed;
2503                         total_scanned += nr_soft_scanned;
2504
2505                         /*
2506                          * We put equal pressure on every zone, unless
2507                          * one zone has way too many pages free
2508                          * already. The "too many pages" is defined
2509                          * as the high wmark plus a "gap" where the
2510                          * gap is either the low watermark or 1%
2511                          * of the zone, whichever is smaller.
2512                          */
2513                         balance_gap = min(low_wmark_pages(zone),
2514                                 (zone->present_pages +
2515                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2516                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2517                         if (!zone_watermark_ok_safe(zone, order,
2518                                         high_wmark_pages(zone) + balance_gap,
2519                                         end_zone, 0)) {
2520                                 shrink_zone(priority, zone, &sc);
2521
2522                                 reclaim_state->reclaimed_slab = 0;
2523                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2524                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2525                                 total_scanned += sc.nr_scanned;
2526
2527                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2528                                         zone->all_unreclaimable = 1;
2529                         }
2530
2531                         /*
2532                          * If we've done a decent amount of scanning and
2533                          * the reclaim ratio is low, start doing writepage
2534                          * even in laptop mode
2535                          */
2536                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2537                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2538                                 sc.may_writepage = 1;
2539
2540                         if (zone->all_unreclaimable) {
2541                                 if (end_zone && end_zone == i)
2542                                         end_zone--;
2543                                 continue;
2544                         }
2545
2546                         if (!zone_watermark_ok_safe(zone, order,
2547                                         high_wmark_pages(zone), end_zone, 0)) {
2548                                 all_zones_ok = 0;
2549                                 /*
2550                                  * We are still under min water mark.  This
2551                                  * means that we have a GFP_ATOMIC allocation
2552                                  * failure risk. Hurry up!
2553                                  */
2554                                 if (!zone_watermark_ok_safe(zone, order,
2555                                             min_wmark_pages(zone), end_zone, 0))
2556                                         has_under_min_watermark_zone = 1;
2557                         } else {
2558                                 /*
2559                                  * If a zone reaches its high watermark,
2560                                  * consider it to be no longer congested. It's
2561                                  * possible there are dirty pages backed by
2562                                  * congested BDIs but as pressure is relieved,
2563                                  * spectulatively avoid congestion waits
2564                                  */
2565                                 zone_clear_flag(zone, ZONE_CONGESTED);
2566                                 if (i <= *classzone_idx)
2567                                         balanced += zone->present_pages;
2568                         }
2569
2570                 }
2571                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2572                         break;          /* kswapd: all done */
2573                 /*
2574                  * OK, kswapd is getting into trouble.  Take a nap, then take
2575                  * another pass across the zones.
2576                  */
2577                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2578                         if (has_under_min_watermark_zone)
2579                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2580                         else
2581                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2582                 }
2583
2584                 /*
2585                  * We do this so kswapd doesn't build up large priorities for
2586                  * example when it is freeing in parallel with allocators. It
2587                  * matches the direct reclaim path behaviour in terms of impact
2588                  * on zone->*_priority.
2589                  */
2590                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2591                         break;
2592         }
2593 out:
2594
2595         /*
2596          * order-0: All zones must meet high watermark for a balanced node
2597          * high-order: Balanced zones must make up at least 25% of the node
2598          *             for the node to be balanced
2599          */
2600         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2601                 cond_resched();
2602
2603                 try_to_freeze();
2604
2605                 /*
2606                  * Fragmentation may mean that the system cannot be
2607                  * rebalanced for high-order allocations in all zones.
2608                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2609                  * it means the zones have been fully scanned and are still
2610                  * not balanced. For high-order allocations, there is
2611                  * little point trying all over again as kswapd may
2612                  * infinite loop.
2613                  *
2614                  * Instead, recheck all watermarks at order-0 as they
2615                  * are the most important. If watermarks are ok, kswapd will go
2616                  * back to sleep. High-order users can still perform direct
2617                  * reclaim if they wish.
