vmscan: add block plug for page reclaim
[firefly-linux-kernel-4.4.55.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         shrinker->nr = 0;
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 unsigned long total_scan;
251                 unsigned long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 /*
259                  * copy the current shrinker scan count into a local variable
260                  * and zero it so that other concurrent shrinker invocations
261                  * don't also do this scanning work.
262                  */
263                 do {
264                         nr = shrinker->nr;
265                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267                 total_scan = nr;
268                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
270                 delta *= max_pass;
271                 do_div(delta, lru_pages + 1);
272                 total_scan += delta;
273                 if (total_scan < 0) {
274                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
275                                "delete nr=%ld\n",
276                                shrinker->shrink, total_scan);
277                         total_scan = max_pass;
278                 }
279
280                 /*
281                  * We need to avoid excessive windup on filesystem shrinkers
282                  * due to large numbers of GFP_NOFS allocations causing the
283                  * shrinkers to return -1 all the time. This results in a large
284                  * nr being built up so when a shrink that can do some work
285                  * comes along it empties the entire cache due to nr >>>
286                  * max_pass.  This is bad for sustaining a working set in
287                  * memory.
288                  *
289                  * Hence only allow the shrinker to scan the entire cache when
290                  * a large delta change is calculated directly.
291                  */
292                 if (delta < max_pass / 4)
293                         total_scan = min(total_scan, max_pass / 2);
294
295                 /*
296                  * Avoid risking looping forever due to too large nr value:
297                  * never try to free more than twice the estimate number of
298                  * freeable entries.
299                  */
300                 if (total_scan > max_pass * 2)
301                         total_scan = max_pass * 2;
302
303                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
304                                         nr_pages_scanned, lru_pages,
305                                         max_pass, delta, total_scan);
306
307                 while (total_scan >= batch_size) {
308                         int nr_before;
309
310                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
312                                                         batch_size);
313                         if (shrink_ret == -1)
314                                 break;
315                         if (shrink_ret < nr_before)
316                                 ret += nr_before - shrink_ret;
317                         count_vm_events(SLABS_SCANNED, batch_size);
318                         total_scan -= batch_size;
319
320                         cond_resched();
321                 }
322
323                 /*
324                  * move the unused scan count back into the shrinker in a
325                  * manner that handles concurrent updates. If we exhausted the
326                  * scan, there is no need to do an update.
327                  */
328                 do {
329                         nr = shrinker->nr;
330                         new_nr = total_scan + nr;
331                         if (total_scan <= 0)
332                                 break;
333                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 /*
499                  * Wait on writeback if requested to. This happens when
500                  * direct reclaiming a large contiguous area and the
501                  * first attempt to free a range of pages fails.
502                  */
503                 if (PageWriteback(page) &&
504                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
505                         wait_on_page_writeback(page);
506
507                 if (!PageWriteback(page)) {
508                         /* synchronous write or broken a_ops? */
509                         ClearPageReclaim(page);
510                 }
511                 trace_mm_vmscan_writepage(page,
512                         trace_reclaim_flags(page, sc->reclaim_mode));
513                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
514                 return PAGE_SUCCESS;
515         }
516
517         return PAGE_CLEAN;
518 }
519
520 /*
521  * Same as remove_mapping, but if the page is removed from the mapping, it
522  * gets returned with a refcount of 0.
523  */
524 static int __remove_mapping(struct address_space *mapping, struct page *page)
525 {
526         BUG_ON(!PageLocked(page));
527         BUG_ON(mapping != page_mapping(page));
528
529         spin_lock_irq(&mapping->tree_lock);
530         /*
531          * The non racy check for a busy page.
532          *
533          * Must be careful with the order of the tests. When someone has
534          * a ref to the page, it may be possible that they dirty it then
535          * drop the reference. So if PageDirty is tested before page_count
536          * here, then the following race may occur:
537          *
538          * get_user_pages(&page);
539          * [user mapping goes away]
540          * write_to(page);
541          *                              !PageDirty(page)    [good]
542          * SetPageDirty(page);
543          * put_page(page);
544          *                              !page_count(page)   [good, discard it]
545          *
546          * [oops, our write_to data is lost]
547          *
548          * Reversing the order of the tests ensures such a situation cannot
549          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550          * load is not satisfied before that of page->_count.
551          *
552          * Note that if SetPageDirty is always performed via set_page_dirty,
553          * and thus under tree_lock, then this ordering is not required.
554          */
555         if (!page_freeze_refs(page, 2))
556                 goto cannot_free;
557         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558         if (unlikely(PageDirty(page))) {
559                 page_unfreeze_refs(page, 2);
560                 goto cannot_free;
561         }
562
563         if (PageSwapCache(page)) {
564                 swp_entry_t swap = { .val = page_private(page) };
565                 __delete_from_swap_cache(page);
566                 spin_unlock_irq(&mapping->tree_lock);
567                 swapcache_free(swap, page);
568         } else {
569                 void (*freepage)(struct page *);
570
571                 freepage = mapping->a_ops->freepage;
572
573                 __delete_from_page_cache(page);
574                 spin_unlock_irq(&mapping->tree_lock);
575                 mem_cgroup_uncharge_cache_page(page);
576
577                 if (freepage != NULL)
578                         freepage(page);
579         }
580
581         return 1;
582
583 cannot_free:
584         spin_unlock_irq(&mapping->tree_lock);
585         return 0;
586 }
587
588 /*
589  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
590  * someone else has a ref on the page, abort and return 0.  If it was
591  * successfully detached, return 1.  Assumes the caller has a single ref on
592  * this page.
593  */
594 int remove_mapping(struct address_space *mapping, struct page *page)
595 {
596         if (__remove_mapping(mapping, page)) {
597                 /*
598                  * Unfreezing the refcount with 1 rather than 2 effectively
599                  * drops the pagecache ref for us without requiring another
600                  * atomic operation.
601                  */
602                 page_unfreeze_refs(page, 1);
603                 return 1;
604         }
605         return 0;
606 }
607
608 /**
609  * putback_lru_page - put previously isolated page onto appropriate LRU list
610  * @page: page to be put back to appropriate lru list
611  *
612  * Add previously isolated @page to appropriate LRU list.
613  * Page may still be unevictable for other reasons.
614  *
615  * lru_lock must not be held, interrupts must be enabled.
616  */
617 void putback_lru_page(struct page *page)
618 {
619         int lru;
620         int active = !!TestClearPageActive(page);
621         int was_unevictable = PageUnevictable(page);
622
623         VM_BUG_ON(PageLRU(page));
624
625 redo:
626         ClearPageUnevictable(page);
627
628         if (page_evictable(page, NULL)) {
629                 /*
630                  * For evictable pages, we can use the cache.
631                  * In event of a race, worst case is we end up with an
632                  * unevictable page on [in]active list.
633                  * We know how to handle that.
634                  */
635                 lru = active + page_lru_base_type(page);
636                 lru_cache_add_lru(page, lru);
637         } else {
638                 /*
639                  * Put unevictable pages directly on zone's unevictable
640                  * list.
641                  */
642                 lru = LRU_UNEVICTABLE;
643                 add_page_to_unevictable_list(page);
644                 /*
645                  * When racing with an mlock clearing (page is
646                  * unlocked), make sure that if the other thread does
647                  * not observe our setting of PG_lru and fails
648                  * isolation, we see PG_mlocked cleared below and move
649                  * the page back to the evictable list.
650                  *
651                  * The other side is TestClearPageMlocked().
652                  */
653                 smp_mb();
654         }
655
656         /*
657          * page's status can change while we move it among lru. If an evictable
658          * page is on unevictable list, it never be freed. To avoid that,
659          * check after we added it to the list, again.
660          */
661         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662                 if (!isolate_lru_page(page)) {
663                         put_page(page);
664                         goto redo;
665                 }
666                 /* This means someone else dropped this page from LRU
667                  * So, it will be freed or putback to LRU again. There is
668                  * nothing to do here.
669                  */
670         }
671
672         if (was_unevictable && lru != LRU_UNEVICTABLE)
673                 count_vm_event(UNEVICTABLE_PGRESCUED);
674         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675                 count_vm_event(UNEVICTABLE_PGCULLED);
676
677         put_page(page);         /* drop ref from isolate */
678 }
679
680 enum page_references {
681         PAGEREF_RECLAIM,
682         PAGEREF_RECLAIM_CLEAN,
683         PAGEREF_KEEP,
684         PAGEREF_ACTIVATE,
685 };
686
687 static enum page_references page_check_references(struct page *page,
688                                                   struct scan_control *sc)
689 {
690         int referenced_ptes, referenced_page;
691         unsigned long vm_flags;
692
693         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694         referenced_page = TestClearPageReferenced(page);
695
696         /* Lumpy reclaim - ignore references */
697         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
698                 return PAGEREF_RECLAIM;
699
700         /*
701          * Mlock lost the isolation race with us.  Let try_to_unmap()
702          * move the page to the unevictable list.
703          */
704         if (vm_flags & VM_LOCKED)
705                 return PAGEREF_RECLAIM;
706
707         if (referenced_ptes) {
708                 if (PageAnon(page))
709                         return PAGEREF_ACTIVATE;
710                 /*
711                  * All mapped pages start out with page table
712                  * references from the instantiating fault, so we need
713                  * to look twice if a mapped file page is used more
714                  * than once.
715                  *
716                  * Mark it and spare it for another trip around the
717                  * inactive list.  Another page table reference will
718                  * lead to its activation.
719                  *
720                  * Note: the mark is set for activated pages as well
721                  * so that recently deactivated but used pages are
722                  * quickly recovered.
723                  */
724                 SetPageReferenced(page);
725
726                 if (referenced_page)
727                         return PAGEREF_ACTIVATE;
728
729                 return PAGEREF_KEEP;
730         }
731
732         /* Reclaim if clean, defer dirty pages to writeback */
733         if (referenced_page && !PageSwapBacked(page))
734                 return PAGEREF_RECLAIM_CLEAN;
735
736         return PAGEREF_RECLAIM;
737 }
738
739 static noinline_for_stack void free_page_list(struct list_head *free_pages)
740 {
741         struct pagevec freed_pvec;
742         struct page *page, *tmp;
743
744         pagevec_init(&freed_pvec, 1);
745
746         list_for_each_entry_safe(page, tmp, free_pages, lru) {
747                 list_del(&page->lru);
748                 if (!pagevec_add(&freed_pvec, page)) {
749                         __pagevec_free(&freed_pvec);
750                         pagevec_reinit(&freed_pvec);
751                 }
752         }
753
754         pagevec_free(&freed_pvec);
755 }
756
757 /*
758  * shrink_page_list() returns the number of reclaimed pages
759  */
760 static unsigned long shrink_page_list(struct list_head *page_list,
761                                       struct zone *zone,
762                                       struct scan_control *sc)
763 {
764         LIST_HEAD(ret_pages);
765         LIST_HEAD(free_pages);
766         int pgactivate = 0;
767         unsigned long nr_dirty = 0;
768         unsigned long nr_congested = 0;
769         unsigned long nr_reclaimed = 0;
770
771         cond_resched();
772
773         while (!list_empty(page_list)) {
774                 enum page_references references;
775                 struct address_space *mapping;
776                 struct page *page;
777                 int may_enter_fs;
778
779                 cond_resched();
780
781                 page = lru_to_page(page_list);
782                 list_del(&page->lru);
783
784                 if (!trylock_page(page))
785                         goto keep;
786
787                 VM_BUG_ON(PageActive(page));
788                 VM_BUG_ON(page_zone(page) != zone);
789
790                 sc->nr_scanned++;
791
792                 if (unlikely(!page_evictable(page, NULL)))
793                         goto cull_mlocked;
794
795                 if (!sc->may_unmap && page_mapped(page))
796                         goto keep_locked;
797
798                 /* Double the slab pressure for mapped and swapcache pages */
799                 if (page_mapped(page) || PageSwapCache(page))
800                         sc->nr_scanned++;
801
802                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805                 if (PageWriteback(page)) {
806                         /*
807                          * Synchronous reclaim is performed in two passes,
808                          * first an asynchronous pass over the list to
809                          * start parallel writeback, and a second synchronous
810                          * pass to wait for the IO to complete.  Wait here
811                          * for any page for which writeback has already
812                          * started.