2618                  */
2619                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2620                         order = sc.order = 0;
2621
2622                 goto loop_again;
2623         }
2624
2625         /*
2626          * If kswapd was reclaiming at a higher order, it has the option of
2627          * sleeping without all zones being balanced. Before it does, it must
2628          * ensure that the watermarks for order-0 on *all* zones are met and
2629          * that the congestion flags are cleared. The congestion flag must
2630          * be cleared as kswapd is the only mechanism that clears the flag
2631          * and it is potentially going to sleep here.
2632          */
2633         if (order) {
2634                 for (i = 0; i <= end_zone; i++) {
2635                         struct zone *zone = pgdat->node_zones + i;
2636
2637                         if (!populated_zone(zone))
2638                                 continue;
2639
2640                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2641                                 continue;
2642
2643                         /* Confirm the zone is balanced for order-0 */
2644                         if (!zone_watermark_ok(zone, 0,
2645                                         high_wmark_pages(zone), 0, 0)) {
2646                                 order = sc.order = 0;
2647                                 goto loop_again;
2648                         }
2649
2650                         /* If balanced, clear the congested flag */
2651                         zone_clear_flag(zone, ZONE_CONGESTED);
2652                 }
2653         }
2654
2655         /*
2656          * Return the order we were reclaiming at so sleeping_prematurely()
2657          * makes a decision on the order we were last reclaiming at. However,
2658          * if another caller entered the allocator slow path while kswapd
2659          * was awake, order will remain at the higher level
2660          */
2661         *classzone_idx = end_zone;
2662         return order;
2663 }
2664
2665 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2666 {
2667         long remaining = 0;
2668         DEFINE_WAIT(wait);
2669
2670         if (freezing(current) || kthread_should_stop())
2671                 return;
2672
2673         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2674
2675         /* Try to sleep for a short interval */
2676         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2677                 remaining = schedule_timeout(HZ/10);
2678                 finish_wait(&pgdat->kswapd_wait, &wait);
2679                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2680         }
2681
2682         /*
2683          * After a short sleep, check if it was a premature sleep. If not, then
2684          * go fully to sleep until explicitly woken up.
2685          */
2686         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2687                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2688
2689                 /*
2690                  * vmstat counters are not perfectly accurate and the estimated
2691                  * value for counters such as NR_FREE_PAGES can deviate from the
2692                  * true value by nr_online_cpus * threshold. To avoid the zone
2693                  * watermarks being breached while under pressure, we reduce the
2694                  * per-cpu vmstat threshold while kswapd is awake and restore
2695                  * them before going back to sleep.
2696                  */
2697                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2698                 schedule();
2699                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2700         } else {
2701                 if (remaining)
2702                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2703                 else
2704                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2705         }
2706         finish_wait(&pgdat->kswapd_wait, &wait);
2707 }
2708
2709 /*
2710  * The background pageout daemon, started as a kernel thread
2711  * from the init process.
2712  *
2713  * This basically trickles out pages so that we have _some_
2714  * free memory available even if there is no other activity
2715  * that frees anything up. This is needed for things like routing
2716  * etc, where we otherwise might have all activity going on in
2717  * asynchronous contexts that cannot page things out.
2718  *
2719  * If there are applications that are active memory-allocators
2720  * (most normal use), this basically shouldn't matter.
2721  */
2722 static int kswapd(void *p)
2723 {
2724         unsigned long order, new_order;
2725         int classzone_idx, new_classzone_idx;
2726         pg_data_t *pgdat = (pg_data_t*)p;
2727         struct task_struct *tsk = current;
2728
2729         struct reclaim_state reclaim_state = {
2730                 .reclaimed_slab = 0,
2731         };
2732         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2733
2734         lockdep_set_current_reclaim_state(GFP_KERNEL);
2735
2736         if (!cpumask_empty(cpumask))
2737                 set_cpus_allowed_ptr(tsk, cpumask);
2738         current->reclaim_state = &reclaim_state;
2739
2740         /*
2741          * Tell the memory management that we're a "memory allocator",
2742          * and that if we need more memory we should get access to it
2743          * regardless (see "__alloc_pages()"). "kswapd" should
2744          * never get caught in the normal page freeing logic.
2745          *
2746          * (Kswapd normally doesn't need memory anyway, but sometimes
2747          * you need a small amount of memory in order to be able to
2748          * page out something else, and this flag essentially protects
2749          * us from recursively trying to free more memory as we're
2750          * trying to free the first piece of memory in the first place).
2751          */
2752         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2753         set_freezable();
2754
2755         order = new_order = 0;
2756         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2757         for ( ; ; ) {
2758                 int ret;
2759
2760                 /*
2761                  * If the last balance_pgdat was unsuccessful it's unlikely a
2762                  * new request of a similar or harder type will succeed soon
2763                  * so consider going to sleep on the basis we reclaimed at
2764                  */
2765                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2766                         new_order = pgdat->kswapd_max_order;
2767                         new_classzone_idx = pgdat->classzone_idx;
2768                         pgdat->kswapd_max_order =  0;
2769                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2770                 }
2771
2772                 if (order < new_order || classzone_idx > new_classzone_idx) {
2773                         /*
2774                          * Don't sleep if someone wants a larger 'order'
2775                          * allocation or has tigher zone constraints
2776                          */
2777                         order = new_order;
2778                         classzone_idx = new_classzone_idx;
2779                 } else {
2780                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2781                         order = pgdat->kswapd_max_order;
2782                         classzone_idx = pgdat->classzone_idx;
2783                         pgdat->kswapd_max_order = 0;
2784                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2785                 }
2786
2787                 ret = try_to_freeze();
2788                 if (kthread_should_stop())
2789                         break;
2790
2791                 /*
2792                  * We can speed up thawing tasks if we don't call balance_pgdat
2793                  * after returning from the refrigerator
2794                  */
2795                 if (!ret) {
2796                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2797                         order = balance_pgdat(pgdat, order, &classzone_idx);
2798                 }
2799         }
2800         return 0;
2801 }
2802
2803 /*
2804  * A zone is low on free memory, so wake its kswapd task to service it.
2805  */
2806 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2807 {
2808         pg_data_t *pgdat;
2809
2810         if (!populated_zone(zone))
2811                 return;
2812
2813         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2814                 return;
2815         pgdat = zone->zone_pgdat;
2816         if (pgdat->kswapd_max_order < order) {
2817                 pgdat->kswapd_max_order = order;
2818                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2819         }
2820         if (!waitqueue_active(&pgdat->kswapd_wait))
2821                 return;
2822         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2823                 return;
2824
2825         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2826         wake_up_interruptible(&pgdat->kswapd_wait);
2827 }
2828
2829 /*
2830  * The reclaimable count would be mostly accurate.
2831  * The less reclaimable pages may be
2832  * - mlocked pages, which will be moved to unevictable list when encountered
2833  * - mapped pages, which may require several travels to be reclaimed
2834  * - dirty pages, which is not "instantly" reclaimable
2835  */
2836 unsigned long global_reclaimable_pages(void)
2837 {
2838         int nr;
2839
2840         nr = global_page_state(NR_ACTIVE_FILE) +
2841              global_page_state(NR_INACTIVE_FILE);
2842
2843         if (nr_swap_pages > 0)
2844                 nr += global_page_state(NR_ACTIVE_ANON) +
2845                       global_page_state(NR_INACTIVE_ANON);
2846
2847         return nr;
2848 }
2849
2850 unsigned long zone_reclaimable_pages(struct zone *zone)
2851 {
2852         int nr;
2853
2854         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2855              zone_page_state(zone, NR_INACTIVE_FILE);
2856
2857         if (nr_swap_pages > 0)
2858                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2859                       zone_page_state(zone, NR_INACTIVE_ANON);
2860
2861         return nr;
2862 }
2863
2864 #ifdef CONFIG_HIBERNATION
2865 /*
2866  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2867  * freed pages.