813                          */
814                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
815                             may_enter_fs)
816                                 wait_on_page_writeback(page);
817                         else {
818                                 unlock_page(page);
819                                 goto keep_lumpy;
820                         }
821                 }
822
823                 references = page_check_references(page, sc);
824                 switch (references) {
825                 case PAGEREF_ACTIVATE:
826                         goto activate_locked;
827                 case PAGEREF_KEEP:
828                         goto keep_locked;
829                 case PAGEREF_RECLAIM:
830                 case PAGEREF_RECLAIM_CLEAN:
831                         ; /* try to reclaim the page below */
832                 }
833
834                 /*
835                  * Anonymous process memory has backing store?
836                  * Try to allocate it some swap space here.
837                  */
838                 if (PageAnon(page) && !PageSwapCache(page)) {
839                         if (!(sc->gfp_mask & __GFP_IO))
840                                 goto keep_locked;
841                         if (!add_to_swap(page))
842                                 goto activate_locked;
843                         may_enter_fs = 1;
844                 }
845
846                 mapping = page_mapping(page);
847
848                 /*
849                  * The page is mapped into the page tables of one or more
850                  * processes. Try to unmap it here.
851                  */
852                 if (page_mapped(page) && mapping) {
853                         switch (try_to_unmap(page, TTU_UNMAP)) {
854                         case SWAP_FAIL:
855                                 goto activate_locked;
856                         case SWAP_AGAIN:
857                                 goto keep_locked;
858                         case SWAP_MLOCK:
859                                 goto cull_mlocked;
860                         case SWAP_SUCCESS:
861                                 ; /* try to free the page below */
862                         }
863                 }
864
865                 if (PageDirty(page)) {
866                         nr_dirty++;
867
868                         if (references == PAGEREF_RECLAIM_CLEAN)
869                                 goto keep_locked;
870                         if (!may_enter_fs)
871                                 goto keep_locked;
872                         if (!sc->may_writepage)
873                                 goto keep_locked;
874
875                         /* Page is dirty, try to write it out here */
876                         switch (pageout(page, mapping, sc)) {
877                         case PAGE_KEEP:
878                                 nr_congested++;
879                                 goto keep_locked;
880                         case PAGE_ACTIVATE:
881                                 goto activate_locked;
882                         case PAGE_SUCCESS:
883                                 if (PageWriteback(page))
884                                         goto keep_lumpy;
885                                 if (PageDirty(page))
886                                         goto keep;
887
888                                 /*
889                                  * A synchronous write - probably a ramdisk.  Go
890                                  * ahead and try to reclaim the page.
891                                  */
892                                 if (!trylock_page(page))
893                                         goto keep;
894                                 if (PageDirty(page) || PageWriteback(page))
895                                         goto keep_locked;
896                                 mapping = page_mapping(page);
897                         case PAGE_CLEAN:
898                                 ; /* try to free the page below */
899                         }
900                 }
901
902                 /*
903                  * If the page has buffers, try to free the buffer mappings
904                  * associated with this page. If we succeed we try to free
905                  * the page as well.
906                  *
907                  * We do this even if the page is PageDirty().
908                  * try_to_release_page() does not perform I/O, but it is
909                  * possible for a page to have PageDirty set, but it is actually
910                  * clean (all its buffers are clean).  This happens if the
911                  * buffers were written out directly, with submit_bh(). ext3
912                  * will do this, as well as the blockdev mapping.
913                  * try_to_release_page() will discover that cleanness and will
914                  * drop the buffers and mark the page clean - it can be freed.
915                  *
916                  * Rarely, pages can have buffers and no ->mapping.  These are
917                  * the pages which were not successfully invalidated in
918                  * truncate_complete_page().  We try to drop those buffers here
919                  * and if that worked, and the page is no longer mapped into
920                  * process address space (page_count == 1) it can be freed.
921                  * Otherwise, leave the page on the LRU so it is swappable.
922                  */
923                 if (page_has_private(page)) {
924                         if (!try_to_release_page(page, sc->gfp_mask))
925                                 goto activate_locked;
926                         if (!mapping && page_count(page) == 1) {
927                                 unlock_page(page);
928                                 if (put_page_testzero(page))
929                                         goto free_it;
930                                 else {
931                                         /*
932                                          * rare race with speculative reference.
933                                          * the speculative reference will free
934                                          * this page shortly, so we may
935                                          * increment nr_reclaimed here (and
936                                          * leave it off the LRU).
937                                          */
938                                         nr_reclaimed++;
939                                         continue;
940                                 }
941                         }
942                 }
943
944                 if (!mapping || !__remove_mapping(mapping, page))
945                         goto keep_locked;
946
947                 /*
948                  * At this point, we have no other references and there is
949                  * no way to pick any more up (removed from LRU, removed
950                  * from pagecache). Can use non-atomic bitops now (and
951                  * we obviously don't have to worry about waking up a process
952                  * waiting on the page lock, because there are no references.
953                  */
954                 __clear_page_locked(page);
955 free_it:
956                 nr_reclaimed++;
957
958                 /*
959                  * Is there need to periodically free_page_list? It would
960                  * appear not as the counts should be low
961                  */
962                 list_add(&page->lru, &free_pages);
963                 continue;
964
965 cull_mlocked:
966                 if (PageSwapCache(page))
967                         try_to_free_swap(page);
968                 unlock_page(page);
969                 putback_lru_page(page);
970                 reset_reclaim_mode(sc);
971                 continue;
972
973 activate_locked:
974                 /* Not a candidate for swapping, so reclaim swap space. */
975                 if (PageSwapCache(page) && vm_swap_full())
976                         try_to_free_swap(page);
977                 VM_BUG_ON(PageActive(page));
978                 SetPageActive(page);
979                 pgactivate++;
980 keep_locked:
981                 unlock_page(page);
982 keep:
983                 reset_reclaim_mode(sc);
984 keep_lumpy:
985                 list_add(&page->lru, &ret_pages);
986                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
987         }
988
989         /*
990          * Tag a zone as congested if all the dirty pages encountered were
991          * backed by a congested BDI. In this case, reclaimers should just
992          * back off and wait for congestion to clear because further reclaim
993          * will encounter the same problem
994          */
995         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
996                 zone_set_flag(zone, ZONE_CONGESTED);
997
998         free_page_list(&free_pages);
999
1000         list_splice(&ret_pages, page_list);
1001         count_vm_events(PGACTIVATE, pgactivate);
1002         return nr_reclaimed;
1003 }
1004
1005 /*
1006  * Attempt to remove the specified page from its LRU.  Only take this page
1007  * if it is of the appropriate PageActive status.  Pages which are being
1008  * freed elsewhere are also ignored.
1009  *
1010  * page:        page to consider
1011  * mode:        one of the LRU isolation modes defined above
1012  *
1013  * returns 0 on success, -ve errno on failure.
1014  */
1015 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1016 {
1017         bool all_lru_mode;
1018         int ret = -EINVAL;
1019
1020         /* Only take pages on the LRU. */
1021         if (!PageLRU(page))
1022                 return ret;
1023
1024         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1025                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1026
1027         /*
1028          * When checking the active state, we need to be sure we are
1029          * dealing with comparible boolean values.  Take the logical not
1030          * of each.
1031          */
1032         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1033                 return ret;
1034
1035         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1036                 return ret;
1037
1038         /*
1039          * When this function is being called for lumpy reclaim, we
1040          * initially look into all LRU pages, active, inactive and
1041          * unevictable; only give shrink_page_list evictable pages.
1042          */
1043         if (PageUnevictable(page))
1044                 return ret;
1045
1046         ret = -EBUSY;
1047
1048         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1049                 return ret;
1050
1051         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1052                 return ret;
1053
1054         if (likely(get_page_unless_zero(page))) {
1055                 /*
1056                  * Be careful not to clear PageLRU until after we're
1057                  * sure the page is not being freed elsewhere -- the
1058                  * page release code relies on it.
1059                  */
1060                 ClearPageLRU(page);
1061                 ret = 0;
1062         }
1063
1064         return ret;
1065 }
1066
1067 /*
1068  * zone->lru_lock is heavily contended.  Some of the functions that
1069  * shrink the lists perform better by taking out a batch of pages
1070  * and working on them outside the LRU lock.
1071  *
1072  * For pagecache intensive workloads, this function is the hottest
1073  * spot in the kernel (apart from copy_*_user functions).
1074  *
1075  * Appropriate locks must be held before calling this function.
1076  *
1077  * @nr_to_scan: The number of pages to look through on the list.
1078  * @src:        The LRU list to pull pages off.
1079  * @dst:        The temp list to put pages on to.
1080  * @scanned:    The number of pages that were scanned.
1081  * @order:      The caller's attempted allocation order
1082  * @mode:       One of the LRU isolation modes
1083  * @file:       True [1] if isolating file [!anon] pages
1084  *
1085  * returns how many pages were moved onto *@dst.
1086  */
1087 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1088                 struct list_head *src, struct list_head *dst,
1089                 unsigned long *scanned, int order, isolate_mode_t mode,
1090                 int file)
1091 {
1092         unsigned long nr_taken = 0;
1093         unsigned long nr_lumpy_taken = 0;
1094         unsigned long nr_lumpy_dirty = 0;
1095         unsigned long nr_lumpy_failed = 0;
1096         unsigned long scan;
1097
1098         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1099                 struct page *page;
1100                 unsigned long pfn;
1101                 unsigned long end_pfn;
1102                 unsigned long page_pfn;
1103                 int zone_id;
1104
1105                 page = lru_to_page(src);
1106                 prefetchw_prev_lru_page(page, src, flags);
1107
1108                 VM_BUG_ON(!PageLRU(page));
1109
1110                 switch (__isolate_lru_page(page, mode, file)) {
1111                 case 0:
1112                         list_move(&page->lru, dst);
1113                         mem_cgroup_del_lru(page);
1114                         nr_taken += hpage_nr_pages(page);
1115                         break;
1116
1117                 case -EBUSY:
1118                         /* else it is being freed elsewhere */
1119                         list_move(&page->lru, src);
1120                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1121                         continue;
1122
1123                 default:
1124                         BUG();
1125                 }
1126
1127                 if (!order)
1128                         continue;
1129
1130                 /*
1131                  * Attempt to take all pages in the order aligned region
1132                  * surrounding the tag page.  Only take those pages of
1133                  * the same active state as that tag page.  We may safely
1134                  * round the target page pfn down to the requested order
1135                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1136                  * where that page is in a different zone we will detect
1137                  * it from its zone id and abort this block scan.
1138                  */
1139                 zone_id = page_zone_id(page);
1140                 page_pfn = page_to_pfn(page);
1141                 pfn = page_pfn & ~((1 << order) - 1);
1142                 end_pfn = pfn + (1 << order);
1143                 for (; pfn < end_pfn; pfn++) {
1144                         struct page *cursor_page;
1145
1146                         /* The target page is in the block, ignore it. */
1147                         if (unlikely(pfn == page_pfn))
1148                                 continue;
1149
1150                         /* Avoid holes within the zone. */
1151                         if (unlikely(!pfn_valid_within(pfn)))
1152                                 break;
1153
1154                         cursor_page = pfn_to_page(pfn);
1155
1156                         /* Check that we have not crossed a zone boundary. */
1157                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1158                                 break;
1159
1160                         /*
1161                          * If we don't have enough swap space, reclaiming of
1162                          * anon page which don't already have a swap slot is
1163                          * pointless.
1164                          */
1165                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1166                             !PageSwapCache(cursor_page))
1167                                 break;
1168
1169                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1170                                 list_move(&cursor_page->lru, dst);
1171                                 mem_cgroup_del_lru(cursor_page);
1172                                 nr_taken += hpage_nr_pages(page);
1173                                 nr_lumpy_taken++;
1174                                 if (PageDirty(cursor_page))
1175                                         nr_lumpy_dirty++;
1176                                 scan++;
1177                         } else {
1178                                 /*
1179                                  * Check if the page is freed already.