2868  *
2869  * Rather than trying to age LRUs the aim is to preserve the overall
2870  * LRU order by reclaiming preferentially
2871  * inactive > active > active referenced > active mapped
2872  */
2873 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2874 {
2875         struct reclaim_state reclaim_state;
2876         struct scan_control sc = {
2877                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2878                 .may_swap = 1,
2879                 .may_unmap = 1,
2880                 .may_writepage = 1,
2881                 .nr_to_reclaim = nr_to_reclaim,
2882                 .hibernation_mode = 1,
2883                 .swappiness = vm_swappiness,
2884                 .order = 0,
2885         };
2886         struct shrink_control shrink = {
2887                 .gfp_mask = sc.gfp_mask,
2888         };
2889         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2890         struct task_struct *p = current;
2891         unsigned long nr_reclaimed;
2892
2893         p->flags |= PF_MEMALLOC;
2894         lockdep_set_current_reclaim_state(sc.gfp_mask);
2895         reclaim_state.reclaimed_slab = 0;
2896         p->reclaim_state = &reclaim_state;
2897
2898         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2899
2900         p->reclaim_state = NULL;
2901         lockdep_clear_current_reclaim_state();
2902         p->flags &= ~PF_MEMALLOC;
2903
2904         return nr_reclaimed;
2905 }
2906 #endif /* CONFIG_HIBERNATION */
2907
2908 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2909    not required for correctness.  So if the last cpu in a node goes
2910    away, we get changed to run anywhere: as the first one comes back,
2911    restore their cpu bindings. */
2912 static int __devinit cpu_callback(struct notifier_block *nfb,
2913                                   unsigned long action, void *hcpu)
2914 {
2915         int nid;
2916
2917         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2918                 for_each_node_state(nid, N_HIGH_MEMORY) {
2919                         pg_data_t *pgdat = NODE_DATA(nid);
2920                         const struct cpumask *mask;
2921
2922                         mask = cpumask_of_node(pgdat->node_id);
2923
2924                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2925                                 /* One of our CPUs online: restore mask */
2926                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2927                 }
2928         }
2929         return NOTIFY_OK;
2930 }
2931
2932 /*
2933  * This kswapd start function will be called by init and node-hot-add.
2934  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2935  */
2936 int kswapd_run(int nid)
2937 {
2938         pg_data_t *pgdat = NODE_DATA(nid);
2939         int ret = 0;
2940
2941         if (pgdat->kswapd)
2942                 return 0;
2943
2944         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2945         if (IS_ERR(pgdat->kswapd)) {
2946                 /* failure at boot is fatal */
2947                 BUG_ON(system_state == SYSTEM_BOOTING);
2948                 printk("Failed to start kswapd on node %d\n",nid);
2949                 ret = -1;
2950         }
2951         return ret;
2952 }
2953
2954 /*
2955  * Called by memory hotplug when all memory in a node is offlined.
2956  */
2957 void kswapd_stop(int nid)
2958 {
2959         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2960
2961         if (kswapd)
2962                 kthread_stop(kswapd);
2963 }
2964
2965 static int __init kswapd_init(void)
2966 {
2967         int nid;
2968
2969         swap_setup();
2970         for_each_node_state(nid, N_HIGH_MEMORY)
2971                 kswapd_run(nid);
2972         hotcpu_notifier(cpu_callback, 0);
2973         return 0;
2974 }
2975
2976 module_init(kswapd_init)
2977
2978 #ifdef CONFIG_NUMA
2979 /*
2980  * Zone reclaim mode
2981  *
2982  * If non-zero call zone_reclaim when the number of free pages falls below
2983  * the watermarks.
2984  */
2985 int zone_reclaim_mode __read_mostly;
2986
2987 #define RECLAIM_OFF 0
2988 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
2989 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
2990 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
2991
2992 /*
2993  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2994  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2995  * a zone.
2996  */
2997 #define ZONE_RECLAIM_PRIORITY 4
2998
2999 /*
3000  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3001  * occur.
3002  */
3003 int sysctl_min_unmapped_ratio = 1;
3004
3005 /*
3006  * If the number of slab pages in a zone grows beyond this percentage then
3007  * slab reclaim needs to occur.
3008  */
3009 int sysctl_min_slab_ratio = 5;
3010
3011 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3012 {
3013         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3014         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3015                 zone_page_state(zone, NR_ACTIVE_FILE);
3016
3017         /*
3018          * It's possible for there to be more file mapped pages than
3019          * accounted for by the pages on the file LRU lists because
3020          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3021          */
3022         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3023 }
3024
3025 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3026 static long zone_pagecache_reclaimable(struct zone *zone)
3027 {
3028         long nr_pagecache_reclaimable;
3029         long delta = 0;
3030
3031         /*
3032          * If RECLAIM_SWAP is set, then all file pages are considered
3033          * potentially reclaimable. Otherwise, we have to worry about
3034          * pages like swapcache and zone_unmapped_file_pages() provides
3035          * a better estimate
3036          */
3037         if (zone_reclaim_mode & RECLAIM_SWAP)
3038                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3039         else
3040                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3041
3042         /* If we can't clean pages, remove dirty pages from consideration */
3043         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3044                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3045
3046         /* Watch for any possible underflows due to delta */
3047         if (unlikely(delta > nr_pagecache_reclaimable))
3048                 delta = nr_pagecache_reclaimable;
3049
3050         return nr_pagecache_reclaimable - delta;
3051 }
3052
3053 /*
3054  * Try to free up some pages from this zone through reclaim.
3055  */
3056 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3057 {
3058         /* Minimum pages needed in order to stay on node */
3059         const unsigned long nr_pages = 1 << order;
3060         struct task_struct *p = current;
3061         struct reclaim_state reclaim_state;
3062         int priority;
3063         struct scan_control sc = {
3064                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3065                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3066                 .may_swap = 1,
3067                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3068                                        SWAP_CLUSTER_MAX),
3069                 .gfp_mask = gfp_mask,
3070                 .swappiness = vm_swappiness,
3071                 .order = order,
3072         };
3073         struct shrink_control shrink = {
3074                 .gfp_mask = sc.gfp_mask,
3075         };
3076         unsigned long nr_slab_pages0, nr_slab_pages1;
3077
3078         cond_resched();
3079         /*
3080          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3081          * and we also need to be able to write out pages for RECLAIM_WRITE
3082          * and RECLAIM_SWAP.
3083          */
3084         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3085         lockdep_set_current_reclaim_state(gfp_mask);
3086         reclaim_state.reclaimed_slab = 0;
3087         p->reclaim_state = &reclaim_state;
3088
3089         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3090                 /*
3091                  * Free memory by calling shrink zone with increasing
3092                  * priorities until we have enough memory freed.
3093                  */
3094                 priority = ZONE_RECLAIM_PRIORITY;
3095                 do {
3096                         shrink_zone(priority, zone, &sc);
3097                         priority--;
3098                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3099         }
3100
3101         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3102         if (nr_slab_pages0 > zone->min_slab_pages) {
3103                 /*
3104                  * shrink_slab() does not currently allow us to determine how
3105                  * many pages were freed in this zone. So we take the current
3106                  * number of slab pages and shake the slab until it is reduced
3107                  * by the same nr_pages that we used for reclaiming unmapped
3108                  * pages.
3109                  *
3110                  * Note that shrink_slab will free memory on all zones and may
3111                  * take a long time.
3112                  */
3113                 for (;;) {
3114                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3115
3116                         /* No reclaimable slab or very low memory pressure */
3117                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3118                                 break;
3119
3120                         /* Freed enough memory */
3121                         nr_slab_pages1 = zone_page_state(zone,
3122                                                         NR_SLAB_RECLAIMABLE);
3123                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3124                                 break;
3125                 }
3126
3127                 /*
3128                  * Update nr_reclaimed by the number of slab pages we
3129                  * reclaimed from this zone.
3130                  */
3131                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3132                 if (nr_slab_pages1 < nr_slab_pages0)
3133                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3134         }
3135
3136         p->reclaim_state = NULL;
3137         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3138         lockdep_clear_current_reclaim_state();
3139         return sc.nr_reclaimed >= nr_pages;
3140 }
3141
3142 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3143 {
3144         int node_id;
3145         int ret;
3146
3147         /*
3148          * Zone reclaim reclaims unmapped file backed pages and
3149          * slab pages if we are over the defined limits.
3150          *
3151          * A small portion of unmapped file backed pages is needed for
3152          * file I/O otherwise pages read by file I/O will be immediately
3153          * thrown out if the zone is overallocated. So we do not reclaim
3154          * if less than a specified percentage of the zone is used by
3155          * unmapped file backed pages.