1180                                  *
1181                                  * We can't use page_count() as that
1182                                  * requires compound_head and we don't
1183                                  * have a pin on the page here. If a
1184                                  * page is tail, we may or may not
1185                                  * have isolated the head, so assume
1186                                  * it's not free, it'd be tricky to
1187                                  * track the head status without a
1188                                  * page pin.
1189                                  */
1190                                 if (!PageTail(cursor_page) &&
1191                                     !atomic_read(&cursor_page->_count))
1192                                         continue;
1193                                 break;
1194                         }
1195                 }
1196
1197                 /* If we break out of the loop above, lumpy reclaim failed */
1198                 if (pfn < end_pfn)
1199                         nr_lumpy_failed++;
1200         }
1201
1202         *scanned = scan;
1203
1204         trace_mm_vmscan_lru_isolate(order,
1205                         nr_to_scan, scan,
1206                         nr_taken,
1207                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1208                         mode);
1209         return nr_taken;
1210 }
1211
1212 static unsigned long isolate_pages_global(unsigned long nr,
1213                                         struct list_head *dst,
1214                                         unsigned long *scanned, int order,
1215                                         isolate_mode_t mode,
1216                                         struct zone *z, int active, int file)
1217 {
1218         int lru = LRU_BASE;
1219         if (active)
1220                 lru += LRU_ACTIVE;
1221         if (file)
1222                 lru += LRU_FILE;
1223         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1224                                                                 mode, file);
1225 }
1226
1227 /*
1228  * clear_active_flags() is a helper for shrink_active_list(), clearing
1229  * any active bits from the pages in the list.
1230  */
1231 static unsigned long clear_active_flags(struct list_head *page_list,
1232                                         unsigned int *count)
1233 {
1234         int nr_active = 0;
1235         int lru;
1236         struct page *page;
1237
1238         list_for_each_entry(page, page_list, lru) {
1239                 int numpages = hpage_nr_pages(page);
1240                 lru = page_lru_base_type(page);
1241                 if (PageActive(page)) {
1242                         lru += LRU_ACTIVE;
1243                         ClearPageActive(page);
1244                         nr_active += numpages;
1245                 }
1246                 if (count)
1247                         count[lru] += numpages;
1248         }
1249
1250         return nr_active;
1251 }
1252
1253 /**
1254  * isolate_lru_page - tries to isolate a page from its LRU list
1255  * @page: page to isolate from its LRU list
1256  *
1257  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1258  * vmstat statistic corresponding to whatever LRU list the page was on.
1259  *
1260  * Returns 0 if the page was removed from an LRU list.
1261  * Returns -EBUSY if the page was not on an LRU list.
1262  *
1263  * The returned page will have PageLRU() cleared.  If it was found on
1264  * the active list, it will have PageActive set.  If it was found on
1265  * the unevictable list, it will have the PageUnevictable bit set. That flag
1266  * may need to be cleared by the caller before letting the page go.
1267  *
1268  * The vmstat statistic corresponding to the list on which the page was
1269  * found will be decremented.
1270  *
1271  * Restrictions:
1272  * (1) Must be called with an elevated refcount on the page. This is a
1273  *     fundamentnal difference from isolate_lru_pages (which is called
1274  *     without a stable reference).
1275  * (2) the lru_lock must not be held.
1276  * (3) interrupts must be enabled.
1277  */
1278 int isolate_lru_page(struct page *page)
1279 {
1280         int ret = -EBUSY;
1281
1282         VM_BUG_ON(!page_count(page));
1283
1284         if (PageLRU(page)) {
1285                 struct zone *zone = page_zone(page);
1286
1287                 spin_lock_irq(&zone->lru_lock);
1288                 if (PageLRU(page)) {
1289                         int lru = page_lru(page);
1290                         ret = 0;
1291                         get_page(page);
1292                         ClearPageLRU(page);
1293
1294                         del_page_from_lru_list(zone, page, lru);
1295                 }
1296                 spin_unlock_irq(&zone->lru_lock);
1297         }
1298         return ret;
1299 }
1300
1301 /*
1302  * Are there way too many processes in the direct reclaim path already?
1303  */
1304 static int too_many_isolated(struct zone *zone, int file,
1305                 struct scan_control *sc)
1306 {
1307         unsigned long inactive, isolated;
1308
1309         if (current_is_kswapd())
1310                 return 0;
1311
1312         if (!scanning_global_lru(sc))
1313                 return 0;
1314
1315         if (file) {
1316                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1317                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1318         } else {
1319                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1320                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1321         }
1322
1323         return isolated > inactive;
1324 }
1325
1326 /*
1327  * TODO: Try merging with migrations version of putback_lru_pages
1328  */
1329 static noinline_for_stack void
1330 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1331                                 unsigned long nr_anon, unsigned long nr_file,
1332                                 struct list_head *page_list)
1333 {
1334         struct page *page;
1335         struct pagevec pvec;
1336         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1337
1338         pagevec_init(&pvec, 1);
1339
1340         /*
1341          * Put back any unfreeable pages.
1342          */
1343         spin_lock(&zone->lru_lock);
1344         while (!list_empty(page_list)) {
1345                 int lru;
1346                 page = lru_to_page(page_list);
1347                 VM_BUG_ON(PageLRU(page));
1348                 list_del(&page->lru);
1349                 if (unlikely(!page_evictable(page, NULL))) {
1350                         spin_unlock_irq(&zone->lru_lock);
1351                         putback_lru_page(page);
1352                         spin_lock_irq(&zone->lru_lock);
1353                         continue;
1354                 }
1355                 SetPageLRU(page);
1356                 lru = page_lru(page);
1357                 add_page_to_lru_list(zone, page, lru);
1358                 if (is_active_lru(lru)) {
1359                         int file = is_file_lru(lru);
1360                         int numpages = hpage_nr_pages(page);
1361                         reclaim_stat->recent_rotated[file] += numpages;
1362                 }
1363                 if (!pagevec_add(&pvec, page)) {
1364                         spin_unlock_irq(&zone->lru_lock);
1365                         __pagevec_release(&pvec);
1366                         spin_lock_irq(&zone->lru_lock);
1367                 }
1368         }
1369         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1370         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1371
1372         spin_unlock_irq(&zone->lru_lock);
1373         pagevec_release(&pvec);
1374 }
1375
1376 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1377                                         struct scan_control *sc,
1378                                         unsigned long *nr_anon,
1379                                         unsigned long *nr_file,
1380                                         struct list_head *isolated_list)
1381 {
1382         unsigned long nr_active;
1383         unsigned int count[NR_LRU_LISTS] = { 0, };
1384         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1385
1386         nr_active = clear_active_flags(isolated_list, count);
1387         __count_vm_events(PGDEACTIVATE, nr_active);
1388
1389         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1390                               -count[LRU_ACTIVE_FILE]);
1391         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1392                               -count[LRU_INACTIVE_FILE]);
1393         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1394                               -count[LRU_ACTIVE_ANON]);
1395         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1396                               -count[LRU_INACTIVE_ANON]);
1397
1398         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1399         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1400         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1401         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1402
1403         reclaim_stat->recent_scanned[0] += *nr_anon;
1404         reclaim_stat->recent_scanned[1] += *nr_file;
1405 }
1406
1407 /*
1408  * Returns true if the caller should wait to clean dirty/writeback pages.
1409  *
1410  * If we are direct reclaiming for contiguous pages and we do not reclaim
1411  * everything in the list, try again and wait for writeback IO to complete.
1412  * This will stall high-order allocations noticeably. Only do that when really
1413  * need to free the pages under high memory pressure.
1414  */
1415 static inline bool should_reclaim_stall(unsigned long nr_taken,
1416                                         unsigned long nr_freed,
1417                                         int priority,
1418                                         struct scan_control *sc)
1419 {
1420         int lumpy_stall_priority;
1421
1422         /* kswapd should not stall on sync IO */
1423         if (current_is_kswapd())
1424                 return false;
1425
1426         /* Only stall on lumpy reclaim */
1427         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1428                 return false;
1429
1430         /* If we have reclaimed everything on the isolated list, no stall */
1431         if (nr_freed == nr_taken)
1432                 return false;
1433
1434         /*
1435          * For high-order allocations, there are two stall thresholds.
1436          * High-cost allocations stall immediately where as lower
1437          * order allocations such as stacks require the scanning
1438          * priority to be much higher before stalling.
1439          */
1440         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1441                 lumpy_stall_priority = DEF_PRIORITY;
1442         else
1443                 lumpy_stall_priority = DEF_PRIORITY / 3;
1444
1445         return priority <= lumpy_stall_priority;
1446 }
1447
1448 /*
1449  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1450  * of reclaimed pages
1451  */
1452 static noinline_for_stack unsigned long
1453 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1454                         struct scan_control *sc, int priority, int file)
1455 {
1456         LIST_HEAD(page_list);
1457         unsigned long nr_scanned;
1458         unsigned long nr_reclaimed = 0;
1459         unsigned long nr_taken;
1460         unsigned long nr_anon;
1461         unsigned long nr_file;
1462         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1463
1464         while (unlikely(too_many_isolated(zone, file, sc))) {
1465                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1466
1467                 /* We are about to die and free our memory. Return now. */
1468                 if (fatal_signal_pending(current))
1469                         return SWAP_CLUSTER_MAX;
1470         }
1471
1472         set_reclaim_mode(priority, sc, false);
1473         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1474                 reclaim_mode |= ISOLATE_ACTIVE;
1475
1476         lru_add_drain();
1477
1478         if (!sc->may_unmap)
1479                 reclaim_mode |= ISOLATE_UNMAPPED;
1480         if (!sc->may_writepage)
1481                 reclaim_mode |= ISOLATE_CLEAN;
1482
1483         spin_lock_irq(&zone->lru_lock);
1484
1485         if (scanning_global_lru(sc)) {
1486                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1487                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1488                 zone->pages_scanned += nr_scanned;
1489                 if (current_is_kswapd())
1490                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1491                                                nr_scanned);
1492                 else
1493                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1494                                                nr_scanned);
1495         } else {
1496                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1497                         &nr_scanned, sc->order, reclaim_mode, zone,
1498                         sc->mem_cgroup, 0, file);
1499                 /*
1500                  * mem_cgroup_isolate_pages() keeps track of
1501                  * scanned pages on its own.
1502                  */
1503         }
1504
1505         if (nr_taken == 0) {
1506                 spin_unlock_irq(&zone->lru_lock);
1507                 return 0;
1508         }
1509
1510         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1511
1512         spin_unlock_irq(&zone->lru_lock);
1513
1514         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1515
1516         /* Check if we should syncronously wait for writeback */
1517         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1518                 set_reclaim_mode(priority, sc, true);
1519                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1520         }
1521
1522         local_irq_disable();
1523         if (current_is_kswapd())
1524                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1525         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1526
1527         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1528
1529         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1530                 zone_idx(zone),
1531                 nr_scanned, nr_reclaimed,
1532                 priority,
1533                 trace_shrink_flags(file, sc->reclaim_mode));
1534         return nr_reclaimed;
1535 }
1536
1537 /*
1538  * This moves pages from the active list to the inactive list.
1539  *
1540  * We move them the other way if the page is referenced by one or more
1541  * processes, from rmap.
1542  *
1543  * If the pages are mostly unmapped, the processing is fast and it is
1544  * appropriate to hold zone->lru_lock across the whole operation.  But if
1545  * the pages are mapped, the processing is slow (page_referenced()) so we
1546  * should drop zone->lru_lock around each page.  It's impossible to balance
1547  * this, so instead we remove the pages from the LRU while processing them.
1548  * It is safe to rely on PG_active against the non-LRU pages in here because
1549  * nobody will play with that bit on a non-LRU page.
1550  *
1551  * The downside is that we have to touch page->_count against each page.
1552  * But we had to alter page->flags anyway.
1553  */
1554
1555 static void move_active_pages_to_lru(struct zone *zone,
1556                                      struct list_head *list,
1557                                      enum lru_list lru)
1558 {
1559         unsigned long pgmoved = 0;
1560         struct pagevec pvec;
1561         struct page *page;
1562
1563         pagevec_init(&pvec, 1);
1564
1565         while (!list_empty(list)) {
1566                 page = lru_to_page(list);
1567
1568                 VM_BUG_ON(PageLRU(page));
1569                 SetPageLRU(page);
1570
1571                 list_move(&page->lru, &zone->lru[lru].list);
1572                 mem_cgroup_add_lru_list(page, lru);
1573                 pgmoved += hpage_nr_pages(page);
1574
1575                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1576                         spin_unlock_irq(&zone->lru_lock);
1577                         if (buffer_heads_over_limit)
1578                                 pagevec_strip(&pvec);
1579                         __pagevec_release(&pvec);
1580                         spin_lock_irq(&zone->lru_lock);
1581                 }
1582         }
1583         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1584         if (!is_active_lru(lru))
1585                 __count_vm_events(PGDEACTIVATE, pgmoved);
1586 }
1587
1588 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1589                         struct scan_control *sc, int priority, int file)
1590 {
1591         unsigned long nr_taken;
1592         unsigned long pgscanned;
1593         unsigned long vm_flags;
1594         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1595         LIST_HEAD(l_active);
1596         LIST_HEAD(l_inactive);
1597         struct page *page;
1598         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1599         unsigned long nr_rotated = 0;
1600         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1601
1602         lru_add_drain();
1603
1604         if (!sc->may_unmap)
1605                 reclaim_mode |= ISOLATE_UNMAPPED;
1606         if (!sc->may_writepage)
1607                 reclaim_mode |= ISOLATE_CLEAN;
1608
1609         spin_lock_irq(&zone->lru_lock);
1610         if (scanning_global_lru(sc)) {
1611                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1612                                                 &pgscanned, sc->order,
1613                                                 reclaim_mode, zone,
1614                                                 1, file);
1615                 zone->pages_scanned += pgscanned;
1616         } else {
1617                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1618                                                 &pgscanned, sc->order,
1619                                                 reclaim_mode, zone,
1620                                                 sc->mem_cgroup, 1, file);
1621                 /*
1622                  * mem_cgroup_isolate_pages() keeps track of
1623                  * scanned pages on its own.
1624                  */
1625         }
1626
1627         reclaim_stat->recent_scanned[file] += nr_taken;
1628
1629         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1630         if (file)
1631                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1632         else
1633                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1634         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1635         spin_unlock_irq(&zone->lru_lock);
1636
1637         while (!list_empty(&l_hold)) {
1638                 cond_resched();
1639                 page = lru_to_page(&l_hold);
1640                 list_del(&page->lru);
1641
1642                 if (unlikely(!page_evictable(page, NULL))) {
1643                         putback_lru_page(page);
1644                         continue;
1645                 }
1646
1647                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1648                         nr_rotated += hpage_nr_pages(page);
1649                         /*
1650                          * Identify referenced, file-backed active pages and
1651                          * give them one more trip around the active list. So
1652                          * that executable code get better chances to stay in
1653                          * memory under moderate memory pressure.  Anon pages
1654                          * are not likely to be evicted by use-once streaming
1655                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1656                          * so we ignore them here.
1657                          */
1658                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1659                                 list_add(&page->lru, &l_active);
1660                                 continue;
1661                         }
1662                 }
1663
1664                 ClearPageActive(page);  /* we are de-activating */
1665                 list_add(&page->lru, &l_inactive);
1666         }
1667
1668         /*
1669          * Move pages back to the lru list.
1670          */
1671         spin_lock_irq(&zone->lru_lock);
1672         /*
1673          * Count referenced pages from currently used mappings as rotated,
1674          * even though only some of them are actually re-activated.  This
1675          * helps balance scan pressure between file and anonymous pages in
1676          * get_scan_ratio.
1677          */
1678         reclaim_stat->recent_rotated[file] += nr_rotated;
1679
1680         move_active_pages_to_lru(zone, &l_active,
1681                                                 LRU_ACTIVE + file * LRU_FILE);
1682         move_active_pages_to_lru(zone, &l_inactive,
1683                                                 LRU_BASE   + file * LRU_FILE);
1684         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1685         spin_unlock_irq(&zone->lru_lock);
1686 }
1687
1688 #ifdef CONFIG_SWAP
1689 static int inactive_anon_is_low_global(struct zone *zone)
1690 {
1691         unsigned long active, inactive;
1692
1693         active = zone_page_state(zone, NR_ACTIVE_ANON);
1694         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1695
1696         if (inactive * zone->inactive_ratio < active)
1697                 return 1;
1698
1699         return 0;
1700 }
1701
1702 /**
1703  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1704  * @zone: zone to check
1705  * @sc:   scan control of this context
1706  *
1707  * Returns true if the zone does not have enough inactive anon pages,
1708  * meaning some active anon pages need to be deactivated.
1709  */
1710 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1711 {
1712         int low;
1713
1714         /*
1715          * If we don't have swap space, anonymous page deactivation
1716          * is pointless.
1717          */
1718         if (!total_swap_pages)
1719                 return 0;
1720
1721         if (scanning_global_lru(sc))
1722                 low = inactive_anon_is_low_global(zone);
1723         else
1724                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1725         return low;
1726 }
1727 #else
1728 static inline int inactive_anon_is_low(struct zone *zone,
1729                                         struct scan_control *sc)
1730 {
1731         return 0;
1732 }
1733 #endif
1734
1735 static int inactive_file_is_low_global(struct zone *zone)
1736 {
1737         unsigned long active, inactive;
1738
1739         active = zone_page_state(zone, NR_ACTIVE_FILE);
1740         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1741
1742         return (active > inactive);
1743 }
1744
1745 /**
1746  * inactive_file_is_low - check if file pages need to be deactivated
1747  * @zone: zone to check
1748  * @sc:   scan control of this context
1749  *
1750  * When the system is doing streaming IO, memory pressure here
1751  * ensures that active file pages get deactivated, until more
1752  * than half of the file pages are on the inactive list.
1753  *
1754  * Once we get to that situation, protect the system's working
1755  * set from being evicted by disabling active file page aging.
1756  *
1757  * This uses a different ratio than the anonymous pages, because
1758  * the page cache uses a use-once replacement algorithm.
1759  */
1760 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1761 {
1762         int low;
1763
1764         if (scanning_global_lru(sc))
1765                 low = inactive_file_is_low_global(zone);
1766         else
1767                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1768         return low;
1769 }
1770
1771 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1772                                 int file)
1773 {
1774         if (file)
1775                 return inactive_file_is_low(zone, sc);
1776         else
1777                 return inactive_anon_is_low(zone, sc);
1778 }
1779
1780 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1781         struct zone *zone, struct scan_control *sc, int priority)
1782 {
1783         int file = is_file_lru(lru);
1784
1785         if (is_active_lru(lru)) {
1786                 if (inactive_list_is_low(zone, sc, file))
1787                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1788                 return 0;
1789         }
1790
1791         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1792 }
1793
1794 static int vmscan_swappiness(struct scan_control *sc)
1795 {
1796         if (scanning_global_lru(sc))
1797                 return vm_swappiness;
1798         return mem_cgroup_swappiness(sc->mem_cgroup);
1799 }
1800
1801 /*
1802  * Determine how aggressively the anon and file LRU lists should be
1803  * scanned.  The relative value of each set of LRU lists is determined
1804  * by looking at the fraction of the pages scanned we did rotate back
1805  * onto the active list instead of evict.
1806  *
1807  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1808  */
1809 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1810                                         unsigned long *nr, int priority)
1811 {
1812         unsigned long anon, file, free;
1813         unsigned long anon_prio, file_prio;
1814         unsigned long ap, fp;
1815         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1816         u64 fraction[2], denominator;
1817         enum lru_list l;
1818         int noswap = 0;
1819         bool force_scan = false;
1820         unsigned long nr_force_scan[2];
1821
1822         /* kswapd does zone balancing and needs to scan this zone */
1823         if (scanning_global_lru(sc) && current_is_kswapd())
1824                 force_scan = true;
1825         /* memcg may have small limit and need to avoid priority drop */
1826         if (!scanning_global_lru(sc))
1827                 force_scan = true;
1828
1829         /* If we have no swap space, do not bother scanning anon pages. */
1830         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1831                 noswap = 1;
1832                 fraction[0] = 0;
1833                 fraction[1] = 1;
1834                 denominator = 1;
1835                 nr_force_scan[0] = 0;
1836                 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1837                 goto out;
1838         }
1839
1840         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1841                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1842         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1843                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1844
1845         if (scanning_global_lru(sc)) {
1846                 free  = zone_page_state(zone, NR_FREE_PAGES);
1847                 /* If we have very few page cache pages,
1848                    force-scan anon pages. */
1849                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1850                         fraction[0] = 1;
1851                         fraction[1] = 0;
1852                         denominator = 1;
1853                         nr_force_scan[0] = SWAP_CLUSTER_MAX;
1854                         nr_force_scan[1] = 0;
1855                         goto out;
1856                 }
1857         }
1858
1859         /*
1860          * With swappiness at 100, anonymous and file have the same priority.
1861          * This scanning priority is essentially the inverse of IO cost.
1862          */
1863         anon_prio = vmscan_swappiness(sc);
1864         file_prio = 200 - vmscan_swappiness(sc);
1865
1866         /*
1867          * OK, so we have swap space and a fair amount of page cache
1868          * pages.  We use the recently rotated / recently scanned
1869          * ratios to determine how valuable each cache is.
1870          *
1871          * Because workloads change over time (and to avoid overflow)
1872          * we keep these statistics as a floating average, which ends
1873          * up weighing recent references more than old ones.
1874          *
1875          * anon in [0], file in [1]
1876          */
1877         spin_lock_irq(&zone->lru_lock);
1878         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1879                 reclaim_stat->recent_scanned[0] /= 2;
1880                 reclaim_stat->recent_rotated[0] /= 2;
1881         }
1882
1883         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1884                 reclaim_stat->recent_scanned[1] /= 2;
1885                 reclaim_stat->recent_rotated[1] /= 2;
1886         }
1887
1888         /*
1889          * The amount of pressure on anon vs file pages is inversely
1890          * proportional to the fraction of recently scanned pages on
1891          * each list that were recently referenced and in active use.
1892          */
1893         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1894         ap /= reclaim_stat->recent_rotated[0] + 1;
1895
1896         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1897         fp /= reclaim_stat->recent_rotated[1] + 1;
1898         spin_unlock_irq(&zone->lru_lock);
1899
1900         fraction[0] = ap;
1901         fraction[1] = fp;
1902         denominator = ap + fp + 1;
1903         if (force_scan) {
1904                 unsigned long scan = SWAP_CLUSTER_MAX;
1905                 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1906                 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1907         }
1908 out:
1909         for_each_evictable_lru(l) {
1910                 int file = is_file_lru(l);
1911                 unsigned long scan;
1912
1913                 scan = zone_nr_lru_pages(zone, sc, l);
1914                 if (priority || noswap) {
1915                         scan >>= priority;
1916                         scan = div64_u64(scan * fraction[file], denominator);
1917                 }
1918
1919                 /*
1920                  * If zone is small or memcg is small, nr[l] can be 0.
1921                  * This results no-scan on this priority and priority drop down.
1922                  * For global direct reclaim, it can visit next zone and tend
1923                  * not to have problems. For global kswapd, it's for zone
1924                  * balancing and it need to scan a small amounts. When using
1925                  * memcg, priority drop can cause big latency. So, it's better
1926                  * to scan small amount. See may_noscan above.