3156          */
3157         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3158             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3159                 return ZONE_RECLAIM_FULL;
3160
3161         if (zone->all_unreclaimable)
3162                 return ZONE_RECLAIM_FULL;
3163
3164         /*
3165          * Do not scan if the allocation should not be delayed.
3166          */
3167         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3168                 return ZONE_RECLAIM_NOSCAN;
3169
3170         /*
3171          * Only run zone reclaim on the local zone or on zones that do not
3172          * have associated processors. This will favor the local processor
3173          * over remote processors and spread off node memory allocations
3174          * as wide as possible.
3175          */
3176         node_id = zone_to_nid(zone);
3177         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3178                 return ZONE_RECLAIM_NOSCAN;
3179
3180         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3181                 return ZONE_RECLAIM_NOSCAN;
3182
3183         ret = __zone_reclaim(zone, gfp_mask, order);
3184         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3185
3186         if (!ret)
3187                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3188
3189         return ret;
3190 }
3191 #endif
3192
3193 /*
3194  * page_evictable - test whether a page is evictable
3195  * @page: the page to test
3196  * @vma: the VMA in which the page is or will be mapped, may be NULL
3197  *
3198  * Test whether page is evictable--i.e., should be placed on active/inactive
3199  * lists vs unevictable list.  The vma argument is !NULL when called from the
3200  * fault path to determine how to instantate a new page.
3201  *
3202  * Reasons page might not be evictable:
3203  * (1) page's mapping marked unevictable
3204  * (2) page is part of an mlocked VMA
3205  *
3206  */
3207 int page_evictable(struct page *page, struct vm_area_struct *vma)
3208 {
3209
3210         if (mapping_unevictable(page_mapping(page)))
3211                 return 0;
3212
3213         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3214                 return 0;
3215
3216         return 1;
3217 }
3218
3219 /**
3220  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3221  * @page: page to check evictability and move to appropriate lru list
3222  * @zone: zone page is in
3223  *
3224  * Checks a page for evictability and moves the page to the appropriate
3225  * zone lru list.
3226  *
3227  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3228  * have PageUnevictable set.
3229  */
3230 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3231 {
3232         VM_BUG_ON(PageActive(page));
3233
3234 retry:
3235         ClearPageUnevictable(page);
3236         if (page_evictable(page, NULL)) {
3237                 enum lru_list l = page_lru_base_type(page);
3238
3239                 __dec_zone_state(zone, NR_UNEVICTABLE);
3240                 list_move(&page->lru, &zone->lru[l].list);
3241                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3242                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3243                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3244         } else {
3245                 /*
3246                  * rotate unevictable list
3247                  */
3248                 SetPageUnevictable(page);
3249                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3250                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3251                 if (page_evictable(page, NULL))
3252                         goto retry;
3253         }
3254 }
3255
3256 /**
3257  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3258  * @mapping: struct address_space to scan for evictable pages
3259  *
3260  * Scan all pages in mapping.  Check unevictable pages for
3261  * evictability and move them to the appropriate zone lru list.
3262  */
3263 void scan_mapping_unevictable_pages(struct address_space *mapping)
3264 {
3265         pgoff_t next = 0;
3266         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3267                          PAGE_CACHE_SHIFT;
3268         struct zone *zone;
3269         struct pagevec pvec;
3270
3271         if (mapping->nrpages == 0)
3272                 return;
3273
3274         pagevec_init(&pvec, 0);
3275         while (next < end &&
3276                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3277                 int i;
3278                 int pg_scanned = 0;
3279
3280                 zone = NULL;
3281
3282                 for (i = 0; i < pagevec_count(&pvec); i++) {
3283                         struct page *page = pvec.pages[i];
3284                         pgoff_t page_index = page->index;
3285                         struct zone *pagezone = page_zone(page);
3286
3287                         pg_scanned++;
3288                         if (page_index > next)
3289                                 next = page_index;
3290                         next++;
3291
3292                         if (pagezone != zone) {
3293                                 if (zone)
3294                                         spin_unlock_irq(&zone->lru_lock);
3295                                 zone = pagezone;
3296                                 spin_lock_irq(&zone->lru_lock);
3297                         }
3298
3299                         if (PageLRU(page) && PageUnevictable(page))
3300                                 check_move_unevictable_page(page, zone);
3301                 }
3302                 if (zone)
3303                         spin_unlock_irq(&zone->lru_lock);
3304                 pagevec_release(&pvec);
3305
3306                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3307         }
3308
3309 }
3310
3311 /**
3312  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3313  * @zone - zone of which to scan the unevictable list
3314  *
3315  * Scan @zone's unevictable LRU lists to check for pages that have become
3316  * evictable.  Move those that have to @zone's inactive list where they
3317  * become candidates for reclaim, unless shrink_inactive_zone() decides
3318  * to reactivate them.  Pages that are still unevictable are rotated
3319  * back onto @zone's unevictable list.