1927                  */
1928                 if (!scan && force_scan)
1929                         scan = nr_force_scan[file];
1930                 nr[l] = scan;
1931         }
1932 }
1933
1934 /*
1935  * Reclaim/compaction depends on a number of pages being freed. To avoid
1936  * disruption to the system, a small number of order-0 pages continue to be
1937  * rotated and reclaimed in the normal fashion. However, by the time we get
1938  * back to the allocator and call try_to_compact_zone(), we ensure that
1939  * there are enough free pages for it to be likely successful
1940  */
1941 static inline bool should_continue_reclaim(struct zone *zone,
1942                                         unsigned long nr_reclaimed,
1943                                         unsigned long nr_scanned,
1944                                         struct scan_control *sc)
1945 {
1946         unsigned long pages_for_compaction;
1947         unsigned long inactive_lru_pages;
1948
1949         /* If not in reclaim/compaction mode, stop */
1950         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1951                 return false;
1952
1953         /* Consider stopping depending on scan and reclaim activity */
1954         if (sc->gfp_mask & __GFP_REPEAT) {
1955                 /*
1956                  * For __GFP_REPEAT allocations, stop reclaiming if the
1957                  * full LRU list has been scanned and we are still failing
1958                  * to reclaim pages. This full LRU scan is potentially
1959                  * expensive but a __GFP_REPEAT caller really wants to succeed
1960                  */
1961                 if (!nr_reclaimed && !nr_scanned)
1962                         return false;
1963         } else {
1964                 /*
1965                  * For non-__GFP_REPEAT allocations which can presumably
1966                  * fail without consequence, stop if we failed to reclaim
1967                  * any pages from the last SWAP_CLUSTER_MAX number of
1968                  * pages that were scanned. This will return to the
1969                  * caller faster at the risk reclaim/compaction and
1970                  * the resulting allocation attempt fails
1971                  */
1972                 if (!nr_reclaimed)
1973                         return false;
1974         }
1975
1976         /*
1977          * If we have not reclaimed enough pages for compaction and the
1978          * inactive lists are large enough, continue reclaiming
1979          */
1980         pages_for_compaction = (2UL << sc->order);
1981         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1982                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1983         if (sc->nr_reclaimed < pages_for_compaction &&
1984                         inactive_lru_pages > pages_for_compaction)
1985                 return true;
1986
1987         /* If compaction would go ahead or the allocation would succeed, stop */
1988         switch (compaction_suitable(zone, sc->order)) {
1989         case COMPACT_PARTIAL:
1990         case COMPACT_CONTINUE:
1991                 return false;
1992         default:
1993                 return true;
1994         }
1995 }
1996
1997 /*
1998  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1999  */
2000 static void shrink_zone(int priority, struct zone *zone,
2001                                 struct scan_control *sc)
2002 {
2003         unsigned long nr[NR_LRU_LISTS];
2004         unsigned long nr_to_scan;
2005         enum lru_list l;
2006         unsigned long nr_reclaimed, nr_scanned;
2007         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2008         struct blk_plug plug;
2009
2010 restart:
2011         nr_reclaimed = 0;
2012         nr_scanned = sc->nr_scanned;
2013         get_scan_count(zone, sc, nr, priority);
2014
2015         blk_start_plug(&plug);
2016         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2017                                         nr[LRU_INACTIVE_FILE]) {
2018                 for_each_evictable_lru(l) {
2019                         if (nr[l]) {
2020                                 nr_to_scan = min_t(unsigned long,
2021                                                    nr[l], SWAP_CLUSTER_MAX);
2022                                 nr[l] -= nr_to_scan;
2023
2024                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2025                                                             zone, sc, priority);
2026                         }
2027                 }
2028                 /*
2029                  * On large memory systems, scan >> priority can become
2030                  * really large. This is fine for the starting priority;
2031                  * we want to put equal scanning pressure on each zone.
2032                  * However, if the VM has a harder time of freeing pages,
2033                  * with multiple processes reclaiming pages, the total
2034                  * freeing target can get unreasonably large.
2035                  */
2036                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2037                         break;
2038         }
2039         blk_finish_plug(&plug);
2040         sc->nr_reclaimed += nr_reclaimed;
2041
2042         /*
2043          * Even if we did not try to evict anon pages at all, we want to
2044          * rebalance the anon lru active/inactive ratio.
2045          */
2046         if (inactive_anon_is_low(zone, sc))
2047                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2048
2049         /* reclaim/compaction might need reclaim to continue */
2050         if (should_continue_reclaim(zone, nr_reclaimed,
2051                                         sc->nr_scanned - nr_scanned, sc))
2052                 goto restart;
2053
2054         throttle_vm_writeout(sc->gfp_mask);
2055 }
2056
2057 /*
2058  * This is the direct reclaim path, for page-allocating processes.  We only
2059  * try to reclaim pages from zones which will satisfy the caller's allocation
2060  * request.
2061  *
2062  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2063  * Because:
2064  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2065  *    allocation or
2066  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2067  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2068  *    zone defense algorithm.
2069  *
2070  * If a zone is deemed to be full of pinned pages then just give it a light
2071  * scan then give up on it.
2072  */
2073 static void shrink_zones(int priority, struct zonelist *zonelist,
2074                                         struct scan_control *sc)
2075 {
2076         struct zoneref *z;
2077         struct zone *zone;
2078         unsigned long nr_soft_reclaimed;
2079         unsigned long nr_soft_scanned;
2080
2081         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2082                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2083                 if (!populated_zone(zone))
2084                         continue;
2085                 /*
2086                  * Take care memory controller reclaiming has small influence
2087                  * to global LRU.
2088                  */
2089                 if (scanning_global_lru(sc)) {
2090                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2091                                 continue;
2092                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2093                                 continue;       /* Let kswapd poll it */
2094                         /*
2095                          * This steals pages from memory cgroups over softlimit
2096                          * and returns the number of reclaimed pages and
2097                          * scanned pages. This works for global memory pressure
2098                          * and balancing, not for a memcg's limit.
2099                          */
2100                         nr_soft_scanned = 0;
2101                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2102                                                 sc->order, sc->gfp_mask,
2103                                                 &nr_soft_scanned);
2104                         sc->nr_reclaimed += nr_soft_reclaimed;
2105                         sc->nr_scanned += nr_soft_scanned;
2106                         /* need some check for avoid more shrink_zone() */
2107                 }
2108
2109                 shrink_zone(priority, zone, sc);
2110         }
2111 }
2112
2113 static bool zone_reclaimable(struct zone *zone)
2114 {
2115         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2116 }
2117
2118 /* All zones in zonelist are unreclaimable? */
2119 static bool all_unreclaimable(struct zonelist *zonelist,
2120                 struct scan_control *sc)
2121 {
2122         struct zoneref *z;
2123         struct zone *zone;
2124
2125         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2126                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2127                 if (!populated_zone(zone))
2128                         continue;
2129                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2130                         continue;
2131                 if (!zone->all_unreclaimable)
2132                         return false;
2133         }
2134
2135         return true;
2136 }
2137
2138 /*
2139  * This is the main entry point to direct page reclaim.
2140  *
2141  * If a full scan of the inactive list fails to free enough memory then we
2142  * are "out of memory" and something needs to be killed.
2143  *
2144  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2145  * high - the zone may be full of dirty or under-writeback pages, which this
2146  * caller can't do much about.  We kick the writeback threads and take explicit
2147  * naps in the hope that some of these pages can be written.  But if the
2148  * allocating task holds filesystem locks which prevent writeout this might not
2149  * work, and the allocation attempt will fail.
2150  *
2151  * returns:     0, if no pages reclaimed
2152  *              else, the number of pages reclaimed
2153  */
2154 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2155                                         struct scan_control *sc,
2156                                         struct shrink_control *shrink)
2157 {
2158         int priority;
2159         unsigned long total_scanned = 0;
2160         struct reclaim_state *reclaim_state = current->reclaim_state;
2161         struct zoneref *z;
2162         struct zone *zone;
2163         unsigned long writeback_threshold;
2164
2165         get_mems_allowed();
2166         delayacct_freepages_start();
2167
2168         if (scanning_global_lru(sc))
2169                 count_vm_event(ALLOCSTALL);
2170
2171         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2172                 sc->nr_scanned = 0;
2173                 if (!priority)
2174                         disable_swap_token(sc->mem_cgroup);
2175                 shrink_zones(priority, zonelist, sc);
2176                 /*
2177                  * Don't shrink slabs when reclaiming memory from
2178                  * over limit cgroups
2179                  */
2180                 if (scanning_global_lru(sc)) {
2181                         unsigned long lru_pages = 0;
2182                         for_each_zone_zonelist(zone, z, zonelist,
2183                                         gfp_zone(sc->gfp_mask)) {
2184                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2185                                         continue;
2186
2187                                 lru_pages += zone_reclaimable_pages(zone);
2188                         }
2189
2190                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2191                         if (reclaim_state) {
2192                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2193                                 reclaim_state->reclaimed_slab = 0;
2194                         }
2195                 }
2196                 total_scanned += sc->nr_scanned;
2197                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2198                         goto out;
2199
2200                 /*
2201                  * Try to write back as many pages as we just scanned.  This
2202                  * tends to cause slow streaming writers to write data to the
2203                  * disk smoothly, at the dirtying rate, which is nice.   But
2204                  * that's undesirable in laptop mode, where we *want* lumpy
2205                  * writeout.  So in laptop mode, write out the whole world.
2206                  */
2207                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2208                 if (total_scanned > writeback_threshold) {
2209                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2210                         sc->may_writepage = 1;
2211                 }
2212
2213                 /* Take a nap, wait for some writeback to complete */
2214                 if (!sc->hibernation_mode && sc->nr_scanned &&
2215                     priority < DEF_PRIORITY - 2) {
2216                         struct zone *preferred_zone;
2217
2218                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2219                                                 &cpuset_current_mems_allowed,
2220                                                 &preferred_zone);
2221                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2222                 }
2223         }
2224
2225 out:
2226         delayacct_freepages_end();
2227         put_mems_allowed();
2228
2229         if (sc->nr_reclaimed)
2230                 return sc->nr_reclaimed;
2231
2232         /*
2233          * As hibernation is going on, kswapd is freezed so that it can't mark
2234          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2235          * check.
2236          */
2237         if (oom_killer_disabled)
2238                 return 0;
2239
2240         /* top priority shrink_zones still had more to do? don't OOM, then */
2241         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2242                 return 1;
2243
2244         return 0;
2245 }
2246
2247 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2248                                 gfp_t gfp_mask, nodemask_t *nodemask)
2249 {
2250         unsigned long nr_reclaimed;
2251         struct scan_control sc = {
2252                 .gfp_mask = gfp_mask,
2253                 .may_writepage = !laptop_mode,
2254                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2255                 .may_unmap = 1,
2256                 .may_swap = 1,
2257                 .order = order,
2258                 .mem_cgroup = NULL,
2259                 .nodemask = nodemask,
2260         };
2261         struct shrink_control shrink = {
2262                 .gfp_mask = sc.gfp_mask,
2263         };
2264
2265         trace_mm_vmscan_direct_reclaim_begin(order,
2266                                 sc.may_writepage,
2267                                 gfp_mask);
2268
2269         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2270
2271         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2272
2273         return nr_reclaimed;
2274 }
2275
2276 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2277
2278 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2279                                                 gfp_t gfp_mask, bool noswap,
2280                                                 struct zone *zone,
2281                                                 unsigned long *nr_scanned)
2282 {
2283         struct scan_control sc = {
2284                 .nr_scanned = 0,
2285                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2286                 .may_writepage = !laptop_mode,
2287                 .may_unmap = 1,
2288                 .may_swap = !noswap,
2289                 .order = 0,
2290                 .mem_cgroup = mem,
2291         };
2292
2293         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2294                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2295
2296         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2297                                                       sc.may_writepage,
2298                                                       sc.gfp_mask);
2299
2300         /*
2301          * NOTE: Although we can get the priority field, using it
2302          * here is not a good idea, since it limits the pages we can scan.
2303          * if we don't reclaim here, the shrink_zone from balance_pgdat
2304          * will pick up pages from other mem cgroup's as well. We hack
2305          * the priority and make it zero.
2306          */
2307         shrink_zone(0, zone, &sc);
2308
2309         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2310
2311         *nr_scanned = sc.nr_scanned;
2312         return sc.nr_reclaimed;
2313 }
2314
2315 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2316                                            gfp_t gfp_mask,
2317                                            bool noswap)
2318 {
2319         struct zonelist *zonelist;
2320         unsigned long nr_reclaimed;
2321         int nid;
2322         struct scan_control sc = {
2323                 .may_writepage = !laptop_mode,
2324                 .may_unmap = 1,
2325                 .may_swap = !noswap,
2326                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2327                 .order = 0,
2328                 .mem_cgroup = mem_cont,
2329                 .nodemask = NULL, /* we don't care the placement */
2330                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2331                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2332         };
2333         struct shrink_control shrink = {
2334                 .gfp_mask = sc.gfp_mask,
2335         };
2336
2337         /*
2338          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2339          * take care of from where we get pages. So the node where we start the
2340          * scan does not need to be the current node.
2341          */
2342         nid = mem_cgroup_select_victim_node(mem_cont);
2343
2344         zonelist = NODE_DATA(nid)->node_zonelists;
2345
2346         trace_mm_vmscan_memcg_reclaim_begin(0,
2347                                             sc.may_writepage,
2348                                             sc.gfp_mask);
2349
2350         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2351
2352         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2353
2354         return nr_reclaimed;
2355 }
2356 #endif
2357
2358 /*
2359  * pgdat_balanced is used when checking if a node is balanced for high-order
2360  * allocations. Only zones that meet watermarks and are in a zone allowed
2361  * by the callers classzone_idx are added to balanced_pages. The total of
2362  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2363  * for the node to be considered balanced. Forcing all zones to be balanced
2364  * for high orders can cause excessive reclaim when there are imbalanced zones.
2365  * The choice of 25% is due to
2366  *   o a 16M DMA zone that is balanced will not balance a zone on any
2367  *     reasonable sized machine
2368  *   o On all other machines, the top zone must be at least a reasonable
2369  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2370  *     would need to be at least 256M for it to be balance a whole node.
2371  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2372  *     to balance a node on its own. These seemed like reasonable ratios.
2373  */
2374 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2375                                                 int classzone_idx)
2376 {
2377         unsigned long present_pages = 0;
2378         int i;
2379
2380         for (i = 0; i <= classzone_idx; i++)
2381                 present_pages += pgdat->node_zones[i].present_pages;
2382
2383         /* A special case here: if zone has no page, we think it's balanced */
2384         return balanced_pages >= (present_pages >> 2);
2385 }
2386
2387 /* is kswapd sleeping prematurely? */
2388 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2389                                         int classzone_idx)
2390 {
2391         int i;
2392         unsigned long balanced = 0;
2393         bool all_zones_ok = true;
2394
2395         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2396         if (remaining)
2397                 return true;
2398
2399         /* Check the watermark levels */
2400         for (i = 0; i <= classzone_idx; i++) {
2401                 struct zone *zone = pgdat->node_zones + i;
2402
2403                 if (!populated_zone(zone))
2404                         continue;
2405
2406                 /*
2407                  * balance_pgdat() skips over all_unreclaimable after
2408                  * DEF_PRIORITY. Effectively, it considers them balanced so
2409                  * they must be considered balanced here as well if kswapd
2410                  * is to sleep
2411                  */
2412                 if (zone->all_unreclaimable) {
2413                         balanced += zone->present_pages;
2414                         continue;
2415                 }
2416
2417                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2418                                                         i, 0))
2419                         all_zones_ok = false;
2420                 else
2421                         balanced += zone->present_pages;
2422         }
2423
2424         /*
2425          * For high-order requests, the balanced zones must contain at least
2426          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2427          * must be balanced
2428          */
2429         if (order)
2430                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2431         else
2432                 return !all_zones_ok;
2433 }
2434
2435 /*
2436  * For kswapd, balance_pgdat() will work across all this node's zones until
2437  * they are all at high_wmark_pages(zone).
2438  *
2439  * Returns the final order kswapd was reclaiming at
2440  *
2441  * There is special handling here for zones which are full of pinned pages.
2442  * This can happen if the pages are all mlocked, or if they are all used by
2443  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2444  * What we do is to detect the case where all pages in the zone have been
2445  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2446  * dead and from now on, only perform a short scan.  Basically we're polling
2447  * the zone for when the problem goes away.
2448  *
2449  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2450  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2451  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2452  * lower zones regardless of the number of free pages in the lower zones. This
2453  * interoperates with the page allocator fallback scheme to ensure that aging
2454  * of pages is balanced across the zones.
2455  */
2456 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2457                                                         int *classzone_idx)
2458 {
2459         int all_zones_ok;
2460         unsigned long balanced;
2461         int priority;
2462         int i;
2463         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2464         unsigned long total_scanned;
2465         struct reclaim_state *reclaim_state = current->reclaim_state;
2466         unsigned long nr_soft_reclaimed;
2467         unsigned long nr_soft_scanned;
2468         struct scan_control sc = {
2469                 .gfp_mask = GFP_KERNEL,
2470                 .may_unmap = 1,
2471                 .may_swap = 1,
2472                 /*
2473                  * kswapd doesn't want to be bailed out while reclaim. because
2474                  * we want to put equal scanning pressure on each zone.
2475                  */
2476                 .nr_to_reclaim = ULONG_MAX,
2477                 .order = order,
2478                 .mem_cgroup = NULL,
2479         };
2480         struct shrink_control shrink = {
2481                 .gfp_mask = sc.gfp_mask,
2482         };
2483 loop_again:
2484         total_scanned = 0;
2485         sc.nr_reclaimed = 0;
2486         sc.may_writepage = !laptop_mode;
2487         count_vm_event(PAGEOUTRUN);
2488
2489         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2490                 unsigned long lru_pages = 0;
2491                 int has_under_min_watermark_zone = 0;
2492
2493                 /* The swap token gets in the way of swapout... */
2494                 if (!priority)
2495                         disable_swap_token(NULL);
2496
2497                 all_zones_ok = 1;
2498                 balanced = 0;
2499
2500                 /*
2501                  * Scan in the highmem->dma direction for the highest
2502                  * zone which needs scanning
2503                  */
2504                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2505                         struct zone *zone = pgdat->node_zones + i;
2506
2507                         if (!populated_zone(zone))
2508                                 continue;
2509
2510                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2511                                 continue;
2512
2513                         /*
2514                          * Do some background aging of the anon list, to give
2515                          * pages a chance to be referenced before reclaiming.
2516                          */
2517                         if (inactive_anon_is_low(zone, &sc))
2518                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2519                                                         &sc, priority, 0);
2520
2521                         if (!zone_watermark_ok_safe(zone, order,
2522                                         high_wmark_pages(zone), 0, 0)) {
2523                                 end_zone = i;
2524                                 break;
2525                         } else {
2526                                 /* If balanced, clear the congested flag */
2527                                 zone_clear_flag(zone, ZONE_CONGESTED);
2528                         }
2529                 }
2530                 if (i < 0)
2531                         goto out;
2532
2533                 for (i = 0; i <= end_zone; i++) {
2534                         struct zone *zone = pgdat->node_zones + i;
2535
2536                         lru_pages += zone_reclaimable_pages(zone);
2537                 }
2538
2539                 /*
2540                  * Now scan the zone in the dma->highmem direction, stopping
2541                  * at the last zone which needs scanning.
2542                  *
2543                  * We do this because the page allocator works in the opposite
2544                  * direction.  This prevents the page allocator from allocating
2545                  * pages behind kswapd's direction of progress, which would
2546                  * cause too much scanning of the lower zones.
2547                  */
2548                 for (i = 0; i <= end_zone; i++) {
2549                         struct zone *zone = pgdat->node_zones + i;
2550                         int nr_slab;
2551                         unsigned long balance_gap;
2552
2553                         if (!populated_zone(zone))
2554                                 continue;
2555
2556                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2557                                 continue;
2558
2559                         sc.nr_scanned = 0;
2560
2561                         nr_soft_scanned = 0;
2562                         /*
2563                          * Call soft limit reclaim before calling shrink_zone.
2564                          */
2565                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2566                                                         order, sc.gfp_mask,
2567                                                         &nr_soft_scanned);
2568                         sc.nr_reclaimed += nr_soft_reclaimed;
2569                         total_scanned += nr_soft_scanned;
2570
2571                         /*
2572                          * We put equal pressure on every zone, unless
2573                          * one zone has way too many pages free
2574                          * already. The "too many pages" is defined
2575                          * as the high wmark plus a "gap" where the
2576                          * gap is either the low watermark or 1%
2577                          * of the zone, whichever is smaller.
2578                          */
2579                         balance_gap = min(low_wmark_pages(zone),
2580                                 (zone->present_pages +
2581                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2582                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2583                         if (!zone_watermark_ok_safe(zone, order,
2584                                         high_wmark_pages(zone) + balance_gap,
2585                                         end_zone, 0)) {
2586                                 shrink_zone(priority, zone, &sc);
2587
2588                                 reclaim_state->reclaimed_slab = 0;
2589                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2590                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2591                                 total_scanned += sc.nr_scanned;
2592
2593                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2594                                         zone->all_unreclaimable = 1;
2595                         }
2596
2597                         /*
2598                          * If we've done a decent amount of scanning and
2599                          * the reclaim ratio is low, start doing writepage
2600                          * even in laptop mode
2601                          */
2602                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2603                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2604                                 sc.may_writepage = 1;
2605
2606                         if (zone->all_unreclaimable) {
2607                                 if (end_zone && end_zone == i)
2608                                         end_zone--;
2609                                 continue;
2610                         }
2611
2612                         if (!zone_watermark_ok_safe(zone, order,
2613                                         high_wmark_pages(zone), end_zone, 0)) {
2614                                 all_zones_ok = 0;
2615                                 /*
2616                                  * We are still under min water mark.  This
2617                                  * means that we have a GFP_ATOMIC allocation
2618                                  * failure risk. Hurry up!
2619                                  */
2620                                 if (!zone_watermark_ok_safe(zone, order,
2621                                             min_wmark_pages(zone), end_zone, 0))
2622                                         has_under_min_watermark_zone = 1;
2623                         } else {
2624                                 /*
2625                                  * If a zone reaches its high watermark,
2626                                  * consider it to be no longer congested. It's
2627                                  * possible there are dirty pages backed by
2628                                  * congested BDIs but as pressure is relieved,
2629                                  * spectulatively avoid congestion waits
2630                                  */
2631                                 zone_clear_flag(zone, ZONE_CONGESTED);
2632                                 if (i <= *classzone_idx)
2633                                         balanced += zone->present_pages;
2634                         }
2635
2636                 }
2637                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2638                         break;          /* kswapd: all done */
2639                 /*
2640                  * OK, kswapd is getting into trouble.  Take a nap, then take
2641                  * another pass across the zones.
2642                  */
2643                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2644                         if (has_under_min_watermark_zone)
2645                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2646                         else
2647                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2648                 }
2649
2650                 /*
2651                  * We do this so kswapd doesn't build up large priorities for
2652                  * example when it is freeing in parallel with allocators. It
2653                  * matches the direct reclaim path behaviour in terms of impact
2654                  * on zone->*_priority.
2655                  */
2656                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2657                         break;
2658         }
2659 out:
2660
2661         /*
2662          * order-0: All zones must meet high watermark for a balanced node
2663          * high-order: Balanced zones must make up at least 25% of the node
2664          *             for the node to be balanced
2665          */
2666         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2667                 cond_resched();
2668
2669                 try_to_freeze();
2670
2671                 /*
2672                  * Fragmentation may mean that the system cannot be
2673                  * rebalanced for high-order allocations in all zones.
2674                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2675                  * it means the zones have been fully scanned and are still
2676                  * not balanced. For high-order allocations, there is
2677                  * little point trying all over again as kswapd may
2678                  * infinite loop.
2679                  *
2680                  * Instead, recheck all watermarks at order-0 as they
2681                  * are the most important. If watermarks are ok, kswapd will go
2682                  * back to sleep. High-order users can still perform direct
2683                  * reclaim if they wish.