3320  */
3321 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3322 static void scan_zone_unevictable_pages(struct zone *zone)
3323 {
3324         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3325         unsigned long scan;
3326         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3327
3328         while (nr_to_scan > 0) {
3329                 unsigned long batch_size = min(nr_to_scan,
3330                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3331
3332                 spin_lock_irq(&zone->lru_lock);
3333                 for (scan = 0;  scan < batch_size; scan++) {
3334                         struct page *page = lru_to_page(l_unevictable);
3335
3336                         if (!trylock_page(page))
3337                                 continue;
3338
3339                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3340
3341                         if (likely(PageLRU(page) && PageUnevictable(page)))
3342                                 check_move_unevictable_page(page, zone);
3343
3344                         unlock_page(page);
3345                 }
3346                 spin_unlock_irq(&zone->lru_lock);
3347
3348                 nr_to_scan -= batch_size;
3349         }
3350 }
3351
3352
3353 /**
3354  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3355  *
3356  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3357  * pages that have become evictable.  Move those back to the zones'
3358  * inactive list where they become candidates for reclaim.
3359  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3360  * and we add swap to the system.  As such, it runs in the context of a task
3361  * that has possibly/probably made some previously unevictable pages
3362  * evictable.
3363  */
3364 static void scan_all_zones_unevictable_pages(void)
3365 {
3366         struct zone *zone;
3367
3368         for_each_zone(zone) {
3369                 scan_zone_unevictable_pages(zone);
3370         }
3371 }
3372
3373 /*
3374  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3375  * all nodes' unevictable lists for evictable pages
3376  */
3377 unsigned long scan_unevictable_pages;
3378
3379 int scan_unevictable_handler(struct ctl_table *table, int write,
3380                            void __user *buffer,
3381                            size_t *length, loff_t *ppos)
3382 {
3383         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3384
3385         if (write && *(unsigned long *)table->data)
3386                 scan_all_zones_unevictable_pages();
3387
3388         scan_unevictable_pages = 0;
3389         return 0;
3390 }
3391
3392 #ifdef CONFIG_NUMA
3393 /*
3394  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3395  * a specified node's per zone unevictable lists for evictable pages.
3396  */
3397
3398 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3399                                           struct sysdev_attribute *attr,
3400                                           char *buf)
3401 {
3402         return sprintf(buf, "0\n");     /* always zero; should fit... */
3403 }
3404
3405 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3406                                            struct sysdev_attribute *attr,
3407                                         const char *buf, size_t count)
3408 {
3409         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3410         struct zone *zone;
3411         unsigned long res;
3412         unsigned long req = strict_strtoul(buf, 10, &res);
3413
3414         if (!req)
3415                 return 1;       /* zero is no-op */
3416
3417         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3418                 if (!populated_zone(zone))
3419                         continue;
3420                 scan_zone_unevictable_pages(zone);
3421         }
3422         return 1;
3423 }
3424
3425
3426 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3427                         read_scan_unevictable_node,
3428                         write_scan_unevictable_node);
3429
3430 int scan_unevictable_register_node(struct node *node)
3431 {
3432         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3433 }
3434
3435 void scan_unevictable_unregister_node(struct node *node)
3436 {
3437         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3438 }
3439 #endif