2684                  */
2685                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2686                         order = sc.order = 0;
2687
2688                 goto loop_again;
2689         }
2690
2691         /*
2692          * If kswapd was reclaiming at a higher order, it has the option of
2693          * sleeping without all zones being balanced. Before it does, it must
2694          * ensure that the watermarks for order-0 on *all* zones are met and
2695          * that the congestion flags are cleared. The congestion flag must
2696          * be cleared as kswapd is the only mechanism that clears the flag
2697          * and it is potentially going to sleep here.
2698          */
2699         if (order) {
2700                 for (i = 0; i <= end_zone; i++) {
2701                         struct zone *zone = pgdat->node_zones + i;
2702
2703                         if (!populated_zone(zone))
2704                                 continue;
2705
2706                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2707                                 continue;
2708
2709                         /* Confirm the zone is balanced for order-0 */
2710                         if (!zone_watermark_ok(zone, 0,
2711                                         high_wmark_pages(zone), 0, 0)) {
2712                                 order = sc.order = 0;
2713                                 goto loop_again;
2714                         }
2715
2716                         /* If balanced, clear the congested flag */
2717                         zone_clear_flag(zone, ZONE_CONGESTED);
2718                 }
2719         }
2720
2721         /*
2722          * Return the order we were reclaiming at so sleeping_prematurely()
2723          * makes a decision on the order we were last reclaiming at. However,
2724          * if another caller entered the allocator slow path while kswapd
2725          * was awake, order will remain at the higher level
2726          */
2727         *classzone_idx = end_zone;
2728         return order;
2729 }
2730
2731 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2732 {
2733         long remaining = 0;
2734         DEFINE_WAIT(wait);
2735
2736         if (freezing(current) || kthread_should_stop())
2737                 return;
2738
2739         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2740
2741         /* Try to sleep for a short interval */
2742         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2743                 remaining = schedule_timeout(HZ/10);
2744                 finish_wait(&pgdat->kswapd_wait, &wait);
2745                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2746         }
2747
2748         /*
2749          * After a short sleep, check if it was a premature sleep. If not, then
2750          * go fully to sleep until explicitly woken up.
2751          */
2752         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2753                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2754
2755                 /*
2756                  * vmstat counters are not perfectly accurate and the estimated
2757                  * value for counters such as NR_FREE_PAGES can deviate from the
2758                  * true value by nr_online_cpus * threshold. To avoid the zone
2759                  * watermarks being breached while under pressure, we reduce the
2760                  * per-cpu vmstat threshold while kswapd is awake and restore
2761                  * them before going back to sleep.
2762                  */
2763                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2764                 schedule();
2765                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2766         } else {
2767                 if (remaining)
2768                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2769                 else
2770                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2771         }
2772         finish_wait(&pgdat->kswapd_wait, &wait);
2773 }
2774
2775 /*
2776  * The background pageout daemon, started as a kernel thread
2777  * from the init process.
2778  *
2779  * This basically trickles out pages so that we have _some_
2780  * free memory available even if there is no other activity
2781  * that frees anything up. This is needed for things like routing
2782  * etc, where we otherwise might have all activity going on in
2783  * asynchronous contexts that cannot page things out.
2784  *
2785  * If there are applications that are active memory-allocators
2786  * (most normal use), this basically shouldn't matter.
2787  */
2788 static int kswapd(void *p)
2789 {
2790         unsigned long order, new_order;
2791         int classzone_idx, new_classzone_idx;
2792         pg_data_t *pgdat = (pg_data_t*)p;
2793         struct task_struct *tsk = current;
2794
2795         struct reclaim_state reclaim_state = {
2796                 .reclaimed_slab = 0,
2797         };
2798         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2799
2800         lockdep_set_current_reclaim_state(GFP_KERNEL);
2801
2802         if (!cpumask_empty(cpumask))
2803                 set_cpus_allowed_ptr(tsk, cpumask);
2804         current->reclaim_state = &reclaim_state;
2805
2806         /*
2807          * Tell the memory management that we're a "memory allocator",
2808          * and that if we need more memory we should get access to it
2809          * regardless (see "__alloc_pages()"). "kswapd" should
2810          * never get caught in the normal page freeing logic.
2811          *
2812          * (Kswapd normally doesn't need memory anyway, but sometimes
2813          * you need a small amount of memory in order to be able to
2814          * page out something else, and this flag essentially protects
2815          * us from recursively trying to free more memory as we're
2816          * trying to free the first piece of memory in the first place).
2817          */
2818         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2819         set_freezable();
2820
2821         order = new_order = 0;
2822         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2823         for ( ; ; ) {
2824                 int ret;
2825
2826                 /*
2827                  * If the last balance_pgdat was unsuccessful it's unlikely a
2828                  * new request of a similar or harder type will succeed soon
2829                  * so consider going to sleep on the basis we reclaimed at
2830                  */
2831                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2832                         new_order = pgdat->kswapd_max_order;
2833                         new_classzone_idx = pgdat->classzone_idx;
2834                         pgdat->kswapd_max_order =  0;
2835                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2836                 }
2837
2838                 if (order < new_order || classzone_idx > new_classzone_idx) {
2839                         /*
2840                          * Don't sleep if someone wants a larger 'order'
2841                          * allocation or has tigher zone constraints
2842                          */
2843                         order = new_order;
2844                         classzone_idx = new_classzone_idx;
2845                 } else {
2846                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2847                         order = pgdat->kswapd_max_order;
2848                         classzone_idx = pgdat->classzone_idx;
2849                         pgdat->kswapd_max_order = 0;
2850                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2851                 }
2852
2853                 ret = try_to_freeze();
2854                 if (kthread_should_stop())
2855                         break;
2856
2857                 /*
2858                  * We can speed up thawing tasks if we don't call balance_pgdat
2859                  * after returning from the refrigerator
2860                  */
2861                 if (!ret) {
2862                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2863                         order = balance_pgdat(pgdat, order, &classzone_idx);
2864                 }
2865         }
2866         return 0;
2867 }
2868
2869 /*
2870  * A zone is low on free memory, so wake its kswapd task to service it.
2871  */
2872 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2873 {
2874         pg_data_t *pgdat;
2875
2876         if (!populated_zone(zone))
2877                 return;
2878
2879         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2880                 return;
2881         pgdat = zone->zone_pgdat;
2882         if (pgdat->kswapd_max_order < order) {
2883                 pgdat->kswapd_max_order = order;
2884                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2885         }
2886         if (!waitqueue_active(&pgdat->kswapd_wait))
2887                 return;
2888         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2889                 return;
2890
2891         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2892         wake_up_interruptible(&pgdat->kswapd_wait);
2893 }
2894
2895 /*
2896  * The reclaimable count would be mostly accurate.
2897  * The less reclaimable pages may be
2898  * - mlocked pages, which will be moved to unevictable list when encountered
2899  * - mapped pages, which may require several travels to be reclaimed
2900  * - dirty pages, which is not "instantly" reclaimable
2901  */
2902 unsigned long global_reclaimable_pages(void)
2903 {
2904         int nr;
2905
2906         nr = global_page_state(NR_ACTIVE_FILE) +
2907              global_page_state(NR_INACTIVE_FILE);
2908
2909         if (nr_swap_pages > 0)
2910                 nr += global_page_state(NR_ACTIVE_ANON) +
2911                       global_page_state(NR_INACTIVE_ANON);
2912
2913         return nr;
2914 }
2915
2916 unsigned long zone_reclaimable_pages(struct zone *zone)
2917 {
2918         int nr;
2919
2920         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2921              zone_page_state(zone, NR_INACTIVE_FILE);
2922
2923         if (nr_swap_pages > 0)
2924                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2925                       zone_page_state(zone, NR_INACTIVE_ANON);
2926
2927         return nr;
2928 }
2929
2930 #ifdef CONFIG_HIBERNATION
2931 /*
2932  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2933  * freed pages.
2934  *
2935  * Rather than trying to age LRUs the aim is to preserve the overall
2936  * LRU order by reclaiming preferentially
2937  * inactive > active > active referenced > active mapped
2938  */
2939 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2940 {
2941         struct reclaim_state reclaim_state;
2942         struct scan_control sc = {
2943                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2944                 .may_swap = 1,
2945                 .may_unmap = 1,
2946                 .may_writepage = 1,
2947                 .nr_to_reclaim = nr_to_reclaim,
2948                 .hibernation_mode = 1,
2949                 .order = 0,
2950         };
2951         struct shrink_control shrink = {
2952                 .gfp_mask = sc.gfp_mask,
2953         };
2954         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2955         struct task_struct *p = current;
2956         unsigned long nr_reclaimed;
2957
2958         p->flags |= PF_MEMALLOC;
2959         lockdep_set_current_reclaim_state(sc.gfp_mask);
2960         reclaim_state.reclaimed_slab = 0;
2961         p->reclaim_state = &reclaim_state;
2962
2963         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2964
2965         p->reclaim_state = NULL;
2966         lockdep_clear_current_reclaim_state();
2967         p->flags &= ~PF_MEMALLOC;
2968
2969         return nr_reclaimed;
2970 }
2971 #endif /* CONFIG_HIBERNATION */
2972
2973 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2974    not required for correctness.  So if the last cpu in a node goes
2975    away, we get changed to run anywhere: as the first one comes back,
2976    restore their cpu bindings. */
2977 static int __devinit cpu_callback(struct notifier_block *nfb,
2978                                   unsigned long action, void *hcpu)
2979 {
2980         int nid;
2981
2982         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2983                 for_each_node_state(nid, N_HIGH_MEMORY) {
2984                         pg_data_t *pgdat = NODE_DATA(nid);
2985                         const struct cpumask *mask;
2986
2987                         mask = cpumask_of_node(pgdat->node_id);
2988
2989                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2990                                 /* One of our CPUs online: restore mask */
2991                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2992                 }
2993         }
2994         return NOTIFY_OK;
2995 }
2996
2997 /*
2998  * This kswapd start function will be called by init and node-hot-add.
2999  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3000  */
3001 int kswapd_run(int nid)
3002 {
3003         pg_data_t *pgdat = NODE_DATA(nid);
3004         int ret = 0;
3005
3006         if (pgdat->kswapd)
3007                 return 0;
3008
3009         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3010         if (IS_ERR(pgdat->kswapd)) {
3011                 /* failure at boot is fatal */
3012                 BUG_ON(system_state == SYSTEM_BOOTING);
3013                 printk("Failed to start kswapd on node %d\n",nid);
3014                 ret = -1;
3015         }
3016         return ret;
3017 }
3018
3019 /*
3020  * Called by memory hotplug when all memory in a node is offlined.
3021  */
3022 void kswapd_stop(int nid)
3023 {
3024         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3025
3026         if (kswapd)
3027                 kthread_stop(kswapd);
3028 }
3029
3030 static int __init kswapd_init(void)
3031 {
3032         int nid;
3033
3034         swap_setup();
3035         for_each_node_state(nid, N_HIGH_MEMORY)
3036                 kswapd_run(nid);
3037         hotcpu_notifier(cpu_callback, 0);
3038         return 0;
3039 }
3040
3041 module_init(kswapd_init)
3042
3043 #ifdef CONFIG_NUMA
3044 /*
3045  * Zone reclaim mode
3046  *
3047  * If non-zero call zone_reclaim when the number of free pages falls below
3048  * the watermarks.
3049  */
3050 int zone_reclaim_mode __read_mostly;
3051
3052 #define RECLAIM_OFF 0
3053 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3054 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3055 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3056
3057 /*
3058  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3059  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3060  * a zone.
3061  */
3062 #define ZONE_RECLAIM_PRIORITY 4
3063
3064 /*
3065  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3066  * occur.
3067  */
3068 int sysctl_min_unmapped_ratio = 1;
3069
3070 /*
3071  * If the number of slab pages in a zone grows beyond this percentage then
3072  * slab reclaim needs to occur.
3073  */
3074 int sysctl_min_slab_ratio = 5;
3075
3076 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3077 {
3078         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3079         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3080                 zone_page_state(zone, NR_ACTIVE_FILE);
3081
3082         /*
3083          * It's possible for there to be more file mapped pages than
3084          * accounted for by the pages on the file LRU lists because
3085          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3086          */
3087         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3088 }
3089
3090 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3091 static long zone_pagecache_reclaimable(struct zone *zone)
3092 {
3093         long nr_pagecache_reclaimable;
3094         long delta = 0;
3095
3096         /*
3097          * If RECLAIM_SWAP is set, then all file pages are considered
3098          * potentially reclaimable. Otherwise, we have to worry about
3099          * pages like swapcache and zone_unmapped_file_pages() provides
3100          * a better estimate
3101          */
3102         if (zone_reclaim_mode & RECLAIM_SWAP)
3103                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3104         else
3105                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3106
3107         /* If we can't clean pages, remove dirty pages from consideration */
3108         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3109                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3110
3111         /* Watch for any possible underflows due to delta */
3112         if (unlikely(delta > nr_pagecache_reclaimable))
3113                 delta = nr_pagecache_reclaimable;
3114
3115         return nr_pagecache_reclaimable - delta;
3116 }
3117
3118 /*
3119  * Try to free up some pages from this zone through reclaim.
3120  */
3121 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3122 {
3123         /* Minimum pages needed in order to stay on node */
3124         const unsigned long nr_pages = 1 << order;
3125         struct task_struct *p = current;
3126         struct reclaim_state reclaim_state;
3127         int priority;
3128         struct scan_control sc = {
3129                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3130                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3131                 .may_swap = 1,
3132                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3133                                        SWAP_CLUSTER_MAX),
3134                 .gfp_mask = gfp_mask,
3135                 .order = order,
3136         };
3137         struct shrink_control shrink = {
3138                 .gfp_mask = sc.gfp_mask,
3139         };
3140         unsigned long nr_slab_pages0, nr_slab_pages1;
3141
3142         cond_resched();
3143         /*
3144          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3145          * and we also need to be able to write out pages for RECLAIM_WRITE
3146          * and RECLAIM_SWAP.
3147          */
3148         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3149         lockdep_set_current_reclaim_state(gfp_mask);
3150         reclaim_state.reclaimed_slab = 0;
3151         p->reclaim_state = &reclaim_state;
3152
3153         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3154                 /*
3155                  * Free memory by calling shrink zone with increasing
3156                  * priorities until we have enough memory freed.
3157                  */
3158                 priority = ZONE_RECLAIM_PRIORITY;
3159                 do {
3160                         shrink_zone(priority, zone, &sc);
3161                         priority--;
3162                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3163         }
3164
3165         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3166         if (nr_slab_pages0 > zone->min_slab_pages) {
3167                 /*
3168                  * shrink_slab() does not currently allow us to determine how
3169                  * many pages were freed in this zone. So we take the current
3170                  * number of slab pages and shake the slab until it is reduced
3171                  * by the same nr_pages that we used for reclaiming unmapped
3172                  * pages.
3173                  *
3174                  * Note that shrink_slab will free memory on all zones and may
3175                  * take a long time.
3176                  */
3177                 for (;;) {
3178                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3179
3180                         /* No reclaimable slab or very low memory pressure */
3181                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3182                                 break;
3183
3184                         /* Freed enough memory */
3185                         nr_slab_pages1 = zone_page_state(zone,
3186                                                         NR_SLAB_RECLAIMABLE);
3187                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3188                                 break;
3189                 }
3190
3191                 /*
3192                  * Update nr_reclaimed by the number of slab pages we
3193                  * reclaimed from this zone.
3194                  */
3195                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3196                 if (nr_slab_pages1 < nr_slab_pages0)
3197                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3198         }
3199
3200         p->reclaim_state = NULL;
3201         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3202         lockdep_clear_current_reclaim_state();
3203         return sc.nr_reclaimed >= nr_pages;
3204 }
3205
3206 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3207 {
3208         int node_id;
3209         int ret;
3210
3211         /*
3212          * Zone reclaim reclaims unmapped file backed pages and
3213          * slab pages if we are over the defined limits.
3214          *
3215          * A small portion of unmapped file backed pages is needed for
3216          * file I/O otherwise pages read by file I/O will be immediately
3217          * thrown out if the zone is overallocated. So we do not reclaim
3218          * if less than a specified percentage of the zone is used by
3219          * unmapped file backed pages.
3220          */
3221         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3222             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3223                 return ZONE_RECLAIM_FULL;
3224
3225         if (zone->all_unreclaimable)
3226                 return ZONE_RECLAIM_FULL;
3227
3228         /*
3229          * Do not scan if the allocation should not be delayed.
3230          */
3231         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3232                 return ZONE_RECLAIM_NOSCAN;
3233
3234         /*
3235          * Only run zone reclaim on the local zone or on zones that do not
3236          * have associated processors. This will favor the local processor
3237          * over remote processors and spread off node memory allocations
3238          * as wide as possible.
3239          */
3240         node_id = zone_to_nid(zone);
3241         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3242                 return ZONE_RECLAIM_NOSCAN;
3243
3244         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3245                 return ZONE_RECLAIM_NOSCAN;
3246
3247         ret = __zone_reclaim(zone, gfp_mask, order);
3248         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3249
3250         if (!ret)
3251                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3252
3253         return ret;
3254 }
3255 #endif
3256
3257 /*
3258  * page_evictable - test whether a page is evictable
3259  * @page: the page to test
3260  * @vma: the VMA in which the page is or will be mapped, may be NULL
3261  *
3262  * Test whether page is evictable--i.e., should be placed on active/inactive
3263  * lists vs unevictable list.  The vma argument is !NULL when called from the
3264  * fault path to determine how to instantate a new page.
3265  *
3266  * Reasons page might not be evictable:
3267  * (1) page's mapping marked unevictable
3268  * (2) page is part of an mlocked VMA
3269  *
3270  */
3271 int page_evictable(struct page *page, struct vm_area_struct *vma)
3272 {
3273
3274         if (mapping_unevictable(page_mapping(page)))
3275                 return 0;
3276
3277         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3278                 return 0;
3279
3280         return 1;
3281 }
3282
3283 /**
3284  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3285  * @page: page to check evictability and move to appropriate lru list
3286  * @zone: zone page is in
3287  *
3288  * Checks a page for evictability and moves the page to the appropriate
3289  * zone lru list.
3290  *
3291  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3292  * have PageUnevictable set.
3293  */
3294 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3295 {
3296         VM_BUG_ON(PageActive(page));
3297
3298 retry:
3299         ClearPageUnevictable(page);
3300         if (page_evictable(page, NULL)) {
3301                 enum lru_list l = page_lru_base_type(page);
3302
3303                 __dec_zone_state(zone, NR_UNEVICTABLE);
3304                 list_move(&page->lru, &zone->lru[l].list);
3305                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3306                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3307                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3308         } else {
3309                 /*
3310                  * rotate unevictable list
3311                  */
3312                 SetPageUnevictable(page);
3313                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3314                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3315                 if (page_evictable(page, NULL))
3316                         goto retry;
3317         }
3318 }
3319
3320 /**
3321  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3322  * @mapping: struct address_space to scan for evictable pages
3323  *
3324  * Scan all pages in mapping.  Check unevictable pages for
3325  * evictability and move them to the appropriate zone lru list.
3326  */
3327 void scan_mapping_unevictable_pages(struct address_space *mapping)
3328 {
3329         pgoff_t next = 0;
3330         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3331                          PAGE_CACHE_SHIFT;
3332         struct zone *zone;
3333         struct pagevec pvec;
3334
3335         if (mapping->nrpages == 0)
3336                 return;
3337
3338         pagevec_init(&pvec, 0);
3339         while (next < end &&
3340                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3341                 int i;
3342                 int pg_scanned = 0;
3343
3344                 zone = NULL;
3345
3346                 for (i = 0; i < pagevec_count(&pvec); i++) {
3347                         struct page *page = pvec.pages[i];
3348                         pgoff_t page_index = page->index;
3349                         struct zone *pagezone = page_zone(page);
3350
3351                         pg_scanned++;
3352                         if (page_index > next)
3353                                 next = page_index;
3354                         next++;
3355
3356                         if (pagezone != zone) {
3357                                 if (zone)
3358                                         spin_unlock_irq(&zone->lru_lock);
3359                                 zone = pagezone;
3360                                 spin_lock_irq(&zone->lru_lock);
3361                         }
3362
3363                         if (PageLRU(page) && PageUnevictable(page))
3364                                 check_move_unevictable_page(page, zone);
3365                 }
3366                 if (zone)
3367                         spin_unlock_irq(&zone->lru_lock);
3368                 pagevec_release(&pvec);
3369
3370                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3371         }
3372
3373 }
3374
3375 /**
3376  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3377  * @zone - zone of which to scan the unevictable list
3378  *
3379  * Scan @zone's unevictable LRU lists to check for pages that have become
3380  * evictable.  Move those that have to @zone's inactive list where they
3381  * become candidates for reclaim, unless shrink_inactive_zone() decides
3382  * to reactivate them.  Pages that are still unevictable are rotated
3383  * back onto @zone's unevictable list.
3384  */
3385 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3386 static void scan_zone_unevictable_pages(struct zone *zone)
3387 {
3388         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3389         unsigned long scan;
3390         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3391
3392         while (nr_to_scan > 0) {
3393                 unsigned long batch_size = min(nr_to_scan,
3394                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3395
3396                 spin_lock_irq(&zone->lru_lock);
3397                 for (scan = 0;  scan < batch_size; scan++) {
3398                         struct page *page = lru_to_page(l_unevictable);
3399
3400                         if (!trylock_page(page))
3401                                 continue;
3402
3403                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3404
3405                         if (likely(PageLRU(page) && PageUnevictable(page)))
3406                                 check_move_unevictable_page(page, zone);
3407
3408                         unlock_page(page);
3409                 }
3410                 spin_unlock_irq(&zone->lru_lock);
3411
3412                 nr_to_scan -= batch_size;
3413         }
3414 }
3415
3416
3417 /**
3418  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3419  *
3420  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3421  * pages that have become evictable.  Move those back to the zones'
3422  * inactive list where they become candidates for reclaim.
3423  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3424  * and we add swap to the system.  As such, it runs in the context of a task
3425  * that has possibly/probably made some previously unevictable pages
3426  * evictable.
3427  */
3428 static void scan_all_zones_unevictable_pages(void)
3429 {
3430         struct zone *zone;
3431
3432         for_each_zone(zone) {
3433                 scan_zone_unevictable_pages(zone);
3434         }
3435 }
3436
3437 /*
3438  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3439  * all nodes' unevictable lists for evictable pages
3440  */
3441 unsigned long scan_unevictable_pages;
3442
3443 int scan_unevictable_handler(struct ctl_table *table, int write,
3444                            void __user *buffer,
3445                            size_t *length, loff_t *ppos)
3446 {
3447         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3448
3449         if (write && *(unsigned long *)table->data)
3450                 scan_all_zones_unevictable_pages();
3451
3452         scan_unevictable_pages = 0;
3453         return 0;
3454 }
3455
3456 #ifdef CONFIG_NUMA
3457 /*
3458  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3459  * a specified node's per zone unevictable lists for evictable pages.
3460  */
3461
3462 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3463                                           struct sysdev_attribute *attr,
3464                                           char *buf)
3465 {
3466         return sprintf(buf, "0\n");     /* always zero; should fit... */
3467 }
3468
3469 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3470                                            struct sysdev_attribute *attr,
3471                                         const char *buf, size_t count)
3472 {
3473         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3474         struct zone *zone;
3475         unsigned long res;
3476         unsigned long req = strict_strtoul(buf, 10, &res);
3477
3478         if (!req)
3479                 return 1;       /* zero is no-op */
3480
3481         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3482                 if (!populated_zone(zone))
3483                         continue;
3484                 scan_zone_unevictable_pages(zone);
3485         }
3486         return 1;
3487 }
3488
3489
3490 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3491                         read_scan_unevictable_node,
3492                         write_scan_unevictable_node);
3493
3494 int scan_unevictable_register_node(struct node *node)
3495 {
3496         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3497 }
3498
3499 void scan_unevictable_unregister_node(struct node *node)
3500 {
3501         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3502 }
3503 #endif